research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (μ2-7-{[bis­­(pyridin-2-ylmeth­yl)amino-1κ3N,N′,N′′]meth­yl}-5-chloro­quinolin-8-olato-2κN;1:2κ2O)tri­chlorido-1κCl,2κ2Cl-dizinc(II)

crossmark logo

aOsaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan, and bOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 9 September 2024; accepted 7 October 2024; online 15 October 2024)

The title compound, [Zn2(C22H18ClN4O)Cl3], is a dinuclear zinc(II) complex with three chlorido ligands and one penta­dentate ligand containing quinolin-8-olato and bis­(pyridin-2-ylmeth­yl)amine groups. One of the two ZnII atom adopts a tetra­hedral geometry and coordinates two chlorido ligands with chelate coord­ination of the N and O atoms of the quinolin-8-olato group in the ligand. The other ZnII atom adopts a distorted trigonal–bipyramidal geometry, and coordinates one chlorido-O atom of the quinolin-8-olato group and three N atoms of the bis­(pyridin-2-ylmeth­yl)amine unit. In the crystal, two mol­ecules are associated through a pair of inter­molecular C—H⋯Cl hydrogen bonds, forming a dimer with an R22(12) ring motif. Another inter­molecular C—H⋯Cl hydrogen bond forms a spiral C(8) chain running parallel to the [010] direction. The dimers are linked by these two inter­molecular C—H⋯Cl hydrogen bonds, generating a ribbon sheet structure in ac plane. Two other inter­molecular C—H⋯Cl hydrogen bonds form a C(7) chain along the c-axis direction and another C(7) chain generated by a d-glide plane. The mol­ecules are cross-linked through the four inter­molecular C—H⋯Cl hydrogen bonds to form a three-dimensional network.

1. Chemical context

Dinuclear metal complexes have received much attention due to their functional properties and many potential applications, such as active centre models of metalloproteins in bioinorganic chemistry (Wieghardt et al., 1986[Wieghardt, K., Bossek, U., Bonvoisin, J., Beauvillain, P., Girerd, J.-J., Nuber, B., Weiss, J. & Heinze, J. (1986). Angew. Chem. Int. Ed. Engl. 25, 1030-1031.]), OLEDs (Pander et al., 2023[Pander, P., Zaytsev, A. V., Sil, A., Baryshnikov, G. V., Siddique, F., Williams, J. A. G., Dias, F. B. & Kozhevnikov, V. N. (2023). Chem. Sci. 14, 13934-13943.]), chemosensors (Bazany-Rodríguez et al., 2020[Bazany-Rodríguez, I. J., Salomón-Flores, M. K., Bautista-Renedo, J. M., González-Rivas, N. & Dorazco-González, A. (2020). Inorg. Chem. 59, 7739-7751.]), biosensors (Van der Heyden et al., 2023[Van der Heyden, A., Chanthavong, P., Angles-Cano, E., Bonnet, H., Dejeu, J., Cras, A., Philouze, C., Serratrice, G., El-Ghazouani, F. Z., Toti, F., Thibon-Pourret, A. & Belle, C. (2023). J. Inorg. Biochem. 239, 112065.]), electrocatalysts (Raj et al., 2023[Raj, M., Makhal, K., Raj, D., Mishra, A., Mallik, B. S. & Padhi, S. K. (2023). Dalton Trans. 52, 17797-17809.]) and magnetic materials (Massoud et al., 2015[Massoud, S. S., Spell, M., Ledet, C. C., Junk, T., Herchel, R., Fischer, R. C., Trávníček, Z. & Mautner, F. A. (2015). Dalton Trans. 44, 2110-2121.]). With regard to the applications for chemosensors, fluore­scent anion probes based on metal complexes have been investigated, and dinuclear complex probes with high selectivity for target anions have been reported (Chen et al., 2011[Chen, W.-H., Xing, Y. & Pang, Y. (2011). Org. Lett. 13, 1362-1365.]; Mesquita et al., 2016[Mesquita, L. M., André, V., Esteves, C. V., Palmeira, T., Berberan-Santos, M. N., Mateus, P. & Delgado, R. (2016). Inorg. Chem. 55, 2212-2219.]). We synthesized a penta­dentate ligand (HClqdpa) containing quinolin-8-ol (Hq) and bis­(pyridin-2-ylmeth­yl)amine [di-(2-picol­yl)amine, dpa] moieties, and its mononuclear ZnII complex {7-{[bis­(pyridin-2-ylmeth­yl)amino-κ3N,N′,N′′]meth­yl}-5-chloro-quinolin-8-ol}di­bromido­zinc(II) [ZnBr2(HClqdpa)] to develop a fluorescent anion probe, and analysed their crystal structures (Kubono et al., 2015[Kubono, K., Kado, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2015). Acta Cryst. E71, 1545-1547.], 2022[Kubono, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2022). Acta Cryst. E78, 326-329.]). The Zn atom in this complex is five-coordinated by two bromido and three N atoms of the dpa group in the ligand. The Hq moiety in the ligand is not coordinated to the Zn atom. Therefore, a dinuclear complex, Zn:ligand = 2:1, can be formed by coordinating another zinc(II) ion to the Hq moiety in the mononuclear complex, since the O atom of quinolin-8-olato is able to bind with two metal ions through bridging coordination. Herein we report on the synthesis and crystal structure of the dizinc(II) title complex with HClqdpa and three chlorido atoms, Zn2Cl3(Clqdpa).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The mol­ecule is a dinuclear zinc(II) complex with three chlorido ligands and the penta­dentate ligand (Clqdpa) based on 5-chloro­quinolin-8-olato (Clq) and dpa groups. The Zn1 atom adopts distorted a tetra­hedral geometry and coordinates two chlorido ligands (Cl3 and Cl4) and the N8 atom and the O7 atom of the Clq unit in Clqdpa, forming a ZnCl2(Clq) unit. The Zn2 atom adopts a distorted trigonal–bipyramidal geometry and coordinates one chlorido ligand (Cl5), the O7 atom of the Clq unit and three N atoms (N9, N10 and N11) of the dpa group in the Clqdpa, forming a ZnCl(Clqdpa) unit, but the N8 atom in the Clq unit is not coordinated to the Zn2 atom. The four-coordinate geometry index, τ4 = [360°(α + β)]/141°, evaluated from the two largest angles (α < β), and has ideal values of 1 for a tetra­hedral and 0 for a square-planar geometry (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]), whereas the five-coordinate geometry index, τ5 = (β − α)/60, derived from the two largest angles (α < β) in a structure has ideal values of 1 for a trigonal–bipyramidal and of 0 for a square-pyramidal geometry (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). In the title compound, τ4 for the Zn1 atom and τ5 for the Zn2 atom are equal to 0.861 and 0.832, respectively. In the tetra­hedral ZnCl2(Clq) unit, the Zn1—Cl3, Zn1—Cl4, Zn1—O7 and Zn1—N8 bond lengths are 2.2190 (10), 2.2241 (10), 2.019 (3) and 2.101 (3) Å, respectively (Table 1[link]). In the trigonal–bipyramidal ZnCl(Clqdpa) unit, the O7 atom of the Clq unit and the N10 and N11 atoms of the pyridine rings in dpa group are equatorially bound to the Zn2 atom. The Zn2 atom is located 0.3188 (6) Å above the equatorial O7/N10/N11 plane. The axial positions are occupied by the Cl5 atom and the tertiary N9 atom of dpa group. The equatorial bond lengths Zn2—O7, Zn2—N10 and Zn2—N11 are 2.026 (3), 2.083 (3) and 2.052 (3) Å, respectively (Table 1[link]), whereas the axial bonds Zn2—Cl5 and Zn2—N9 are 2.2897 (11) and 2.216 (3) Å, respectively, longer than those of equatorial bonds (Table 1[link]). The axial angle N9—Zn2—Cl5 is 176.25 (8)°, and the equatorial angles range from 102.47 (11) to 126.31 (12)° (Table 1[link]). The O atom in the Clq unit is bridged-coordinated with two ZnII atoms. The Zn1—O7—Zn2 bond angle is 112.72 (12)° (Table 1[link]). The mean planes of two pyridine rings in the dpa unit are not coplanar with the equatorial O7/N10/N11 plane of the trigonal bipyramid, but rather nearly perpendicular, the dihedral angles between the pyridine rings and the equatorial plane being 68.02 (19)° (for N10/C23–C27) and 83.38 (17)° (for N11/C29–C33). The dihedral angle between the two pyridine rings is 43.4 (2)°.

Table 1
Selected geometric parameters (Å, °)

Zn1—Cl3 2.2190 (10) Zn2—O7 2.026 (3)
Zn1—Cl4 2.2241 (10) Zn2—N9 2.216 (3)
Zn1—O7 2.019 (3) Zn2—N10 2.083 (3)
Zn1—N8 2.101 (3) Zn2—N11 2.052 (3)
Zn2—Cl5 2.2897 (11)    
       
Cl3—Zn1—Cl4 121.76 (4) O7—Zn2—N11 102.47 (11)
O7—Zn1—Cl3 116.11 (8) N9—Zn2—Cl5 176.25 (8)
O7—Zn1—Cl4 116.86 (8) N10—Zn2—Cl5 98.31 (10)
O7—Zn1—N8 80.68 (11) N10—Zn2—N9 77.99 (12)
N8—Zn1—Cl3 103.09 (9) N11—Zn2—Cl5 103.95 (10)
N8—Zn1—Cl4 107.56 (9) N11—Zn2—N9 78.95 (12)
O7—Zn2—Cl5 94.38 (8) N11—Zn2—N10 126.31 (12)
O7—Zn2—N9 87.24 (10) Zn1—O7—Zn2 112.72 (12)
O7—Zn2—N10 123.92 (11)    
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.

In contrast, the Zn atom in the related compound, ZnBr2(HClqdpa), adopts a distorted square-pyramidal geometry, and the dihedral angle between two pyridine rings is 15.84 (13)° (VAXNUH; Kubono et al., 2022[Kubono, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2022). Acta Cryst. E78, 326-329.]). In the other related compound, a dinuclear zinc(II) complex with the ligand having phenolato and two dpa units (RESSUH; Van der Heyden et al., 2023[Van der Heyden, A., Chanthavong, P., Angles-Cano, E., Bonnet, H., Dejeu, J., Cras, A., Philouze, C., Serratrice, G., El-Ghazouani, F. Z., Toti, F., Thibon-Pourret, A. & Belle, C. (2023). J. Inorg. Biochem. 239, 112065.]), one Zn atom adopts a trigonal–bipyramidal geometry with one chlorido atom, and the other adopts a square-pyramidal geometry with an aqua O atom. Here the dihedral angles between two pyridine rings are 58.9 (3) and 9.6 (4)°, respectively, for the trigonal–bipyramidal and square pyramidal coordination geometries. The axial bond Zn—Cl length for the trigonal–bipyramidal ZnII atom is 2.229 (2) Å, and the axial N—Zn—Cl bond angle is 177.4 (1)°, similar to those of the title compound.

The quinoline ring in the title compound is slightly bent with an r.m.s. deviation of 0.017 (4) Å. In the quinoline ring, the largest deviation from the mean plane is 0.022 (4) Å for carbon atom C14. The quinoline plane subtends dihedral angles of 76.81 (15) and 56.29 (17)° with the two pyridine rings.

3. Supra­molecular features

In the crystal, two mol­ecules are associated through a pair of inter­molecular C—H⋯Cl hydrogen bonds [C18—H18⋯Cl4i; symmetry code: (i) −x + 1, −y + 1, z; Table 2[link]], forming a dimer with an R22(12) ring motif by a two-fold axis (Fig. 2[link]). Another inter­molecular C—H⋯Cl hydrogen bond is observed [C26—H26⋯Cl3iii; symmetry code: (iii) −x + [{1\over 2}], −y + 1, z − [{1\over 2}]; Table 2[link]], which forms a spiral C(8) chain running parallel to the [010] direction by a 21 screw axis (Fig. 3[link]). The dimers with twofold symmetry are linked to each other by the inter­molecular C26—H26⋯Cl3iii hydrogen bonds generating a ribbon sheet structure in the ac plane. The inter­molecular C21—H21B⋯Cl3ii and C28—H28B⋯Cl4iv hydrogen bond [symmetry code: (ii) x, y, z − 1; (iv) −x + [{3\over 4}], y − [{1\over 4}], z − [{3\over 4}]; Table 2[link]] form a C(7) chain along the c-axis direction and another C(7) chain generated by a d-glide plane, respectively. The mol­ecules are linked by these two inter­molecular C—H⋯Cl hydrogen bonds, generating a sheet structure in the bc plane (Fig. 4[link]). Therefore, the mol­ecules are cross-linked through the four inter­molecular C—H⋯Cl hydrogen bonds to form a three-dimensional network.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯Cl4i 0.95 2.77 3.537 (4) 139
C21—H21B⋯Cl4ii 0.99 2.69 3.584 (4) 150
C26—H26⋯Cl3iii 0.95 2.83 3.657 (4) 146
C28—H28B⋯Cl3iv 0.99 2.77 3.507 (4) 132
Symmetry codes: (i) [-x+1, -y+1, z]; (ii) [x, y, z-1]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 4}}, y-{\script{1\over 4}}, z-{\script{3\over 4}}].
[Figure 2]
Figure 2
The twofold symmetric dimeric structure of the title compound. The inter­molecular C18—H18⋯Cl4i hydrogen bonds are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity. [Symmetry code: (i) −x + 1, −y + 1, z.]
[Figure 3]
Figure 3
A portion of the crystal packing of the title compound showing the spiral C(8) chain formed via a 21 screw axis. The inter­molecular C26—H26⋯Cl3iii hydrogen bonds are shown as dashed lines. H atoms not involved in the inter­actions were omitted for clarity. [Symmetry code: (iii) −x + [{1\over 2}], −y + 1, z − [{1\over 2}].]
[Figure 4]
Figure 4
A packing diagram of the title compound viewed along the a axis, showing the two-dimensional network structure. The inter­molecular C21—H21B⋯Cl4ii and C28—H28B⋯Cl3iv hydrogen bonds are shown as dashed lines. H atoms not involved in the inter­actions have been omitted for clarity. [symmetry codes: (ii) x, y, z − 1; (iv) −x + [{3\over 4}], y − [{1\over 4}], z − [{3\over 4}].]

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 2024.1.0, update of March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for ZnII complexes with the [bis­(pyridin-2-ylmeth­yl)amino]­methyl fragment as ligand gave 641 hits, and among those 46 hits with one chlorido ligand. ZnII complexes with the 2-[{bis­(pyridin-2-ylmeth­yl)amino}­meth­yl]phenolato fragment gave 133 hits and among those 15 hits for five-coordinated structures with one chlorido ligand. Of these 15 analogues, 10 structures have a trigonal–bipyramidal geometry whose apical positions are occupied by the Cl atom and the tertiary N atom, and five structures have a square-pyramidal geometry. The dihedral angles between the two pyridine rings range from 42.1 (8) to 77.79 (16)° in the ten trigonal–bipyramidal structures, while those of the five square-pyramidal structures range from 8.1 (5) to 36.29 (9)°.

A search for ZnII complexes with the quinolin-8-olato fragment as ligand gave 244 hits and among these, dinuclear ZnII complexes gave 71 hits. All the 71 structures contain multiple quinolin-8-olato moieties. Two structures among these 71 analogues are polymorphs of the ZnII complex with the ligand in which the Cl atom of HClqdpa is replaced with an H atom, bis­(μ-7-({bis­[(pyridin-2-yl)meth­yl]amino}­meth­yl)quinolin-8-olato)dizinc(II) bis­(tetra­phenyl­borate). The rel­ated complex is a Zn:ligand = 2:2 dimeric dinuclear structure with the quinolin-8-olato O atom bridging two ZnII ions (FEDTUH and FEDTOB; Kong et al., 2022[Kong, M., Xing, F. & Zhu, S. (2022). Inorg. Chem. Commun. 141, 109530.]). In addition, a search for di­chlorido ZnII complexes with the quinolin-8-olato fragment gave nine hits. Of these nine analogues, seven structures are Zn:ligand = 1:1 mononuclear complexes, one structure is a co-crystal with a 1:1 mononuclear complex and 1:2 dinuclear complex, and the last structure is a 1:1 catena complex. Therefore, the crystal structure of a 2:1 dinuclear ZnII complex with a singular quinolin-8-olato has not been reported.

5. Synthesis and crystallization

The HClqdpa ligand was prepared by a reported method (Kubono et al., 2015[Kubono, K., Kado, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2015). Acta Cryst. E71, 1545-1547.]). HClqdpa (39.1 mg, 0.100 mmol) was dissolved in 15 mL of hot aceto­nitrile. Then a solution of zinc(II) chloride (34.1 mg, 0.250 mmol) in 15 mL of hot aceto­nitrile was added to the ligand solution. The mixture was stirred for 20 min at 333 K. After removal of the solvent at room temperature in the air for one week, yellow crystals of the title compound were obtained (yield 68.7%). 1H NMR (CD3SOCD3, 400 MHz): δ = 4.14 (s, 2H), 4.54, 4.79 (ABq, J = 16.8 Hz, 4H), 6.98–7.01 (dd, J = 8.0 Hz, J = 4.8 Hz, 2H), 7.32–7.33 (d, J = 4.8 Hz, 2H), 7.44–7.47 (dd, J = 8.8 Hz, J = 4.8 Hz, 1H), 7.68–7.70 (dd, J = 8.8 Hz, J = 4.4 Hz, 2H), 7.81 (s, 1H), 7.93-7.95 (t, J = 8.0 Hz, 2H), 8.23-8.24 (d, J = 4.4 Hz, 1H), 8,42–8.45 (d, J = 8.8 Hz, 1H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms bound to carbon were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Zn2(C22H18ClN4O)Cl3]
Mr 626.98
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 100
a, b, c (Å) 35.5812 (4), 29.7570 (3), 8.8942 (1)
V3) 9417.09 (18)
Z 16
Radiation type Cu Kα
μ (mm−1) 6.89
Crystal size (mm) 0.37 × 0.15 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.318, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12774, 3507, 3445
Rint 0.037
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.04
No. of reflections 3507
No. of parameters 298
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.36
Absolute structure Flack x determined using 942 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.004 (17)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

2-7-{[Bis(pyridin-2-ylmethyl)amino-1κ3N,N',N'']methyl}-5-chloroquinolin-8-olato-2κN;1:2κ2O)trichlorido-1κCl,2κ2Cl-dizinc(II) top
Crystal data top
[Zn2(C22H18ClN4O)Cl3]Dx = 1.769 Mg m3
Mr = 626.98Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Fdd2Cell parameters from 9909 reflections
a = 35.5812 (4) Åθ = 3.9–76.7°
b = 29.7570 (3) ŵ = 6.89 mm1
c = 8.8942 (1) ÅT = 100 K
V = 9417.09 (18) Å3Block, yellow
Z = 160.37 × 0.15 × 0.06 mm
F(000) = 5024
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3507 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3445 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.0000 pixels mm-1θmax = 77.3°, θmin = 3.9°
ω scansh = 4439
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 3636
Tmin = 0.318, Tmax = 1.000l = 107
12774 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.053P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.63 e Å3
3507 reflectionsΔρmin = 0.35 e Å3
298 parametersAbsolute structure: Flack x determined using 942 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.004 (17)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups 2.a Secondary CH2 refined with riding coordinates: C21(H21A,H21B), C22(H22A,H22B), C28(H28A,H28B) 2.b Aromatic/amide H refined with riding coordinates: C14(H14), C17(H17), C18(H18), C19(H19), C24(H24), C25(H25), C26(H26), C27(H27), C30(H30), C31(H31), C32(H32), C33(H33)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.39776 (2)0.48827 (2)0.75531 (6)0.01944 (13)
Zn20.34873 (2)0.42831 (2)0.50092 (6)0.01706 (12)
Cl30.36491 (2)0.54041 (3)0.87591 (12)0.0251 (2)
Cl40.42290 (2)0.42993 (3)0.87494 (11)0.02305 (19)
Cl50.32149 (3)0.43405 (3)0.73337 (11)0.0276 (2)
Cl60.49423 (3)0.57151 (3)0.14036 (12)0.0263 (2)
O70.38518 (7)0.47959 (8)0.5358 (3)0.0176 (5)
N80.44197 (8)0.52514 (10)0.6589 (4)0.0197 (6)
N90.37150 (8)0.42401 (9)0.2695 (4)0.0166 (6)
N100.30023 (8)0.43364 (10)0.3710 (4)0.0204 (6)
N110.38276 (8)0.37289 (10)0.5185 (4)0.0209 (6)
C120.40978 (10)0.49869 (11)0.4411 (4)0.0155 (7)
C130.40764 (10)0.49602 (12)0.2861 (4)0.0178 (7)
C140.43408 (10)0.51881 (12)0.1959 (4)0.0193 (7)
H140.4323270.5165950.0895880.023*
C150.46223 (9)0.54408 (12)0.2582 (5)0.0194 (7)
C160.46627 (10)0.54784 (12)0.4154 (5)0.0187 (7)
C170.49488 (10)0.57201 (12)0.4911 (5)0.0223 (8)
H170.5130790.5883460.4352340.027*
C180.49622 (11)0.57178 (14)0.6438 (5)0.0257 (8)
H180.5154110.5878260.6951870.031*
C190.46909 (11)0.54770 (13)0.7252 (4)0.0233 (8)
H190.4703590.5476890.8318680.028*
C200.43993 (9)0.52418 (11)0.5065 (4)0.0171 (7)
C210.37708 (9)0.46999 (12)0.2078 (4)0.0167 (7)
H21A0.3531980.4868600.2164920.020*
H21B0.3833340.4676460.0996650.020*
C220.34150 (10)0.40164 (13)0.1832 (4)0.0213 (8)
H22A0.3417070.3689700.2042820.026*
H22B0.3457630.4060130.0741850.026*
C230.30396 (11)0.42140 (12)0.2274 (5)0.0224 (8)
C240.27451 (12)0.42577 (17)0.1257 (6)0.0345 (10)
H240.2772870.4167430.0238120.041*
C250.24095 (13)0.4437 (2)0.1776 (6)0.0465 (14)
H250.2204160.4473120.1103620.056*
C260.23711 (12)0.45650 (19)0.3269 (6)0.0388 (12)
H260.2141910.4687180.3633670.047*
C270.26757 (10)0.45089 (14)0.4205 (5)0.0279 (9)
H270.2654550.4594610.5230400.034*
C280.40620 (10)0.39697 (12)0.2715 (5)0.0200 (7)
H28A0.4282400.4172750.2704320.024*
H28B0.4072400.3781190.1799010.024*
C290.40814 (10)0.36714 (12)0.4087 (4)0.0188 (7)
C300.43723 (11)0.33591 (13)0.4239 (5)0.0260 (9)
H300.4552880.3323060.3461540.031*
C310.43942 (13)0.31046 (14)0.5526 (5)0.0302 (9)
H310.4590740.2891500.5645040.036*
C320.41274 (12)0.31607 (13)0.6651 (5)0.0290 (9)
H320.4135940.2985380.7543020.035*
C330.38493 (11)0.34785 (13)0.6438 (5)0.0251 (8)
H330.3666960.3521390.7204890.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0234 (2)0.0193 (2)0.0156 (2)0.00292 (19)0.0010 (2)0.0012 (2)
Zn20.0142 (2)0.0171 (2)0.0199 (2)0.00157 (16)0.00064 (19)0.0001 (2)
Cl30.0245 (4)0.0201 (4)0.0305 (5)0.0033 (3)0.0029 (4)0.0064 (4)
Cl40.0237 (4)0.0232 (4)0.0222 (4)0.0060 (3)0.0023 (4)0.0021 (3)
Cl50.0248 (4)0.0353 (5)0.0227 (5)0.0029 (4)0.0062 (4)0.0006 (4)
Cl60.0228 (4)0.0313 (5)0.0249 (5)0.0102 (3)0.0021 (4)0.0041 (4)
O70.0194 (12)0.0174 (12)0.0159 (13)0.0031 (9)0.0015 (9)0.0010 (10)
N80.0196 (14)0.0195 (15)0.0201 (15)0.0024 (12)0.0013 (12)0.0036 (13)
N90.0144 (14)0.0140 (13)0.0215 (17)0.0008 (10)0.0012 (13)0.0015 (12)
N100.0155 (14)0.0193 (15)0.0264 (17)0.0019 (11)0.0007 (13)0.0040 (13)
N110.0181 (14)0.0146 (14)0.0300 (17)0.0034 (11)0.0031 (13)0.0001 (13)
C120.0163 (16)0.0117 (15)0.0184 (17)0.0008 (13)0.0031 (13)0.0008 (13)
C130.0179 (16)0.0139 (16)0.021 (2)0.0000 (13)0.0011 (13)0.0009 (13)
C140.0185 (17)0.0185 (17)0.0208 (17)0.0011 (14)0.0004 (14)0.0011 (14)
C150.0159 (16)0.0183 (16)0.0240 (17)0.0015 (13)0.0026 (15)0.0017 (15)
C160.0148 (16)0.0144 (16)0.0271 (19)0.0005 (13)0.0010 (14)0.0001 (14)
C170.0168 (16)0.0201 (17)0.030 (2)0.0018 (13)0.0017 (17)0.0027 (15)
C180.0177 (17)0.028 (2)0.032 (2)0.0019 (15)0.0096 (16)0.0046 (16)
C190.0255 (19)0.0251 (18)0.019 (2)0.0005 (14)0.0039 (15)0.0043 (15)
C200.0170 (15)0.0155 (15)0.0189 (17)0.0025 (12)0.0026 (15)0.0000 (14)
C210.0166 (16)0.0177 (17)0.0157 (17)0.0014 (13)0.0016 (13)0.0010 (13)
C220.0210 (18)0.0178 (18)0.0250 (19)0.0036 (14)0.0055 (15)0.0023 (15)
C230.0178 (17)0.0212 (17)0.028 (2)0.0071 (14)0.0022 (15)0.0033 (15)
C240.024 (2)0.051 (3)0.029 (2)0.0048 (18)0.0045 (19)0.009 (2)
C250.020 (2)0.079 (4)0.041 (3)0.003 (2)0.007 (2)0.021 (3)
C260.018 (2)0.058 (3)0.040 (3)0.0034 (19)0.0026 (17)0.022 (2)
C270.0155 (17)0.032 (2)0.036 (2)0.0005 (15)0.0050 (16)0.0099 (18)
C280.0174 (15)0.0158 (17)0.0269 (19)0.0007 (13)0.0035 (14)0.0042 (15)
C290.0185 (16)0.0148 (17)0.0230 (19)0.0036 (13)0.0030 (14)0.0037 (14)
C300.0223 (19)0.022 (2)0.034 (2)0.0023 (15)0.0071 (16)0.0069 (17)
C310.030 (2)0.0183 (18)0.042 (3)0.0002 (16)0.0142 (18)0.0007 (17)
C320.029 (2)0.022 (2)0.036 (2)0.0088 (16)0.0109 (18)0.0065 (18)
C330.0226 (18)0.0234 (19)0.029 (2)0.0073 (15)0.0052 (16)0.0052 (16)
Geometric parameters (Å, º) top
Zn1—Cl32.2190 (10)C17—H170.9500
Zn1—Cl42.2241 (10)C17—C181.360 (7)
Zn1—O72.019 (3)C18—H180.9500
Zn1—N82.101 (3)C18—C191.403 (6)
Zn2—Cl52.2897 (11)C19—H190.9500
Zn2—O72.026 (3)C21—H21A0.9900
Zn2—N92.216 (3)C21—H21B0.9900
Zn2—N102.083 (3)C22—H22A0.9900
Zn2—N112.052 (3)C22—H22B0.9900
Cl6—C151.750 (4)C22—C231.511 (5)
O7—C121.341 (4)C23—C241.391 (6)
N8—C191.315 (5)C24—H240.9500
N8—C201.358 (5)C24—C251.387 (7)
N9—C211.487 (4)C25—H250.9500
N9—C221.474 (5)C25—C261.388 (8)
N9—C281.474 (4)C26—H260.9500
N10—C231.335 (6)C26—C271.377 (6)
N10—C271.344 (5)C27—H270.9500
N11—C291.340 (5)C28—H28A0.9900
N11—C331.343 (5)C28—H28B0.9900
C12—C131.383 (5)C28—C291.511 (5)
C12—C201.437 (5)C29—C301.398 (5)
C13—C141.410 (5)C30—H300.9500
C13—C211.505 (5)C30—C311.374 (6)
C14—H140.9500C31—H310.9500
C14—C151.370 (5)C31—C321.390 (7)
C15—C161.409 (6)C32—H320.9500
C16—C171.417 (5)C32—C331.382 (6)
C16—C201.425 (5)C33—H330.9500
Cl3—Zn1—Cl4121.76 (4)N8—C19—C18122.3 (4)
O7—Zn1—Cl3116.11 (8)N8—C19—H19118.8
O7—Zn1—Cl4116.86 (8)C18—C19—H19118.8
O7—Zn1—N880.68 (11)N8—C20—C12117.1 (3)
N8—Zn1—Cl3103.09 (9)N8—C20—C16121.5 (3)
N8—Zn1—Cl4107.56 (9)C16—C20—C12121.5 (3)
O7—Zn2—Cl594.38 (8)N9—C21—C13113.5 (3)
O7—Zn2—N987.24 (10)N9—C21—H21A108.9
O7—Zn2—N10123.92 (11)N9—C21—H21B108.9
O7—Zn2—N11102.47 (11)C13—C21—H21A108.9
N9—Zn2—Cl5176.25 (8)C13—C21—H21B108.9
N10—Zn2—Cl598.31 (10)H21A—C21—H21B107.7
N10—Zn2—N977.99 (12)N9—C22—H22A109.8
N11—Zn2—Cl5103.95 (10)N9—C22—H22B109.8
N11—Zn2—N978.95 (12)N9—C22—C23109.2 (3)
N11—Zn2—N10126.31 (12)H22A—C22—H22B108.3
Zn1—O7—Zn2112.72 (12)C23—C22—H22A109.8
C12—O7—Zn1114.1 (2)C23—C22—H22B109.8
C12—O7—Zn2129.8 (2)N10—C23—C22116.3 (3)
C19—N8—Zn1129.3 (3)N10—C23—C24121.5 (4)
C19—N8—C20119.8 (3)C24—C23—C22122.2 (4)
C20—N8—Zn1110.9 (2)C23—C24—H24121.1
C21—N9—Zn2109.7 (2)C25—C24—C23117.9 (5)
C22—N9—Zn2104.2 (2)C25—C24—H24121.1
C22—N9—C21108.7 (3)C24—C25—H25119.7
C22—N9—C28111.5 (3)C24—C25—C26120.6 (5)
C28—N9—Zn2109.0 (2)C26—C25—H25119.7
C28—N9—C21113.3 (3)C25—C26—H26121.1
C23—N10—Zn2115.3 (2)C27—C26—C25117.9 (4)
C23—N10—C27120.2 (4)C27—C26—H26121.1
C27—N10—Zn2124.3 (3)N10—C27—C26121.9 (4)
C29—N11—Zn2116.4 (3)N10—C27—H27119.0
C29—N11—C33119.7 (3)C26—C27—H27119.0
C33—N11—Zn2122.9 (3)N9—C28—H28A109.3
O7—C12—C13124.5 (3)N9—C28—H28B109.3
O7—C12—C20117.2 (3)N9—C28—C29111.7 (3)
C13—C12—C20118.3 (3)H28A—C28—H28B107.9
C12—C13—C14120.2 (3)C29—C28—H28A109.3
C12—C13—C21122.0 (3)C29—C28—H28B109.3
C14—C13—C21117.8 (3)N11—C29—C28118.8 (3)
C13—C14—H14119.3N11—C29—C30120.9 (4)
C15—C14—C13121.4 (4)C30—C29—C28120.2 (3)
C15—C14—H14119.3C29—C30—H30120.4
C14—C15—Cl6119.3 (3)C31—C30—C29119.3 (4)
C14—C15—C16121.3 (3)C31—C30—H30120.4
C16—C15—Cl6119.4 (3)C30—C31—H31120.2
C15—C16—C17125.8 (3)C30—C31—C32119.7 (4)
C15—C16—C20117.2 (3)C32—C31—H31120.2
C17—C16—C20116.9 (4)C31—C32—H32120.9
C16—C17—H17120.1C33—C32—C31118.2 (4)
C18—C17—C16119.9 (4)C33—C32—H32120.9
C18—C17—H17120.1N11—C33—C32122.3 (4)
C17—C18—H18120.2N11—C33—H33118.8
C17—C18—C19119.6 (4)C32—C33—H33118.8
C19—C18—H18120.2
Zn1—O7—C12—C13177.9 (3)C14—C15—C16—C200.2 (5)
Zn1—O7—C12—C203.2 (4)C15—C16—C17—C18177.9 (4)
Zn1—N8—C19—C18178.3 (3)C15—C16—C20—N8178.8 (3)
Zn1—N8—C20—C121.1 (4)C15—C16—C20—C121.9 (5)
Zn1—N8—C20—C16178.2 (3)C16—C17—C18—C190.3 (6)
Zn2—O7—C12—C1320.3 (5)C17—C16—C20—N80.6 (5)
Zn2—O7—C12—C20160.7 (2)C17—C16—C20—C12179.9 (3)
Zn2—N9—C21—C1367.5 (3)C17—C18—C19—N80.2 (6)
Zn2—N9—C22—C2343.1 (3)C19—N8—C20—C12179.6 (3)
Zn2—N9—C28—C2921.0 (3)C19—N8—C20—C161.1 (5)
Zn2—N10—C23—C225.3 (4)C20—N8—C19—C180.9 (6)
Zn2—N10—C23—C24176.1 (3)C20—C12—C13—C141.5 (5)
Zn2—N10—C27—C26175.4 (3)C20—C12—C13—C21179.9 (3)
Zn2—N11—C29—C288.9 (4)C20—C16—C17—C180.1 (5)
Zn2—N11—C29—C30167.5 (3)C21—N9—C22—C2373.8 (4)
Zn2—N11—C33—C32167.5 (3)C21—N9—C28—C29143.5 (3)
Cl6—C15—C16—C170.8 (5)C21—C13—C14—C15178.5 (3)
Cl6—C15—C16—C20178.8 (3)C22—N9—C21—C13179.2 (3)
O7—C12—C13—C14177.5 (3)C22—N9—C28—C2993.5 (4)
O7—C12—C13—C211.2 (6)C22—C23—C24—C25179.1 (4)
O7—C12—C20—N82.8 (5)C23—N10—C27—C260.1 (6)
O7—C12—C20—C16176.4 (3)C23—C24—C25—C260.5 (8)
N9—C22—C23—N1034.8 (4)C24—C25—C26—C270.2 (8)
N9—C22—C23—C24146.6 (4)C25—C26—C27—N100.0 (7)
N9—C28—C29—N119.5 (4)C27—N10—C23—C22179.0 (3)
N9—C28—C29—C30174.0 (3)C27—N10—C23—C240.4 (6)
N10—C23—C24—C250.6 (7)C28—N9—C21—C1354.6 (4)
N11—C29—C30—C310.8 (6)C28—N9—C22—C23160.6 (3)
C12—C13—C14—C150.2 (6)C28—C29—C30—C31177.2 (3)
C12—C13—C21—N948.1 (5)C29—N11—C33—C320.3 (6)
C13—C12—C20—N8178.1 (3)C29—C30—C31—C320.1 (6)
C13—C12—C20—C162.6 (5)C30—C31—C32—C330.8 (6)
C13—C14—C15—Cl6179.9 (3)C31—C32—C33—N110.6 (6)
C13—C14—C15—C160.9 (6)C33—N11—C29—C28177.5 (3)
C14—C13—C21—N9133.2 (3)C33—N11—C29—C301.0 (5)
C14—C15—C16—C17178.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···Cl4i0.952.773.537 (4)139
C21—H21B···Cl4ii0.992.693.584 (4)150
C26—H26···Cl3iii0.952.833.657 (4)146
C28—H28B···Cl3iv0.992.773.507 (4)132
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z1; (iii) x+1/2, y+1, z1/2; (iv) x+3/4, y1/4, z3/4.
 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBazany-Rodríguez, I. J., Salomón-Flores, M. K., Bautista-Renedo, J. M., González-Rivas, N. & Dorazco-González, A. (2020). Inorg. Chem. 59, 7739–7751.  Web of Science PubMed Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, W.-H., Xing, Y. & Pang, Y. (2011). Org. Lett. 13, 1362–1365.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKong, M., Xing, F. & Zhu, S. (2022). Inorg. Chem. Commun. 141, 109530.  Web of Science CSD CrossRef Google Scholar
First citationKubono, K., Kado, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2015). Acta Cryst. E71, 1545–1547.  CSD CrossRef IUCr Journals Google Scholar
First citationKubono, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2022). Acta Cryst. E78, 326–329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMassoud, S. S., Spell, M., Ledet, C. C., Junk, T., Herchel, R., Fischer, R. C., Trávníček, Z. & Mautner, F. A. (2015). Dalton Trans. 44, 2110–2121.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMesquita, L. M., André, V., Esteves, C. V., Palmeira, T., Berberan-Santos, M. N., Mateus, P. & Delgado, R. (2016). Inorg. Chem. 55, 2212–2219.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPander, P., Zaytsev, A. V., Sil, A., Baryshnikov, G. V., Siddique, F., Williams, J. A. G., Dias, F. B. & Kozhevnikov, V. N. (2023). Chem. Sci. 14, 13934–13943.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRaj, M., Makhal, K., Raj, D., Mishra, A., Mallik, B. S. & Padhi, S. K. (2023). Dalton Trans. 52, 17797–17809.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVan der Heyden, A., Chanthavong, P., Angles-Cano, E., Bonnet, H., Dejeu, J., Cras, A., Philouze, C., Serratrice, G., El-Ghazouani, F. Z., Toti, F., Thibon-Pourret, A. & Belle, C. (2023). J. Inorg. Biochem. 239, 112065.  Web of Science CSD CrossRef PubMed Google Scholar
First citationWieghardt, K., Bossek, U., Bonvoisin, J., Beauvillain, P., Girerd, J.-J., Nuber, B., Weiss, J. & Heinze, J. (1986). Angew. Chem. Int. Ed. Engl. 25, 1030–1031.  CSD CrossRef Web of Science Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds