research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[di­aqua­di­imida­zole­cobalt(II)]-μ2-2,3,5,6-tetra­bromo­benzene-1,4-di­carboxyl­ato]

crossmark logo

aToyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan, and bDepartment of Chemistry, Fukuoka University, 8-19-1 Nanakuma Jonan-ku, Fukuoka, 814-0180, Japan
*Correspondence e-mail: e1254@mosk.tytlabs.co.jp

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 10 September 2024; accepted 10 October 2024; online 31 October 2024)

The asymmetric unit of the title compound, [Co(C8Br4O4)(C3H4N2)2(H2O)2]n or [Co(Br4bdc)(im)2(H2O)2]n, comprises half of CoII ion, tetra­bromo­benzene­dicarboxylate (Br4bdc2−), imidazole (im) and a water mol­ecule. The CoII ion exhibits a six-coordinated octa­hedral geometry with two oxygen atoms of the Br4bdc2− ligand, two oxygen atoms of the water mol­ecules, and two nitro­gen atoms of the im ligands. The carboxyl­ate group is nearly perpendicular to the benzene ring and shows monodentate coordination to the CoII ion. The CoII ions are bridged by the Br4bdc2− ligand, forming a one-dimensional chain. The carboxyl­ate group acts as an inter­molecular hydrogen-bond acceptor toward the im ligand and a coordinated water mol­ecule. The chains are connected by inter­chain N—H⋯O(carboxyl­ate) and O—H(water)⋯O(carboxyl­ate) hydrogen-bonding inter­actions and are not arranged in parallel but cross each other via inter­chain hydrogen bonding and ππ inter­actions, yielding a three-dimensional network.

1. Chemical context

Infinite assemblies of metal ions bridged by organic linkers, so-called metal–organic frameworks (MOFs) or coordination polymers (CPs), are being actively investigated (Cheetham et al., 1999[Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]; Férey, 2008[Férey, G. (2008). Chem. Soc. Rev. 37, 191-214.]; Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]; Rao et al., 2008[Rao, C. N. R., Cheetham, A. K. & Thirumurugan, A. (2008). J. Phys. Condens. Matter, 20, 083202.]; Yaghi, et al., 2019[Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. (2019). Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks. Weinheim, Germany: VCH.]). Benzene­dicarboxyl­ate (bdc2− dianion), also known as terephthalate dianion, is a well-known linker that gives functional MOFs or CPs (Eddaoudi et al., 2002[Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469-472.]; Kurmoo 2009[Kurmoo, M. (2009). Chem. Soc. Rev. 38, 1353-1379.]). We have not only been preparing electrode materials using terephthalate dianion and its analogues (Ogihara et al., 2014[Ogihara, N., Yasuda, T., Kishida, Y., Ohsuna, T., Miyamoto, K. & Ohba, N. (2014). Angew. Chem. Int. Ed. 53, 11467-11472.], 2017[Ogihara, N., Ohba, N. & Kishida, Y. (2017). Sci. Adv. 3, e1603103.], 2023[Ogihara, N., Hasegawa, M., Kumagai, H., Mikita, R. & Nagasako, N. (2023). Nat. Commun. 14, 1-11.]; Yasuda et al., 2014[Yasuda, T. & Ogihara, N. (2014). Chem. Commun. 50, 11565-11567.]; Mikita et al., 2020[Mikita, R., Ogihara, N., Takahashi, N., Kosaka, S. & Isomura, N. (2020). Chem. Mater. 32, 3396-3404.]) but also fine tuning the crystal structures and properties of MOFs and CPs using R4bdc2− dianions (R = H, F, Cl, Br) in which halogen atoms and metal ions are systematically varied (Kumagai et al., 2012[Kumagai, H., Sakamoto, Y., Kawata, S., Matsunaga, S. & Inagaki, S. (2012). Bull. Chem. Soc. Jpn, 85, 1102-1111.], 2021[Kumagai, H., Setoyama, N., Kawata, S. & Sakamoto, Y. (2021). Bull. Chem. Soc. Jpn, 94, 1571-1578.]). We have used 4,4′-bi­pyridine (4,4′-bpy) or pyrazine (pyz) as co-ligands and have reported on the structure, thermal stability, and water adsorption/desorption properties of the resultant materials. In this contribution, we focused on using the Br4bdc2− dianion and imidazole (im) as a co-ligand instead of a pyz ligand in the synthesis of a CoII–Br4bdc2− dianion system to observe the structural change resulting from the substitution of im for pyz. Although the pyz ligand coordinates two metal centers linearly, one of the two nitro­gen atoms of the im ligand is protonated and undergoes hydrogen-bonding inter­actions. Here, we report on the single-crystal structure and properties of [Co(Br4bdc)(im)2(H2O)2]. This is the first structural characterization of a metal complex having the Br4bdc2− dianion and im as a co-ligand.

[Scheme 1]

2. Structural commentary

The title compound, [Co(Br4bdc)(im)2(H2O)2], consists of a CoII ion, a tetra­bromo­benzene­dicarboxyl­ate dianion (Br4bdc2−), two imidazole (im) mol­ecules, and two water mol­ecules. Its asymmetric unit consists of half of a CoII ion, half of a Br4bdc2− dianion, an im mol­ecule, and a water mol­ecule. The key feature of the structure is a three-dimensional (3D) hydrogen-bonding network that consists of one-dimensional (1D) coordination chains built up by CoO4N2 octa­hedra bridged by Br4bdc2− ligands and inter­chain N—H⋯O and O—H⋯O hydrogen-bonding inter­actions. Fig. 1[link] shows the chain structure of [Co(Br4bdc)(im)2(H2O)2]. The CoII ion occupies a crystallographically special position, and each pair of Br4bdc2− ligands, water mol­ecules, and im ligands coordinates trans to each other; the coordination environment is similar to that of a two-dimensional (2D) material synthesized from Br4bdc2− and pyz ligands, [Co(Br4bdc)(pyz)2(H2O)2] (Kumagai et al., 2021[Kumagai, H., Setoyama, N., Kawata, S. & Sakamoto, Y. (2021). Bull. Chem. Soc. Jpn, 94, 1571-1578.]). The carboxyl­ate group exhibits a monodentate coordination, and the benzene ring and the carboxyl­ate group are nearly perpendicular dihedral angle = 90.5 (3)°]. The im ligand coordinates to the CoII ion via nitro­gen atom N1 as a neutral imidazole ligand rather than as an imidazolate anion, and a hydrogen atom is attached to the remaining nitro­gen atom N2. The Co—O3 (H2O) and Co—O1 (carboxyl­ate) bond lengths in the title compound are 2.1006 (16) and 2.1678 (13) Å (Table 1[link]), respectively, which are slightly longer than those [2.032 (3) Å and 2.096 (4) Å] for [Co(Br4bdc)(pyz)2(H2O)2] (Kumagai et al., 2021[Kumagai, H., Setoyama, N., Kawata, S. & Sakamoto, Y. (2021). Bull. Chem. Soc. Jpn, 94, 1571-1578.]). However, the Co—N bond length of 2.0850 (18) Å is shorter than that of 2.273 (4) Å for [Co(Br4bdc)(pyz)2(H2O)2], in which the CoII ion shows an elongated octa­hedral environment, indicative of the compressed octa­hedron of the title compound (Kumagai et al., 2021[Kumagai, H., Setoyama, N., Kawata, S. & Sakamoto, Y. (2021). Bull. Chem. Soc. Jpn, 94, 1571-1578.]). The angles around the CoII ion lie in the range 88.31 (6)–180.0°. The Co⋯Co separation defined by the Co–Br4bdc2−–Co connectivity within the chain is 11.69 Å, which is slightly longer than that for [Co(Br4bdc)(pyz)2(H2O)2] (11.24 Å; Kumagai et al., 2021[Kumagai, H., Setoyama, N., Kawata, S. & Sakamoto, Y. (2021). Bull. Chem. Soc. Jpn, 94, 1571-1578.]).

Table 1
Selected geometric parameters (Å, °)

Co1—N1i 2.0850 (18) Co1—O3 2.1007 (16)
Co1—N1 2.0850 (18) Co1—O1i 2.1678 (13)
Co1—O3i 2.1006 (16) Co1—O1 2.1678 (13)
       
N1i—Co1—N1 180.00 (11) O3i—Co1—O1i 89.81 (6)
N1i—Co1—O3i 89.06 (7) O3—Co1—O1i 90.19 (6)
N1—Co1—O3i 90.94 (7) N1i—Co1—O1 91.69 (6)
N1i—Co1—O3 90.94 (7) N1—Co1—O1 88.31 (6)
N1—Co1—O3 89.06 (7) O3i—Co1—O1 90.19 (6)
O3i—Co1—O3 180.00 (4) O3—Co1—O1 89.81 (6)
N1i—Co1—O1i 88.31 (6) O1i—Co1—O1 180.0
N1—Co1—O1i 91.69 (6)    
Symmetry code: (i) [-x+1, -y+2, -z+2].
[Figure 1]
Figure 1
One-dimensional chain structure of title compound, along with labeling scheme and 50% probability displacement ellipsoids. [Symmetry code: (i) −x + 1, −y + 2, −z + 2.]

3. Supra­molecular features

In the crystal structure, the im ligands and coordinated water mol­ecules act as hydrogen-bond donors and the oxygen atoms of the carboxyl­ate group of Br4bdc2− ligand act as hydrogen-bond acceptors (Fig. 2[link], Table 2[link]). The coordinated water mol­ecule exhibits not only intra­chain hydrogen-bonding inter­actions with oxygen atom O2 of the carboxyl­ate group not bound to a CoII ion but also inter­chain hydrogen-bonding inter­actions with the coordinated oxygen atom O1 of carboxyl­ate group in the adjacent chain. Further inter­chain hydrogen-bonding inter­actions between the im ligands and coordinated oxygen atoms of the carboxyl­ate groups yield a 3D hydrogen-bonded network. The nearest centroid–centroid distance between the benzene ring and the im ligand, and the shortest C⋯C distance are 3.95 and 3.63 Å, respectively. These distances are indicative of some degree of ππ stacking inter­actions (Kruszynski & Sierański, 2019[Kruszynski, R. & Sierański, T. (2019). Cryst. Growth Des. 16, 587-595.]). The chains are not arranged in parallel but cross each other by hydrogen-bonding and ππ stacking inter­actions (Fig. 3[link]) and appear to have a 1D-channel structure when viewed along the c axis (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O2ii 0.80 (3) 2.01 (3) 2.808 (2) 174 (3)
O3—H2⋯O2 0.76 (3) 1.99 (3) 2.700 (2) 155 (3)
O3—H3⋯O1iii 0.75 (4) 2.06 (4) 2.809 (2) 176 (4)
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+2, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View of inter- and intra­molecular hydrogen-bonding inter­actions. Dashed lines represent hydrogen bonds. Hydrogen atoms are omitted for clarity. [Symmetry code: (ii) x, −y + 2, z + [{1\over 2}], (iii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}].]
[Figure 3]
Figure 3
Two chains linked by inter­chain hydrogen-bonding inter­actions. Dashed lines represent inter­chain hydrogen bonds. Bromine and hydrogen atoms are omitted for clarity.
[Figure 4]
Figure 4
View of the hydrogen-bonding network along the crystallographic c axis.

4. Database survey

Although a search of the Sci Finder database for structures with a Br4bdc2− ion, an im ligand, and a CoII ion resulted in no complete matches, nor were any partially matched structures found. They are metal complexes composed of a Br4bdc2− ligand and benzimidazole derivatives (Zhang et al., 2016[Zhang, X., Liu, Y.-G., Hao, Z. C. & Cui, G.-H. J. (2016). J. Coord. Chem. 69, 1514-1524.]; Hu et al., 2015[Hu, J.-M., Liu, Y.-G., Van Hecke, K., Cui, G.-H. & Han, L.-H. (2015). Z. Anorg. Allg. Chem. 641, 1263-1268.]). A search of the Web of Science database for the keyword tetra­bromo­terephthalate led to NiII compounds that also contain a Br4bdc2− ligand and benzimidazole derivatives (Liu et al., 2015[Liu, X.-B., Huang, C.-M., Dong, G.-Y. & Cui, G.-H. (2015). Transition Met. Chem. 40, 847-856.]; Hao et al., 2020[Hao, Z.-C., Wang, S.-C., Yang, Y.-J. & Cui, G.-H. (2020). Polyhedron, 181, 114466.]).

5. Synthesis and crystallization

An aqueous solution (5 mL) of cobalt(II) nitrate hexa­hydrate (0.35 g, 1.25 mmol) was transferred to a glass tube, and an ethanol–water mixture (5 mL) of 2,3,5,6-tetra­bromo­benzene­dicarb­oxy­lic acid (0.60 g, 1.25 mmol), NaOH (0.10 g, 2.50 mmol), and imidazole (0.10 g, 1.25 mmol) was poured into the glass tube without the two solutions being mixed. Pink crystals began to form at ambient temperature in 1 week, one of which was used for the X-ray crystallography study.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link]. The non-hydrogen atoms were refined anisotropically. The hydrogen atom attached to a nitro­gen atom of the im ligand and the water mol­ecules were located in difference-Fourier maps. Other hydrogen atoms were placed in idealized positions and were refined using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula [Co(C8Br4O4)(C3H4N2)2(H2O)2]
Mr 710.85
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 18.8050 (7), 12.2925 (6), 10.8938 (5)
β (°) 121.853 (3)
V3) 2138.97 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.31
Crystal size (mm) 0.60 × 0.60 × 0.60
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR and RAPID AUTO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.004, 0.007
No. of measured, independent and observed [I > 2σ(I)] reflections 10419, 2448, 2277
Rint 0.046
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.07
No. of reflections 2448
No. of parameters 145
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.60
Computer programs: RAPID AUTO (Rigaku, 1995[Rigaku (1995). ABSCOR and RAPID AUTO. Rigaku Corporation, Tokyo, Japan.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and CrystalStructure (Rigaku, 2019[Rigaku (2019). Crystal Structure. Rigaku Corporation, Tokyo, Japan.]).

7. Additional investigations

To assess the thermal properties of the title compound, we carried out a thermogravimetric analysis (TGA) under a nitro­gen atmosphere. The TGA curve is characterized by two weight-loss steps in the range 120–500°C (Fig. S1). The first weight loss of 6% was observed in the temperature range 120–160°C, and the second weight loss of 90% was observed in the range 200–470°C. The first weight loss corresponds to the loss of two coordinated water mol­ecules to give the dehydrated phase, [Co(Br4bdc)(im)2]. The second weight loss is due to thermal decomposition of the compound. The DTG curve exhibited a sharp peak at 215°C. This result indicates that the compound is stable up to about 200°C. Electronic diffuse-reflectance spectra were recorded for as-synthesized [Co(Br4bdc)(im)2(H2O)2] and the dehydrated phase, [Co(Br4bdc)(im)2], obtained after heat treatment at 140°C. Because the compounds were not soluble in any solvent, we acquired the electronic diffuse-reflectance spectra of solid-state samples. After the heat treatment, a color change from pink to blue was observed and two strong absorption bands appeared at ∼480 nm and ∼1000 nm, indicating that the coordination environment of the six-coordinate CoII center had changed to a four-coordinate CoII environment as a result of the loss of coordinated water mol­ecules (Fig. S2). In the IR spectrum, the characteristic band for the coordinated water mol­ecules was observed as a broad band at 3340 cm−1; the band disappeared after the heat treatment (Fig. S3). This result is in good agreement with the TGA and electronic diffuse-reflectance spectra measurement results. Nitro­gen adsorption–desorption measurements were conducted; however, almost no nitro­gen was adsorbed. This lack of nitro­gen adsorption is speculatively attributed to insufficient space for nitro­gen mol­ecules because of the large ionic radius of the bromine.

Supporting information


Computing details top

catena-Poly[[diaquadiimidazolecobalt(II)]-µ2-2,3,5,6-tetrabromobenzene-1,4-dicarboxylato] top
Crystal data top
[Co(C8Br4O4)(C3H4N2)2(H2O)2]F(000) = 1356
Mr = 710.85Dx = 2.207 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 18.8050 (7) ÅCell parameters from 9142 reflections
b = 12.2925 (6) Åθ = 3.3–27.5°
c = 10.8938 (5) ŵ = 8.31 mm1
β = 121.853 (3)°T = 173 K
V = 2138.97 (17) Å3Block, pink
Z = 40.60 × 0.60 × 0.60 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2277 reflections with I > 2σ(I)
ω scansRint = 0.046
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
θmax = 27.5°, θmin = 3.3°
Tmin = 0.004, Tmax = 0.007h = 2224
10419 measured reflectionsk = 1515
2448 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.8085P]
where P = (Fo2 + 2Fc2)/3
2448 reflections(Δ/σ)max = 0.002
145 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.40878 (2)1.36557 (2)0.78290 (2)0.02796 (9)
Br20.30071 (2)1.49911 (2)0.46852 (3)0.03101 (10)
Co10.5000001.0000001.0000000.01141 (10)
O10.40770 (8)1.08127 (12)0.80246 (14)0.0157 (3)
O20.31711 (10)1.14631 (14)0.85848 (17)0.0282 (4)
O30.41853 (11)1.01046 (14)1.0767 (2)0.0236 (4)
N10.44446 (11)0.85236 (14)0.90200 (19)0.0179 (3)
N20.34569 (13)0.73172 (17)0.7762 (2)0.0275 (4)
C10.34466 (12)1.13493 (16)0.7774 (2)0.0159 (4)
C20.29633 (12)1.19335 (16)0.6314 (2)0.0153 (4)
C30.31735 (12)1.29953 (17)0.6185 (2)0.0159 (4)
C40.27151 (13)1.35524 (16)0.4882 (2)0.0167 (4)
C50.47955 (14)0.76163 (19)0.8814 (3)0.0254 (5)
H50.5373180.7527770.9158530.030*
C60.41879 (16)0.6861 (2)0.8039 (3)0.0329 (6)
H60.4259790.6161030.7751140.039*
C70.36370 (14)0.8307 (2)0.8368 (2)0.0257 (5)
H70.3233640.8792320.8333000.031*
H10.2999 (19)0.706 (2)0.733 (3)0.036 (8)*
H20.383 (2)1.050 (3)1.028 (3)0.032 (8)*
H30.418 (2)0.987 (2)1.139 (4)0.040 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02444 (15)0.02595 (15)0.01768 (14)0.00432 (8)0.00031 (11)0.00049 (8)
Br20.03257 (17)0.02081 (15)0.02504 (16)0.00629 (8)0.00522 (13)0.00651 (8)
Co10.00890 (19)0.0133 (2)0.0105 (2)0.00010 (12)0.00411 (16)0.00132 (12)
O10.0144 (7)0.0176 (7)0.0121 (7)0.0044 (5)0.0050 (6)0.0030 (5)
O20.0253 (8)0.0442 (10)0.0199 (8)0.0198 (7)0.0153 (7)0.0143 (7)
O30.0199 (8)0.0337 (10)0.0229 (9)0.0100 (7)0.0151 (8)0.0135 (7)
N10.0168 (8)0.0168 (9)0.0171 (8)0.0012 (7)0.0069 (7)0.0008 (6)
N20.0229 (10)0.0309 (11)0.0267 (11)0.0149 (8)0.0116 (9)0.0068 (8)
C10.0126 (9)0.0171 (10)0.0137 (10)0.0012 (7)0.0039 (8)0.0018 (7)
C20.0128 (9)0.0188 (10)0.0144 (9)0.0051 (8)0.0073 (8)0.0031 (7)
C30.0125 (9)0.0176 (10)0.0144 (9)0.0013 (7)0.0049 (8)0.0000 (7)
C40.0181 (10)0.0140 (9)0.0175 (10)0.0015 (7)0.0090 (9)0.0024 (7)
C50.0208 (11)0.0230 (11)0.0264 (12)0.0008 (9)0.0084 (10)0.0056 (9)
C60.0358 (13)0.0267 (13)0.0335 (13)0.0074 (10)0.0165 (12)0.0107 (10)
C70.0192 (11)0.0282 (12)0.0279 (12)0.0049 (9)0.0112 (10)0.0022 (10)
Geometric parameters (Å, º) top
Br1—C31.890 (2)N1—C51.373 (3)
Br2—C41.897 (2)N2—C71.340 (3)
Co1—N1i2.0850 (18)N2—C61.363 (3)
Co1—N12.0850 (18)N2—H10.80 (3)
Co1—O3i2.1006 (16)C1—C21.531 (3)
Co1—O32.1007 (16)C2—C4ii1.388 (3)
Co1—O1i2.1678 (13)C2—C31.392 (3)
Co1—O12.1678 (13)C3—C41.392 (3)
O1—C11.254 (2)C5—C61.364 (3)
O2—C11.246 (2)C5—H50.9500
O3—H20.76 (3)C6—H60.9500
O3—H30.75 (4)C7—H70.9500
N1—C71.320 (3)
N1i—Co1—N1180.00 (11)C7—N2—H1124 (2)
N1i—Co1—O3i89.06 (7)C6—N2—H1128 (2)
N1—Co1—O3i90.94 (7)O2—C1—O1127.11 (18)
N1i—Co1—O390.94 (7)O2—C1—C2116.28 (17)
N1—Co1—O389.06 (7)O1—C1—C2116.61 (16)
O3i—Co1—O3180.00 (4)C4ii—C2—C3118.53 (18)
N1i—Co1—O1i88.31 (6)C4ii—C2—C1121.38 (18)
N1—Co1—O1i91.69 (6)C3—C2—C1120.00 (17)
O3i—Co1—O1i89.81 (6)C4—C3—C2120.56 (18)
O3—Co1—O1i90.19 (6)C4—C3—Br1121.29 (15)
N1i—Co1—O191.69 (6)C2—C3—Br1118.15 (14)
N1—Co1—O188.31 (6)C2ii—C4—C3120.90 (18)
O3i—Co1—O190.19 (6)C2ii—C4—Br2118.19 (15)
O3—Co1—O189.81 (6)C3—C4—Br2120.90 (15)
O1i—Co1—O1180.0C6—C5—N1109.6 (2)
C1—O1—Co1128.92 (12)C6—C5—H5125.2
Co1—O3—H2109 (2)N1—C5—H5125.2
Co1—O3—H3135 (3)N2—C6—C5106.0 (2)
H2—O3—H3117 (3)N2—C6—H6127.0
C7—N1—C5105.28 (19)C5—C6—H6127.0
C7—N1—Co1125.05 (15)N1—C7—N2111.6 (2)
C5—N1—Co1129.53 (14)N1—C7—H7124.2
C7—N2—C6107.5 (2)N2—C7—H7124.2
Co1—O1—C1—O26.2 (3)Br1—C3—C4—C2ii179.05 (15)
Co1—O1—C1—C2173.49 (12)C2—C3—C4—Br2178.98 (14)
O2—C1—C2—C4ii87.3 (2)Br1—C3—C4—Br21.6 (2)
O1—C1—C2—C4ii93.0 (2)C7—N1—C5—C60.2 (3)
O2—C1—C2—C389.4 (2)Co1—N1—C5—C6176.08 (16)
O1—C1—C2—C390.4 (2)C7—N2—C6—C50.4 (3)
C4ii—C2—C3—C40.3 (3)N1—C5—C6—N20.4 (3)
C1—C2—C3—C4177.08 (16)C5—N1—C7—N20.0 (3)
C4ii—C2—C3—Br1179.07 (14)Co1—N1—C7—N2176.07 (15)
C1—C2—C3—Br12.3 (2)C6—N2—C7—N10.3 (3)
C2—C3—C4—C2ii0.4 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1/2, y+5/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Br1iii0.953.103.946 (3)149
N2—H1···O2iv0.80 (3)2.01 (3)2.808 (2)174 (3)
O3—H2···O20.76 (3)1.99 (3)2.700 (2)155 (3)
O3—H3···O1v0.75 (4)2.06 (4)2.809 (2)176 (4)
Symmetry codes: (iii) x, y1, z; (iv) x+1/2, y1/2, z+3/2; (v) x, y+2, z+1/2.
 

References

First citationCheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationEddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFérey, G. (2008). Chem. Soc. Rev. 37, 191–214.  Web of Science PubMed Google Scholar
First citationHao, Z.-C., Wang, S.-C., Yang, Y.-J. & Cui, G.-H. (2020). Polyhedron, 181, 114466.  CSD CrossRef Google Scholar
First citationHu, J.-M., Liu, Y.-G., Van Hecke, K., Cui, G.-H. & Han, L.-H. (2015). Z. Anorg. Allg. Chem. 641, 1263–1268.  CSD CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationKruszynski, R. & Sierański, T. (2019). Cryst. Growth Des. 16, 587–595.  CrossRef Google Scholar
First citationKumagai, H., Sakamoto, Y., Kawata, S., Matsunaga, S. & Inagaki, S. (2012). Bull. Chem. Soc. Jpn, 85, 1102–1111.  CSD CrossRef CAS Google Scholar
First citationKumagai, H., Setoyama, N., Kawata, S. & Sakamoto, Y. (2021). Bull. Chem. Soc. Jpn, 94, 1571–1578.  CSD CrossRef CAS Google Scholar
First citationKurmoo, M. (2009). Chem. Soc. Rev. 38, 1353–1379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X.-B., Huang, C.-M., Dong, G.-Y. & Cui, G.-H. (2015). Transition Met. Chem. 40, 847–856.  CSD CrossRef CAS Google Scholar
First citationMikita, R., Ogihara, N., Takahashi, N., Kosaka, S. & Isomura, N. (2020). Chem. Mater. 32, 3396–3404.  Web of Science CrossRef CAS Google Scholar
First citationOgihara, N., Hasegawa, M., Kumagai, H., Mikita, R. & Nagasako, N. (2023). Nat. Commun. 14, 1–11.  Web of Science CrossRef PubMed Google Scholar
First citationOgihara, N., Ohba, N. & Kishida, Y. (2017). Sci. Adv. 3, e1603103.  Web of Science CrossRef PubMed Google Scholar
First citationOgihara, N., Yasuda, T., Kishida, Y., Ohsuna, T., Miyamoto, K. & Ohba, N. (2014). Angew. Chem. Int. Ed. 53, 11467–11472.  Web of Science CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRao, C. N. R., Cheetham, A. K. & Thirumurugan, A. (2008). J. Phys. Condens. Matter, 20, 083202.  CrossRef Google Scholar
First citationRigaku (1995). ABSCOR and RAPID AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2019). Crystal Structure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. (2019). Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks. Weinheim, Germany: VCH.  Google Scholar
First citationYasuda, T. & Ogihara, N. (2014). Chem. Commun. 50, 11565–11567.  Web of Science CrossRef CAS Google Scholar
First citationZhang, X., Liu, Y.-G., Hao, Z. C. & Cui, G.-H. J. (2016). J. Coord. Chem. 69, 1514–1524.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds