research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a hydrogen-bonded 2:1 co-crystal of 4-nitro­phenol and 4,4′-bi­pyridine

crossmark logo

aDepartment of Chemistry & Biochemistry, California State Polytechnic University, Pomona, 3801 W. Temple Ave., Pomona, CA 91768, USA
*Correspondence e-mail: zymarr@cpp.edu

Edited by J. Reibenspies, Texas A & M University, USA (Received 28 August 2024; accepted 2 October 2024; online 8 October 2024)

In the title compound, C10H8N2·2C6H5NO3, 4-nitro­phenol and 4,4′-bi­pyridine crystallized together in a 2:1 ratio in the space group P21/n. There is a hydrogen-bonding inter­action between the nitro­gen atoms on the 4,4′-bi­pyridine mol­ecule and the hydrogen atom on the hydroxyl group on the 4-nitro­phenol, resulting in trimolecular units. This structure is a polymorph of a previously reported structure [Nayak & Pedireddi (2016[Nayak, A. & Pedireddi, V. R. (2016). Cryst. Growth Des. 16, 5966-5975.]). Cryst. Growth Des. 16, 5966–5975], which differs mainly due to a twist in the 4,4′-bi­pyridine mol­ecule.

1. Chemical context

Co-crystals are a growing field of science as crystalline solids can be engineered to have improved physical-chemical properties such as better solubility, stability, and bioavailability (Karimi-Jafari et al., 2018[Karimi-Jafari, M., Padrela, L., Walker, G. M. & Croker, D. M. (2018). Cryst. Growth Des. 18, 6370-6387.]). Co-crystals are defined as crystalline solids composed of two or more different mol­ecular and/or ionic compounds in a specific stoichiometric ratio and are neither solvates nor simple salts (Aitipamula et al., 2012[Aitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A. S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C. M., Rodriguez-Hornedo, N., Rogers, R. D., Row, T. N. G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C. C., Swift, J. A., Thaimattam, R., Thakur, T. S., Kumar Thaper, R., Thomas, S. P., Tothadi, S., Vangala, V. R., Variankaval, N., Vishweshwar, P., Weyna, D. R. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 2147-2152.]). They are held together by inter­molecular inter­actions such as hydrogen bonding, halogen bonding, and ππ stacking (Wang et al., 2022[Wang, Y., Wang, L., Zhang, F., Wang, N., Gao, Y., Xiao, Y., Wang, Z. & Bao, Y. (2022). J. Mol. Struct. 1258, 132665.]). Generally, co-crystals are high yielding, making them an appealing candidate for crystal engineering in the realm of pharmaceutical purposes (Chettri et al., 2024[Chettri, A., Subba, A., Singh, G. P. & Bag, P. P. (2024). J. Pharm. Pharmacol. 76, 1-12.]).

[Scheme 1]

The chemicals used in this co-crystal consist of 4,4′-bi­pyridine and 4-nitro­phenol. 4,4′-Bi­pyridine can be found in a multitude of crystal structures due the pyridyl groups being suitable for both coordination polymers and co-crystals (Richard et al., 2021[Richard, J., Joseph, J., Wang, C., Ciesielski, A., Weiss, J., Samorì, P., Mamane, V. & Wytko, J. A. (2021). J. Org. Chem. 86, 3356-3366.]). 4-Nitro­phenol is commonly found as a drug manufacturing and synthesis inter­mediate in the pharmaceutical industry. Specifically, this compound has been used in the production of compounds such as acetamino­phen, a drug used for pain relief, where it is nitrated and converted to 4-amino­phenol, an inter­mediate for acetamino­phenol (Abdollahi et al., 2014[Abdollahi, M. & Mohammadirad, A. (2014). Encyclopedia of Toxicology. 3, 575-577.]). This is a highly appealing synthesis process for its greener approach to science in comparison to other inter­mediates used. Additionally, since 4-nitro­phenol takes on the color of a yellow crystalline solid, it is also a suitable candidate that is used to produce pigments/dyes such as leather darkener (National Center for Biotechnology Information, 2024[National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 980, 4-nitrophenol. Retrieved August 22, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/4-Nitrophenol.]).

2. Structural commentary

4,4′-Bi­pyridine and 4-nitro­phenol co-crystallized in a 1:2 ratio with the asymmetric unit containing one mol­ecule of 4-nitro­phenol and half of a 4,4′-bi­pyridine mol­ecule in the P21/n space group. Half of the atoms from the 4,4′-bi­pyridine mol­ecule sit on Wyckoff position 4e, and the other half is generated by the center of inversion (0, 1/2, 0) (Fig. 1[link]). The nitro groups exhibit a trigonal–planar geometry with bond angles of 122.44 (16)° for O1—N2—O2, 118.51 (14)° for O1—N2—C6, and 119.06 (15) for O2—N2—C6. The N—O/N=O bonds have lengths of 1.232 (2) and 1.2346 (19) Å, which are in between the average values for N—O and N=O bonds, as expected due to resonance. The mol­ecular geometry of the hydroxyl group is bent with with an angle of 110.4 (19)° for H3—O3—C9. The aromatic benzene ring has bond angles ranging between 119.32 (15) and 121.33 (15)°, as expected for sp2-hybridized carbons.

[Figure 1]
Figure 1
A view of the structure containing 4,4′-bi­pyridine and 4-nitro­phenol showing the atom-labeling scheme. Atoms that contain _a in the label are symmetry generated (−x + 2, − y + 1, −z). The displacement ellipsoids are drawn at 50% probability.

3. Supra­molecular features

In the structure, each nitro­gen on the 4,4′-bi­pyridine is hydrogen bonded to the hydroxyl group from the 4-nitro­phenol, which results in the formation of trimolecular units that propagate along [001] (Fig. 2[link]). There is a hydrogen-bonding inter­action (Table 1[link]) between the two mol­ecules with a DA distance between H3 and N1 of 1.84 (3) Å. In addition to hydrogen bonding, there are also ππ inter­actions between the ring systems of the adjacent 4,4′-bi­pyridine mol­ecules having a plane centroid to plane centroid distance of 3.8255 (11) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1i 0.86 (3) 1.84 (3) 2.6921 (19) 174 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Diagram of the packed unit cell highlighting the hydrogen-bonding inter­action between the hydrogen on the 4-nitro­phenol and the nitro­gen atom on the 4,4′-bi­pyridine. View down [010].

4. Database survey

The crystal structure that is reported herein is a polymorph of a co-crystal (refcode AWEVUV) published by Nayak & Pedireddi (2016[Nayak, A. & Pedireddi, V. R. (2016). Cryst. Growth Des. 16, 5966-5975.]). Similar synthesis and crystallization conditions were used but there are slight differences in the structure. The asymmetric unit of the previous structure contains three mol­ecules, two 4-nitro­phenol and one 4,4′-bi­pyridine, and the 4,4′-bi­pyridine does not lie on a symmetry operation. In the previously published structure, the pyridyl groups are rotated about the C13—C22 bond with a plane twist angle of 24.60 (8)° whereas the pyridyl rings sit in plane with one another in the structure reported above. The unit-cell parameters and space group for the two structures also differ (Table 2[link]).

Table 2
Comparison of unit-cell parameters (Å, °)

Parameter Nayak & Pedireddi (2016[Nayak, A. & Pedireddi, V. R. (2016). Cryst. Growth Des. 16, 5966-5975.]) Title compound
Crystal system Monoclinic Monoclinic
Space group P21/c P21/n
a 19.090 (4) 12.3711 (7)
b 3.8080 (10) 3.8255 (2)
c 27.3470 (10) 21.4175 (12)
β 98.38 (3) 104.195 (2)

5. Synthesis and crystallization

The synthesis for the newly reported co-crystal is modified from the procedure published by Nayak & Pedireddi (2016[Nayak, A. & Pedireddi, V. R. (2016). Cryst. Growth Des. 16, 5966-5975.]) with a 2:1 rather than a 1:1 ratio of 4,4′-bi­pyridine and 4-nitro­phenol used. In addition, the method of heating was changed from a warm water bath to gentle heating directly on a hot plate. These differences in the synthesis could contribute to the deviation of the packing of the mol­ecules from the original structure.

A 2:1 molar ratio of 4,4′-bi­pyridine and 4-nitro­phenol was used to synthesize the new co-crystal. 20.0 mg (0.128 mmol, 2 eq) of 4,4′-bi­pyridine and 8.9 mg (0.0640 mmol, 1 eq) of 4-nitro­phenol were added to a 20 mL scintillation vial. 4.4 mL of methanol was added to the vial and then the solution was warmed up on a hot plate to dissolve the solids. Once fully dissolved, the solution was cooled to room temperature. The sample underwent slow evaporation and to control evaporation rate, small holes were punctured on the parafilm covering as the solution was left to evaporate for 2 weeks. The resulting crystals were clear, colorless prisms. These crystals were grown as part of class CHM 5720 ‘Current advances in Inorganic Chemistry – Introduction to Crystallography’ at Cal Poly Pomona.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogens except H3 were placed at calculated positions using AFIX commands and refined using a riding model. The position of H3 was determined using the Fourier difference map and refined freely.

Table 3
Experimental details

Crystal data
Chemical formula C10H8N2·2C6H5NO3
Mr 434.40
Crystal system, space group Monoclinic, P21/n
Temperature (K) 123
a, b, c (Å) 12.3711 (7), 3.8255 (2), 21.4175 (12)
β (°) 104.195 (2)
V3) 982.65 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.47 × 0.07 × 0.03
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.501, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 24119, 2957, 2302
Rint 0.076
(sin θ/λ)max−1) 0.711
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.161, 1.10
No. of reflections 2957
No. of parameters 149
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.37
Computer programs: APEX4 and SAINT V8.40B (Bruker, 2018[Bruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

4,4'-Bipyridine–4-nitrophenol (1/2) top
Crystal data top
C10H8N2·2C6H5NO3F(000) = 452
Mr = 434.40Dx = 1.468 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.3711 (7) ÅCell parameters from 5585 reflections
b = 3.8255 (2) Åθ = 2.2–30.3°
c = 21.4175 (12) ŵ = 0.11 mm1
β = 104.195 (2)°T = 123 K
V = 982.65 (9) Å3Prism, clear colourless
Z = 20.47 × 0.07 × 0.03 mm
Data collection top
Bruker D8 Venture
diffractometer
2302 reflections with I > 2σ(I)
φ and ω scansRint = 0.076
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.4°, θmin = 2.0°
Tmin = 0.501, Tmax = 0.746h = 1717
24119 measured reflectionsk = 55
2957 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.7817P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2957 reflectionsΔρmax = 0.47 e Å3
149 parametersΔρmin = 0.37 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.36469 (10)0.2681 (4)0.20323 (6)0.0241 (3)
O10.76718 (11)1.0265 (4)0.13543 (7)0.0315 (3)
O20.66554 (13)0.9310 (5)0.03941 (6)0.0372 (4)
N11.07530 (12)0.6778 (4)0.16823 (7)0.0224 (3)
N20.68271 (12)0.9075 (4)0.09853 (7)0.0243 (3)
C31.01552 (13)0.5393 (4)0.03500 (7)0.0184 (3)
C60.60089 (14)0.7357 (4)0.12575 (8)0.0196 (3)
C110.49848 (14)0.6398 (5)0.08606 (8)0.0220 (3)
H110.4825270.6826390.0410350.026*
C70.62601 (14)0.6748 (4)0.19178 (8)0.0209 (3)
H70.6963650.7418760.2182310.025*
C10.97805 (15)0.5281 (5)0.13953 (8)0.0227 (4)
H10.9286870.4686940.1655660.027*
C90.44362 (14)0.4190 (4)0.17947 (8)0.0202 (3)
C80.54795 (14)0.5162 (4)0.21849 (8)0.0211 (3)
H80.5647580.4723980.2635030.025*
C20.94480 (14)0.4545 (5)0.07449 (8)0.0223 (3)
H20.8746710.3474210.0568420.027*
C100.42023 (14)0.4814 (5)0.11295 (8)0.0228 (4)
H100.3501200.4142910.0862140.027*
C51.14324 (14)0.7645 (5)0.13058 (8)0.0238 (4)
H51.2122540.8745930.1497180.029*
C41.11678 (14)0.6999 (5)0.06463 (8)0.0230 (4)
H41.1674210.7647840.0397200.028*
H30.386 (2)0.254 (8)0.2445 (15)0.053 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0195 (6)0.0320 (7)0.0194 (6)0.0049 (5)0.0022 (5)0.0017 (5)
O10.0236 (6)0.0378 (8)0.0325 (7)0.0049 (6)0.0056 (5)0.0044 (6)
O20.0364 (8)0.0536 (10)0.0226 (7)0.0013 (7)0.0094 (6)0.0087 (6)
N10.0234 (7)0.0230 (7)0.0203 (7)0.0029 (6)0.0044 (5)0.0015 (5)
N20.0222 (7)0.0275 (8)0.0238 (7)0.0040 (6)0.0066 (5)0.0048 (6)
C30.0183 (7)0.0169 (7)0.0198 (7)0.0014 (6)0.0044 (6)0.0002 (6)
C60.0201 (7)0.0202 (7)0.0187 (7)0.0029 (6)0.0052 (6)0.0017 (6)
C110.0240 (8)0.0252 (8)0.0153 (7)0.0043 (7)0.0018 (6)0.0005 (6)
C70.0195 (7)0.0220 (8)0.0185 (7)0.0005 (6)0.0004 (6)0.0004 (6)
C10.0234 (8)0.0245 (8)0.0213 (8)0.0000 (6)0.0077 (6)0.0009 (6)
C90.0196 (7)0.0202 (8)0.0196 (7)0.0015 (6)0.0028 (6)0.0009 (6)
C80.0232 (8)0.0223 (8)0.0159 (7)0.0005 (6)0.0009 (6)0.0003 (6)
C20.0200 (8)0.0254 (8)0.0212 (8)0.0030 (6)0.0044 (6)0.0024 (6)
C100.0200 (8)0.0279 (9)0.0175 (7)0.0010 (6)0.0010 (6)0.0015 (6)
C50.0190 (8)0.0283 (9)0.0227 (8)0.0002 (6)0.0023 (6)0.0025 (7)
C40.0182 (7)0.0283 (9)0.0224 (8)0.0015 (6)0.0048 (6)0.0011 (7)
Geometric parameters (Å, º) top
O3—C91.338 (2)C11—C101.382 (2)
O3—H30.86 (3)C7—H70.9500
O1—N21.232 (2)C7—C81.378 (2)
O2—N21.2346 (19)C1—H10.9500
N1—C11.338 (2)C1—C21.381 (2)
N1—C51.341 (2)C9—C81.405 (2)
N2—C61.444 (2)C9—C101.403 (2)
C3—C3i1.484 (3)C8—H80.9500
C3—C21.396 (2)C2—H20.9500
C3—C41.400 (2)C10—H100.9500
C6—C111.391 (2)C5—H50.9500
C6—C71.391 (2)C5—C41.392 (2)
C11—H110.9500C4—H40.9500
C9—O3—H3110.4 (19)C2—C1—H1117.9
C1—N1—C5117.07 (15)O3—C9—C8122.52 (15)
O1—N2—O2122.44 (16)O3—C9—C10118.15 (15)
O1—N2—C6118.51 (14)C10—C9—C8119.32 (15)
O2—N2—C6119.06 (15)C7—C8—C9120.32 (15)
C2—C3—C3i121.30 (18)C7—C8—H8119.8
C2—C3—C4116.84 (15)C9—C8—H8119.8
C4—C3—C3i121.86 (18)C3—C2—H2120.4
C11—C6—N2119.80 (15)C1—C2—C3119.19 (16)
C11—C6—C7121.33 (15)C1—C2—H2120.4
C7—C6—N2118.86 (15)C11—C10—C9120.44 (15)
C6—C11—H11120.4C11—C10—H10119.8
C10—C11—C6119.16 (15)C9—C10—H10119.8
C10—C11—H11120.4N1—C5—H5118.7
C6—C7—H7120.3N1—C5—C4122.70 (16)
C8—C7—C6119.41 (15)C4—C5—H5118.7
C8—C7—H7120.3C3—C4—H4120.0
N1—C1—H1117.9C5—C4—C3119.98 (16)
N1—C1—C2124.22 (16)C5—C4—H4120.0
O3—C9—C8—C7179.23 (16)C3i—C3—C4—C5179.13 (19)
O3—C9—C10—C11179.35 (16)C6—C11—C10—C90.2 (3)
O1—N2—C6—C11171.57 (16)C6—C7—C8—C90.4 (3)
O1—N2—C6—C77.4 (2)C11—C6—C7—C80.0 (3)
O2—N2—C6—C118.2 (2)C7—C6—C11—C100.1 (3)
O2—N2—C6—C7172.86 (16)C1—N1—C5—C41.0 (3)
N1—C1—C2—C30.1 (3)C8—C9—C10—C110.6 (3)
N1—C5—C4—C30.2 (3)C2—C3—C4—C50.6 (3)
N2—C6—C11—C10178.82 (16)C10—C9—C8—C70.7 (3)
N2—C6—C7—C8178.95 (15)C5—N1—C1—C20.9 (3)
C3i—C3—C2—C1179.06 (19)C4—C3—C2—C10.7 (2)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1ii0.86 (3)1.84 (3)2.6921 (19)174 (3)
Symmetry code: (ii) x+3/2, y1/2, z+1/2.
Comparison of unit-cell parameters (Å, °) top
ParameterNayak & Pedireddi (2016)Title compound
Crystal systemMonoclinicMonoclinic
Space groupP21/cP21/n
a19.090 (4)12.3711 (7)
b3.8080 (10)3.8255 (2)
c27.3470 (10)21.4175 (12)
β98.38 (3)104.195 (2)
 

Funding information

Funding for this research was provided by: Camille and Henry Dreyfus Foundation (award to S. Chantal E. Stieber); Office of Postsecondary Education (grant No. P031C210068 to Zoe Y. Marr, S. Chantal E. Stieber); National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 1847926 to S. Chantal E. Stieber); U.S. Department of Defense, U.S. Army (award No. W911NF-17-1-0537 to S. Chantal E. Stieber).

References

First citationAbdollahi, M. & Mohammadirad, A. (2014). Encyclopedia of Toxicology. 3, 575–577.  CrossRef Google Scholar
First citationAitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A. S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C. M., Rodriguez-Hornedo, N., Rogers, R. D., Row, T. N. G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C. C., Swift, J. A., Thaimattam, R., Thakur, T. S., Kumar Thaper, R., Thomas, S. P., Tothadi, S., Vangala, V. R., Variankaval, N., Vishweshwar, P., Weyna, D. R. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 2147–2152.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChettri, A., Subba, A., Singh, G. P. & Bag, P. P. (2024). J. Pharm. Pharmacol. 76, 1–12.  Web of Science CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKarimi-Jafari, M., Padrela, L., Walker, G. M. & Croker, D. M. (2018). Cryst. Growth Des. 18, 6370–6387.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNational Center for Biotechnology Information (2024). PubChem Compound Summary for CID 980, 4-nitrophenol. Retrieved August 22, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/4-Nitrophenol.  Google Scholar
First citationNayak, A. & Pedireddi, V. R. (2016). Cryst. Growth Des. 16, 5966–5975.  Web of Science CSD CrossRef Google Scholar
First citationRichard, J., Joseph, J., Wang, C., Ciesielski, A., Weiss, J., Samorì, P., Mamane, V. & Wytko, J. A. (2021). J. Org. Chem. 86, 3356–3366.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, Y., Wang, L., Zhang, F., Wang, N., Gao, Y., Xiao, Y., Wang, Z. & Bao, Y. (2022). J. Mol. Struct. 1258, 132665.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds