research communications
μ2-7-{[bis(pyridin-2-ylmethyl)amino-1κ3N,N′,N′′]methyl}-5-chloroquinolin-8-olato-2κN;1:2κ2O)trichlorido-1κCl,2κ2Cl-dizinc(II)
of (aOsaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan, and bOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp
The title compound, [Zn2(C22H18ClN4O)Cl3], is a dinuclear zinc(II) complex with three chlorido ligands and one pentadentate ligand containing quinolin-8-olato and bis(pyridin-2-ylmethyl)amine groups. One of the two ZnII atom adopts a tetrahedral geometry and coordinates two chlorido ligands with chelate coordination of the N and O atoms of the quinolin-8-olato group in the ligand. The other ZnII atom adopts a distorted trigonal–bipyramidal geometry, and coordinates one chlorido-O atom of the quinolin-8-olato group and three N atoms of the bis(pyridin-2-ylmethyl)amine unit. In the crystal, two molecules are associated through a pair of intermolecular C—H⋯Cl hydrogen bonds, forming a dimer with an R22(12) ring motif. Another intermolecular C—H⋯Cl hydrogen bond forms a spiral C(8) chain running parallel to the [010] direction. The dimers are linked by these two intermolecular C—H⋯Cl hydrogen bonds, generating a ribbon sheet structure in ac plane. Two other intermolecular C—H⋯Cl hydrogen bonds form a C(7) chain along the c-axis direction and another C(7) chain generated by a d-glide plane. The molecules are cross-linked through the four intermolecular C—H⋯Cl hydrogen bonds to form a three-dimensional network.
Keywords: crystal structure; dinuclear zinc(II) complex; 8-quinolinol; bis(2-picolyl)amine; C—H⋯Cl interactions.
CCDC reference: 2389039
1. Chemical context
Dinuclear metal complexes have received much attention due to their functional properties and many potential applications, such as et al., 1986), OLEDs (Pander et al., 2023), chemosensors (Bazany-Rodríguez et al., 2020), biosensors (Van der Heyden et al., 2023), electrocatalysts (Raj et al., 2023) and magnetic materials (Massoud et al., 2015). With regard to the applications for chemosensors, fluorescent anion probes based on metal complexes have been investigated, and dinuclear complex probes with high selectivity for target anions have been reported (Chen et al., 2011; Mesquita et al., 2016). We synthesized a pentadentate ligand (HClqdpa) containing quinolin-8-ol (Hq) and bis(pyridin-2-ylmethyl)amine [di-(2-picolyl)amine, dpa] moieties, and its mononuclear ZnII complex {7-{[bis(pyridin-2-ylmethyl)amino-κ3N,N′,N′′]methyl}-5-chloro-quinolin-8-ol}dibromidozinc(II) [ZnBr2(HClqdpa)] to develop a fluorescent anion probe, and analysed their crystal structures (Kubono et al., 2015, 2022). The Zn atom in this complex is five-coordinated by two bromido and three N atoms of the dpa group in the ligand. The Hq moiety in the ligand is not coordinated to the Zn atom. Therefore, a dinuclear complex, Zn:ligand = 2:1, can be formed by coordinating another zinc(II) ion to the Hq moiety in the mononuclear complex, since the O atom of quinolin-8-olato is able to bind with two metal ions through bridging coordination. Herein we report on the synthesis and of the dizinc(II) title complex with HClqdpa and three chlorido atoms, Zn2Cl3(Clqdpa).
models of metalloproteins in bioinorganic chemistry (Wieghardt2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The molecule is a dinuclear zinc(II) complex with three chlorido ligands and the pentadentate ligand (Clqdpa) based on 5-chloroquinolin-8-olato (Clq) and dpa groups. The Zn1 atom adopts distorted a tetrahedral geometry and coordinates two chlorido ligands (Cl3 and Cl4) and the N8 atom and the O7 atom of the Clq unit in Clqdpa, forming a ZnCl2(Clq) unit. The Zn2 atom adopts a distorted trigonal–bipyramidal geometry and coordinates one chlorido ligand (Cl5), the O7 atom of the Clq unit and three N atoms (N9, N10 and N11) of the dpa group in the Clqdpa, forming a ZnCl(Clqdpa) unit, but the N8 atom in the Clq unit is not coordinated to the Zn2 atom. The four-coordinate geometry index, τ4 = [360°(α + β)]/141°, evaluated from the two largest angles (α < β), and has ideal values of 1 for a tetrahedral and 0 for a square-planar geometry (Yang et al., 2007), whereas the five-coordinate geometry index, τ5 = (β − α)/60, derived from the two largest angles (α < β) in a structure has ideal values of 1 for a trigonal–bipyramidal and of 0 for a square-pyramidal geometry (Addison et al., 1984). In the title compound, τ4 for the Zn1 atom and τ5 for the Zn2 atom are equal to 0.861 and 0.832, respectively. In the tetrahedral ZnCl2(Clq) unit, the Zn1—Cl3, Zn1—Cl4, Zn1—O7 and Zn1—N8 bond lengths are 2.2190 (10), 2.2241 (10), 2.019 (3) and 2.101 (3) Å, respectively (Table 1). In the trigonal–bipyramidal ZnCl(Clqdpa) unit, the O7 atom of the Clq unit and the N10 and N11 atoms of the pyridine rings in dpa group are equatorially bound to the Zn2 atom. The Zn2 atom is located 0.3188 (6) Å above the equatorial O7/N10/N11 plane. The axial positions are occupied by the Cl5 atom and the tertiary N9 atom of dpa group. The equatorial bond lengths Zn2—O7, Zn2—N10 and Zn2—N11 are 2.026 (3), 2.083 (3) and 2.052 (3) Å, respectively (Table 1), whereas the axial bonds Zn2—Cl5 and Zn2—N9 are 2.2897 (11) and 2.216 (3) Å, respectively, longer than those of equatorial bonds (Table 1). The axial angle N9—Zn2—Cl5 is 176.25 (8)°, and the equatorial angles range from 102.47 (11) to 126.31 (12)° (Table 1). The O atom in the Clq unit is bridged-coordinated with two ZnII atoms. The Zn1—O7—Zn2 bond angle is 112.72 (12)° (Table 1). The mean planes of two pyridine rings in the dpa unit are not coplanar with the equatorial O7/N10/N11 plane of the trigonal bipyramid, but rather nearly perpendicular, the dihedral angles between the pyridine rings and the equatorial plane being 68.02 (19)° (for N10/C23–C27) and 83.38 (17)° (for N11/C29–C33). The dihedral angle between the two pyridine rings is 43.4 (2)°.
|
In contrast, the Zn atom in the related compound, ZnBr2(HClqdpa), adopts a distorted square-pyramidal geometry, and the dihedral angle between two pyridine rings is 15.84 (13)° (VAXNUH; Kubono et al., 2022). In the other related compound, a dinuclear zinc(II) complex with the ligand having phenolato and two dpa units (RESSUH; Van der Heyden et al., 2023), one Zn atom adopts a trigonal–bipyramidal geometry with one chlorido atom, and the other adopts a square-pyramidal geometry with an aqua O atom. Here the dihedral angles between two pyridine rings are 58.9 (3) and 9.6 (4)°, respectively, for the trigonal–bipyramidal and square pyramidal coordination geometries. The axial bond Zn—Cl length for the trigonal–bipyramidal ZnII atom is 2.229 (2) Å, and the axial N—Zn—Cl bond angle is 177.4 (1)°, similar to those of the title compound.
The quinoline ring in the title compound is slightly bent with an r.m.s. deviation of 0.017 (4) Å. In the quinoline ring, the largest deviation from the mean plane is 0.022 (4) Å for carbon atom C14. The quinoline plane subtends dihedral angles of 76.81 (15) and 56.29 (17)° with the two pyridine rings.
3. Supramolecular features
In the crystal, two molecules are associated through a pair of intermolecular C—H⋯Cl hydrogen bonds [C18—H18⋯Cl4i; symmetry code: (i) −x + 1, −y + 1, z; Table 2], forming a dimer with an R22(12) ring motif by a two-fold axis (Fig. 2). Another intermolecular C—H⋯Cl hydrogen bond is observed [C26—H26⋯Cl3iii; symmetry code: (iii) −x + , −y + 1, z − ; Table 2], which forms a spiral C(8) chain running parallel to the [010] direction by a 21 screw axis (Fig. 3). The dimers with twofold symmetry are linked to each other by the intermolecular C26—H26⋯Cl3iii hydrogen bonds generating a ribbon sheet structure in the ac plane. The intermolecular C21—H21B⋯Cl3ii and C28—H28B⋯Cl4iv hydrogen bond [symmetry code: (ii) x, y, z − 1; (iv) −x + , y − , z − ; Table 2] form a C(7) chain along the c-axis direction and another C(7) chain generated by a d-glide plane, respectively. The molecules are linked by these two intermolecular C—H⋯Cl hydrogen bonds, generating a sheet structure in the bc plane (Fig. 4). Therefore, the molecules are cross-linked through the four intermolecular C—H⋯Cl hydrogen bonds to form a three-dimensional network.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 2024.1.0, update of March 2024; Groom et al., 2016) using ConQuest (Bruno et al., 2002) for ZnII complexes with the [bis(pyridin-2-ylmethyl)amino]methyl fragment as ligand gave 641 hits, and among those 46 hits with one chlorido ligand. ZnII complexes with the 2-[{bis(pyridin-2-ylmethyl)amino}methyl]phenolato fragment gave 133 hits and among those 15 hits for five-coordinated structures with one chlorido ligand. Of these 15 analogues, 10 structures have a trigonal–bipyramidal geometry whose apical positions are occupied by the Cl atom and the tertiary N atom, and five structures have a square-pyramidal geometry. The dihedral angles between the two pyridine rings range from 42.1 (8) to 77.79 (16)° in the ten trigonal–bipyramidal structures, while those of the five square-pyramidal structures range from 8.1 (5) to 36.29 (9)°.
A search for ZnII complexes with the quinolin-8-olato fragment as ligand gave 244 hits and among these, dinuclear ZnII complexes gave 71 hits. All the 71 structures contain multiple quinolin-8-olato moieties. Two structures among these 71 analogues are polymorphs of the ZnII complex with the ligand in which the Cl atom of HClqdpa is replaced with an H atom, bis(μ-7-({bis[(pyridin-2-yl)methyl]amino}methyl)quinolin-8-olato)dizinc(II) bis(tetraphenylborate). The related complex is a Zn:ligand = 2:2 dimeric dinuclear structure with the quinolin-8-olato O atom bridging two ZnII ions (FEDTUH and FEDTOB; Kong et al., 2022). In addition, a search for dichlorido ZnII complexes with the quinolin-8-olato fragment gave nine hits. Of these nine analogues, seven structures are Zn:ligand = 1:1 mononuclear complexes, one structure is a with a 1:1 mononuclear complex and 1:2 dinuclear complex, and the last structure is a 1:1 catena complex. Therefore, the of a 2:1 dinuclear ZnII complex with a singular quinolin-8-olato has not been reported.
5. Synthesis and crystallization
The HClqdpa ligand was prepared by a reported method (Kubono et al., 2015). HClqdpa (39.1 mg, 0.100 mmol) was dissolved in 15 mL of hot acetonitrile. Then a solution of zinc(II) chloride (34.1 mg, 0.250 mmol) in 15 mL of hot acetonitrile was added to the ligand solution. The mixture was stirred for 20 min at 333 K. After removal of the solvent at room temperature in the air for one week, yellow crystals of the title compound were obtained (yield 68.7%). 1H NMR (CD3SOCD3, 400 MHz): δ = 4.14 (s, 2H), 4.54, 4.79 (ABq, J = 16.8 Hz, 4H), 6.98–7.01 (dd, J = 8.0 Hz, J = 4.8 Hz, 2H), 7.32–7.33 (d, J = 4.8 Hz, 2H), 7.44–7.47 (dd, J = 8.8 Hz, J = 4.8 Hz, 1H), 7.68–7.70 (dd, J = 8.8 Hz, J = 4.4 Hz, 2H), 7.81 (s, 1H), 7.93-7.95 (t, J = 8.0 Hz, 2H), 8.23-8.24 (d, J = 4.4 Hz, 1H), 8,42–8.45 (d, J = 8.8 Hz, 1H).
6. Refinement
Crystal data, data collection and structure . All H atoms bound to carbon were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 2389039
https://doi.org/10.1107/S2056989024009782/jp2012sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024009782/jp2012Isup2.hkl
[Zn2(C22H18ClN4O)Cl3] | Dx = 1.769 Mg m−3 |
Mr = 626.98 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Fdd2 | Cell parameters from 9909 reflections |
a = 35.5812 (4) Å | θ = 3.9–76.7° |
b = 29.7570 (3) Å | µ = 6.89 mm−1 |
c = 8.8942 (1) Å | T = 100 K |
V = 9417.09 (18) Å3 | Block, yellow |
Z = 16 | 0.37 × 0.15 × 0.06 mm |
F(000) = 5024 |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3507 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3445 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.037 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 77.3°, θmin = 3.9° |
ω scans | h = −44→39 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) | k = −36→36 |
Tmin = 0.318, Tmax = 1.000 | l = −10→7 |
12774 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.053P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.073 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.63 e Å−3 |
3507 reflections | Δρmin = −0.35 e Å−3 |
298 parameters | Absolute structure: Flack x determined using 942 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.004 (17) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups 2.a Secondary CH2 refined with riding coordinates: C21(H21A,H21B), C22(H22A,H22B), C28(H28A,H28B) 2.b Aromatic/amide H refined with riding coordinates: C14(H14), C17(H17), C18(H18), C19(H19), C24(H24), C25(H25), C26(H26), C27(H27), C30(H30), C31(H31), C32(H32), C33(H33) |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.39776 (2) | 0.48827 (2) | 0.75531 (6) | 0.01944 (13) | |
Zn2 | 0.34873 (2) | 0.42831 (2) | 0.50092 (6) | 0.01706 (12) | |
Cl3 | 0.36491 (2) | 0.54041 (3) | 0.87591 (12) | 0.0251 (2) | |
Cl4 | 0.42290 (2) | 0.42993 (3) | 0.87494 (11) | 0.02305 (19) | |
Cl5 | 0.32149 (3) | 0.43405 (3) | 0.73337 (11) | 0.0276 (2) | |
Cl6 | 0.49423 (3) | 0.57151 (3) | 0.14036 (12) | 0.0263 (2) | |
O7 | 0.38518 (7) | 0.47959 (8) | 0.5358 (3) | 0.0176 (5) | |
N8 | 0.44197 (8) | 0.52514 (10) | 0.6589 (4) | 0.0197 (6) | |
N9 | 0.37150 (8) | 0.42401 (9) | 0.2695 (4) | 0.0166 (6) | |
N10 | 0.30023 (8) | 0.43364 (10) | 0.3710 (4) | 0.0204 (6) | |
N11 | 0.38276 (8) | 0.37289 (10) | 0.5185 (4) | 0.0209 (6) | |
C12 | 0.40978 (10) | 0.49869 (11) | 0.4411 (4) | 0.0155 (7) | |
C13 | 0.40764 (10) | 0.49602 (12) | 0.2861 (4) | 0.0178 (7) | |
C14 | 0.43408 (10) | 0.51881 (12) | 0.1959 (4) | 0.0193 (7) | |
H14 | 0.432327 | 0.516595 | 0.089588 | 0.023* | |
C15 | 0.46223 (9) | 0.54408 (12) | 0.2582 (5) | 0.0194 (7) | |
C16 | 0.46627 (10) | 0.54784 (12) | 0.4154 (5) | 0.0187 (7) | |
C17 | 0.49488 (10) | 0.57201 (12) | 0.4911 (5) | 0.0223 (8) | |
H17 | 0.513079 | 0.588346 | 0.435234 | 0.027* | |
C18 | 0.49622 (11) | 0.57178 (14) | 0.6438 (5) | 0.0257 (8) | |
H18 | 0.515411 | 0.587826 | 0.695187 | 0.031* | |
C19 | 0.46909 (11) | 0.54770 (13) | 0.7252 (4) | 0.0233 (8) | |
H19 | 0.470359 | 0.547689 | 0.831868 | 0.028* | |
C20 | 0.43993 (9) | 0.52418 (11) | 0.5065 (4) | 0.0171 (7) | |
C21 | 0.37708 (9) | 0.46999 (12) | 0.2078 (4) | 0.0167 (7) | |
H21A | 0.353198 | 0.486860 | 0.216492 | 0.020* | |
H21B | 0.383334 | 0.467646 | 0.099665 | 0.020* | |
C22 | 0.34150 (10) | 0.40164 (13) | 0.1832 (4) | 0.0213 (8) | |
H22A | 0.341707 | 0.368970 | 0.204282 | 0.026* | |
H22B | 0.345763 | 0.406013 | 0.074185 | 0.026* | |
C23 | 0.30396 (11) | 0.42140 (12) | 0.2274 (5) | 0.0224 (8) | |
C24 | 0.27451 (12) | 0.42577 (17) | 0.1257 (6) | 0.0345 (10) | |
H24 | 0.277287 | 0.416743 | 0.023812 | 0.041* | |
C25 | 0.24095 (13) | 0.4437 (2) | 0.1776 (6) | 0.0465 (14) | |
H25 | 0.220416 | 0.447312 | 0.110362 | 0.056* | |
C26 | 0.23711 (12) | 0.45650 (19) | 0.3269 (6) | 0.0388 (12) | |
H26 | 0.214191 | 0.468718 | 0.363367 | 0.047* | |
C27 | 0.26757 (10) | 0.45089 (14) | 0.4205 (5) | 0.0279 (9) | |
H27 | 0.265455 | 0.459461 | 0.523040 | 0.034* | |
C28 | 0.40620 (10) | 0.39697 (12) | 0.2715 (5) | 0.0200 (7) | |
H28A | 0.428240 | 0.417275 | 0.270432 | 0.024* | |
H28B | 0.407240 | 0.378119 | 0.179901 | 0.024* | |
C29 | 0.40814 (10) | 0.36714 (12) | 0.4087 (4) | 0.0188 (7) | |
C30 | 0.43723 (11) | 0.33591 (13) | 0.4239 (5) | 0.0260 (9) | |
H30 | 0.455288 | 0.332306 | 0.346154 | 0.031* | |
C31 | 0.43942 (13) | 0.31046 (14) | 0.5526 (5) | 0.0302 (9) | |
H31 | 0.459074 | 0.289150 | 0.564504 | 0.036* | |
C32 | 0.41274 (12) | 0.31607 (13) | 0.6651 (5) | 0.0290 (9) | |
H32 | 0.413594 | 0.298538 | 0.754302 | 0.035* | |
C33 | 0.38493 (11) | 0.34785 (13) | 0.6438 (5) | 0.0251 (8) | |
H33 | 0.366696 | 0.352139 | 0.720489 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0234 (2) | 0.0193 (2) | 0.0156 (2) | 0.00292 (19) | 0.0010 (2) | −0.0012 (2) |
Zn2 | 0.0142 (2) | 0.0171 (2) | 0.0199 (2) | −0.00157 (16) | 0.00064 (19) | 0.0001 (2) |
Cl3 | 0.0245 (4) | 0.0201 (4) | 0.0305 (5) | 0.0033 (3) | 0.0029 (4) | −0.0064 (4) |
Cl4 | 0.0237 (4) | 0.0232 (4) | 0.0222 (4) | 0.0060 (3) | 0.0023 (4) | 0.0021 (3) |
Cl5 | 0.0248 (4) | 0.0353 (5) | 0.0227 (5) | −0.0029 (4) | 0.0062 (4) | −0.0006 (4) |
Cl6 | 0.0228 (4) | 0.0313 (5) | 0.0249 (5) | −0.0102 (3) | 0.0021 (4) | 0.0041 (4) |
O7 | 0.0194 (12) | 0.0174 (12) | 0.0159 (13) | −0.0031 (9) | 0.0015 (9) | −0.0010 (10) |
N8 | 0.0196 (14) | 0.0195 (15) | 0.0201 (15) | 0.0024 (12) | −0.0013 (12) | −0.0036 (13) |
N9 | 0.0144 (14) | 0.0140 (13) | 0.0215 (17) | 0.0008 (10) | −0.0012 (13) | −0.0015 (12) |
N10 | 0.0155 (14) | 0.0193 (15) | 0.0264 (17) | −0.0019 (11) | 0.0007 (13) | 0.0040 (13) |
N11 | 0.0181 (14) | 0.0146 (14) | 0.0300 (17) | −0.0034 (11) | −0.0031 (13) | 0.0001 (13) |
C12 | 0.0163 (16) | 0.0117 (15) | 0.0184 (17) | 0.0008 (13) | 0.0031 (13) | 0.0008 (13) |
C13 | 0.0179 (16) | 0.0139 (16) | 0.021 (2) | 0.0000 (13) | 0.0011 (13) | −0.0009 (13) |
C14 | 0.0185 (17) | 0.0185 (17) | 0.0208 (17) | 0.0011 (14) | −0.0004 (14) | −0.0011 (14) |
C15 | 0.0159 (16) | 0.0183 (16) | 0.0240 (17) | −0.0015 (13) | 0.0026 (15) | 0.0017 (15) |
C16 | 0.0148 (16) | 0.0144 (16) | 0.0271 (19) | 0.0005 (13) | 0.0010 (14) | 0.0001 (14) |
C17 | 0.0168 (16) | 0.0201 (17) | 0.030 (2) | −0.0018 (13) | −0.0017 (17) | −0.0027 (15) |
C18 | 0.0177 (17) | 0.028 (2) | 0.032 (2) | −0.0019 (15) | −0.0096 (16) | −0.0046 (16) |
C19 | 0.0255 (19) | 0.0251 (18) | 0.019 (2) | 0.0005 (14) | −0.0039 (15) | −0.0043 (15) |
C20 | 0.0170 (15) | 0.0155 (15) | 0.0189 (17) | 0.0025 (12) | −0.0026 (15) | 0.0000 (14) |
C21 | 0.0166 (16) | 0.0177 (17) | 0.0157 (17) | −0.0014 (13) | 0.0016 (13) | −0.0010 (13) |
C22 | 0.0210 (18) | 0.0178 (18) | 0.0250 (19) | −0.0036 (14) | −0.0055 (15) | −0.0023 (15) |
C23 | 0.0178 (17) | 0.0212 (17) | 0.028 (2) | −0.0071 (14) | −0.0022 (15) | 0.0033 (15) |
C24 | 0.024 (2) | 0.051 (3) | 0.029 (2) | −0.0048 (18) | −0.0045 (19) | 0.009 (2) |
C25 | 0.020 (2) | 0.079 (4) | 0.041 (3) | 0.003 (2) | −0.007 (2) | 0.021 (3) |
C26 | 0.018 (2) | 0.058 (3) | 0.040 (3) | 0.0034 (19) | 0.0026 (17) | 0.022 (2) |
C27 | 0.0155 (17) | 0.032 (2) | 0.036 (2) | 0.0005 (15) | 0.0050 (16) | 0.0099 (18) |
C28 | 0.0174 (15) | 0.0158 (17) | 0.0269 (19) | 0.0007 (13) | 0.0035 (14) | −0.0042 (15) |
C29 | 0.0185 (16) | 0.0148 (17) | 0.0230 (19) | −0.0036 (13) | −0.0030 (14) | −0.0037 (14) |
C30 | 0.0223 (19) | 0.022 (2) | 0.034 (2) | 0.0023 (15) | −0.0071 (16) | −0.0069 (17) |
C31 | 0.030 (2) | 0.0183 (18) | 0.042 (3) | −0.0002 (16) | −0.0142 (18) | 0.0007 (17) |
C32 | 0.029 (2) | 0.022 (2) | 0.036 (2) | −0.0088 (16) | −0.0109 (18) | 0.0065 (18) |
C33 | 0.0226 (18) | 0.0234 (19) | 0.029 (2) | −0.0073 (15) | −0.0052 (16) | 0.0052 (16) |
Zn1—Cl3 | 2.2190 (10) | C17—H17 | 0.9500 |
Zn1—Cl4 | 2.2241 (10) | C17—C18 | 1.360 (7) |
Zn1—O7 | 2.019 (3) | C18—H18 | 0.9500 |
Zn1—N8 | 2.101 (3) | C18—C19 | 1.403 (6) |
Zn2—Cl5 | 2.2897 (11) | C19—H19 | 0.9500 |
Zn2—O7 | 2.026 (3) | C21—H21A | 0.9900 |
Zn2—N9 | 2.216 (3) | C21—H21B | 0.9900 |
Zn2—N10 | 2.083 (3) | C22—H22A | 0.9900 |
Zn2—N11 | 2.052 (3) | C22—H22B | 0.9900 |
Cl6—C15 | 1.750 (4) | C22—C23 | 1.511 (5) |
O7—C12 | 1.341 (4) | C23—C24 | 1.391 (6) |
N8—C19 | 1.315 (5) | C24—H24 | 0.9500 |
N8—C20 | 1.358 (5) | C24—C25 | 1.387 (7) |
N9—C21 | 1.487 (4) | C25—H25 | 0.9500 |
N9—C22 | 1.474 (5) | C25—C26 | 1.388 (8) |
N9—C28 | 1.474 (4) | C26—H26 | 0.9500 |
N10—C23 | 1.335 (6) | C26—C27 | 1.377 (6) |
N10—C27 | 1.344 (5) | C27—H27 | 0.9500 |
N11—C29 | 1.340 (5) | C28—H28A | 0.9900 |
N11—C33 | 1.343 (5) | C28—H28B | 0.9900 |
C12—C13 | 1.383 (5) | C28—C29 | 1.511 (5) |
C12—C20 | 1.437 (5) | C29—C30 | 1.398 (5) |
C13—C14 | 1.410 (5) | C30—H30 | 0.9500 |
C13—C21 | 1.505 (5) | C30—C31 | 1.374 (6) |
C14—H14 | 0.9500 | C31—H31 | 0.9500 |
C14—C15 | 1.370 (5) | C31—C32 | 1.390 (7) |
C15—C16 | 1.409 (6) | C32—H32 | 0.9500 |
C16—C17 | 1.417 (5) | C32—C33 | 1.382 (6) |
C16—C20 | 1.425 (5) | C33—H33 | 0.9500 |
Cl3—Zn1—Cl4 | 121.76 (4) | N8—C19—C18 | 122.3 (4) |
O7—Zn1—Cl3 | 116.11 (8) | N8—C19—H19 | 118.8 |
O7—Zn1—Cl4 | 116.86 (8) | C18—C19—H19 | 118.8 |
O7—Zn1—N8 | 80.68 (11) | N8—C20—C12 | 117.1 (3) |
N8—Zn1—Cl3 | 103.09 (9) | N8—C20—C16 | 121.5 (3) |
N8—Zn1—Cl4 | 107.56 (9) | C16—C20—C12 | 121.5 (3) |
O7—Zn2—Cl5 | 94.38 (8) | N9—C21—C13 | 113.5 (3) |
O7—Zn2—N9 | 87.24 (10) | N9—C21—H21A | 108.9 |
O7—Zn2—N10 | 123.92 (11) | N9—C21—H21B | 108.9 |
O7—Zn2—N11 | 102.47 (11) | C13—C21—H21A | 108.9 |
N9—Zn2—Cl5 | 176.25 (8) | C13—C21—H21B | 108.9 |
N10—Zn2—Cl5 | 98.31 (10) | H21A—C21—H21B | 107.7 |
N10—Zn2—N9 | 77.99 (12) | N9—C22—H22A | 109.8 |
N11—Zn2—Cl5 | 103.95 (10) | N9—C22—H22B | 109.8 |
N11—Zn2—N9 | 78.95 (12) | N9—C22—C23 | 109.2 (3) |
N11—Zn2—N10 | 126.31 (12) | H22A—C22—H22B | 108.3 |
Zn1—O7—Zn2 | 112.72 (12) | C23—C22—H22A | 109.8 |
C12—O7—Zn1 | 114.1 (2) | C23—C22—H22B | 109.8 |
C12—O7—Zn2 | 129.8 (2) | N10—C23—C22 | 116.3 (3) |
C19—N8—Zn1 | 129.3 (3) | N10—C23—C24 | 121.5 (4) |
C19—N8—C20 | 119.8 (3) | C24—C23—C22 | 122.2 (4) |
C20—N8—Zn1 | 110.9 (2) | C23—C24—H24 | 121.1 |
C21—N9—Zn2 | 109.7 (2) | C25—C24—C23 | 117.9 (5) |
C22—N9—Zn2 | 104.2 (2) | C25—C24—H24 | 121.1 |
C22—N9—C21 | 108.7 (3) | C24—C25—H25 | 119.7 |
C22—N9—C28 | 111.5 (3) | C24—C25—C26 | 120.6 (5) |
C28—N9—Zn2 | 109.0 (2) | C26—C25—H25 | 119.7 |
C28—N9—C21 | 113.3 (3) | C25—C26—H26 | 121.1 |
C23—N10—Zn2 | 115.3 (2) | C27—C26—C25 | 117.9 (4) |
C23—N10—C27 | 120.2 (4) | C27—C26—H26 | 121.1 |
C27—N10—Zn2 | 124.3 (3) | N10—C27—C26 | 121.9 (4) |
C29—N11—Zn2 | 116.4 (3) | N10—C27—H27 | 119.0 |
C29—N11—C33 | 119.7 (3) | C26—C27—H27 | 119.0 |
C33—N11—Zn2 | 122.9 (3) | N9—C28—H28A | 109.3 |
O7—C12—C13 | 124.5 (3) | N9—C28—H28B | 109.3 |
O7—C12—C20 | 117.2 (3) | N9—C28—C29 | 111.7 (3) |
C13—C12—C20 | 118.3 (3) | H28A—C28—H28B | 107.9 |
C12—C13—C14 | 120.2 (3) | C29—C28—H28A | 109.3 |
C12—C13—C21 | 122.0 (3) | C29—C28—H28B | 109.3 |
C14—C13—C21 | 117.8 (3) | N11—C29—C28 | 118.8 (3) |
C13—C14—H14 | 119.3 | N11—C29—C30 | 120.9 (4) |
C15—C14—C13 | 121.4 (4) | C30—C29—C28 | 120.2 (3) |
C15—C14—H14 | 119.3 | C29—C30—H30 | 120.4 |
C14—C15—Cl6 | 119.3 (3) | C31—C30—C29 | 119.3 (4) |
C14—C15—C16 | 121.3 (3) | C31—C30—H30 | 120.4 |
C16—C15—Cl6 | 119.4 (3) | C30—C31—H31 | 120.2 |
C15—C16—C17 | 125.8 (3) | C30—C31—C32 | 119.7 (4) |
C15—C16—C20 | 117.2 (3) | C32—C31—H31 | 120.2 |
C17—C16—C20 | 116.9 (4) | C31—C32—H32 | 120.9 |
C16—C17—H17 | 120.1 | C33—C32—C31 | 118.2 (4) |
C18—C17—C16 | 119.9 (4) | C33—C32—H32 | 120.9 |
C18—C17—H17 | 120.1 | N11—C33—C32 | 122.3 (4) |
C17—C18—H18 | 120.2 | N11—C33—H33 | 118.8 |
C17—C18—C19 | 119.6 (4) | C32—C33—H33 | 118.8 |
C19—C18—H18 | 120.2 | ||
Zn1—O7—C12—C13 | 177.9 (3) | C14—C15—C16—C20 | 0.2 (5) |
Zn1—O7—C12—C20 | −3.2 (4) | C15—C16—C17—C18 | −177.9 (4) |
Zn1—N8—C19—C18 | −178.3 (3) | C15—C16—C20—N8 | 178.8 (3) |
Zn1—N8—C20—C12 | −1.1 (4) | C15—C16—C20—C12 | −1.9 (5) |
Zn1—N8—C20—C16 | 178.2 (3) | C16—C17—C18—C19 | −0.3 (6) |
Zn2—O7—C12—C13 | 20.3 (5) | C17—C16—C20—N8 | 0.6 (5) |
Zn2—O7—C12—C20 | −160.7 (2) | C17—C16—C20—C12 | 179.9 (3) |
Zn2—N9—C21—C13 | 67.5 (3) | C17—C18—C19—N8 | −0.2 (6) |
Zn2—N9—C22—C23 | 43.1 (3) | C19—N8—C20—C12 | 179.6 (3) |
Zn2—N9—C28—C29 | 21.0 (3) | C19—N8—C20—C16 | −1.1 (5) |
Zn2—N10—C23—C22 | 5.3 (4) | C20—N8—C19—C18 | 0.9 (6) |
Zn2—N10—C23—C24 | −176.1 (3) | C20—C12—C13—C14 | −1.5 (5) |
Zn2—N10—C27—C26 | 175.4 (3) | C20—C12—C13—C21 | 179.9 (3) |
Zn2—N11—C29—C28 | −8.9 (4) | C20—C16—C17—C18 | 0.1 (5) |
Zn2—N11—C29—C30 | 167.5 (3) | C21—N9—C22—C23 | −73.8 (4) |
Zn2—N11—C33—C32 | −167.5 (3) | C21—N9—C28—C29 | 143.5 (3) |
Cl6—C15—C16—C17 | −0.8 (5) | C21—C13—C14—C15 | 178.5 (3) |
Cl6—C15—C16—C20 | −178.8 (3) | C22—N9—C21—C13 | −179.2 (3) |
O7—C12—C13—C14 | 177.5 (3) | C22—N9—C28—C29 | −93.5 (4) |
O7—C12—C13—C21 | −1.2 (6) | C22—C23—C24—C25 | 179.1 (4) |
O7—C12—C20—N8 | 2.8 (5) | C23—N10—C27—C26 | 0.1 (6) |
O7—C12—C20—C16 | −176.4 (3) | C23—C24—C25—C26 | −0.5 (8) |
N9—C22—C23—N10 | −34.8 (4) | C24—C25—C26—C27 | 0.2 (8) |
N9—C22—C23—C24 | 146.6 (4) | C25—C26—C27—N10 | 0.0 (7) |
N9—C28—C29—N11 | −9.5 (4) | C27—N10—C23—C22 | −179.0 (3) |
N9—C28—C29—C30 | 174.0 (3) | C27—N10—C23—C24 | −0.4 (6) |
N10—C23—C24—C25 | 0.6 (7) | C28—N9—C21—C13 | −54.6 (4) |
N11—C29—C30—C31 | 0.8 (6) | C28—N9—C22—C23 | 160.6 (3) |
C12—C13—C14—C15 | −0.2 (6) | C28—C29—C30—C31 | 177.2 (3) |
C12—C13—C21—N9 | −48.1 (5) | C29—N11—C33—C32 | 0.3 (6) |
C13—C12—C20—N8 | −178.1 (3) | C29—C30—C31—C32 | 0.1 (6) |
C13—C12—C20—C16 | 2.6 (5) | C30—C31—C32—C33 | −0.8 (6) |
C13—C14—C15—Cl6 | 179.9 (3) | C31—C32—C33—N11 | 0.6 (6) |
C13—C14—C15—C16 | 0.9 (6) | C33—N11—C29—C28 | −177.5 (3) |
C14—C13—C21—N9 | 133.2 (3) | C33—N11—C29—C30 | −1.0 (5) |
C14—C15—C16—C17 | 178.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···Cl4i | 0.95 | 2.77 | 3.537 (4) | 139 |
C21—H21B···Cl4ii | 0.99 | 2.69 | 3.584 (4) | 150 |
C26—H26···Cl3iii | 0.95 | 2.83 | 3.657 (4) | 146 |
C28—H28B···Cl3iv | 0.99 | 2.77 | 3.507 (4) | 132 |
Symmetry codes: (i) −x+1, −y+1, z; (ii) x, y, z−1; (iii) −x+1/2, −y+1, z−1/2; (iv) −x+3/4, y−1/4, z−3/4. |
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Bazany-Rodríguez, I. J., Salomón-Flores, M. K., Bautista-Renedo, J. M., González-Rivas, N. & Dorazco-González, A. (2020). Inorg. Chem. 59, 7739–7751. Web of Science PubMed Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chen, W.-H., Xing, Y. & Pang, Y. (2011). Org. Lett. 13, 1362–1365. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kong, M., Xing, F. & Zhu, S. (2022). Inorg. Chem. Commun. 141, 109530. Web of Science CSD CrossRef Google Scholar
Kubono, K., Kado, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2015). Acta Cryst. E71, 1545–1547. CSD CrossRef IUCr Journals Google Scholar
Kubono, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2022). Acta Cryst. E78, 326–329. Web of Science CSD CrossRef IUCr Journals Google Scholar
Massoud, S. S., Spell, M., Ledet, C. C., Junk, T., Herchel, R., Fischer, R. C., Trávníček, Z. & Mautner, F. A. (2015). Dalton Trans. 44, 2110–2121. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mesquita, L. M., André, V., Esteves, C. V., Palmeira, T., Berberan-Santos, M. N., Mateus, P. & Delgado, R. (2016). Inorg. Chem. 55, 2212–2219. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pander, P., Zaytsev, A. V., Sil, A., Baryshnikov, G. V., Siddique, F., Williams, J. A. G., Dias, F. B. & Kozhevnikov, V. N. (2023). Chem. Sci. 14, 13934–13943. Web of Science CSD CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Raj, M., Makhal, K., Raj, D., Mishra, A., Mallik, B. S. & Padhi, S. K. (2023). Dalton Trans. 52, 17797–17809. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Van der Heyden, A., Chanthavong, P., Angles-Cano, E., Bonnet, H., Dejeu, J., Cras, A., Philouze, C., Serratrice, G., El-Ghazouani, F. Z., Toti, F., Thibon-Pourret, A. & Belle, C. (2023). J. Inorg. Biochem. 239, 112065. Web of Science CSD CrossRef PubMed Google Scholar
Wieghardt, K., Bossek, U., Bonvoisin, J., Beauvillain, P., Girerd, J.-J., Nuber, B., Weiss, J. & Heinze, J. (1986). Angew. Chem. Int. Ed. Engl. 25, 1030–1031. CSD CrossRef Web of Science Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.