research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of an aceto­nitrile solvate of 2-(3,4,5-triphen­ylphen­yl)acetic acid

crossmark logo

aInstitut für Organische Chemie, Technische Universität Bergakademie, Freiberg, Leipziger Str. 29, 09599 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

Edited by J. Reibenspies, Texas A & M University, USA (Received 6 September 2024; accepted 11 October 2024; online 24 October 2024)

Crystal growth of 2-(3,4,5-triphen­ylphen­yl)acetic acid (1) from aceto­nitrile yields a monosolvate, C26H20O2·CH3CN, of the space group P1. In the crystal, the title mol­ecule adopts a conformation in which the three phenyl rings are arranged in a paddlewheel-like fashion around the central arene ring and the carboxyl residue is oriented nearly perpendicular to the plane of this benzene ring. Inversion-symmetric dimers of O—H⋯O-bonded mol­ecules of 1 represent the basic supra­molecular entities of the crystal structure. These dimeric mol­ecular units are further linked by C—H⋯O=C bonds to form one-dimensional supra­molecular aggregates running along the crystallographic [111] direction. Weak Car­yl—H⋯N inter­actions occur between the mol­ecules of 1 and aceto­nitrile.

1. Chemical context

Phenyl­acetic acid (PAA) and its derivatives have a wide range of biological activities (Cook, 2019[Cook, S. D. (2019). Plant Cell Physiol. 60, 243-254.]; Jiao et al., 2022[Jiao, M., He, W., Ouyang, Z., Shi, Q. & Wen, Y. (2022). Front. Microbiol. 13, 964019-964036.]; Perez et al., 2023[Perez, V. C., Zhao, H., Lin, M. & Kim, J. (2023). Plants, 12, 266.]). It is important to note that this class of compounds has played an important role in the development of numerous drugs, for example as a building block of drug mol­ecules or as a starting material for their syntheses (Treves & Testa, 1952[Treves, G. R. & Testa, F. C. (1952). J. Am. Chem. Soc. 74, 46-48.]; Vardanyan & Hruby, 2006[Vardanyan, R. S. & Hruby, V. J. (2006). In Synthesis of Essential Drugs, pp. 19-55. Amsterdam: Elsevier.]). Examples include drugs such as diclofenac, ibuprofen, flurbiprofen, cyclo­pentolate and atenolol. They have a wide range of uses, including non-steroidal anti-inflammatory drugs, analgesics, anti­cancer agents, mydriatics and cyclo­plegics, among others. Compounds bearing one or two phenyl substituents on the benzene ring of PAA have been reported to have anti-tumor activity (Lade et al., 2023[Lade, D. M., Nicoletti, R., Mersch, J. & Agazie, Y. M. (2023). Eur. J. Med. Chem. 247, 115017-115030.]) and some have been proposed as candidates for the treatment of Alzheimer's disease (Wilson et al., 2015[Wilson, F., Reid, A., Reader, V., Harrison, R. J., Sunose, M., Hernadez, P. R., Major, J., Boussard, C., Smelt, K., Taylor, J., et al. (2015). Terphenyl Derivatives for Treatment of Alzheimer's Disease. KR Patent 101494906B1.]). The synthesis of new derivatives of phenyl­acetic acid is of great importance due to their inter­esting properties and the possibility of their wide application.

[Scheme 1]

The title compound, which bears three phenyl substituents in positions 3, 4 and 5 of the benzene ring of PAA, has been prepared by us as a compound with potentially valuable biological activities and with the ability to act as a starting material for various functionalizations (Mazik & Seidel, 2024[Mazik, M. & Seidel, P. (2024). Molbank, 2024, M1837.]). Crystallization of this compound from aceto­nitrile yielded a solvate, the crystal structure of which is described in this article.

2. Structural commentary

The title compound 2-(3,4,5-triphen­ylphen­yl)acetic acid (1) forms a solvate with aceto­nitrile, which crystallizes in the space group P[\overline{1}] and contains one formula unit of each mol­ecular species within its asymmetric unit (see Fig. 1[link]). A slight disorder of the solvent is observed, as its methyl hydrogen atoms occupy two positions in a roughly 50:50 distribution. The three phenyl substituents attached to the central benzene ring of 1 (A, C1–C6) uniformly adopt a tilted orientation with respect to the plane of this ring, resulting in a mol­ecular geometry that resembles a paddlewheel. The inclination angles of the aromatic planes in relation to the central ring (A) amount to 46.39 (6)° (ring B, C9–C14), 59.72 (6)° (ring C, C15–C20) and 56.17 (6)° (ring D, C21–C26), respectively. The plane through the carboxyl group of the mol­ecular side arm is oriented nearly perpendicular [84.9 (1)°] with respect to the central arene ring.

[Figure 1]
Figure 1
Perspective view of the mol­ecular structure of 1·CH3CN including the atom labeling and ring specification. Atomic displacement ellipsoids are drawn at the 50% probability level. Broken gray lines indicate the second position of the disordered methyl hydrogen atoms of the solvent.

3. Supra­molecular features

The most dominant non-covalent inter­actions within the crystal structure (see Fig. 2[link] and Table 1[link]) are classical hydrogen bonds between the carboxyl moieties of the inversion-related mol­ecules [d(H1⋯O2) = 1.62 (2) Å, O—H⋯O = 174 (2)°], forming a cyclic synthon of the graph set R22(8) (Etter et al. 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; for a discussion on supra­molecular synthons in crystal engineering, including those formed by carboxyl groups, see: Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]). As shown in Fig. 3[link], these dimers are connected along the [111] direction by pairs of C—H⋯O bonds involving the aryl hydrogen atom H19 and the carbonyl oxygen atom O2 [d = 2.56 Å, C—H⋯O = 163°; for other examples of C—H⋯O bonds, see: Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.]; Desiraju, 2005[Desiraju, G. R. (2005). Chem. Commun. pp. 2995-3001.]; Mazik et al., 1999a[Mazik, M., Bläser, D. & Boese, R. (1999a). Tetrahedron, 55, 12771-12782.], 2005[Mazik, M., Bläser, D. & Boese, R. (2005). J. Org. Chem. 70, 9115-9122.], 2010[Mazik, M., Hartmann, A. & Jones, P. G. (2010). Eur. J. Org. Chem. pp. 458-463.]; Ebersbach et al., 2023[Ebersbach, B., Seichter, W., Schwarzer, A. & Mazik, M. (2023). CrystEngComm, 25, 137-153.]]. Consequently, O2 acts as a bifurcated binding site for hydrogen bonding. The solvent mol­ecule appears to be fixed in its position by a weak C—H⋯N bond involving the atom H2 of the central arene ring [d = 2.71 Å, C—H⋯N = 150°; for other examples of C—H⋯N bonds, see: Reddy et al., 1996[Reddy, D. S., Craig, D. C. & Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4090-4093.]; Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.]; Thalladi et al., 2000a[Thalladi, V. R., Gehrke, A. & Boese, R. (2000a). New J. Chem. 24, 463-470.],b[Thalladi, V. R., Smolka, T., Gehrke, A., Boese, R. & Sustmann, R. (2000b). New J. Chem. 24, 143-147.]; Mazik et al., 1999b[Mazik, M., Bläser, D. & Boese, R. (1999b). Tetrahedron, 55, 7835-7840.], 2000a[Mazik, M., Bläser, D. & Boese, R. (2000a). Tetrahedron Lett. 41, 5827-5831.],b[Mazik, M., Bläser, D. & Boese, R. (2000b). Chem. Eur. J. 6, 286-2873.], 2001[Mazik, M., Bläser, D. & Boese, R. (2001). Tetrahedron, 57, 5791-5797.], 2005[Mazik, M., Bläser, D. & Boese, R. (2005). J. Org. Chem. 70, 9115-9122.]]. Since the peripheries of the one-dimensional supra­molecular aggregates are formed by the non-polar units of the host mol­ecules, van der Waals forces contribute significantly to the cohesion of the crystal structure. Moreover, multiple short distances between C—H units and aromatic moieties suggest the presence of C—H⋯π inter­actions (Nishio et al., 2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.], 2011[Nishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13873-13900.]).

Table 1
Geometric data (Å, °) of short inter­molecular inter­actions

Cg(A) and Cg(D) refer to the centers of gravity of the rings C1–C6 and C21–C26, respectively

D—H⋯A/Cg D—H H⋯A/Cg DA/Cg D—H⋯A/Cg
O1—H1⋯O2i 1.01 (2) 1.62 (2) 2.624 (1) 174 (2)
C2—H2⋯N1ii 0.95 2.71 3.567 (2) 150
C19—H19⋯O2iii 0.95 2.56 3.477 (1) 163
C7—H7BCg(D)iv 0.99 2.97 3.746 (1) 136
C10—H10⋯Cg(A)v 0.95 2.97 3.509 (1) 119
Symmetry codes: (i) −x, −y, −z + 1; (ii) −x + 1, −y, −z + 1; (iii) −x + 1, −y + 1, −z + 2; (iv) −x, −y + 1, −z + 1; (v) −x + 1, −y + 1, −z + 1.
[Figure 2]
Figure 2
Excerpt of the chain-like supra­molecular aggregates with labeling of atoms involved in O—H⋯O and C—H⋯O/N hydrogen bonding. Color code: red – O; blue – N. Only the major disorder component of the solvent mol­ecules is depicted.
[Figure 3]
Figure 3
Packing diagram of the structure viewed along the [111] direction (parallel to the propagation of the supra­molecular chains). Hydrogen atoms excluded from hydrogen bonding are omitted for clarity. Dashed lines symbolize the cyclic hydrogen-bond motif between carboxyl functionalities. Color code: red – O; blue – N.

4. Database survey

Based on the search in the Cambridge Structural Database (CSD, Version 5.45, update June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for phenyl­acetic acid and its derivatives with one to five phenyl substituents on the benzene ring, the crystal structures of phenyl­acetic acid (ZZZMLY01; Hodgson & Asplund, 1991[Hodgson, D. J. & Asplund, R. O. (1991). Acta Cryst. C47, 1986-1987.]) and 4-bi­phenyl­acetic acid (KUZWEI; Van Eerdenbrugh et al., 2010[Van Eerdenbrugh, B., Fanwick, P. E. & Taylor, L. S. (2010). Acta Cryst. E66, o2609.]) were found. The latter compound is a potent non-steroidal anti-inflammatory drug (felbinac; Hosie & Bird, 1994[Hosie, G. & Bird, H. (1994). Eur. J. Rheumatol. Inflamm. 14, 21-28.]). Furthermore, the crystal structures of the complexes of phenyl­acetic acid with its potassium salt (KHDPAC; Bacon & Curry, 1960[Bacon, G. E. & Curry, N. A. (1960). Acta Cryst. 13, 717-721.]), benzamide (MECHAF; Chaudhari & Suryaprakash, 2012[Chaudhari, S. R. & Suryaprakash, N. (2012). J. Mol. Struct. 1016, 163-168.]) and hexa­methyl­ene­tetra­mine (urotropine) (VIJTIR; Mak et al., 1986[Mak, T. C. W., Xiaoming, C., Kailiang, S., Jiaxing, Y. & Chaode, Z. (1986). J. Crystallogr. Spectrosc. Res. 16, 639-646.]) are reported. Single crystal structures of complexes of felbinac with tryptamine and 1,2-di­phenyl­ethyl­enedi­amine are also described (JOZMEQ, Koshima et al., 1998[Koshima, H., Khan, S. I. & Garcia-Garibay, M. A. (1998). Tetrahedron Asymmetry, 9, 1851-1854.]; EDOLAL, Imai et al., 2007[Imai, Y., Kawaguchi, K., Asai, K., Sato, T., Kuroda, R. & Matsubara, Y. (2007). CrystEngComm, 9, 467-470.]). Similar to 1, in the solvent-free crystal structures with the reference codes ZZZMLY01 and KUZWEI, the carb­oxy groups of the adjacent mol­ecules form the dimer synthon (Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]). Furthermore, the aromatic cores are linked via edge-to-face C—H⋯π inter­actions.

5. Synthesis and crystallization

Compound 1 was prepared as previously described (Mazik & Seidel, 2024[Mazik, M. & Seidel, P. (2024). Molbank, 2024, M1837.]). Crystallization was carried out from aceto­nitrile by slow evaporation of the solvent. Crystal habit: colorless, rhombic plates.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. The hydrogen atom of the carboxyl group (H1) was located in a difference-Fourier map and refined freely. The remaining hydrogen atoms were positioned geometrically and refined isotropically using a riding model, with C—H bond distances of 0.95 Å (arene), 0.98 Å (meth­yl) and 0.99 Å (methyl­ene). Additionally, their thermal displacement ellipsoids [Uiso(H)] were set to 1.2 Ueq(C) and 1.5 Ueq(C) for arene/methyl­ene and methyl groups, respectively.

Table 2
Experimental details

Crystal data
Chemical formula C26H20O2·C2H3N
Mr 405.47
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 10.0737 (5), 11.1039 (6), 11.5835 (6)
α, β, γ (°) 107.025 (4), 114.263 (4), 93.898 (4)
V3) 1102.82 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.32 × 0.23 × 0.12
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 29260, 5839, 4519
Rint 0.029
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.07
No. of reflections 5839
No. of parameters 286
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.23
Computer programs: X-AREA, X-AREA Recipe, X-RED32 and LANA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-AREA Recipe, X-RED32 and LANA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

2-(3,4,5-Triphenylphenyl)acetic acid acetonitrile monosolvate top
Crystal data top
C26H20O2·C2H3NZ = 2
Mr = 405.47F(000) = 428
Triclinic, P1Dx = 1.221 Mg m3
a = 10.0737 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1039 (6) ÅCell parameters from 20520 reflections
c = 11.5835 (6) Åθ = 2.0–31.2°
α = 107.025 (4)°µ = 0.08 mm1
β = 114.263 (4)°T = 123 K
γ = 93.898 (4)°Irregular, colorless
V = 1102.82 (11) Å30.32 × 0.23 × 0.12 mm
Data collection top
Stoe Stadivari
diffractometer
4519 reflections with I > 2σ(I)
Radiation source: Primux 50 MoRint = 0.029
Graded multilayer mirror monochromatorθmax = 29.0°, θmin = 2.0°
Detector resolution: 5.81 pixels mm-1h = 1313
rotation method, ω scansk = 1415
29260 measured reflectionsl = 1514
5839 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.1858P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
5839 reflectionsΔρmax = 0.29 e Å3
286 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.07298 (9)0.05965 (8)0.36283 (9)0.0358 (2)
H10.091 (2)0.0091 (19)0.399 (2)0.078 (6)*
O20.13280 (9)0.12762 (8)0.55908 (8)0.03183 (19)
C10.22564 (11)0.34842 (10)0.52186 (10)0.0216 (2)
C20.36906 (12)0.33544 (10)0.54368 (10)0.0218 (2)
H20.3822860.2638150.4834870.026*
C30.49456 (11)0.42462 (10)0.65156 (10)0.0201 (2)
C40.47611 (11)0.53195 (10)0.74027 (10)0.0193 (2)
C50.33056 (11)0.54609 (10)0.71808 (10)0.0201 (2)
C60.20807 (11)0.45380 (10)0.60987 (10)0.0216 (2)
H60.1103510.4635200.5962750.026*
C70.09294 (12)0.24659 (10)0.40881 (11)0.0242 (2)
H7A0.1149360.2102700.3313660.029*
H7B0.0061850.2868150.3782110.029*
C80.05351 (11)0.13879 (10)0.45171 (10)0.0224 (2)
C90.64313 (11)0.39716 (10)0.66840 (11)0.0211 (2)
C100.66910 (12)0.35689 (11)0.55507 (11)0.0259 (2)
H100.5949340.3536170.4698930.031*
C110.80157 (13)0.32161 (12)0.56508 (12)0.0301 (2)
H110.8174830.2941140.4869280.036*
C120.91069 (13)0.32630 (12)0.68844 (12)0.0290 (2)
H121.0010670.3011510.6950580.035*
C130.88762 (12)0.36781 (11)0.80227 (12)0.0274 (2)
H130.9631200.3725510.8874700.033*
C140.75473 (12)0.40252 (11)0.79249 (11)0.0244 (2)
H140.7395760.4302000.8710450.029*
C150.60663 (11)0.63167 (10)0.85467 (10)0.0208 (2)
C160.70629 (12)0.70122 (10)0.83003 (11)0.0249 (2)
H160.6925650.6830400.7399730.030*
C170.82536 (12)0.79678 (11)0.93604 (13)0.0305 (2)
H170.8917800.8444480.9180320.037*
C180.84776 (13)0.82292 (11)1.06779 (13)0.0334 (3)
H180.9299200.8877861.1402840.040*
C190.74974 (13)0.75402 (12)1.09360 (12)0.0315 (3)
H190.7645850.7718751.1839300.038*
C200.63008 (12)0.65911 (11)0.98772 (11)0.0255 (2)
H200.5633800.6122901.0061400.031*
C210.30036 (11)0.65849 (10)0.80381 (10)0.0211 (2)
C220.35417 (12)0.78503 (10)0.82192 (11)0.0246 (2)
H220.4164160.8012710.7824870.029*
C230.31780 (13)0.88733 (11)0.89682 (12)0.0293 (2)
H230.3540780.9731060.9074950.035*
C240.22888 (14)0.86499 (12)0.95610 (12)0.0337 (3)
H240.2047170.9352731.0081300.040*
C250.17528 (15)0.74009 (13)0.93941 (13)0.0354 (3)
H250.1144540.7246630.9803890.042*
C260.20969 (13)0.63725 (11)0.86329 (12)0.0280 (2)
H260.1713020.5516250.8514680.034*
N10.7111 (2)0.01405 (16)0.68515 (17)0.0758 (5)
C270.6123 (2)0.02633 (15)0.68979 (15)0.0529 (4)
C280.4872 (2)0.07793 (19)0.6979 (2)0.0655 (5)
H28A0.4061950.0071120.6739360.098*0.51 (2)
H28B0.4524310.1246320.6348640.098*0.51 (2)
H28C0.5181640.1370510.7902840.098*0.51 (2)
H28D0.3993550.0412710.6094050.098*0.49 (2)
H28E0.5111690.1719850.7242890.098*0.49 (2)
H28F0.4662660.0555390.7653900.098*0.49 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0314 (4)0.0319 (5)0.0287 (4)0.0063 (4)0.0000 (4)0.0126 (4)
O20.0300 (4)0.0307 (4)0.0248 (4)0.0032 (3)0.0037 (3)0.0110 (3)
C10.0221 (5)0.0215 (5)0.0199 (5)0.0024 (4)0.0080 (4)0.0084 (4)
C20.0253 (5)0.0207 (5)0.0206 (5)0.0059 (4)0.0113 (4)0.0073 (4)
C30.0210 (5)0.0220 (5)0.0203 (5)0.0063 (4)0.0105 (4)0.0096 (4)
C40.0205 (5)0.0206 (5)0.0186 (5)0.0048 (4)0.0094 (4)0.0082 (4)
C50.0213 (5)0.0210 (5)0.0211 (5)0.0056 (4)0.0111 (4)0.0092 (4)
C60.0192 (5)0.0236 (5)0.0239 (5)0.0049 (4)0.0103 (4)0.0099 (4)
C70.0229 (5)0.0248 (5)0.0207 (5)0.0025 (4)0.0071 (4)0.0067 (4)
C80.0216 (5)0.0218 (5)0.0194 (5)0.0044 (4)0.0080 (4)0.0030 (4)
C90.0213 (5)0.0193 (5)0.0245 (5)0.0056 (4)0.0114 (4)0.0085 (4)
C100.0263 (5)0.0320 (6)0.0233 (5)0.0104 (4)0.0127 (4)0.0121 (5)
C110.0318 (6)0.0373 (6)0.0308 (6)0.0144 (5)0.0204 (5)0.0142 (5)
C120.0251 (5)0.0343 (6)0.0358 (6)0.0136 (5)0.0173 (5)0.0166 (5)
C130.0239 (5)0.0321 (6)0.0272 (6)0.0099 (4)0.0099 (4)0.0132 (5)
C140.0260 (5)0.0272 (5)0.0234 (5)0.0090 (4)0.0129 (4)0.0100 (4)
C150.0192 (5)0.0203 (5)0.0212 (5)0.0072 (4)0.0075 (4)0.0067 (4)
C160.0229 (5)0.0239 (5)0.0271 (5)0.0064 (4)0.0112 (4)0.0076 (4)
C170.0228 (5)0.0243 (5)0.0396 (7)0.0050 (4)0.0121 (5)0.0076 (5)
C180.0236 (5)0.0259 (6)0.0331 (6)0.0069 (5)0.0034 (5)0.0001 (5)
C190.0307 (6)0.0340 (6)0.0207 (5)0.0142 (5)0.0064 (5)0.0035 (5)
C200.0252 (5)0.0289 (6)0.0226 (5)0.0108 (4)0.0102 (4)0.0091 (4)
C210.0190 (5)0.0239 (5)0.0195 (5)0.0072 (4)0.0075 (4)0.0075 (4)
C220.0211 (5)0.0256 (5)0.0254 (5)0.0059 (4)0.0091 (4)0.0087 (4)
C230.0282 (6)0.0242 (5)0.0281 (6)0.0088 (4)0.0072 (5)0.0067 (4)
C240.0404 (7)0.0368 (6)0.0260 (6)0.0227 (5)0.0156 (5)0.0098 (5)
C250.0440 (7)0.0448 (7)0.0365 (7)0.0239 (6)0.0290 (6)0.0212 (6)
C260.0317 (6)0.0301 (6)0.0320 (6)0.0125 (5)0.0195 (5)0.0153 (5)
N10.0926 (12)0.0596 (10)0.0610 (10)0.0290 (9)0.0321 (9)0.0031 (8)
C270.0676 (11)0.0396 (8)0.0378 (8)0.0121 (8)0.0141 (8)0.0089 (6)
C280.0614 (11)0.0703 (12)0.0682 (12)0.0228 (9)0.0213 (9)0.0390 (10)
Geometric parameters (Å, º) top
O1—H11.01 (2)C15—C201.3928 (15)
O1—C81.3022 (13)C16—H160.9500
O2—C81.2196 (13)C16—C171.3878 (16)
C1—C21.3862 (14)C17—H170.9500
C1—C61.3848 (15)C17—C181.3831 (18)
C1—C71.5063 (14)C18—H180.9500
C2—H20.9500C18—C191.3869 (18)
C2—C31.3955 (15)C19—H190.9500
C3—C41.4074 (14)C19—C201.3869 (16)
C3—C91.4926 (14)C20—H200.9500
C4—C51.4091 (13)C21—C221.3938 (15)
C4—C151.4906 (14)C21—C261.3956 (15)
C5—C61.3959 (14)C22—H220.9500
C5—C211.4869 (14)C22—C231.3850 (16)
C6—H60.9500C23—H230.9500
C7—H7A0.9900C23—C241.3823 (17)
C7—H7B0.9900C24—H240.9500
C7—C81.5111 (15)C24—C251.3811 (19)
C9—C101.3950 (15)C25—H250.9500
C9—C141.3951 (15)C25—C261.3846 (16)
C10—H100.9500C26—H260.9500
C10—C111.3849 (15)N1—C271.134 (2)
C11—H110.9500C27—C281.445 (3)
C11—C121.3823 (16)C28—H28A0.9800
C12—H120.9500C28—H28B0.9800
C12—C131.3840 (16)C28—H28C0.9800
C13—H130.9500C28—H28D0.9800
C13—C141.3873 (15)C28—H28E0.9800
C14—H140.9500C28—H28F0.9800
C15—C161.3946 (15)
C8—O1—H1108.3 (11)C20—C15—C16118.67 (10)
C2—C1—C7120.40 (9)C15—C16—H16119.7
C6—C1—C2118.42 (9)C17—C16—C15120.52 (11)
C6—C1—C7121.11 (9)C17—C16—H16119.7
C1—C2—H2119.1C16—C17—H17119.9
C1—C2—C3121.86 (10)C18—C17—C16120.29 (11)
C3—C2—H2119.1C18—C17—H17119.9
C2—C3—C4119.49 (9)C17—C18—H18120.1
C2—C3—C9116.97 (9)C17—C18—C19119.70 (11)
C4—C3—C9123.51 (9)C19—C18—H18120.1
C3—C4—C5118.89 (9)C18—C19—H19120.0
C3—C4—C15121.46 (9)C20—C19—C18120.10 (11)
C5—C4—C15119.64 (9)C20—C19—H19120.0
C4—C5—C21122.60 (9)C15—C20—H20119.6
C6—C5—C4119.77 (9)C19—C20—C15120.72 (11)
C6—C5—C21117.61 (9)C19—C20—H20119.6
C1—C6—C5121.55 (9)C22—C21—C5122.06 (9)
C1—C6—H6119.2C22—C21—C26118.55 (10)
C5—C6—H6119.2C26—C21—C5119.32 (9)
C1—C7—H7A109.2C21—C22—H22119.7
C1—C7—H7B109.2C23—C22—C21120.66 (10)
C1—C7—C8112.18 (8)C23—C22—H22119.7
H7A—C7—H7B107.9C22—C23—H23119.9
C8—C7—H7A109.2C24—C23—C22120.18 (11)
C8—C7—H7B109.2C24—C23—H23119.9
O1—C8—C7113.30 (9)C23—C24—H24120.1
O2—C8—O1123.66 (10)C25—C24—C23119.75 (11)
O2—C8—C7123.04 (10)C25—C24—H24120.1
C10—C9—C3119.25 (9)C24—C25—H25119.8
C10—C9—C14118.32 (9)C24—C25—C26120.38 (11)
C14—C9—C3122.30 (9)C26—C25—H25119.8
C9—C10—H10119.6C21—C26—H26119.8
C11—C10—C9120.88 (10)C25—C26—C21120.47 (11)
C11—C10—H10119.6C25—C26—H26119.8
C10—C11—H11119.9N1—C27—C28179.11 (18)
C12—C11—C10120.20 (10)C27—C28—H28A109.5
C12—C11—H11119.9C27—C28—H28B109.5
C11—C12—H12120.2C27—C28—H28C109.5
C11—C12—C13119.67 (10)C27—C28—H28D109.5
C13—C12—H12120.2C27—C28—H28E109.5
C12—C13—H13119.9C27—C28—H28F109.5
C12—C13—C14120.29 (10)H28A—C28—H28B109.5
C14—C13—H13119.9H28A—C28—H28C109.5
C9—C14—H14119.7H28B—C28—H28C109.5
C13—C14—C9120.63 (10)H28D—C28—H28E109.5
C13—C14—H14119.7H28D—C28—H28F109.5
C16—C15—C4120.43 (9)H28E—C28—H28F109.5
C20—C15—C4120.89 (9)
C1—C2—C3—C40.81 (14)C6—C1—C7—C890.31 (11)
C1—C2—C3—C9177.24 (9)C6—C5—C21—C22121.95 (11)
C1—C7—C8—O1170.53 (9)C6—C5—C21—C2655.02 (13)
C1—C7—C8—O29.46 (15)C7—C1—C2—C3176.72 (9)
C2—C1—C6—C50.35 (14)C7—C1—C6—C5177.49 (9)
C2—C1—C7—C886.78 (12)C9—C3—C4—C5177.54 (9)
C2—C3—C4—C50.38 (14)C9—C3—C4—C153.78 (14)
C2—C3—C4—C15178.30 (9)C9—C10—C11—C120.21 (18)
C2—C3—C9—C1044.96 (13)C10—C9—C14—C130.39 (16)
C2—C3—C9—C14130.96 (11)C10—C11—C12—C130.72 (18)
C3—C4—C5—C60.38 (14)C11—C12—C13—C141.09 (18)
C3—C4—C5—C21177.95 (9)C12—C13—C14—C90.53 (17)
C3—C4—C15—C1659.69 (13)C14—C9—C10—C110.77 (16)
C3—C4—C15—C20121.55 (11)C15—C4—C5—C6179.09 (9)
C3—C9—C10—C11175.31 (10)C15—C4—C5—C210.76 (14)
C3—C9—C14—C13175.56 (10)C15—C16—C17—C180.91 (16)
C4—C3—C9—C10137.08 (10)C16—C15—C20—C190.27 (15)
C4—C3—C9—C1447.01 (14)C16—C17—C18—C190.63 (17)
C4—C5—C6—C10.76 (15)C17—C18—C19—C200.18 (17)
C4—C5—C21—C2256.41 (14)C18—C19—C20—C150.00 (16)
C4—C5—C21—C26126.62 (11)C20—C15—C16—C170.72 (15)
C4—C15—C16—C17178.07 (9)C21—C5—C6—C1177.65 (9)
C4—C15—C20—C19178.51 (10)C21—C22—C23—C240.82 (16)
C5—C4—C15—C16118.98 (11)C22—C21—C26—C250.50 (16)
C5—C4—C15—C2059.77 (13)C22—C23—C24—C250.56 (17)
C5—C21—C22—C23176.70 (10)C23—C24—C25—C260.23 (19)
C5—C21—C26—C25177.58 (10)C24—C25—C26—C210.76 (18)
C6—C1—C2—C30.45 (14)C26—C21—C22—C230.29 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i1.01 (2)1.62 (2)2.624 (1)174 (2)
Symmetry code: (i) x, y, z+1.
Geometric data (Å, °) of short intermolecular interactions top
Cg(A) and Cg(D) refer to the centers of gravity of the rings C1–C6 and C21–C26, respectively
D—H···A/CgD—HH···A/CgD···A/CgD—H···A/Cg
O1—H1···O2i1.01 (2)1.62 (2)2.624 (1)174 (2)
C2—H2···N1ii0.952.713.567 (2)150
C19—H19···O2iii0.952.563.477 (1)163
C7—H7B···Cg(D)iv0.992.973.746 (1)136
C10—H10···Cg(A)v0.952.973.509 (1)119
Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 2; (iv) -x, -y + 1, -z + 1; (v) -x + 1, -y + 1, -z + 1.
 

Acknowledgements

We would like to thank the Dr Erich-Krüger-Stiftung for financial support. Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.

References

First citationBacon, G. E. & Curry, N. A. (1960). Acta Cryst. 13, 717–721.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChaudhari, S. R. & Suryaprakash, N. (2012). J. Mol. Struct. 1016, 163–168.  CSD CrossRef CAS Google Scholar
First citationCook, S. D. (2019). Plant Cell Physiol. 60, 243–254.  CrossRef CAS PubMed Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (2005). Chem. Commun. pp. 2995–3001.  Web of Science CrossRef Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEbersbach, B., Seichter, W., Schwarzer, A. & Mazik, M. (2023). CrystEngComm, 25, 137–153.  CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHodgson, D. J. & Asplund, R. O. (1991). Acta Cryst. C47, 1986–1987.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHosie, G. & Bird, H. (1994). Eur. J. Rheumatol. Inflamm. 14, 21–28.  CAS PubMed Google Scholar
First citationImai, Y., Kawaguchi, K., Asai, K., Sato, T., Kuroda, R. & Matsubara, Y. (2007). CrystEngComm, 9, 467–470.  CSD CrossRef CAS Google Scholar
First citationJiao, M., He, W., Ouyang, Z., Shi, Q. & Wen, Y. (2022). Front. Microbiol. 13, 964019–964036.  CrossRef PubMed Google Scholar
First citationKoshima, H., Khan, S. I. & Garcia-Garibay, M. A. (1998). Tetrahedron Asymmetry, 9, 1851–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationLade, D. M., Nicoletti, R., Mersch, J. & Agazie, Y. M. (2023). Eur. J. Med. Chem. 247, 115017–115030.  CrossRef CAS PubMed Google Scholar
First citationMak, T. C. W., Xiaoming, C., Kailiang, S., Jiaxing, Y. & Chaode, Z. (1986). J. Crystallogr. Spectrosc. Res. 16, 639–646.  CSD CrossRef CAS Web of Science Google Scholar
First citationMazik, M., Bläser, D. & Boese, R. (1999a). Tetrahedron, 55, 12771–12782.  CSD CrossRef CAS Google Scholar
First citationMazik, M., Bläser, D. & Boese, R. (1999b). Tetrahedron, 55, 7835–7840.  CSD CrossRef CAS Google Scholar
First citationMazik, M., Bläser, D. & Boese, R. (2000a). Tetrahedron Lett. 41, 5827–5831.  CSD CrossRef CAS Google Scholar
First citationMazik, M., Bläser, D. & Boese, R. (2000b). Chem. Eur. J. 6, 286–2873.  CrossRef Google Scholar
First citationMazik, M., Bläser, D. & Boese, R. (2001). Tetrahedron, 57, 5791–5797.  Web of Science CSD CrossRef CAS Google Scholar
First citationMazik, M., Bläser, D. & Boese, R. (2005). J. Org. Chem. 70, 9115–9122.  CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M., Hartmann, A. & Jones, P. G. (2010). Eur. J. Org. Chem. pp. 458–463.  CSD CrossRef Google Scholar
First citationMazik, M. & Seidel, P. (2024). Molbank, 2024, M1837.  CrossRef Google Scholar
First citationNishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13873–13900.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.  Web of Science CrossRef CAS Google Scholar
First citationPerez, V. C., Zhao, H., Lin, M. & Kim, J. (2023). Plants, 12, 266.  CrossRef PubMed Google Scholar
First citationReddy, D. S., Craig, D. C. & Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4090–4093.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-AREA Recipe, X-RED32 and LANA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThalladi, V. R., Gehrke, A. & Boese, R. (2000a). New J. Chem. 24, 463–470.  CSD CrossRef CAS Google Scholar
First citationThalladi, V. R., Smolka, T., Gehrke, A., Boese, R. & Sustmann, R. (2000b). New J. Chem. 24, 143–147.  CSD CrossRef CAS Google Scholar
First citationTreves, G. R. & Testa, F. C. (1952). J. Am. Chem. Soc. 74, 46–48.  CrossRef CAS Google Scholar
First citationVan Eerdenbrugh, B., Fanwick, P. E. & Taylor, L. S. (2010). Acta Cryst. E66, o2609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVardanyan, R. S. & Hruby, V. J. (2006). In Synthesis of Essential Drugs, pp. 19-55. Amsterdam: Elsevier.  Google Scholar
First citationWilson, F., Reid, A., Reader, V., Harrison, R. J., Sunose, M., Hernadez, P. R., Major, J., Boussard, C., Smelt, K., Taylor, J., et al. (2015). Terphenyl Derivatives for Treatment of Alzheimer's Disease. KR Patent 101494906B1.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds