research communications
Synthesis, κN3)aquabis(4-oxopent-2-en-2-olato-κ2O,O′)nickel(II) ethanol monosolvate
and Hirshfeld surface analysis of (2-amino-1-methylbenzimidazole-aKarshi Engineering Economics Institute, Mustakillik Avenue, 225, Karshi 180100, Uzbekistan, bNational University of Uzbekistan named after Mirzo Ulugbek, University Street, 4, Tashkent 100174, Uzbekistan, cUzbekistan-Japan Innovation Centre of Youth, University Street 2B, Tashkent 100095, Uzbekistan, dUniversity of Geological Sciences, Olimlar Street, 64, Tashkent 100170, Uzbekistan, and eInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Mirzo, Ulugbek Street 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: sardor.08122003@gmail.com
The molecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (P) symmetry. This compound is of interest for its antimicrobial properties. The comprises two independent complex molecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of intermolecular interactions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts.
Keywords: crystal structure; mixed-ligand complex; hydrogen bonding; benzimidazole; acetylacetone; Hirshfeld surface.
CCDC reference: 2383609
1. Chemical context
β-Dicarbonyl compounds are widely known for their keto–enol equilibria and are the leading tautomeric systems studied (Tighadouini et al., 2022; Thomas, 2001). Acetylacetonate (acac), as the most representative example, forms strong coordination compounds in which both oxygen atoms coordinate with the metal and form four- and six-membered chelate complexes (Smith et al., 2016; Zheleznova et al., 2021). It is used in analytics as a bidentate ligand for the determination of d-metals (Co, Mn, Fe, Ni, Cu), and in for the isolation of radioisotopes (Caminati & Grabow, 2006). Complexes of rare earth atoms with β-diketonates have been widely studied due to the ease of use of diketonates as organic ligands (Binnemans, 2005; Duan et al., 2022). These ligands can increase the efficiency and intensity of luminescence, one such complex being Eu(acac)3 (Kuzmina & Eliseeva, 2006). In addition, Tb(acac)3 is used as the active light-emitting layer in the first LEDs based on lanthanide complexes (Kido et al., 1990). Benzimidazole derivatives are an important class of heteroaromatic compounds due to their biological and pharmaceutical activities (Keri et al., 2015; Pathare et al., 2021). The benzimidazole unit has seven positions for substitution of various moieties. Most bioactive compounds based on benzimidazole derivatives bearing functional groups at positions 1, 2 and/or 5 (or 6) have been described in the literature (Bansal & Silakari, 2012). A large number of benzimidazole derivatives has been found to have antibacterial (Elnima et al., 1981; Ablo et al., 2023), antiviral (Townsend et al., 1995; Marinescu, 2023), antifungal (Desai & Desai, 2006; Morcoss et al., 2023), antiasthmatic (Ramanatham et al., 2008), anti-HIV (Li et al., 2009; Kabi et al., 2022), anticonvulsant (Bhrigu et al., 2012; Shabana et al., 2023), antihypertensive (Jain et al., 2013; Tajane et al., 2022) and antidepressant (Mathew et al., 2016) activities. In this regard, we synthesized the title compound (I) for feedstocks with antimicrobial properties. This study presents its structural characterization and investigation of its three-dimensional structure, including investigation of hydrogen-bond strength and Hirshfeld surface analysis.
2. Structural commentary
The title compound I (Fig. 1) crystallizes in the triclinic system in the P. This heteroligand complex is composed of two ligands of the β-dikeonide type and a benzimidazole derivative. The consists of two acetylacetonate (acac), one 2-amino-1-methlybenzimidazole (MAB) ligand and a water molecule that are coordinated with nickel, and one ethanol molecule. In complex I, the Ni atom has a of six. The acac ligands act as bidentate ligands, coordinating to the central nickel atom via the oxygen atoms of their carbonyl groups. One coordination bond is formed due to the benzimidazole ring, where coordination occurs through the sp2 nitrogen heteroatom, which is located in the five-membered ring of the ligand. The other coordination is formed due to the O atom of the water molecule. The Ni atom displays an octahedral geometry (Fig. 2); the axial positions are occupied by atom N2 of the five-membered ring of the benzimidazole ligand and by the water oxygen atom O5, with an N2—Ni1—O5 angle of 178.99 (7)(9)°. The equatorial plane is formed by β-diketonide oxygen atoms. The O1–O4/Ni1 plane has an r.m.s. deviation of 0.030 Å, with an out-of-plane distance of 0.0559 (4) Å for Ni. The large variation in the bond angles at nickel is due to the bidentate acac ligands (Table 1). The closeness of the values for the O1—Ni1—O2 and O3—Ni1—O4 and for the O1—Ni1—O4 and O2—Ni1—O3 angles is explained by the presence of a hydrogen bond on one side of the complex.
|
3. Supramolecular features
N—H⋯O and O—H⋯O hydrogen bonds (Table 2) are observed in the crystal. The O6—H6⋯O1, N3—H3B⋯O6, O5—H5A⋯O4 and O5—H5B⋯O2 hydrogen bonds link the complex molecules into chains along the [111] direction (Fig. 3). The co-crystallized ethanol molecule is linked with an acac oxygen atom by the O6—H6⋯O1 hydrogen bond, and with a benzimidazole nitrogen atom of a neighbouring molecule by the N3—H3B⋯O6 hydrogen bond.
4. Hirshfeld surface
A Hirshfeld surface analysis (HS) was performed using Crystal Explorer 21.5 (Spackman et al., 2021). On the HS plotted over dnorm (Fig. 4), white areas indicates contacts with distances equal to the sum of the van der Waals radii, while red and blue areas indicate distances shorter (in close contact) or longer (distant contact), respectively, than the van der Waals radii (Venkatesan et al., 2016). The overall 2D fingerprint plot is shown in Fig. 5a. The largest contribution to the Hirshfeld surface is made the H⋯H contacts(Fig. 5b), which account for 71.7%. H⋯C/C⋯H (Fig. 5c) and O⋯H/H⋯O (Fig. 5d) contacts contribute 17.7% and 7.6%, respectively. The remaining contributions are from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts (2.2%, 0.6%, 0.1% and 0.1%, respectively).
5. Database survey
A search of the Cambridge Structural Database (CSD2023.2.0, version 5.45, November 2023; Groom et al., 2016) revealed three similar structures with fragment I. In particular, structures including nickel complexes with the acac ligand have been described [refcodes: ACNIPC (Anzenhofer & Hewitt, 1971), ACNIPC01 (Cramer et al., 1977) and HOWSIX (Hämmerling et al., 2018). In one study with a fragment including MAB, the antimicrobial properties of the ligand itself with different metals were studied (LUNCIH; de Jongh et al., 2009).
6. Synthesis and crystallization
Preparation of solutions: (a) ethanol solution of 0.1 mmol (0.0238 g) of NiCl2·6H2O, (b) ethanol solution of 0.2 mmol (0.0294 g) of MAB and (c) acac (0.2 mmol; V = 0.0205 ml, ρ = 0.975 g ml−1). Solution a was added to solution b and stirred for 30 minutes at room temperature on a magnetic stirrer. After this, solution c was added dropwise and stirred for 12 h, during which time it turned yellow. After several days, a yellow precipitate formed, which was filtered and washed several times with ethanol. Since the primary sediment, as well as the resulting crystals, can be dissolved in DMF and DMSO, recrystallization was carried out in DMF. After the recrystallization process, light-yellow single crystals were obtained.
7. details
Crystal data, data collection and structure ). C-bound H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) or 0.97 Å (methylene) and were refined with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. The hydroxy H atom was positioned with an O—H = 0.84 Å and water O atoms with O—H = 0.82 Å and refined with Uiso(H) = 1.5Ueq(O).
details are summarized in (Table 3Supporting information
CCDC reference: 2383609
https://doi.org/10.1107/S2056989024008958/ny2006sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024008958/ny2006Isup2.hkl
[Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H6O | Z = 2 |
Mr = 468.19 | F(000) = 496 |
Triclinic, P1 | Dx = 1.309 Mg m−3 |
a = 10.6348 (3) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 11.1390 (4) Å | Cell parameters from 3401 reflections |
c = 11.7989 (3) Å | θ = 4.2–69.5° |
α = 72.392 (3)° | µ = 1.50 mm−1 |
β = 64.047 (3)° | T = 293 K |
γ = 75.829 (3)° | Rhombohedral, clear yellowish yellow |
V = 1187.52 (7) Å3 | 0.2 × 0.2 × 0.1 mm |
Rigaku XtaLAB Synergy (Single source at home/near) diffractometer with a HyPix3000 detector | 4502 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3361 reflections with I ≥ 2u(I) |
Mirror monochromator | Rint = 0.040 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 70.0°, θmin = 4.2° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | k = −13→11 |
Tmin = 0.731, Tmax = 1.000 | l = −14→14 |
11590 measured reflections |
Refinement on F2 | 45 constraints |
Least-squares matrix: full | Primary atom site location: anomalous-dispersion techniques |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: mixed |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0661P)2] where P = (Fo2 + 2Fc2)/3 |
4502 reflections | (Δ/σ)max = 0.001 |
280 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.37833 (4) | 0.20417 (4) | 0.43078 (4) | 0.04770 (17) | |
O1 | 0.24815 (19) | 0.30620 (17) | 0.56482 (18) | 0.0569 (5) | |
O2 | 0.53607 (18) | 0.19252 (16) | 0.48789 (18) | 0.0537 (4) | |
O3 | 0.21418 (18) | 0.21047 (17) | 0.38640 (19) | 0.0572 (5) | |
O4 | 0.50040 (18) | 0.08899 (16) | 0.30636 (18) | 0.0536 (4) | |
O5 | 0.31402 (17) | 0.03642 (16) | 0.57499 (17) | 0.0553 (5) | |
H5A | 0.360544 | 0.020598 | 0.622452 | 0.083* | |
H5B | 0.354854 | −0.037802 | 0.539752 | 0.083* | |
N1 | 0.4363 (2) | 0.5612 (2) | 0.1599 (2) | 0.0541 (5) | |
N2 | 0.4427 (2) | 0.36623 (19) | 0.2874 (2) | 0.0497 (5) | |
N3 | 0.2214 (2) | 0.4934 (2) | 0.3222 (2) | 0.0673 (7) | |
H3A | 0.177127 | 0.435389 | 0.384603 | 0.081* | |
H3B | 0.175491 | 0.564935 | 0.299385 | 0.081* | |
C1 | 0.2180 (3) | 0.1699 (2) | 0.2975 (3) | 0.0552 (7) | |
C2 | 0.3363 (3) | 0.1014 (3) | 0.2183 (3) | 0.0668 (8) | |
H2 | 0.326316 | 0.079068 | 0.153114 | 0.080* | |
C3 | 0.4668 (3) | 0.0634 (2) | 0.2273 (3) | 0.0549 (7) | |
C4 | 0.5806 (4) | −0.0174 (3) | 0.1394 (3) | 0.0810 (10) | |
H4A | 0.650140 | 0.034189 | 0.072629 | 0.121* | |
H4B | 0.539541 | −0.052993 | 0.100909 | 0.121* | |
H4C | 0.624512 | −0.084707 | 0.188752 | 0.121* | |
C5 | 0.0829 (4) | 0.1984 (4) | 0.2761 (4) | 0.0879 (11) | |
H5C | 0.014455 | 0.147918 | 0.346155 | 0.132* | |
H5D | 0.100950 | 0.178503 | 0.196177 | 0.132* | |
H5E | 0.047252 | 0.286823 | 0.272283 | 0.132* | |
C6 | 0.1747 (4) | 0.4474 (4) | 0.7014 (4) | 0.1009 (13) | |
H6A | 0.118362 | 0.499179 | 0.654862 | 0.151* | |
H6B | 0.217212 | 0.500831 | 0.721237 | 0.151* | |
H6C | 0.116146 | 0.396497 | 0.780293 | 0.151* | |
C7 | 0.2884 (3) | 0.3620 (3) | 0.6197 (3) | 0.0603 (7) | |
C8 | 0.4254 (3) | 0.3492 (3) | 0.6101 (3) | 0.0706 (8) | |
H8 | 0.442871 | 0.401686 | 0.648294 | 0.085* | |
C9 | 0.5403 (3) | 0.2655 (3) | 0.5491 (3) | 0.0566 (7) | |
C10 | 0.6783 (4) | 0.2561 (4) | 0.5586 (4) | 0.0921 (12) | |
H10A | 0.693330 | 0.177588 | 0.616418 | 0.138* | |
H10B | 0.676903 | 0.325993 | 0.590987 | 0.138* | |
H10C | 0.753214 | 0.258691 | 0.474542 | 0.138* | |
C11 | 0.5795 (3) | 0.3873 (2) | 0.1982 (2) | 0.0500 (6) | |
C12 | 0.5768 (3) | 0.5081 (3) | 0.1180 (3) | 0.0528 (6) | |
C13 | 0.6961 (3) | 0.5544 (3) | 0.0182 (3) | 0.0667 (8) | |
H13 | 0.691386 | 0.634632 | −0.035448 | 0.080* | |
C14 | 0.8224 (3) | 0.4763 (3) | 0.0018 (3) | 0.0745 (9) | |
H14 | 0.905466 | 0.504785 | −0.063062 | 0.089* | |
C15 | 0.8272 (3) | 0.3549 (3) | 0.0815 (3) | 0.0688 (8) | |
H15 | 0.913756 | 0.303874 | 0.067631 | 0.083* | |
C16 | 0.7076 (3) | 0.3086 (3) | 0.1800 (3) | 0.0575 (7) | |
H16 | 0.712227 | 0.227718 | 0.232527 | 0.069* | |
C17 | 0.3614 (3) | 0.4725 (2) | 0.2605 (3) | 0.0519 (6) | |
C18 | 0.3795 (3) | 0.6842 (3) | 0.1015 (3) | 0.0680 (8) | |
H18A | 0.382641 | 0.748120 | 0.139153 | 0.102* | |
H18B | 0.283564 | 0.682305 | 0.116713 | 0.102* | |
H18C | 0.434695 | 0.703474 | 0.010108 | 0.102* | |
O6 | −0.0365 (2) | 0.2675 (2) | 0.6737 (3) | 0.1025 (9) | |
H6 | 0.045101 | 0.281874 | 0.629680 | 0.154* | |
C19 | −0.0391 (4) | 0.1356 (4) | 0.7187 (4) | 0.0948 (12) | |
H19A | 0.029258 | 0.093414 | 0.650879 | 0.100 (12)* | |
H19B | −0.131701 | 0.116749 | 0.738011 | 0.139 (17)* | |
C20 | −0.0070 (5) | 0.0844 (5) | 0.8363 (5) | 0.1266 (17) | |
H20A | 0.087857 | 0.095682 | 0.815678 | 0.190* | |
H20B | −0.016667 | −0.004499 | 0.866881 | 0.190* | |
H20C | −0.071434 | 0.128771 | 0.902373 | 0.190* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0429 (3) | 0.0473 (3) | 0.0525 (3) | 0.00597 (18) | −0.0188 (2) | −0.0200 (2) |
O1 | 0.0500 (10) | 0.0551 (10) | 0.0619 (12) | 0.0005 (8) | −0.0140 (9) | −0.0263 (9) |
O2 | 0.0512 (10) | 0.0534 (10) | 0.0602 (11) | 0.0029 (8) | −0.0258 (9) | −0.0195 (9) |
O3 | 0.0458 (10) | 0.0592 (11) | 0.0667 (12) | 0.0037 (8) | −0.0218 (9) | −0.0234 (9) |
O4 | 0.0522 (10) | 0.0525 (10) | 0.0591 (11) | 0.0094 (8) | −0.0254 (9) | −0.0241 (9) |
O5 | 0.0501 (10) | 0.0512 (10) | 0.0599 (11) | 0.0060 (8) | −0.0218 (9) | −0.0160 (8) |
N1 | 0.0502 (12) | 0.0509 (12) | 0.0544 (13) | 0.0003 (9) | −0.0189 (10) | −0.0104 (10) |
N2 | 0.0399 (11) | 0.0505 (12) | 0.0542 (13) | 0.0038 (9) | −0.0170 (10) | −0.0159 (10) |
N3 | 0.0431 (12) | 0.0567 (14) | 0.0758 (17) | 0.0081 (10) | −0.0136 (12) | −0.0053 (12) |
C1 | 0.0545 (16) | 0.0496 (14) | 0.0662 (18) | −0.0040 (12) | −0.0300 (14) | −0.0119 (13) |
C2 | 0.0696 (19) | 0.079 (2) | 0.0680 (19) | 0.0018 (15) | −0.0373 (16) | −0.0318 (16) |
C3 | 0.0602 (17) | 0.0495 (14) | 0.0503 (15) | 0.0015 (12) | −0.0202 (13) | −0.0143 (12) |
C4 | 0.084 (2) | 0.091 (2) | 0.070 (2) | 0.0163 (18) | −0.0302 (18) | −0.0430 (19) |
C5 | 0.071 (2) | 0.095 (3) | 0.119 (3) | 0.0038 (18) | −0.055 (2) | −0.037 (2) |
C6 | 0.090 (3) | 0.101 (3) | 0.109 (3) | 0.006 (2) | −0.015 (2) | −0.071 (2) |
C7 | 0.0689 (18) | 0.0498 (15) | 0.0539 (16) | −0.0055 (13) | −0.0120 (14) | −0.0206 (13) |
C8 | 0.075 (2) | 0.075 (2) | 0.076 (2) | −0.0103 (16) | −0.0279 (17) | −0.0388 (17) |
C9 | 0.0608 (17) | 0.0592 (16) | 0.0550 (16) | −0.0134 (13) | −0.0242 (13) | −0.0132 (13) |
C10 | 0.077 (2) | 0.117 (3) | 0.110 (3) | −0.011 (2) | −0.049 (2) | −0.046 (3) |
C11 | 0.0466 (14) | 0.0550 (14) | 0.0501 (15) | −0.0007 (11) | −0.0191 (12) | −0.0188 (12) |
C12 | 0.0491 (14) | 0.0606 (16) | 0.0496 (15) | −0.0029 (12) | −0.0188 (12) | −0.0179 (12) |
C13 | 0.0623 (18) | 0.0702 (19) | 0.0566 (17) | −0.0103 (15) | −0.0145 (14) | −0.0114 (15) |
C14 | 0.0528 (17) | 0.092 (2) | 0.065 (2) | −0.0113 (16) | −0.0086 (14) | −0.0195 (18) |
C15 | 0.0453 (16) | 0.087 (2) | 0.073 (2) | 0.0046 (14) | −0.0183 (14) | −0.0341 (17) |
C16 | 0.0462 (15) | 0.0662 (17) | 0.0586 (17) | 0.0037 (12) | −0.0195 (13) | −0.0224 (14) |
C17 | 0.0457 (14) | 0.0512 (14) | 0.0568 (16) | 0.0009 (11) | −0.0191 (12) | −0.0170 (12) |
C18 | 0.0701 (19) | 0.0532 (16) | 0.072 (2) | 0.0045 (14) | −0.0291 (16) | −0.0115 (14) |
O6 | 0.0585 (14) | 0.0672 (15) | 0.143 (2) | 0.0080 (11) | −0.0163 (15) | −0.0190 (15) |
C19 | 0.069 (2) | 0.083 (3) | 0.123 (3) | 0.0004 (19) | −0.027 (2) | −0.035 (2) |
C20 | 0.120 (4) | 0.131 (4) | 0.105 (4) | 0.010 (3) | −0.043 (3) | −0.016 (3) |
Ni1—O1 | 2.0273 (18) | C6—H6B | 0.9600 |
Ni1—O2 | 2.0286 (17) | C6—H6C | 0.9600 |
Ni1—O3 | 2.0110 (18) | C6—C7 | 1.505 (4) |
Ni1—O4 | 2.0353 (17) | C7—C8 | 1.385 (4) |
Ni1—O5 | 2.1303 (18) | C8—H8 | 0.9300 |
Ni1—N2 | 2.082 (2) | C8—C9 | 1.400 (4) |
O1—C7 | 1.268 (3) | C9—C10 | 1.497 (4) |
O2—C9 | 1.259 (3) | C10—H10A | 0.9600 |
O3—C1 | 1.244 (3) | C10—H10B | 0.9600 |
O4—C3 | 1.257 (3) | C10—H10C | 0.9600 |
O5—H5A | 0.8541 | C11—C12 | 1.393 (4) |
O5—H5B | 0.9587 | C11—C16 | 1.395 (3) |
N1—C12 | 1.387 (3) | C12—C13 | 1.382 (4) |
N1—C17 | 1.366 (3) | C13—H13 | 0.9300 |
N1—C18 | 1.451 (3) | C13—C14 | 1.379 (4) |
N2—C11 | 1.399 (3) | C14—H14 | 0.9300 |
N2—C17 | 1.327 (3) | C14—C15 | 1.398 (4) |
N3—H3A | 0.8600 | C15—H15 | 0.9300 |
N3—H3B | 0.8600 | C15—C16 | 1.378 (4) |
N3—C17 | 1.337 (3) | C16—H16 | 0.9300 |
C1—C2 | 1.404 (4) | C18—H18A | 0.9600 |
C1—C5 | 1.508 (4) | C18—H18B | 0.9600 |
C2—H2 | 0.9300 | C18—H18C | 0.9600 |
C2—C3 | 1.389 (4) | O6—H6 | 0.8200 |
C3—C4 | 1.511 (4) | O6—C19 | 1.405 (4) |
C4—H4A | 0.9600 | C19—H19A | 0.9700 |
C4—H4B | 0.9600 | C19—H19B | 0.9700 |
C4—H4C | 0.9600 | C19—C20 | 1.486 (6) |
C5—H5C | 0.9600 | C20—H20A | 0.9600 |
C5—H5D | 0.9600 | C20—H20B | 0.9600 |
C5—H5E | 0.9600 | C20—H20C | 0.9600 |
C6—H6A | 0.9600 | ||
O1—Ni1—O2 | 89.60 (8) | C7—C6—H6C | 109.5 |
O1—Ni1—O4 | 175.17 (7) | O1—C7—C6 | 115.4 (3) |
O1—Ni1—O5 | 88.09 (7) | O1—C7—C8 | 125.1 (3) |
O1—Ni1—N2 | 92.89 (8) | C8—C7—C6 | 119.5 (3) |
O2—Ni1—O4 | 91.55 (7) | C7—C8—H8 | 116.6 |
O2—Ni1—O5 | 88.73 (7) | C7—C8—C9 | 126.9 (3) |
O2—Ni1—N2 | 91.52 (8) | C9—C8—H8 | 116.6 |
O3—Ni1—O1 | 88.29 (8) | O2—C9—C8 | 124.5 (3) |
O3—Ni1—O2 | 176.18 (8) | O2—C9—C10 | 115.9 (3) |
O3—Ni1—O4 | 90.29 (7) | C8—C9—C10 | 119.5 (3) |
O3—Ni1—O5 | 88.03 (7) | C9—C10—H10A | 109.5 |
O3—Ni1—N2 | 91.76 (8) | C9—C10—H10B | 109.5 |
O4—Ni1—O5 | 87.25 (7) | C9—C10—H10C | 109.5 |
O4—Ni1—N2 | 91.77 (8) | H10A—C10—H10B | 109.5 |
N2—Ni1—O5 | 178.99 (7) | H10A—C10—H10C | 109.5 |
C7—O1—Ni1 | 124.91 (18) | H10B—C10—H10C | 109.5 |
C9—O2—Ni1 | 125.12 (17) | C12—C11—N2 | 109.9 (2) |
C1—O3—Ni1 | 126.34 (17) | C12—C11—C16 | 119.6 (3) |
C3—O4—Ni1 | 125.35 (16) | C16—C11—N2 | 130.5 (2) |
Ni1—O5—H5A | 107.3 | N1—C12—C11 | 105.6 (2) |
Ni1—O5—H5B | 111.2 | C13—C12—N1 | 131.4 (3) |
H5A—O5—H5B | 96.5 | C13—C12—C11 | 123.0 (3) |
C12—N1—C18 | 126.1 (2) | C12—C13—H13 | 121.5 |
C17—N1—C12 | 107.0 (2) | C14—C13—C12 | 116.9 (3) |
C17—N1—C18 | 126.8 (2) | C14—C13—H13 | 121.5 |
C11—N2—Ni1 | 128.07 (15) | C13—C14—H14 | 119.6 |
C17—N2—Ni1 | 127.06 (18) | C13—C14—C15 | 120.8 (3) |
C17—N2—C11 | 104.9 (2) | C15—C14—H14 | 119.6 |
H3A—N3—H3B | 120.0 | C14—C15—H15 | 119.0 |
C17—N3—H3A | 120.0 | C16—C15—C14 | 122.0 (3) |
C17—N3—H3B | 120.0 | C16—C15—H15 | 119.0 |
O3—C1—C2 | 125.1 (2) | C11—C16—H16 | 121.2 |
O3—C1—C5 | 115.7 (3) | C15—C16—C11 | 117.6 (3) |
C2—C1—C5 | 119.1 (3) | C15—C16—H16 | 121.2 |
C1—C2—H2 | 116.6 | N2—C17—N1 | 112.6 (2) |
C3—C2—C1 | 126.7 (3) | N2—C17—N3 | 125.1 (3) |
C3—C2—H2 | 116.6 | N3—C17—N1 | 122.2 (2) |
O4—C3—C2 | 125.2 (2) | N1—C18—H18A | 109.5 |
O4—C3—C4 | 114.8 (2) | N1—C18—H18B | 109.5 |
C2—C3—C4 | 120.0 (3) | N1—C18—H18C | 109.5 |
C3—C4—H4A | 109.5 | H18A—C18—H18B | 109.5 |
C3—C4—H4B | 109.5 | H18A—C18—H18C | 109.5 |
C3—C4—H4C | 109.5 | H18B—C18—H18C | 109.5 |
H4A—C4—H4B | 109.5 | C19—O6—H6 | 109.5 |
H4A—C4—H4C | 109.5 | O6—C19—H19A | 109.1 |
H4B—C4—H4C | 109.5 | O6—C19—H19B | 109.1 |
C1—C5—H5C | 109.5 | O6—C19—C20 | 112.6 (4) |
C1—C5—H5D | 109.5 | H19A—C19—H19B | 107.8 |
C1—C5—H5E | 109.5 | C20—C19—H19A | 109.1 |
H5C—C5—H5D | 109.5 | C20—C19—H19B | 109.1 |
H5C—C5—H5E | 109.5 | C19—C20—H20A | 109.5 |
H5D—C5—H5E | 109.5 | C19—C20—H20B | 109.5 |
H6A—C6—H6B | 109.5 | C19—C20—H20C | 109.5 |
H6A—C6—H6C | 109.5 | H20A—C20—H20B | 109.5 |
H6B—C6—H6C | 109.5 | H20A—C20—H20C | 109.5 |
C7—C6—H6A | 109.5 | H20B—C20—H20C | 109.5 |
C7—C6—H6B | 109.5 | ||
Ni1—O1—C7—C6 | 171.5 (2) | C7—C8—C9—O2 | 3.4 (5) |
Ni1—O1—C7—C8 | −8.9 (4) | C7—C8—C9—C10 | −174.4 (3) |
Ni1—O2—C9—C8 | 13.7 (4) | C11—N2—C17—N1 | 0.0 (3) |
Ni1—O2—C9—C10 | −168.4 (2) | C11—N2—C17—N3 | 179.3 (3) |
Ni1—O3—C1—C2 | 6.1 (4) | C11—C12—C13—C14 | −1.6 (5) |
Ni1—O3—C1—C5 | −173.9 (2) | C12—N1—C17—N2 | 0.2 (3) |
Ni1—O4—C3—C2 | −5.3 (4) | C12—N1—C17—N3 | −179.1 (3) |
Ni1—O4—C3—C4 | 175.92 (19) | C12—C11—C16—C15 | −0.3 (4) |
Ni1—N2—C11—C12 | 179.46 (17) | C12—C13—C14—C15 | 1.4 (5) |
Ni1—N2—C11—C16 | 0.1 (4) | C13—C14—C15—C16 | −0.8 (5) |
Ni1—N2—C17—N1 | −179.69 (17) | C14—C15—C16—C11 | 0.1 (5) |
Ni1—N2—C17—N3 | −0.4 (4) | C16—C11—C12—N1 | 179.8 (2) |
O1—C7—C8—C9 | −6.1 (5) | C16—C11—C12—C13 | 1.1 (4) |
O3—C1—C2—C3 | 2.2 (5) | C17—N1—C12—C11 | −0.3 (3) |
N1—C12—C13—C14 | −180.0 (3) | C17—N1—C12—C13 | 178.2 (3) |
N2—C11—C12—N1 | 0.4 (3) | C17—N2—C11—C12 | −0.2 (3) |
N2—C11—C12—C13 | −178.3 (3) | C17—N2—C11—C16 | −179.6 (3) |
N2—C11—C16—C15 | 179.0 (3) | C18—N1—C12—C11 | −176.5 (3) |
C1—C2—C3—O4 | −2.6 (5) | C18—N1—C12—C13 | 2.0 (5) |
C1—C2—C3—C4 | 176.1 (3) | C18—N1—C17—N2 | 176.4 (3) |
C5—C1—C2—C3 | −177.7 (3) | C18—N1—C17—N3 | −3.0 (4) |
C6—C7—C8—C9 | 173.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···O6i | 0.86 | 2.09 | 2.897 (3) | 156 |
O5—H5A···O4ii | 0.85 | 1.99 | 2.773 (3) | 152 |
O5—H5B···O2ii | 0.96 | 1.86 | 2.777 (3) | 160 |
O6—H6···O1 | 0.82 | 2.01 | 2.811 (4) | 166 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z+1. |
Acknowledgements
The authors acknowledge support from the MIRAI FUND (JICA) and technical equipment support provided by the Institute of Bioorganic Chemistry of Academy Sciences of Uzbekistan.
References
Ablo, E., Dosso, O., Coulibaly, B., Adingra, K. F., Coulibaly, P. M. A., Achi, A. P. & Coulibali, S. (2023). Adv. Biol. Chem. 13, 182–191. CrossRef Google Scholar
Anzenhofer, K. & Hewitt, T. G. (1971). Z. Kristallogr. Cryst. Mater. 134, 54–68. CrossRef Google Scholar
Bansal, Y. & Silakari, O. (2012). Bioorg. Med. Chem. 20, 6208–6236. Web of Science CrossRef CAS PubMed Google Scholar
Bhrigu, B., Siddiqui, N., Pathak, D., Alam, M. S., Ali, R. & Azad, B. (2012). Acta Pol. Pharm. 69, 53–62. PubMed Google Scholar
Binnemans, K. (2005). Rare-Earth Beta-Diketonates. In Handbook on the Physics and Chemistry of Rare Earths, edited by P. Vitalij, & J.-C. Bunzli, pp. 107–272. Amsterdam: Elsevier. Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Caminati, V. & Grabow, J. U. (2006). J. Am. Chem. Soc. 128, 854–857. CrossRef PubMed Google Scholar
Cramer, R. E., Cramer, S. W., Cramer, K. F., Chudyk, M. A. & Seff, K. (1977). Inorg. Chem. 16, 219–223. CSD CrossRef Google Scholar
Desai, K. G. & Desai, K. R. (2006). Bioorg. Med. Chem. 14, 8271–8279. Web of Science CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duan, Y. Y., Wu, D. F., Chen, H. H., Wang, Y. J., Li, L., Gao, H. L. & Cui, J. Z. (2022). Polyhedron, 225, 116070. CSD CrossRef Google Scholar
Elnima, E. I., Zubair, M. Yu. & Al-Badr, A. A. (1981). Antimicrob. Agents Chemother. 19, 29–32. CrossRef PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hämmerling, S., Mann, L., Steinhauer, S., Kuntze-Fechner, M. W., Radius, U. & Riedel, S. (2018). Z. Anorg. Allg. Chem. 644, 1047–1050. Google Scholar
Jain, A., Sharma, R. & Chaturvedi, S. S. (2013). Med. Chem. Res. 22, 4622–4632. CrossRef Google Scholar
Jongh, L. A. de, Strasser, C. E., Raubenheimer, H. G. & Cronje, S. (2009). Polyhedron, 28, 3635–3641. CSD CrossRef Google Scholar
Kabi, A. K., Sravani, S., Gujjarappa, R., Garg, A., Vodnala, N., Tyagi, U. & Malakar, C. C. (2022). Nanostructured Biomaterials: Basic Structures and Applications, edited by B. P. Swain, pp. 351–378. Dordrecht: Springer. Google Scholar
Keri, R. S., Hiremathad, A., Budagumpi, S. & Nagaraja, B. M. (2015). Chem. Biol. Drug Des. 86, 19–65. Web of Science CrossRef PubMed Google Scholar
Kido, J., Nagai, K. & Ohashi, Y. (1990). Chem. Lett. 19, 657–660. CrossRef Web of Science Google Scholar
Kuzmina, N. P. & Eliseeva, S. V. (2006). Russ. J. Inorg. Chem. 51, 73–88. Google Scholar
Li, G. R., Liu, J., Pan, Q., Song, Z. B., Luo, F. D., Wang, S. R., Zhang, X. L. & Zhou, X. (2009). Chem. Biodivers. 6, 2200–2208. CrossRef PubMed Google Scholar
Marinescu, M. (2023). Antibiotics, 12, 1220. CrossRef PubMed Google Scholar
Mathew, B., Suresh, J. & Anbazhagan, S. (2016). J. Saudi Chem. Soc. 20, S132–S139. Web of Science CrossRef CAS Google Scholar
Morcoss, M. M., Abdelhafez, E. S. M. N., Ibrahem, R. A., Abdel-Rahman, H. M., Abdel-Aziz, M. & Abou El-Ella, D. A. (2020). Bioorg. Chem. 101, 103956. CrossRef PubMed Google Scholar
Pathare, B. & Bansode, T. (2021). Results Chem. 3, 100200. CrossRef Google Scholar
Ramanatham, V., Sanjay, D. V., Bobba, V. S. K., Umesh, N. B., Shekhar, B. B. & Uday, K. M. (2008). Eur. J. Med. Chem. 43, 986–995. PubMed Google Scholar
Rigaku OD (2020). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Shabana, K., Salahuddin, Mazumder, A., Singh, H., Kumar, R., Tyagi, S. & Kumar Yadav, R. (2023). ChemistrySelect, 8, e202300209. CrossRef Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, K. T., Young, S. C., DeBlasio, J. & Hamann, C. S. (2016). J. Chem. Educ. 93, 790–794. CrossRef Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tajane, P. S. & Sawant, R. L. (2022). Int. J. Health Sci. 6, 7169–7179. CrossRef Google Scholar
Thomas, M. H. (2001). 2,4-Pentandione. In Encyclopedia of Reagents for Organic Synthesis. Chichester: Wiley. Google Scholar
Tighadouini, S., Roby, O., Mortada, S., Lakbaibi, Z., Radi, S., Al-Ali, A. & Warad, I. (2022). J. Mol. Struct. 1247, 131308. CrossRef Google Scholar
Townsend, L. B., Devivar, R. V., Turk, S. R., Nassiri, M. R. & Druck, J. K. (1995). J. Med. Chem. 38, 4098–4105. CrossRef PubMed Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zheleznova, L., Sliusarchuk, L., Rogovtsov, O., Kuleshov, S. & Trunova, O. (2021). Mol. Cryst. Liq. Cryst. 717, 14–23. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.