research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of (2-amino-1-methyl­benzimidazole-κN3)aqua­bis­­(4-oxopent-2-en-2-olato-κ2O,O′)nickel(II) ethanol monosolvate

crossmark logo

aKarshi Engineering Economics Institute, Mustakillik Avenue, 225, Karshi 180100, Uzbekistan, bNational University of Uzbekistan named after Mirzo Ulugbek, University Street, 4, Tashkent 100174, Uzbekistan, cUzbekistan-Japan Innovation Centre of Youth, University Street 2B, Tashkent 100095, Uzbekistan, dUniversity of Geological Sciences, Olimlar Street, 64, Tashkent 100170, Uzbekistan, and eInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Mirzo, Ulugbek Street 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: sardor.08122003@gmail.com

Edited by N. Alvarez Failache, Universidad de la Repüblica, Uruguay (Received 27 June 2024; accepted 12 September 2024; online 22 October 2024)

The mol­ecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (P[\overline{1}]) symmetry. This compound is of inter­est for its anti­microbial properties. The asymmetric unit comprises two independent complex mol­ecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of inter­mol­ecular inter­actions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts.

1. Chemical context

β-Di­carbonyl compounds are widely known for their keto–enol equilibria and are the leading tautomeric systems studied (Tighadouini et al., 2022[Tighadouini, S., Roby, O., Mortada, S., Lakbaibi, Z., Radi, S., Al-Ali, A. & Warad, I. (2022). J. Mol. Struct. 1247, 131308.]; Thomas, 2001[Thomas, M. H. (2001). 2,4-Pentandione. In Encyclopedia of Reagents for Organic Synthesis. Chichester: Wiley.]). Acet­ylacetonate (acac), as the most representative example, forms strong coordination compounds in which both oxygen atoms coordinate with the metal and form four- and six-membered chelate complexes (Smith et al., 2016[Smith, K. T., Young, S. C., DeBlasio, J. & Hamann, C. S. (2016). J. Chem. Educ. 93, 790-794.]; Zheleznova et al., 2021[Zheleznova, L., Sliusarchuk, L., Rogovtsov, O., Kuleshov, S. & Trunova, O. (2021). Mol. Cryst. Liq. Cryst. 717, 14-23.]). It is used in analytics as a bidentate ligand for the determination of d-metals (Co, Mn, Fe, Ni, Cu), and in radiochemistry for the isolation of radioisotopes (Caminati & Grabow, 2006[Caminati, V. & Grabow, J. U. (2006). J. Am. Chem. Soc. 128, 854-857.]). Complexes of rare earth atoms with β-diketonates have been widely studied due to the ease of use of diketonates as organic ligands (Binnemans, 2005[Binnemans, K. (2005). Rare-Earth Beta-Diketonates. In Handbook on the Physics and Chemistry of Rare Earths, edited by P. Vitalij, & J.-C. Bunzli, pp. 107-272. Amsterdam: Elsevier.]; Duan et al., 2022[Duan, Y. Y., Wu, D. F., Chen, H. H., Wang, Y. J., Li, L., Gao, H. L. & Cui, J. Z. (2022). Polyhedron, 225, 116070.]). These ligands can increase the efficiency and intensity of luminescence, one such complex being Eu(acac)3 (Kuzmina & Eliseeva, 2006[Kuzmina, N. P. & Eliseeva, S. V. (2006). Russ. J. Inorg. Chem. 51, 73-88.]). In addition, Tb(acac)3 is used as the active light-emitting layer in the first LEDs based on lanthanide complexes (Kido et al., 1990[Kido, J., Nagai, K. & Ohashi, Y. (1990). Chem. Lett. 19, 657-660.]). Benzimidazole derivatives are an important class of heteroaromatic compounds due to their biological and pharmaceutical activities (Keri et al., 2015[Keri, R. S., Hiremathad, A., Budagumpi, S. & Nagaraja, B. M. (2015). Chem. Biol. Drug Des. 86, 19-65.]; Pathare et al., 2021[Pathare, B. & Bansode, T. (2021). Results Chem. 3, 100200.]). The benzimidazole unit has seven positions for substitution of various moieties. Most bioactive compounds based on benzimidazole derivatives bearing functional groups at positions 1, 2 and/or 5 (or 6) have been described in the literature (Bansal & Silakari, 2012[Bansal, Y. & Silakari, O. (2012). Bioorg. Med. Chem. 20, 6208-6236.]). A large number of benzimidazole derivatives has been found to have anti­bacterial (Elnima et al., 1981[Elnima, E. I., Zubair, M. Yu. & Al-Badr, A. A. (1981). Antimicrob. Agents Chemother. 19, 29-32.]; Ablo et al., 2023[Ablo, E., Dosso, O., Coulibaly, B., Adingra, K. F., Coulibaly, P. M. A., Achi, A. P. & Coulibali, S. (2023). Adv. Biol. Chem. 13, 182-191.]), anti­viral (Townsend et al., 1995[Townsend, L. B., Devivar, R. V., Turk, S. R., Nassiri, M. R. & Druck, J. K. (1995). J. Med. Chem. 38, 4098-4105.]; Marinescu, 2023[Marinescu, M. (2023). Antibiotics, 12, 1220.]), anti­fungal (Desai & Desai, 2006[Desai, K. G. & Desai, K. R. (2006). Bioorg. Med. Chem. 14, 8271-8279.]; Morcoss et al., 2023[Morcoss, M. M., Abdelhafez, E. S. M. N., Ibrahem, R. A., Abdel-Rahman, H. M., Abdel-Aziz, M. & Abou El-Ella, D. A. (2020). Bioorg. Chem. 101, 103956.]), anti­asthmatic (Ramanatham et al., 2008[Ramanatham, V., Sanjay, D. V., Bobba, V. S. K., Umesh, N. B., Shekhar, B. B. & Uday, K. M. (2008). Eur. J. Med. Chem. 43, 986-995.]), anti-HIV (Li et al., 2009[Li, G. R., Liu, J., Pan, Q., Song, Z. B., Luo, F. D., Wang, S. R., Zhang, X. L. & Zhou, X. (2009). Chem. Biodivers. 6, 2200-2208.]; Kabi et al., 2022[Kabi, A. K., Sravani, S., Gujjarappa, R., Garg, A., Vodnala, N., Tyagi, U. & Malakar, C. C. (2022). Nanostructured Biomaterials: Basic Structures and Applications, edited by B. P. Swain, pp. 351-378. Dordrecht: Springer.]), anti­convulsant (Bhrigu et al., 2012[Bhrigu, B., Siddiqui, N., Pathak, D., Alam, M. S., Ali, R. & Azad, B. (2012). Acta Pol. Pharm. 69, 53-62.]; Shabana et al., 2023[Shabana, K., Salahuddin, Mazumder, A., Singh, H., Kumar, R., Tyagi, S. & Kumar Yadav, R. (2023). ChemistrySelect, 8, e202300209.]), anti­hypertensive (Jain et al., 2013[Jain, A., Sharma, R. & Chaturvedi, S. S. (2013). Med. Chem. Res. 22, 4622-4632.]; Tajane et al., 2022[Tajane, P. S. & Sawant, R. L. (2022). Int. J. Health Sci. 6, 7169-7179.]) and anti­depressant (Mathew et al., 2016[Mathew, B., Suresh, J. & Anbazhagan, S. (2016). J. Saudi Chem. Soc. 20, S132-S139.]) activities. In this regard, we synthesized the title compound (I) for feedstocks with anti­microbial properties. This study presents its structural characterization and investigation of its three-dimensional structure, including investigation of hydrogen-bond strength and Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The title compound I (Fig. 1[link]) crystallizes in the triclinic system in the space group P[\overline{1}]. This heteroligand complex is composed of two ligands of the β-dikeonide type and a benzimidazole derivative. The asymmetric unit consists of two acet­ylacetonate (acac), one 2-amino-1-methlybenzimidazole (MAB) ligand and a water mol­ecule that are coordinated with nickel, and one ethanol mol­ecule. In complex I, the Ni atom has a coordination number of six. The acac ligands act as bidentate ligands, coordinating to the central nickel atom via the oxygen atoms of their carbonyl groups. One coordination bond is formed due to the benzimidazole ring, where coordination occurs through the sp2 nitro­gen heteroatom, which is located in the five-membered ring of the ligand. The other coordination is formed due to the O atom of the water mol­ecule. The Ni atom displays an octahedral geometry (Fig. 2[link]); the axial positions are occupied by atom N2 of the five-membered ring of the benzimidazole ligand and by the water oxygen atom O5, with an N2—Ni1—O5 angle of 178.99 (7)(9)°. The equatorial plane is formed by β-diketonide oxygen atoms. The O1–O4/Ni1 plane has an r.m.s. deviation of 0.030 Å, with an out-of-plane distance of 0.0559 (4) Å for Ni. The large variation in the bond angles at nickel is due to the bidentate acac ligands (Table 1[link]). The closeness of the values for the O1—Ni1—O2 and O3—Ni1—O4 and for the O1—Ni1—O4 and O2—Ni1—O3 angles is explained by the presence of a hydrogen bond on one side of the complex.

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 2.0273 (18) Ni1—O4 2.0353 (17)
Ni1—O2 2.0286 (17) Ni1—O5 2.1303 (18)
Ni1—O3 2.0110 (18) Ni1—N2 2.082 (2)
       
O1—Ni1—O2 89.60 (8) O3—Ni1—O4 90.29 (7)
O1—Ni1—O4 175.17 (7) N2—Ni1—O5 178.99 (7)
O3—Ni1—O2 176.18 (8)    
[Figure 1]
Figure 1
Asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level.
[Figure 2]
Figure 2
Representation of the octahedral coordination sphere around the metal centre in the title compound.

3. Supra­molecular features

N—H⋯O and O—H⋯O hydrogen bonds (Table 2[link]) are observed in the crystal. The O6—H6⋯O1, N3—H3B⋯O6, O5—H5A⋯O4 and O5—H5B⋯O2 hydrogen bonds link the complex mol­ecules into chains along the [111] direction (Fig. 3[link]). The co-crystallized ethanol mol­ecule is linked with an acac oxygen atom by the O6—H6⋯O1 hydrogen bond, and with a benzimidazole nitro­gen atom of a neighbouring mol­ecule by the N3—H3B⋯O6 hydrogen bond.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O6i 0.86 2.09 2.897 (3) 156
O5—H5A⋯O4ii 0.85 1.99 2.773 (3) 152
O5—H5B⋯O2ii 0.96 1.86 2.777 (3) 160
O6—H6⋯O1 0.82 2.01 2.811 (4) 166
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y, -z+1].
[Figure 3]
Figure 3
Packing diagram of I showing the N—H⋯O and O—H⋯O hydrogen bonding resulting in chains along [111]. Only H atoms involved in the inter­actions are shown.

4. Hirshfeld surface

A Hirshfeld surface analysis (HS) was performed using Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). On the HS plotted over dnorm (Fig. 4[link]), white areas indicates contacts with distances equal to the sum of the van der Waals radii, while red and blue areas indicate distances shorter (in close contact) or longer (distant contact), respectively, than the van der Waals radii (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The overall 2D fingerprint plot is shown in Fig. 5[link]a. The largest contribution to the Hirshfeld surface is made the H⋯H contacts(Fig. 5[link]b), which account for 71.7%. H⋯C/C⋯H (Fig. 5[link]c) and O⋯H/H⋯O (Fig. 5[link]d) contacts contribute 17.7% and 7.6%, respectively. The remaining contributions are from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts (2.2%, 0.6%, 0.1% and 0.1%, respectively).

[Figure 4]
Figure 4
Hirshfeld surface of I mapped over <dnorm showing close inter­mol­ecular contacts.
[Figure 5]
Figure 5
(a) The full two-dimensional fingerprint plots for the title compound, showing all inter­actions and (b–d) those delineated into specified inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD2023.2.0, version 5.45, November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed three similar structures with fragment I. In particular, structures including nickel complexes with the acac ligand have been described [refcodes: ACNIPC (Anzenhofer & Hewitt, 1971[Anzenhofer, K. & Hewitt, T. G. (1971). Z. Kristallogr. Cryst. Mater. 134, 54-68.]), ACNIPC01 (Cramer et al., 1977[Cramer, R. E., Cramer, S. W., Cramer, K. F., Chudyk, M. A. & Seff, K. (1977). Inorg. Chem. 16, 219-223.]) and HOWSIX (Hämmerling et al., 2018[Hämmerling, S., Mann, L., Steinhauer, S., Kuntze-Fechner, M. W., Radius, U. & Riedel, S. (2018). Z. Anorg. Allg. Chem. 644, 1047-1050.]). In one study with a fragment including MAB, the anti­microbial properties of the ligand itself with different metals were studied (LUNCIH; de Jongh et al., 2009[Jongh, L. A. de, Strasser, C. E., Raubenheimer, H. G. & Cronje, S. (2009). Polyhedron, 28, 3635-3641.]).

6. Synthesis and crystallization

Preparation of solutions: (a) ethanol solution of 0.1 mmol (0.0238 g) of NiCl2·6H2O, (b) ethanol solution of 0.2 mmol (0.0294 g) of MAB and (c) acac (0.2 mmol; V = 0.0205 ml, ρ = 0.975 g ml−1). Solution a was added to solution b and stirred for 30 minutes at room temperature on a magnetic stirrer. After this, solution c was added dropwise and stirred for 12 h, during which time it turned yellow. After several days, a yellow precipitate formed, which was filtered and washed several times with ethanol. Since the primary sediment, as well as the resulting crystals, can be dissolved in DMF and DMSO, recrystallization was carried out in DMF. After the recrystallization process, light-yellow single crystals were obtained.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in (Table 3[link]). C-bound H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic), 0.96 Å (meth­yl) or 0.97 Å (methyl­ene) and were refined with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. The hy­droxy H atom was positioned with an O—H = 0.84 Å and water O atoms with O—H = 0.82 Å and refined with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H6O
Mr 468.19
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 10.6348 (3), 11.1390 (4), 11.7989 (3)
α, β, γ (°) 72.392 (3), 64.047 (3), 75.829 (3)
V3) 1187.52 (7)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.50
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer Rigaku XtaLAB Synergy (Single source at home/near) diffractometer with a HyPix3000 detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Hämmerling, S., Mann, L., Steinhauer, S., Kuntze-Fechner, M. W., Radius, U. & Riedel, S. (2018). Z. Anorg. Allg. Chem. 644, 1047-1050.])
Tmin, Tmax 0.731, 1.000
No. of measured, independent and observed [I ≥ 2u(I)] reflections 11590, 4502, 3361
Rint 0.040
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.08
No. of reflections 4502
No. of parameters 280
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.33
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

(2-Amino-1-methylbenzimidazole-κN3)aquabis(4-oxopent-2-en-2-olato-κ2O,O')nickel(II) ethanol monosolvate top
Crystal data top
[Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H6OZ = 2
Mr = 468.19F(000) = 496
Triclinic, P1Dx = 1.309 Mg m3
a = 10.6348 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.1390 (4) ÅCell parameters from 3401 reflections
c = 11.7989 (3) Åθ = 4.2–69.5°
α = 72.392 (3)°µ = 1.50 mm1
β = 64.047 (3)°T = 293 K
γ = 75.829 (3)°Rhombohedral, clear yellowish yellow
V = 1187.52 (7) Å30.2 × 0.2 × 0.1 mm
Data collection top
Rigaku XtaLAB Synergy (Single source at home/near)
diffractometer with a HyPix3000 detector
4502 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3361 reflections with I 2u(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.0000 pixels mm-1θmax = 70.0°, θmin = 4.2°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 1311
Tmin = 0.731, Tmax = 1.000l = 1414
11590 measured reflections
Refinement top
Refinement on F245 constraints
Least-squares matrix: fullPrimary atom site location: anomalous-dispersion techniques
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.139H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0661P)2]
where P = (Fo2 + 2Fc2)/3
4502 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.37833 (4)0.20417 (4)0.43078 (4)0.04770 (17)
O10.24815 (19)0.30620 (17)0.56482 (18)0.0569 (5)
O20.53607 (18)0.19252 (16)0.48789 (18)0.0537 (4)
O30.21418 (18)0.21047 (17)0.38640 (19)0.0572 (5)
O40.50040 (18)0.08899 (16)0.30636 (18)0.0536 (4)
O50.31402 (17)0.03642 (16)0.57499 (17)0.0553 (5)
H5A0.3605440.0205980.6224520.083*
H5B0.3548540.0378020.5397520.083*
N10.4363 (2)0.5612 (2)0.1599 (2)0.0541 (5)
N20.4427 (2)0.36623 (19)0.2874 (2)0.0497 (5)
N30.2214 (2)0.4934 (2)0.3222 (2)0.0673 (7)
H3A0.1771270.4353890.3846030.081*
H3B0.1754910.5649350.2993850.081*
C10.2180 (3)0.1699 (2)0.2975 (3)0.0552 (7)
C20.3363 (3)0.1014 (3)0.2183 (3)0.0668 (8)
H20.3263160.0790680.1531140.080*
C30.4668 (3)0.0634 (2)0.2273 (3)0.0549 (7)
C40.5806 (4)0.0174 (3)0.1394 (3)0.0810 (10)
H4A0.6501400.0341890.0726290.121*
H4B0.5395410.0529930.1009090.121*
H4C0.6245120.0847070.1887520.121*
C50.0829 (4)0.1984 (4)0.2761 (4)0.0879 (11)
H5C0.0144550.1479180.3461550.132*
H5D0.1009500.1785030.1961770.132*
H5E0.0472520.2868230.2722830.132*
C60.1747 (4)0.4474 (4)0.7014 (4)0.1009 (13)
H6A0.1183620.4991790.6548620.151*
H6B0.2172120.5008310.7212370.151*
H6C0.1161460.3964970.7802930.151*
C70.2884 (3)0.3620 (3)0.6197 (3)0.0603 (7)
C80.4254 (3)0.3492 (3)0.6101 (3)0.0706 (8)
H80.4428710.4016860.6482940.085*
C90.5403 (3)0.2655 (3)0.5491 (3)0.0566 (7)
C100.6783 (4)0.2561 (4)0.5586 (4)0.0921 (12)
H10A0.6933300.1775880.6164180.138*
H10B0.6769030.3259930.5909870.138*
H10C0.7532140.2586910.4745420.138*
C110.5795 (3)0.3873 (2)0.1982 (2)0.0500 (6)
C120.5768 (3)0.5081 (3)0.1180 (3)0.0528 (6)
C130.6961 (3)0.5544 (3)0.0182 (3)0.0667 (8)
H130.6913860.6346320.0354480.080*
C140.8224 (3)0.4763 (3)0.0018 (3)0.0745 (9)
H140.9054660.5047850.0630620.089*
C150.8272 (3)0.3549 (3)0.0815 (3)0.0688 (8)
H150.9137560.3038740.0676310.083*
C160.7076 (3)0.3086 (3)0.1800 (3)0.0575 (7)
H160.7122270.2277180.2325270.069*
C170.3614 (3)0.4725 (2)0.2605 (3)0.0519 (6)
C180.3795 (3)0.6842 (3)0.1015 (3)0.0680 (8)
H18A0.3826410.7481200.1391530.102*
H18B0.2835640.6823050.1167130.102*
H18C0.4346950.7034740.0101080.102*
O60.0365 (2)0.2675 (2)0.6737 (3)0.1025 (9)
H60.0451010.2818740.6296800.154*
C190.0391 (4)0.1356 (4)0.7187 (4)0.0948 (12)
H19A0.0292580.0934140.6508790.100 (12)*
H19B0.1317010.1167490.7380110.139 (17)*
C200.0070 (5)0.0844 (5)0.8363 (5)0.1266 (17)
H20A0.0878570.0956820.8156780.190*
H20B0.0166670.0044990.8668810.190*
H20C0.0714340.1287710.9023730.190*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0429 (3)0.0473 (3)0.0525 (3)0.00597 (18)0.0188 (2)0.0200 (2)
O10.0500 (10)0.0551 (10)0.0619 (12)0.0005 (8)0.0140 (9)0.0263 (9)
O20.0512 (10)0.0534 (10)0.0602 (11)0.0029 (8)0.0258 (9)0.0195 (9)
O30.0458 (10)0.0592 (11)0.0667 (12)0.0037 (8)0.0218 (9)0.0234 (9)
O40.0522 (10)0.0525 (10)0.0591 (11)0.0094 (8)0.0254 (9)0.0241 (9)
O50.0501 (10)0.0512 (10)0.0599 (11)0.0060 (8)0.0218 (9)0.0160 (8)
N10.0502 (12)0.0509 (12)0.0544 (13)0.0003 (9)0.0189 (10)0.0104 (10)
N20.0399 (11)0.0505 (12)0.0542 (13)0.0038 (9)0.0170 (10)0.0159 (10)
N30.0431 (12)0.0567 (14)0.0758 (17)0.0081 (10)0.0136 (12)0.0053 (12)
C10.0545 (16)0.0496 (14)0.0662 (18)0.0040 (12)0.0300 (14)0.0119 (13)
C20.0696 (19)0.079 (2)0.0680 (19)0.0018 (15)0.0373 (16)0.0318 (16)
C30.0602 (17)0.0495 (14)0.0503 (15)0.0015 (12)0.0202 (13)0.0143 (12)
C40.084 (2)0.091 (2)0.070 (2)0.0163 (18)0.0302 (18)0.0430 (19)
C50.071 (2)0.095 (3)0.119 (3)0.0038 (18)0.055 (2)0.037 (2)
C60.090 (3)0.101 (3)0.109 (3)0.006 (2)0.015 (2)0.071 (2)
C70.0689 (18)0.0498 (15)0.0539 (16)0.0055 (13)0.0120 (14)0.0206 (13)
C80.075 (2)0.075 (2)0.076 (2)0.0103 (16)0.0279 (17)0.0388 (17)
C90.0608 (17)0.0592 (16)0.0550 (16)0.0134 (13)0.0242 (13)0.0132 (13)
C100.077 (2)0.117 (3)0.110 (3)0.011 (2)0.049 (2)0.046 (3)
C110.0466 (14)0.0550 (14)0.0501 (15)0.0007 (11)0.0191 (12)0.0188 (12)
C120.0491 (14)0.0606 (16)0.0496 (15)0.0029 (12)0.0188 (12)0.0179 (12)
C130.0623 (18)0.0702 (19)0.0566 (17)0.0103 (15)0.0145 (14)0.0114 (15)
C140.0528 (17)0.092 (2)0.065 (2)0.0113 (16)0.0086 (14)0.0195 (18)
C150.0453 (16)0.087 (2)0.073 (2)0.0046 (14)0.0183 (14)0.0341 (17)
C160.0462 (15)0.0662 (17)0.0586 (17)0.0037 (12)0.0195 (13)0.0224 (14)
C170.0457 (14)0.0512 (14)0.0568 (16)0.0009 (11)0.0191 (12)0.0170 (12)
C180.0701 (19)0.0532 (16)0.072 (2)0.0045 (14)0.0291 (16)0.0115 (14)
O60.0585 (14)0.0672 (15)0.143 (2)0.0080 (11)0.0163 (15)0.0190 (15)
C190.069 (2)0.083 (3)0.123 (3)0.0004 (19)0.027 (2)0.035 (2)
C200.120 (4)0.131 (4)0.105 (4)0.010 (3)0.043 (3)0.016 (3)
Geometric parameters (Å, º) top
Ni1—O12.0273 (18)C6—H6B0.9600
Ni1—O22.0286 (17)C6—H6C0.9600
Ni1—O32.0110 (18)C6—C71.505 (4)
Ni1—O42.0353 (17)C7—C81.385 (4)
Ni1—O52.1303 (18)C8—H80.9300
Ni1—N22.082 (2)C8—C91.400 (4)
O1—C71.268 (3)C9—C101.497 (4)
O2—C91.259 (3)C10—H10A0.9600
O3—C11.244 (3)C10—H10B0.9600
O4—C31.257 (3)C10—H10C0.9600
O5—H5A0.8541C11—C121.393 (4)
O5—H5B0.9587C11—C161.395 (3)
N1—C121.387 (3)C12—C131.382 (4)
N1—C171.366 (3)C13—H130.9300
N1—C181.451 (3)C13—C141.379 (4)
N2—C111.399 (3)C14—H140.9300
N2—C171.327 (3)C14—C151.398 (4)
N3—H3A0.8600C15—H150.9300
N3—H3B0.8600C15—C161.378 (4)
N3—C171.337 (3)C16—H160.9300
C1—C21.404 (4)C18—H18A0.9600
C1—C51.508 (4)C18—H18B0.9600
C2—H20.9300C18—H18C0.9600
C2—C31.389 (4)O6—H60.8200
C3—C41.511 (4)O6—C191.405 (4)
C4—H4A0.9600C19—H19A0.9700
C4—H4B0.9600C19—H19B0.9700
C4—H4C0.9600C19—C201.486 (6)
C5—H5C0.9600C20—H20A0.9600
C5—H5D0.9600C20—H20B0.9600
C5—H5E0.9600C20—H20C0.9600
C6—H6A0.9600
O1—Ni1—O289.60 (8)C7—C6—H6C109.5
O1—Ni1—O4175.17 (7)O1—C7—C6115.4 (3)
O1—Ni1—O588.09 (7)O1—C7—C8125.1 (3)
O1—Ni1—N292.89 (8)C8—C7—C6119.5 (3)
O2—Ni1—O491.55 (7)C7—C8—H8116.6
O2—Ni1—O588.73 (7)C7—C8—C9126.9 (3)
O2—Ni1—N291.52 (8)C9—C8—H8116.6
O3—Ni1—O188.29 (8)O2—C9—C8124.5 (3)
O3—Ni1—O2176.18 (8)O2—C9—C10115.9 (3)
O3—Ni1—O490.29 (7)C8—C9—C10119.5 (3)
O3—Ni1—O588.03 (7)C9—C10—H10A109.5
O3—Ni1—N291.76 (8)C9—C10—H10B109.5
O4—Ni1—O587.25 (7)C9—C10—H10C109.5
O4—Ni1—N291.77 (8)H10A—C10—H10B109.5
N2—Ni1—O5178.99 (7)H10A—C10—H10C109.5
C7—O1—Ni1124.91 (18)H10B—C10—H10C109.5
C9—O2—Ni1125.12 (17)C12—C11—N2109.9 (2)
C1—O3—Ni1126.34 (17)C12—C11—C16119.6 (3)
C3—O4—Ni1125.35 (16)C16—C11—N2130.5 (2)
Ni1—O5—H5A107.3N1—C12—C11105.6 (2)
Ni1—O5—H5B111.2C13—C12—N1131.4 (3)
H5A—O5—H5B96.5C13—C12—C11123.0 (3)
C12—N1—C18126.1 (2)C12—C13—H13121.5
C17—N1—C12107.0 (2)C14—C13—C12116.9 (3)
C17—N1—C18126.8 (2)C14—C13—H13121.5
C11—N2—Ni1128.07 (15)C13—C14—H14119.6
C17—N2—Ni1127.06 (18)C13—C14—C15120.8 (3)
C17—N2—C11104.9 (2)C15—C14—H14119.6
H3A—N3—H3B120.0C14—C15—H15119.0
C17—N3—H3A120.0C16—C15—C14122.0 (3)
C17—N3—H3B120.0C16—C15—H15119.0
O3—C1—C2125.1 (2)C11—C16—H16121.2
O3—C1—C5115.7 (3)C15—C16—C11117.6 (3)
C2—C1—C5119.1 (3)C15—C16—H16121.2
C1—C2—H2116.6N2—C17—N1112.6 (2)
C3—C2—C1126.7 (3)N2—C17—N3125.1 (3)
C3—C2—H2116.6N3—C17—N1122.2 (2)
O4—C3—C2125.2 (2)N1—C18—H18A109.5
O4—C3—C4114.8 (2)N1—C18—H18B109.5
C2—C3—C4120.0 (3)N1—C18—H18C109.5
C3—C4—H4A109.5H18A—C18—H18B109.5
C3—C4—H4B109.5H18A—C18—H18C109.5
C3—C4—H4C109.5H18B—C18—H18C109.5
H4A—C4—H4B109.5C19—O6—H6109.5
H4A—C4—H4C109.5O6—C19—H19A109.1
H4B—C4—H4C109.5O6—C19—H19B109.1
C1—C5—H5C109.5O6—C19—C20112.6 (4)
C1—C5—H5D109.5H19A—C19—H19B107.8
C1—C5—H5E109.5C20—C19—H19A109.1
H5C—C5—H5D109.5C20—C19—H19B109.1
H5C—C5—H5E109.5C19—C20—H20A109.5
H5D—C5—H5E109.5C19—C20—H20B109.5
H6A—C6—H6B109.5C19—C20—H20C109.5
H6A—C6—H6C109.5H20A—C20—H20B109.5
H6B—C6—H6C109.5H20A—C20—H20C109.5
C7—C6—H6A109.5H20B—C20—H20C109.5
C7—C6—H6B109.5
Ni1—O1—C7—C6171.5 (2)C7—C8—C9—O23.4 (5)
Ni1—O1—C7—C88.9 (4)C7—C8—C9—C10174.4 (3)
Ni1—O2—C9—C813.7 (4)C11—N2—C17—N10.0 (3)
Ni1—O2—C9—C10168.4 (2)C11—N2—C17—N3179.3 (3)
Ni1—O3—C1—C26.1 (4)C11—C12—C13—C141.6 (5)
Ni1—O3—C1—C5173.9 (2)C12—N1—C17—N20.2 (3)
Ni1—O4—C3—C25.3 (4)C12—N1—C17—N3179.1 (3)
Ni1—O4—C3—C4175.92 (19)C12—C11—C16—C150.3 (4)
Ni1—N2—C11—C12179.46 (17)C12—C13—C14—C151.4 (5)
Ni1—N2—C11—C160.1 (4)C13—C14—C15—C160.8 (5)
Ni1—N2—C17—N1179.69 (17)C14—C15—C16—C110.1 (5)
Ni1—N2—C17—N30.4 (4)C16—C11—C12—N1179.8 (2)
O1—C7—C8—C96.1 (5)C16—C11—C12—C131.1 (4)
O3—C1—C2—C32.2 (5)C17—N1—C12—C110.3 (3)
N1—C12—C13—C14180.0 (3)C17—N1—C12—C13178.2 (3)
N2—C11—C12—N10.4 (3)C17—N2—C11—C120.2 (3)
N2—C11—C12—C13178.3 (3)C17—N2—C11—C16179.6 (3)
N2—C11—C16—C15179.0 (3)C18—N1—C12—C11176.5 (3)
C1—C2—C3—O42.6 (5)C18—N1—C12—C132.0 (5)
C1—C2—C3—C4176.1 (3)C18—N1—C17—N2176.4 (3)
C5—C1—C2—C3177.7 (3)C18—N1—C17—N33.0 (4)
C6—C7—C8—C9173.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O6i0.862.092.897 (3)156
O5—H5A···O4ii0.851.992.773 (3)152
O5—H5B···O2ii0.961.862.777 (3)160
O6—H6···O10.822.012.811 (4)166
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge support from the MIRAI FUND (JICA) and technical equipment support provided by the Institute of Bioorganic Chemistry of Academy Sciences of Uzbekistan.

References

First citationAblo, E., Dosso, O., Coulibaly, B., Adingra, K. F., Coulibaly, P. M. A., Achi, A. P. & Coulibali, S. (2023). Adv. Biol. Chem. 13, 182–191.  CrossRef Google Scholar
First citationAnzenhofer, K. & Hewitt, T. G. (1971). Z. Kristallogr. Cryst. Mater. 134, 54–68.  CrossRef Google Scholar
First citationBansal, Y. & Silakari, O. (2012). Bioorg. Med. Chem. 20, 6208–6236.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBhrigu, B., Siddiqui, N., Pathak, D., Alam, M. S., Ali, R. & Azad, B. (2012). Acta Pol. Pharm. 69, 53–62.  PubMed Google Scholar
First citationBinnemans, K. (2005). Rare-Earth Beta-Diketonates. In Handbook on the Physics and Chemistry of Rare Earths, edited by P. Vitalij, & J.-C. Bunzli, pp. 107–272. Amsterdam: Elsevier.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCaminati, V. & Grabow, J. U. (2006). J. Am. Chem. Soc. 128, 854–857.  CrossRef PubMed Google Scholar
First citationCramer, R. E., Cramer, S. W., Cramer, K. F., Chudyk, M. A. & Seff, K. (1977). Inorg. Chem. 16, 219–223.  CSD CrossRef Google Scholar
First citationDesai, K. G. & Desai, K. R. (2006). Bioorg. Med. Chem. 14, 8271–8279.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuan, Y. Y., Wu, D. F., Chen, H. H., Wang, Y. J., Li, L., Gao, H. L. & Cui, J. Z. (2022). Polyhedron, 225, 116070.  CSD CrossRef Google Scholar
First citationElnima, E. I., Zubair, M. Yu. & Al-Badr, A. A. (1981). Antimicrob. Agents Chemother. 19, 29–32.  CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHämmerling, S., Mann, L., Steinhauer, S., Kuntze-Fechner, M. W., Radius, U. & Riedel, S. (2018). Z. Anorg. Allg. Chem. 644, 1047–1050.  Google Scholar
First citationJain, A., Sharma, R. & Chaturvedi, S. S. (2013). Med. Chem. Res. 22, 4622–4632.  CrossRef Google Scholar
First citationJongh, L. A. de, Strasser, C. E., Raubenheimer, H. G. & Cronje, S. (2009). Polyhedron, 28, 3635–3641.  CSD CrossRef Google Scholar
First citationKabi, A. K., Sravani, S., Gujjarappa, R., Garg, A., Vodnala, N., Tyagi, U. & Malakar, C. C. (2022). Nanostructured Biomaterials: Basic Structures and Applications, edited by B. P. Swain, pp. 351–378. Dordrecht: Springer.  Google Scholar
First citationKeri, R. S., Hiremathad, A., Budagumpi, S. & Nagaraja, B. M. (2015). Chem. Biol. Drug Des. 86, 19–65.  Web of Science CrossRef PubMed Google Scholar
First citationKido, J., Nagai, K. & Ohashi, Y. (1990). Chem. Lett. 19, 657–660.  CrossRef Web of Science Google Scholar
First citationKuzmina, N. P. & Eliseeva, S. V. (2006). Russ. J. Inorg. Chem. 51, 73–88.  Google Scholar
First citationLi, G. R., Liu, J., Pan, Q., Song, Z. B., Luo, F. D., Wang, S. R., Zhang, X. L. & Zhou, X. (2009). Chem. Biodivers. 6, 2200–2208.  CrossRef PubMed Google Scholar
First citationMarinescu, M. (2023). Antibiotics, 12, 1220.  CrossRef PubMed Google Scholar
First citationMathew, B., Suresh, J. & Anbazhagan, S. (2016). J. Saudi Chem. Soc. 20, S132–S139.  Web of Science CrossRef CAS Google Scholar
First citationMorcoss, M. M., Abdelhafez, E. S. M. N., Ibrahem, R. A., Abdel-Rahman, H. M., Abdel-Aziz, M. & Abou El-Ella, D. A. (2020). Bioorg. Chem. 101, 103956.  CrossRef PubMed Google Scholar
First citationPathare, B. & Bansode, T. (2021). Results Chem. 3, 100200.  CrossRef Google Scholar
First citationRamanatham, V., Sanjay, D. V., Bobba, V. S. K., Umesh, N. B., Shekhar, B. B. & Uday, K. M. (2008). Eur. J. Med. Chem. 43, 986–995.  PubMed Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationShabana, K., Salahuddin, Mazumder, A., Singh, H., Kumar, R., Tyagi, S. & Kumar Yadav, R. (2023). ChemistrySelect, 8, e202300209.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, K. T., Young, S. C., DeBlasio, J. & Hamann, C. S. (2016). J. Chem. Educ. 93, 790–794.  CrossRef Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTajane, P. S. & Sawant, R. L. (2022). Int. J. Health Sci. 6, 7169–7179.  CrossRef Google Scholar
First citationThomas, M. H. (2001). 2,4-Pentandione. In Encyclopedia of Reagents for Organic Synthesis. Chichester: Wiley.  Google Scholar
First citationTighadouini, S., Roby, O., Mortada, S., Lakbaibi, Z., Radi, S., Al-Ali, A. & Warad, I. (2022). J. Mol. Struct. 1247, 131308.  CrossRef Google Scholar
First citationTownsend, L. B., Devivar, R. V., Turk, S. R., Nassiri, M. R. & Druck, J. K. (1995). J. Med. Chem. 38, 4098–4105.  CrossRef PubMed Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZheleznova, L., Sliusarchuk, L., Rogovtsov, O., Kuleshov, S. & Trunova, O. (2021). Mol. Cryst. Liq. Cryst. 717, 14–23.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds