research communications
of an acetonitrile solvate of 2-(3,4,5-triphenylphenyl)acetic acid
aInstitut für Organische Chemie, Technische Universität Bergakademie, Freiberg, Leipziger Str. 29, 09599 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de
Crystal growth of 2-(3,4,5-triphenylphenyl)acetic acid (1) from acetonitrile yields a monosolvate, C26H20O2·CH3CN, of the P1. In the crystal, the title molecule adopts a conformation in which the three phenyl rings are arranged in a paddlewheel-like fashion around the central arene ring and the carboxyl residue is oriented nearly perpendicular to the plane of this benzene ring. Inversion-symmetric dimers of O—H⋯O-bonded molecules of 1 represent the basic supramolecular entities of the These dimeric molecular units are further linked by C—H⋯O=C bonds to form one-dimensional supramolecular aggregates running along the crystallographic [111] direction. Weak Caryl—H⋯N interactions occur between the molecules of 1 and acetonitrile.
CCDC reference: 2391130
1. Chemical context
Phenylacetic acid (PAA) and its derivatives have a wide range of biological activities (Cook, 2019; Jiao et al., 2022; Perez et al., 2023). It is important to note that this class of compounds has played an important role in the development of numerous drugs, for example as a building block of drug molecules or as a starting material for their syntheses (Treves & Testa, 1952; Vardanyan & Hruby, 2006). Examples include drugs such as diclofenac, ibuprofen, flurbiprofen, cyclopentolate and atenolol. They have a wide range of uses, including non-steroidal anti-inflammatory drugs, analgesics, anticancer agents, mydriatics and cycloplegics, among others. Compounds bearing one or two phenyl substituents on the benzene ring of PAA have been reported to have anti-tumor activity (Lade et al., 2023) and some have been proposed as candidates for the treatment of Alzheimer's disease (Wilson et al., 2015). The synthesis of new derivatives of phenylacetic acid is of great importance due to their interesting properties and the possibility of their wide application.
The title compound, which bears three phenyl substituents in positions 3, 4 and 5 of the benzene ring of PAA, has been prepared by us as a compound with potentially valuable biological activities and with the ability to act as a starting material for various functionalizations (Mazik & Seidel, 2024). Crystallization of this compound from acetonitrile yielded a solvate, the of which is described in this article.
2. Structural commentary
The title compound 2-(3,4,5-triphenylphenyl)acetic acid (1) forms a solvate with acetonitrile, which crystallizes in the P and contains one formula unit of each molecular species within its (see Fig. 1). A slight disorder of the solvent is observed, as its methyl hydrogen atoms occupy two positions in a roughly 50:50 distribution. The three phenyl substituents attached to the central benzene ring of 1 (A, C1–C6) uniformly adopt a tilted orientation with respect to the plane of this ring, resulting in a molecular geometry that resembles a paddlewheel. The inclination angles of the aromatic planes in relation to the central ring (A) amount to 46.39 (6)° (ring B, C9–C14), 59.72 (6)° (ring C, C15–C20) and 56.17 (6)° (ring D, C21–C26), respectively. The plane through the carboxyl group of the molecular side arm is oriented nearly perpendicular [84.9 (1)°] with respect to the central arene ring.
3. Supramolecular features
The most dominant non-covalent interactions within the and Table 1) are classical hydrogen bonds between the carboxyl moieties of the inversion-related molecules [d(H1⋯O2) = 1.62 (2) Å, O—H⋯O = 174 (2)°], forming a cyclic synthon of the graph set R22(8) (Etter et al. 1990; Bernstein et al., 1995; for a discussion on supramolecular synthons in crystal engineering, including those formed by carboxyl groups, see: Desiraju, 1995). As shown in Fig. 3, these dimers are connected along the [111] direction by pairs of C—H⋯O bonds involving the aryl hydrogen atom H19 and the carbonyl oxygen atom O2 [d = 2.56 Å, C—H⋯O = 163°; for other examples of C—H⋯O bonds, see: Desiraju & Steiner, 1999; Desiraju, 2005; Mazik et al., 1999a, 2005, 2010; Ebersbach et al., 2023]. Consequently, O2 acts as a bifurcated binding site for hydrogen bonding. The solvent molecule appears to be fixed in its position by a weak C—H⋯N bond involving the atom H2 of the central arene ring [d = 2.71 Å, C—H⋯N = 150°; for other examples of C—H⋯N bonds, see: Reddy et al., 1996; Desiraju & Steiner, 1999; Thalladi et al., 2000a,b; Mazik et al., 1999b, 2000a,b, 2001, 2005]. Since the peripheries of the one-dimensional supramolecular aggregates are formed by the non-polar units of the host molecules, contribute significantly to the cohesion of the Moreover, multiple short distances between C—H units and aromatic moieties suggest the presence of C—H⋯π interactions (Nishio et al., 2009, 2011).
(see Fig. 24. Database survey
Based on the search in the Cambridge Structural Database (CSD, Version 5.45, update June 2024; Groom et al., 2016) for phenylacetic acid and its derivatives with one to five phenyl substituents on the benzene ring, the crystal structures of phenylacetic acid (ZZZMLY01; Hodgson & Asplund, 1991) and 4-biphenylacetic acid (KUZWEI; Van Eerdenbrugh et al., 2010) were found. The latter compound is a potent non-steroidal anti-inflammatory drug (felbinac; Hosie & Bird, 1994). Furthermore, the crystal structures of the complexes of phenylacetic acid with its potassium salt (KHDPAC; Bacon & Curry, 1960), benzamide (MECHAF; Chaudhari & Suryaprakash, 2012) and hexamethylenetetramine (urotropine) (VIJTIR; Mak et al., 1986) are reported. Single crystal structures of complexes of felbinac with tryptamine and 1,2-diphenylethylenediamine are also described (JOZMEQ, Koshima et al., 1998; EDOLAL, Imai et al., 2007). Similar to 1, in the solvent-free crystal structures with the reference codes ZZZMLY01 and KUZWEI, the carboxy groups of the adjacent molecules form the dimer synthon (Desiraju, 1995). Furthermore, the aromatic cores are linked via edge-to-face C—H⋯π interactions.
5. Synthesis and crystallization
Compound 1 was prepared as previously described (Mazik & Seidel, 2024). Crystallization was carried out from acetonitrile by slow evaporation of the solvent. colorless, rhombic plates.
6. Refinement
Crystal data, data collection and structure . All non-hydrogen atoms were refined anisotropically. The hydrogen atom of the carboxyl group (H1) was located in a difference-Fourier map and refined freely. The remaining hydrogen atoms were positioned geometrically and refined isotropically using a riding model, with C—H bond distances of 0.95 Å (arene), 0.98 Å (methyl) and 0.99 Å (methylene). Additionally, their thermal displacement ellipsoids [Uiso(H)] were set to 1.2 Ueq(C) and 1.5 Ueq(C) for arene/methylene and methyl groups, respectively.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2391130
https://doi.org/10.1107/S2056989024009976/jy2053sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024009976/jy2053Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024009976/jy2053Isup3.cml
C26H20O2·C2H3N | Z = 2 |
Mr = 405.47 | F(000) = 428 |
Triclinic, P1 | Dx = 1.221 Mg m−3 |
a = 10.0737 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.1039 (6) Å | Cell parameters from 20520 reflections |
c = 11.5835 (6) Å | θ = 2.0–31.2° |
α = 107.025 (4)° | µ = 0.08 mm−1 |
β = 114.263 (4)° | T = 123 K |
γ = 93.898 (4)° | Irregular, colorless |
V = 1102.82 (11) Å3 | 0.32 × 0.23 × 0.12 mm |
Stoe Stadivari diffractometer | 4519 reflections with I > 2σ(I) |
Radiation source: Primux 50 Mo | Rint = 0.029 |
Graded multilayer mirror monochromator | θmax = 29.0°, θmin = 2.0° |
Detector resolution: 5.81 pixels mm-1 | h = −13→13 |
rotation method, ω scans | k = −14→15 |
29260 measured reflections | l = −15→14 |
5839 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0493P)2 + 0.1858P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
5839 reflections | Δρmax = 0.29 e Å−3 |
286 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | −0.07298 (9) | 0.05965 (8) | 0.36283 (9) | 0.0358 (2) | |
H1 | −0.091 (2) | −0.0091 (19) | 0.399 (2) | 0.078 (6)* | |
O2 | 0.13280 (9) | 0.12762 (8) | 0.55908 (8) | 0.03183 (19) | |
C1 | 0.22564 (11) | 0.34842 (10) | 0.52186 (10) | 0.0216 (2) | |
C2 | 0.36906 (12) | 0.33544 (10) | 0.54368 (10) | 0.0218 (2) | |
H2 | 0.382286 | 0.263815 | 0.483487 | 0.026* | |
C3 | 0.49456 (11) | 0.42462 (10) | 0.65156 (10) | 0.0201 (2) | |
C4 | 0.47611 (11) | 0.53195 (10) | 0.74027 (10) | 0.0193 (2) | |
C5 | 0.33056 (11) | 0.54609 (10) | 0.71808 (10) | 0.0201 (2) | |
C6 | 0.20807 (11) | 0.45380 (10) | 0.60987 (10) | 0.0216 (2) | |
H6 | 0.110351 | 0.463520 | 0.596275 | 0.026* | |
C7 | 0.09294 (12) | 0.24659 (10) | 0.40881 (11) | 0.0242 (2) | |
H7A | 0.114936 | 0.210270 | 0.331366 | 0.029* | |
H7B | 0.006185 | 0.286815 | 0.378211 | 0.029* | |
C8 | 0.05351 (11) | 0.13879 (10) | 0.45171 (10) | 0.0224 (2) | |
C9 | 0.64313 (11) | 0.39716 (10) | 0.66840 (11) | 0.0211 (2) | |
C10 | 0.66910 (12) | 0.35689 (11) | 0.55507 (11) | 0.0259 (2) | |
H10 | 0.594934 | 0.353617 | 0.469893 | 0.031* | |
C11 | 0.80157 (13) | 0.32161 (12) | 0.56508 (12) | 0.0301 (2) | |
H11 | 0.817483 | 0.294114 | 0.486928 | 0.036* | |
C12 | 0.91069 (13) | 0.32630 (12) | 0.68844 (12) | 0.0290 (2) | |
H12 | 1.001067 | 0.301151 | 0.695058 | 0.035* | |
C13 | 0.88762 (12) | 0.36781 (11) | 0.80227 (12) | 0.0274 (2) | |
H13 | 0.963120 | 0.372551 | 0.887470 | 0.033* | |
C14 | 0.75473 (12) | 0.40252 (11) | 0.79249 (11) | 0.0244 (2) | |
H14 | 0.739576 | 0.430200 | 0.871045 | 0.029* | |
C15 | 0.60663 (11) | 0.63167 (10) | 0.85467 (10) | 0.0208 (2) | |
C16 | 0.70629 (12) | 0.70122 (10) | 0.83003 (11) | 0.0249 (2) | |
H16 | 0.692565 | 0.683040 | 0.739973 | 0.030* | |
C17 | 0.82536 (12) | 0.79678 (11) | 0.93604 (13) | 0.0305 (2) | |
H17 | 0.891780 | 0.844448 | 0.918032 | 0.037* | |
C18 | 0.84776 (13) | 0.82292 (11) | 1.06779 (13) | 0.0334 (3) | |
H18 | 0.929920 | 0.887786 | 1.140284 | 0.040* | |
C19 | 0.74974 (13) | 0.75402 (12) | 1.09360 (12) | 0.0315 (3) | |
H19 | 0.764585 | 0.771875 | 1.183930 | 0.038* | |
C20 | 0.63008 (12) | 0.65911 (11) | 0.98772 (11) | 0.0255 (2) | |
H20 | 0.563380 | 0.612290 | 1.006140 | 0.031* | |
C21 | 0.30036 (11) | 0.65849 (10) | 0.80381 (10) | 0.0211 (2) | |
C22 | 0.35417 (12) | 0.78503 (10) | 0.82192 (11) | 0.0246 (2) | |
H22 | 0.416416 | 0.801271 | 0.782487 | 0.029* | |
C23 | 0.31780 (13) | 0.88733 (11) | 0.89682 (12) | 0.0293 (2) | |
H23 | 0.354078 | 0.973106 | 0.907495 | 0.035* | |
C24 | 0.22888 (14) | 0.86499 (12) | 0.95610 (12) | 0.0337 (3) | |
H24 | 0.204717 | 0.935273 | 1.008130 | 0.040* | |
C25 | 0.17528 (15) | 0.74009 (13) | 0.93941 (13) | 0.0354 (3) | |
H25 | 0.114454 | 0.724663 | 0.980389 | 0.042* | |
C26 | 0.20969 (13) | 0.63725 (11) | 0.86329 (12) | 0.0280 (2) | |
H26 | 0.171302 | 0.551625 | 0.851468 | 0.034* | |
N1 | 0.7111 (2) | −0.01405 (16) | 0.68515 (17) | 0.0758 (5) | |
C27 | 0.6123 (2) | 0.02633 (15) | 0.68979 (15) | 0.0529 (4) | |
C28 | 0.4872 (2) | 0.07793 (19) | 0.6979 (2) | 0.0655 (5) | |
H28A | 0.406195 | 0.007112 | 0.673936 | 0.098* | 0.51 (2) |
H28B | 0.452431 | 0.124632 | 0.634864 | 0.098* | 0.51 (2) |
H28C | 0.518164 | 0.137051 | 0.790284 | 0.098* | 0.51 (2) |
H28D | 0.399355 | 0.041271 | 0.609405 | 0.098* | 0.49 (2) |
H28E | 0.511169 | 0.171985 | 0.724289 | 0.098* | 0.49 (2) |
H28F | 0.466266 | 0.055539 | 0.765390 | 0.098* | 0.49 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0314 (4) | 0.0319 (5) | 0.0287 (4) | −0.0063 (4) | 0.0000 (4) | 0.0126 (4) |
O2 | 0.0300 (4) | 0.0307 (4) | 0.0248 (4) | −0.0032 (3) | 0.0037 (3) | 0.0110 (3) |
C1 | 0.0221 (5) | 0.0215 (5) | 0.0199 (5) | 0.0024 (4) | 0.0080 (4) | 0.0084 (4) |
C2 | 0.0253 (5) | 0.0207 (5) | 0.0206 (5) | 0.0059 (4) | 0.0113 (4) | 0.0073 (4) |
C3 | 0.0210 (5) | 0.0220 (5) | 0.0203 (5) | 0.0063 (4) | 0.0105 (4) | 0.0096 (4) |
C4 | 0.0205 (5) | 0.0206 (5) | 0.0186 (5) | 0.0048 (4) | 0.0094 (4) | 0.0082 (4) |
C5 | 0.0213 (5) | 0.0210 (5) | 0.0211 (5) | 0.0056 (4) | 0.0111 (4) | 0.0092 (4) |
C6 | 0.0192 (5) | 0.0236 (5) | 0.0239 (5) | 0.0049 (4) | 0.0103 (4) | 0.0099 (4) |
C7 | 0.0229 (5) | 0.0248 (5) | 0.0207 (5) | 0.0025 (4) | 0.0071 (4) | 0.0067 (4) |
C8 | 0.0216 (5) | 0.0218 (5) | 0.0194 (5) | 0.0044 (4) | 0.0080 (4) | 0.0030 (4) |
C9 | 0.0213 (5) | 0.0193 (5) | 0.0245 (5) | 0.0056 (4) | 0.0114 (4) | 0.0085 (4) |
C10 | 0.0263 (5) | 0.0320 (6) | 0.0233 (5) | 0.0104 (4) | 0.0127 (4) | 0.0121 (5) |
C11 | 0.0318 (6) | 0.0373 (6) | 0.0308 (6) | 0.0144 (5) | 0.0204 (5) | 0.0142 (5) |
C12 | 0.0251 (5) | 0.0343 (6) | 0.0358 (6) | 0.0136 (5) | 0.0173 (5) | 0.0166 (5) |
C13 | 0.0239 (5) | 0.0321 (6) | 0.0272 (6) | 0.0099 (4) | 0.0099 (4) | 0.0132 (5) |
C14 | 0.0260 (5) | 0.0272 (5) | 0.0234 (5) | 0.0090 (4) | 0.0129 (4) | 0.0100 (4) |
C15 | 0.0192 (5) | 0.0203 (5) | 0.0212 (5) | 0.0072 (4) | 0.0075 (4) | 0.0067 (4) |
C16 | 0.0229 (5) | 0.0239 (5) | 0.0271 (5) | 0.0064 (4) | 0.0112 (4) | 0.0076 (4) |
C17 | 0.0228 (5) | 0.0243 (5) | 0.0396 (7) | 0.0050 (4) | 0.0121 (5) | 0.0076 (5) |
C18 | 0.0236 (5) | 0.0259 (6) | 0.0331 (6) | 0.0069 (5) | 0.0034 (5) | −0.0001 (5) |
C19 | 0.0307 (6) | 0.0340 (6) | 0.0207 (5) | 0.0142 (5) | 0.0064 (5) | 0.0035 (5) |
C20 | 0.0252 (5) | 0.0289 (6) | 0.0226 (5) | 0.0108 (4) | 0.0102 (4) | 0.0091 (4) |
C21 | 0.0190 (5) | 0.0239 (5) | 0.0195 (5) | 0.0072 (4) | 0.0075 (4) | 0.0075 (4) |
C22 | 0.0211 (5) | 0.0256 (5) | 0.0254 (5) | 0.0059 (4) | 0.0091 (4) | 0.0087 (4) |
C23 | 0.0282 (6) | 0.0242 (5) | 0.0281 (6) | 0.0088 (4) | 0.0072 (5) | 0.0067 (4) |
C24 | 0.0404 (7) | 0.0368 (6) | 0.0260 (6) | 0.0227 (5) | 0.0156 (5) | 0.0098 (5) |
C25 | 0.0440 (7) | 0.0448 (7) | 0.0365 (7) | 0.0239 (6) | 0.0290 (6) | 0.0212 (6) |
C26 | 0.0317 (6) | 0.0301 (6) | 0.0320 (6) | 0.0125 (5) | 0.0195 (5) | 0.0153 (5) |
N1 | 0.0926 (12) | 0.0596 (10) | 0.0610 (10) | 0.0290 (9) | 0.0321 (9) | 0.0031 (8) |
C27 | 0.0676 (11) | 0.0396 (8) | 0.0378 (8) | 0.0121 (8) | 0.0141 (8) | 0.0089 (6) |
C28 | 0.0614 (11) | 0.0703 (12) | 0.0682 (12) | 0.0228 (9) | 0.0213 (9) | 0.0390 (10) |
O1—H1 | 1.01 (2) | C15—C20 | 1.3928 (15) |
O1—C8 | 1.3022 (13) | C16—H16 | 0.9500 |
O2—C8 | 1.2196 (13) | C16—C17 | 1.3878 (16) |
C1—C2 | 1.3862 (14) | C17—H17 | 0.9500 |
C1—C6 | 1.3848 (15) | C17—C18 | 1.3831 (18) |
C1—C7 | 1.5063 (14) | C18—H18 | 0.9500 |
C2—H2 | 0.9500 | C18—C19 | 1.3869 (18) |
C2—C3 | 1.3955 (15) | C19—H19 | 0.9500 |
C3—C4 | 1.4074 (14) | C19—C20 | 1.3869 (16) |
C3—C9 | 1.4926 (14) | C20—H20 | 0.9500 |
C4—C5 | 1.4091 (13) | C21—C22 | 1.3938 (15) |
C4—C15 | 1.4906 (14) | C21—C26 | 1.3956 (15) |
C5—C6 | 1.3959 (14) | C22—H22 | 0.9500 |
C5—C21 | 1.4869 (14) | C22—C23 | 1.3850 (16) |
C6—H6 | 0.9500 | C23—H23 | 0.9500 |
C7—H7A | 0.9900 | C23—C24 | 1.3823 (17) |
C7—H7B | 0.9900 | C24—H24 | 0.9500 |
C7—C8 | 1.5111 (15) | C24—C25 | 1.3811 (19) |
C9—C10 | 1.3950 (15) | C25—H25 | 0.9500 |
C9—C14 | 1.3951 (15) | C25—C26 | 1.3846 (16) |
C10—H10 | 0.9500 | C26—H26 | 0.9500 |
C10—C11 | 1.3849 (15) | N1—C27 | 1.134 (2) |
C11—H11 | 0.9500 | C27—C28 | 1.445 (3) |
C11—C12 | 1.3823 (16) | C28—H28A | 0.9800 |
C12—H12 | 0.9500 | C28—H28B | 0.9800 |
C12—C13 | 1.3840 (16) | C28—H28C | 0.9800 |
C13—H13 | 0.9500 | C28—H28D | 0.9800 |
C13—C14 | 1.3873 (15) | C28—H28E | 0.9800 |
C14—H14 | 0.9500 | C28—H28F | 0.9800 |
C15—C16 | 1.3946 (15) | ||
C8—O1—H1 | 108.3 (11) | C20—C15—C16 | 118.67 (10) |
C2—C1—C7 | 120.40 (9) | C15—C16—H16 | 119.7 |
C6—C1—C2 | 118.42 (9) | C17—C16—C15 | 120.52 (11) |
C6—C1—C7 | 121.11 (9) | C17—C16—H16 | 119.7 |
C1—C2—H2 | 119.1 | C16—C17—H17 | 119.9 |
C1—C2—C3 | 121.86 (10) | C18—C17—C16 | 120.29 (11) |
C3—C2—H2 | 119.1 | C18—C17—H17 | 119.9 |
C2—C3—C4 | 119.49 (9) | C17—C18—H18 | 120.1 |
C2—C3—C9 | 116.97 (9) | C17—C18—C19 | 119.70 (11) |
C4—C3—C9 | 123.51 (9) | C19—C18—H18 | 120.1 |
C3—C4—C5 | 118.89 (9) | C18—C19—H19 | 120.0 |
C3—C4—C15 | 121.46 (9) | C20—C19—C18 | 120.10 (11) |
C5—C4—C15 | 119.64 (9) | C20—C19—H19 | 120.0 |
C4—C5—C21 | 122.60 (9) | C15—C20—H20 | 119.6 |
C6—C5—C4 | 119.77 (9) | C19—C20—C15 | 120.72 (11) |
C6—C5—C21 | 117.61 (9) | C19—C20—H20 | 119.6 |
C1—C6—C5 | 121.55 (9) | C22—C21—C5 | 122.06 (9) |
C1—C6—H6 | 119.2 | C22—C21—C26 | 118.55 (10) |
C5—C6—H6 | 119.2 | C26—C21—C5 | 119.32 (9) |
C1—C7—H7A | 109.2 | C21—C22—H22 | 119.7 |
C1—C7—H7B | 109.2 | C23—C22—C21 | 120.66 (10) |
C1—C7—C8 | 112.18 (8) | C23—C22—H22 | 119.7 |
H7A—C7—H7B | 107.9 | C22—C23—H23 | 119.9 |
C8—C7—H7A | 109.2 | C24—C23—C22 | 120.18 (11) |
C8—C7—H7B | 109.2 | C24—C23—H23 | 119.9 |
O1—C8—C7 | 113.30 (9) | C23—C24—H24 | 120.1 |
O2—C8—O1 | 123.66 (10) | C25—C24—C23 | 119.75 (11) |
O2—C8—C7 | 123.04 (10) | C25—C24—H24 | 120.1 |
C10—C9—C3 | 119.25 (9) | C24—C25—H25 | 119.8 |
C10—C9—C14 | 118.32 (9) | C24—C25—C26 | 120.38 (11) |
C14—C9—C3 | 122.30 (9) | C26—C25—H25 | 119.8 |
C9—C10—H10 | 119.6 | C21—C26—H26 | 119.8 |
C11—C10—C9 | 120.88 (10) | C25—C26—C21 | 120.47 (11) |
C11—C10—H10 | 119.6 | C25—C26—H26 | 119.8 |
C10—C11—H11 | 119.9 | N1—C27—C28 | 179.11 (18) |
C12—C11—C10 | 120.20 (10) | C27—C28—H28A | 109.5 |
C12—C11—H11 | 119.9 | C27—C28—H28B | 109.5 |
C11—C12—H12 | 120.2 | C27—C28—H28C | 109.5 |
C11—C12—C13 | 119.67 (10) | C27—C28—H28D | 109.5 |
C13—C12—H12 | 120.2 | C27—C28—H28E | 109.5 |
C12—C13—H13 | 119.9 | C27—C28—H28F | 109.5 |
C12—C13—C14 | 120.29 (10) | H28A—C28—H28B | 109.5 |
C14—C13—H13 | 119.9 | H28A—C28—H28C | 109.5 |
C9—C14—H14 | 119.7 | H28B—C28—H28C | 109.5 |
C13—C14—C9 | 120.63 (10) | H28D—C28—H28E | 109.5 |
C13—C14—H14 | 119.7 | H28D—C28—H28F | 109.5 |
C16—C15—C4 | 120.43 (9) | H28E—C28—H28F | 109.5 |
C20—C15—C4 | 120.89 (9) | ||
C1—C2—C3—C4 | −0.81 (14) | C6—C1—C7—C8 | −90.31 (11) |
C1—C2—C3—C9 | 177.24 (9) | C6—C5—C21—C22 | −121.95 (11) |
C1—C7—C8—O1 | 170.53 (9) | C6—C5—C21—C26 | 55.02 (13) |
C1—C7—C8—O2 | −9.46 (15) | C7—C1—C2—C3 | −176.72 (9) |
C2—C1—C6—C5 | 0.35 (14) | C7—C1—C6—C5 | 177.49 (9) |
C2—C1—C7—C8 | 86.78 (12) | C9—C3—C4—C5 | −177.54 (9) |
C2—C3—C4—C5 | 0.38 (14) | C9—C3—C4—C15 | 3.78 (14) |
C2—C3—C4—C15 | −178.30 (9) | C9—C10—C11—C12 | −0.21 (18) |
C2—C3—C9—C10 | 44.96 (13) | C10—C9—C14—C13 | −0.39 (16) |
C2—C3—C9—C14 | −130.96 (11) | C10—C11—C12—C13 | −0.72 (18) |
C3—C4—C5—C6 | 0.38 (14) | C11—C12—C13—C14 | 1.09 (18) |
C3—C4—C5—C21 | −177.95 (9) | C12—C13—C14—C9 | −0.53 (17) |
C3—C4—C15—C16 | 59.69 (13) | C14—C9—C10—C11 | 0.77 (16) |
C3—C4—C15—C20 | −121.55 (11) | C15—C4—C5—C6 | 179.09 (9) |
C3—C9—C10—C11 | −175.31 (10) | C15—C4—C5—C21 | 0.76 (14) |
C3—C9—C14—C13 | 175.56 (10) | C15—C16—C17—C18 | 0.91 (16) |
C4—C3—C9—C10 | −137.08 (10) | C16—C15—C20—C19 | 0.27 (15) |
C4—C3—C9—C14 | 47.01 (14) | C16—C17—C18—C19 | −0.63 (17) |
C4—C5—C6—C1 | −0.76 (15) | C17—C18—C19—C20 | 0.18 (17) |
C4—C5—C21—C22 | 56.41 (14) | C18—C19—C20—C15 | 0.00 (16) |
C4—C5—C21—C26 | −126.62 (11) | C20—C15—C16—C17 | −0.72 (15) |
C4—C15—C16—C17 | 178.07 (9) | C21—C5—C6—C1 | 177.65 (9) |
C4—C15—C20—C19 | −178.51 (10) | C21—C22—C23—C24 | 0.82 (16) |
C5—C4—C15—C16 | −118.98 (11) | C22—C21—C26—C25 | −0.50 (16) |
C5—C4—C15—C20 | 59.77 (13) | C22—C23—C24—C25 | −0.56 (17) |
C5—C21—C22—C23 | 176.70 (10) | C23—C24—C25—C26 | −0.23 (19) |
C5—C21—C26—C25 | −177.58 (10) | C24—C25—C26—C21 | 0.76 (18) |
C6—C1—C2—C3 | 0.45 (14) | C26—C21—C22—C23 | −0.29 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 1.01 (2) | 1.62 (2) | 2.624 (1) | 174 (2) |
Symmetry code: (i) −x, −y, −z+1. |
Cg(A) and Cg(D) refer to the centers of gravity of the rings C1–C6 and C21–C26, respectively |
D—H···A/Cg | D—H | H···A/Cg | D···A/Cg | D—H···A/Cg |
O1—H1···O2i | 1.01 (2) | 1.62 (2) | 2.624 (1) | 174 (2) |
C2—H2···N1ii | 0.95 | 2.71 | 3.567 (2) | 150 |
C19—H19···O2iii | 0.95 | 2.56 | 3.477 (1) | 163 |
C7—H7B···Cg(D)iv | 0.99 | 2.97 | 3.746 (1) | 136 |
C10—H10···Cg(A)v | 0.95 | 2.97 | 3.509 (1) | 119 |
Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 2; (iv) -x, -y + 1, -z + 1; (v) -x + 1, -y + 1, -z + 1. |
Acknowledgements
We would like to thank the Dr Erich-Krüger-Stiftung for financial support. Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.
References
Bacon, G. E. & Curry, N. A. (1960). Acta Cryst. 13, 717–721. CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Chaudhari, S. R. & Suryaprakash, N. (2012). J. Mol. Struct. 1016, 163–168. CSD CrossRef CAS Google Scholar
Cook, S. D. (2019). Plant Cell Physiol. 60, 243–254. CrossRef CAS PubMed Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Desiraju, G. R. (2005). Chem. Commun. pp. 2995–3001. Web of Science CrossRef Google Scholar
Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ebersbach, B., Seichter, W., Schwarzer, A. & Mazik, M. (2023). CrystEngComm, 25, 137–153. CSD CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hodgson, D. J. & Asplund, R. O. (1991). Acta Cryst. C47, 1986–1987. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hosie, G. & Bird, H. (1994). Eur. J. Rheumatol. Inflamm. 14, 21–28. CAS PubMed Google Scholar
Imai, Y., Kawaguchi, K., Asai, K., Sato, T., Kuroda, R. & Matsubara, Y. (2007). CrystEngComm, 9, 467–470. CSD CrossRef CAS Google Scholar
Jiao, M., He, W., Ouyang, Z., Shi, Q. & Wen, Y. (2022). Front. Microbiol. 13, 964019–964036. CrossRef PubMed Google Scholar
Koshima, H., Khan, S. I. & Garcia-Garibay, M. A. (1998). Tetrahedron Asymmetry, 9, 1851–1854. Web of Science CSD CrossRef CAS Google Scholar
Lade, D. M., Nicoletti, R., Mersch, J. & Agazie, Y. M. (2023). Eur. J. Med. Chem. 247, 115017–115030. CrossRef CAS PubMed Google Scholar
Mak, T. C. W., Xiaoming, C., Kailiang, S., Jiaxing, Y. & Chaode, Z. (1986). J. Crystallogr. Spectrosc. Res. 16, 639–646. CSD CrossRef CAS Web of Science Google Scholar
Mazik, M., Bläser, D. & Boese, R. (1999a). Tetrahedron, 55, 12771–12782. CSD CrossRef CAS Google Scholar
Mazik, M., Bläser, D. & Boese, R. (1999b). Tetrahedron, 55, 7835–7840. CSD CrossRef CAS Google Scholar
Mazik, M., Bläser, D. & Boese, R. (2000a). Tetrahedron Lett. 41, 5827–5831. CSD CrossRef CAS Google Scholar
Mazik, M., Bläser, D. & Boese, R. (2000b). Chem. Eur. J. 6, 286–2873. CrossRef Google Scholar
Mazik, M., Bläser, D. & Boese, R. (2001). Tetrahedron, 57, 5791–5797. Web of Science CSD CrossRef CAS Google Scholar
Mazik, M., Bläser, D. & Boese, R. (2005). J. Org. Chem. 70, 9115–9122. CSD CrossRef PubMed CAS Google Scholar
Mazik, M., Hartmann, A. & Jones, P. G. (2010). Eur. J. Org. Chem. pp. 458–463. CSD CrossRef Google Scholar
Mazik, M. & Seidel, P. (2024). Molbank, 2024, M1837. CrossRef Google Scholar
Nishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13873–13900. Web of Science CrossRef CAS PubMed Google Scholar
Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788. Web of Science CrossRef CAS Google Scholar
Perez, V. C., Zhao, H., Lin, M. & Kim, J. (2023). Plants, 12, 266. CrossRef PubMed Google Scholar
Reddy, D. S., Craig, D. C. & Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4090–4093. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA, X-AREA Recipe, X-RED32 and LANA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Thalladi, V. R., Gehrke, A. & Boese, R. (2000a). New J. Chem. 24, 463–470. CSD CrossRef CAS Google Scholar
Thalladi, V. R., Smolka, T., Gehrke, A., Boese, R. & Sustmann, R. (2000b). New J. Chem. 24, 143–147. CSD CrossRef CAS Google Scholar
Treves, G. R. & Testa, F. C. (1952). J. Am. Chem. Soc. 74, 46–48. CrossRef CAS Google Scholar
Van Eerdenbrugh, B., Fanwick, P. E. & Taylor, L. S. (2010). Acta Cryst. E66, o2609. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vardanyan, R. S. & Hruby, V. J. (2006). In Synthesis of Essential Drugs, pp. 19-55. Amsterdam: Elsevier. Google Scholar
Wilson, F., Reid, A., Reader, V., Harrison, R. J., Sunose, M., Hernadez, P. R., Major, J., Boussard, C., Smelt, K., Taylor, J., et al. (2015). Terphenyl Derivatives for Treatment of Alzheimer's Disease. KR Patent 101494906B1. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.