research communications
2)6]Cl2·(18-crown-6)2·2H2O
of [Ni(OHaDepartment of Chemistry & Biochemistry, California State Polytechnic University, Pomona, 3801 W. Temple Ave., Pomona, CA 91768, USA
*Correspondence e-mail: sestieber@cpp.edu
The 2O)6]Cl2·2C12H24O6·2H2O, is reported. The contains half of the Ni(OH2)6 moiety with a formula of C12H32ClNi0.50O10 at 105 K and triclinic (P1) symmetry. The [Ni(OH2)6]2+ cation has close to ideal octahedral geometry with O—Ni—O bond angles that are within 3° of idealized values. The supramolecular structure includes hydrogen bonding between the water ligands, 18-crown-6 molecules, Cl− anions, and co-crystallized water solvent. Two crown ether molecules flank the [Ni(OH2)6]2+ molecule at the axial positions in a sandwich-like structure. The relatively symmetric hydrogen-bonding network is enabled by small Cl− counter-ions and likely influences the more idealized octahedral geometry of [Ni(OH2)6]2+.
of the title compound, hexaaquanickel(II) dichloride–1,4,7,10,13,16-hexaoxacyclooctadecane–water (1/2/2), [Ni(HKeywords: crystal structure; nickel; Ni(II); 18-crown-6; crown ether.
CCDC reference: 2391132
1. Chemical context
et al., 2019; Tondreau et al., 2013), but also have broader applications in materials, sensing, and medicines (Gokel et al., 2004; Li et al., 2017). Among the first reports of using a crown ether as a chelating agent for a metal was in 1967, demonstrating that can chelate directly to metals via the oxygen atoms, as evidenced by shifts in the IR spectra (Pedersen, 1967). The oxygen atoms on can also act as hydrogen-bond acceptors, with some examples of donors being NH4+ (Akutagawa et al., 2002), RNH3+ (Pedersen, 1967; Shinkai et al., 1985; Sutherland, 1986; Stoddart, 1988; Izatt et al., 1995), R2NH2+ (Kolchinski et al., 1995; Ashton et al., 1997), and M—OH2 (Cusack et al., 1984).
are common chelating agents that are widely used in organometallic chemistry to encapsulate counter-ions for more facile crystallization (Kundu18-Crown-6 has also been shown to stabilize octahedral metal complexes via hydrogen-bonding networks, for example, in metal nitrate complexes (Junk et al., 1998). The [18-crown-6][Ni(NO3)(H2O)5]NO3·H2O complex is reported to have a pseudo-octahedral NiII center, with one nitrate and five water ligands, although the nickel complex was not explicitly discussed in the paper, and the full structural data are not in the Cambridge Structural Database (Junk et al., 1998). The hydrogen-bonding network is reported to be between water ligands and two neighboring 18-crown-6 molecules, the nitrate counter-ion, and water, at distances ranging from 2.679 (9) to 3.05 (1) Å. Water ligands on NiII have also been shown to act as hydrogen-bond donors intramolecularly (Brazzolotto et al., 2019).
There are few crystallographically characterized systems containing [Ni(OH2)6]2+ and 18-crown-6, with two examples reported in the same study: [Ni(OH2)6][ClO4]2·(18-crown-6)2·2H2O and [Ni(OH2)6]3[NiBr2(H2O)4][Br]6·(18-crown-6)4·2H2O (Steed et al., 1998). This current work highlights the effect that a smaller Cl− ancillary counter-ion has on the supramolecular structure and octahedral distortion of [Ni(OH2)6]2+ co-crystallized with 18-crown-6.
2. Structural commentary
Two asymmetric units make up the structure of [Ni(OH2)6]Cl2·(18-crown-6)2·2H2O, which has two Cl− counter-ions to balance the NiII center in [Ni(OH2)6]2+ (Fig. 1). The [Ni(OH2)6]2+ has close to perfect octahedral geometry with O—Ni—O bond angles of 91.62 (3)° for O1—Ni1—O2, 91.05 (3)° for O1—Ni1—O3, and 92.90 (3)° for O2—Ni1—O2. The bond angles for all trans-water substituents on nickel are 180° (O—Ni—O), as a result of the triclinic (P) symmetry. This represents a much more symmetric [Ni(OH2)6]2+ cation than the previously reported structure with 18-crown-6, which had trans water-ligand angles in the range of 174.43 (7)–178.42 (7)° (Steed et al., 1998).
The Ni—O bond distances are 2.0310 (8) Å for Ni1—O1, 2.0567 (8) Å for Ni1—O2, and 2.0474 (8) Å for Ni1—O3. These distances are consistent with a slight axial compression for Ni1—O1, but it is not as pronounced as the axial Ni—O distance of 2.0066 (16) Å reported for [Ni(OH2)6][ClO4]2·(18-crown-6)2·2H2O (Steed et al., 1998).
3. Supramolecular features
The supramolecular structure of [Ni(OH2)6]Cl2·(18-crown-6)2·2H2O is stabilized via extensive hydrogen bonding (Figs. 2 and 3). The differences in Ni—O bond distances are rationalized by differing hydrogen-bonding interactions to each water moiety bound to Ni in the The axial water moiety has hydrogen bonding to only 18-crown-6, whereas the equatorial water moieties have hydrogen bonding to 18-crown-6 and chloride or water. The axial water moiety containing O1, H1C, and H1D, has hydrogen bonding to the neighboring 18-crown-6 molecule with distances of 1.973 (18) Å for O4⋯H1C and 1.956 (18) Å for O6⋯H1D (Table 1). By contrast, the equatorial water moiety containing O2, H2C, and H2D, has hydrogen bonding to the neighboring 18-crown-6 molecule with a distance of 1.991 (15) Å for O5⋯H2C, and to one Cl− atom with a distance of 2.335 (19) Å for Cl1⋯H2D. The second equatorial water moiety containing O3, H3C, and H3D, has hydrogen bonding to the neighboring 18-crown-6 molecule with a distance of 2.146 (18) Å for O7⋯H3D, and to one water molecule with a distance of 1.84 (2) Å for O10⋯H3C. Combined, these differing hydrogen-bonding partners for the H2O ligands result in the varying Ni—O bond distances in [Ni(OH2)6]2+. An additional hydrogen bond stabilizes the structure between H2O and Cl− with 2.30 (2) Å for H10D⋯Cl1.
The significant effect of the counter-ion on the supramolecular structure and hydrogen bonding is evident from the smaller Cl− counter-ions as compared to the ClO4− counter-ions in the previously reported structure (Steed et al., 1998). The counter-ion size and hydrogen bonding likely influences the [Ni(OH2)6]2+ geometry and level of distortion from octahedral symmetry. In both structures, each of the axial OH2 moieties forms two hydrogen bonds the neighboring 18-crown-6 molecule (Figs. 3 and 4). When Cl− counter-ions are present, one equatorial water forms a hydrogen bond to the top 18-crown-6 molecule, and one equatorial water forms a hydrogen bond to the bottom 18-crown-6 molecule, with both having an additional hydrogen bond each to Cl− counter-ions. The other two trans equatorial water ligands have hydrogen bonds to additional neighboring 18-crown-6 molecules and a water molecule each. The 1H NMR spectrum in CDCl3 suggests that at least some of the supramolecular structure is maintained in solution, with two proton signals at 3.52 and 3.58 ppm, assigned to the equatorial water ligands due to lack of HSQC or HMBC carbon correlations. This is significantly shifted from the expected shift for free water in CDCl3 at 1.56 ppm (Babij et al., 2016), and is consistent with a previous NMR and crystallographic study of {[(CH3)2SnCl2·H2O]2·18-crown-6}n, where water ligand hydrogen bonding to 18-crown-6 was maintained in non-coordinating solvents (Amini et al., 2006). The overall structure is therefore relatively symmetric with minimal distortion to the octahedral symmetry of [Ni(OH2)6]2+, and NMR data suggest that hydrogen bonding to the 18-crown-6 molecule is preserved in deuterated chloroform solvent.
The structure for [Ni(OH2)6][ClO4]2·(18-crown-6)2·2H2O is much less symmetric at a supramolecular level (Fig. 4), which is attributed to the ClO4− counter-ions (Steed et al., 1998). One equatorial water ligand forms a hydrogen bond to each of the top and bottom 18-crown-6 molecules, resulting in those molecules being brought closer to each other on one side. The flanking trans equatorial water ligands each form a hydrogen bond to a neighboring 18-crown-6 molecule, and a second hydrogen bond to a ClO4− counter-ion. This less symmetric network of hydrogen bonding results in stronger distortions in both the Ni—O bond lengths and O—Ni—O bond angles, as compared to the structure with Cl− counter-ions.
4. Database survey
The Cambridge Structural Database (Groom et al., 2016) has almost 400 structures containing a Ni(OH2)6 moiety; however, only two reported structures were found that contain 18-crown-6 (Web accessed June 3, 2024). The two reported structures are [Ni(OH2)6][ClO4]2·(18-crown-6)2·2H2O and [Ni(OH2)6]3[NiBr2(H2O)4][Br]6·(18-crown-6)4·2H2O (CSD Nos. 113101 and 113105; Steed et al., 1998). By contrast, there are 64 reported structures in the Cambridge Structural Database that contain a Ni(OH2)6 moiety with 15-crown-5 (Web accessed June 3, 2024).
5. Synthesis and crystallization
General considerations. All reagents were purchased from commercial suppliers and used without further purification. 1H and 13C NMR data were collected on a Varian 400 MHz instrument and referenced to residual CHCl3 (7.26 ppm). Full NMR data can be accessed through Zenodo (Brannon & Stieber, 2024).
Synthesis of [Ni(OH2)6]Cl2·(18-crown-6)2·2H2O. A scintillation vial was charged with 0.025 g (0.19 mmol, 1 eq.) of NiCl2 to 0.105 g (0.386 mmol, 2 eq.) of 18-crown-6 ether in 10 mL of tetrahydrofuran or acetonitrile. The vial was heated to 353 K for 1.5 h and placed in a 277 K fridge to cool for 1 week. After 1 week, the cap was removed for slow evaporation over 5 days, resulting in a non-crystalline light-blue solid. The solid was taken into deionized water and light blue crystals suitable for X-ray diffraction were obtained after 2 months in a 277 K fridge and identified as [Ni(OH2)6(18-crown-6)2]Cl2·2H2O. 1H NMR (CDCl3, 399.777 MHz): δ = 3.68 (s, 48H, CH2-18-crown-6), 3.58 (s, 4H, H2Oeq—Ni), 3.52 (s, 4H, H2Oeq—Ni). 13C NMR (CDCl3, 399.777 MHz): δ = 70.72 (s, 18-crown-6). Analysis calculated for C24H64Cl2Ni1O20: C, 35.93; H, 8.04; N, 0.00. Found: C, 35.97; H, 8.00; N, <0.10.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms attached to oxygen were freely refined, and those attached to carbon were refined using a riding model.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2391132
https://doi.org/10.1107/S2056989024010041/oi2011sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024010041/oi2011Isup2.hkl
[Ni(H2O)6]Cl2·2C12H24O6·2H2O | Z = 2 |
Mr = 401.18 | F(000) = 430 |
Triclinic, P1 | Dx = 1.413 Mg m−3 |
a = 7.6472 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.4180 (3) Å | Cell parameters from 401129 reflections |
c = 12.7214 (3) Å | θ = 3.3–61.8° |
α = 77.288 (1)° | µ = 0.73 mm−1 |
β = 77.649 (1)° | T = 105 K |
γ = 75.400 (1)° | Prism, blue |
V = 943.16 (4) Å3 | 0.3 × 0.2 × 0.15 mm |
Bruker D8 Ventrue Kappa diffractometer | 4021 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.030 |
Absorption correction: multi-scan (SADABS; Krause et al. 2015) | θmax = 27.1°, θmin = 2.8° |
Tmin = 0.708, Tmax = 0.753 | h = −9→9 |
57779 measured reflections | k = −13→13 |
4152 independent reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.022 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.056 | w = 1/[σ2(Fo2) + (0.0229P)2 + 0.4776P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
4152 reflections | Δρmax = 0.55 e Å−3 |
243 parameters | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.500000 | 0.500000 | 0.500000 | 0.00937 (6) | |
O1 | 0.74883 (11) | 0.54896 (9) | 0.47148 (7) | 0.01664 (16) | |
H1C | 0.821 (2) | 0.5382 (17) | 0.4171 (15) | 0.030 (4)* | |
H1D | 0.778 (2) | 0.5951 (18) | 0.5023 (14) | 0.029 (4)* | |
O2 | 0.41319 (11) | 0.65045 (8) | 0.37574 (6) | 0.01457 (15) | |
H2C | 0.305 (2) | 0.6640 (11) | 0.3818 (7) | 0.022* | |
H2D | 0.444 (2) | 0.7214 (19) | 0.3595 (14) | 0.033 (4)* | |
O3 | 0.40189 (11) | 0.62253 (8) | 0.61474 (7) | 0.01512 (16) | |
H3C | 0.408 (3) | 0.700 (2) | 0.5864 (9) | 0.050 (6)* | |
H3D | 0.405 (2) | 0.6015 (17) | 0.6772 (15) | 0.030 (4)* | |
Cl1 | 0.47188 (4) | 0.94579 (3) | 0.31034 (2) | 0.02239 (7) | |
O4 | 0.98032 (11) | 0.51777 (8) | 0.27500 (6) | 0.01835 (17) | |
O5 | 1.04252 (11) | 0.72559 (8) | 0.36473 (6) | 0.01574 (16) | |
O6 | 0.83961 (11) | 0.71618 (8) | 0.57969 (7) | 0.01876 (17) | |
C1 | 1.04444 (16) | 0.38560 (12) | 0.24807 (10) | 0.0199 (2) | |
H1A | 1.082780 | 0.393417 | 0.167909 | 0.024* | |
H1B | 0.942598 | 0.337326 | 0.269884 | 0.024* | |
C2 | 1.08752 (17) | 0.61212 (12) | 0.21450 (9) | 0.0205 (2) | |
H2A | 1.081962 | 0.625478 | 0.135692 | 0.025* | |
H2B | 1.217120 | 0.577741 | 0.224260 | 0.025* | |
C3 | 1.01268 (17) | 0.74326 (12) | 0.25528 (9) | 0.0209 (2) | |
H3A | 1.074762 | 0.813511 | 0.208231 | 0.025* | |
H3B | 0.879844 | 0.772696 | 0.252643 | 0.025* | |
C4 | 0.95456 (17) | 0.84335 (11) | 0.41173 (10) | 0.0209 (2) | |
H4A | 0.826966 | 0.874342 | 0.397501 | 0.025* | |
H4B | 1.020641 | 0.916732 | 0.378365 | 0.025* | |
C5 | 0.95495 (17) | 0.80970 (12) | 0.53261 (10) | 0.0214 (2) | |
H5A | 1.081248 | 0.769581 | 0.547092 | 0.026* | |
H5B | 0.908820 | 0.892442 | 0.565154 | 0.026* | |
C6 | 0.79639 (16) | 0.69565 (12) | 0.69632 (10) | 0.0198 (2) | |
H6A | 0.693210 | 0.648771 | 0.720440 | 0.024* | |
H6B | 0.755295 | 0.784474 | 0.719885 | 0.024* | |
O7 | 0.36897 (11) | 0.62695 (8) | 0.84393 (6) | 0.01766 (17) | |
O8 | 0.25973 (11) | 0.31411 (8) | 0.99165 (6) | 0.01729 (16) | |
O9 | −0.03393 (11) | 0.18666 (8) | 1.05124 (6) | 0.01760 (16) | |
C7 | 0.35114 (16) | 0.75844 (11) | 0.86804 (9) | 0.0179 (2) | |
H7A | 0.447088 | 0.800913 | 0.817911 | 0.021* | |
H7B | 0.374123 | 0.748131 | 0.943456 | 0.021* | |
C8 | 0.29069 (15) | 0.53668 (11) | 0.93233 (9) | 0.0151 (2) | |
H8A | 0.155630 | 0.567191 | 0.946136 | 0.018* | |
H8B | 0.337591 | 0.534152 | 0.999674 | 0.018* | |
C9 | 0.34296 (15) | 0.39801 (11) | 0.90153 (9) | 0.0154 (2) | |
H9A | 0.296647 | 0.399490 | 0.834220 | 0.018* | |
H9B | 0.477788 | 0.365714 | 0.889178 | 0.018* | |
C10 | 0.27876 (15) | 0.18097 (11) | 0.97362 (9) | 0.0167 (2) | |
H10A | 0.406193 | 0.129700 | 0.976358 | 0.020* | |
H10B | 0.250080 | 0.183574 | 0.900792 | 0.020* | |
C11 | 0.14764 (15) | 0.11431 (11) | 1.06188 (9) | 0.0170 (2) | |
H11A | 0.162465 | 0.019455 | 1.054209 | 0.020* | |
H11B | 0.173090 | 0.115194 | 1.134794 | 0.020* | |
C12 | −0.16698 (16) | 0.14810 (11) | 1.14179 (9) | 0.0174 (2) | |
H12A | −0.129468 | 0.151928 | 1.210664 | 0.021* | |
H12B | −0.175679 | 0.054352 | 1.143799 | 0.021* | |
O10 | 0.36399 (13) | 0.88510 (9) | 0.56722 (8) | 0.02240 (18) | |
H10C | 0.419 (3) | 0.923 (2) | 0.5967 (16) | 0.041 (5)* | |
H10D | 0.398 (3) | 0.9071 (19) | 0.4982 (17) | 0.038 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.00966 (9) | 0.00851 (9) | 0.01044 (9) | −0.00317 (6) | −0.00040 (6) | −0.00254 (6) |
O1 | 0.0145 (4) | 0.0227 (4) | 0.0167 (4) | −0.0104 (3) | 0.0035 (3) | −0.0103 (3) |
O2 | 0.0130 (4) | 0.0122 (4) | 0.0178 (4) | −0.0037 (3) | −0.0030 (3) | 0.0002 (3) |
O3 | 0.0218 (4) | 0.0117 (4) | 0.0116 (4) | −0.0040 (3) | −0.0014 (3) | −0.0025 (3) |
Cl1 | 0.02783 (15) | 0.01424 (13) | 0.02534 (15) | −0.00744 (11) | −0.00474 (11) | −0.00032 (10) |
O4 | 0.0194 (4) | 0.0197 (4) | 0.0153 (4) | −0.0040 (3) | 0.0016 (3) | −0.0065 (3) |
O5 | 0.0155 (4) | 0.0136 (4) | 0.0179 (4) | −0.0015 (3) | −0.0043 (3) | −0.0030 (3) |
O6 | 0.0210 (4) | 0.0196 (4) | 0.0188 (4) | −0.0061 (3) | −0.0045 (3) | −0.0068 (3) |
C1 | 0.0180 (5) | 0.0260 (6) | 0.0184 (5) | −0.0046 (4) | −0.0010 (4) | −0.0113 (5) |
C2 | 0.0208 (6) | 0.0239 (6) | 0.0136 (5) | −0.0046 (5) | 0.0028 (4) | −0.0021 (4) |
C3 | 0.0258 (6) | 0.0182 (5) | 0.0151 (5) | −0.0031 (4) | −0.0032 (4) | 0.0023 (4) |
C4 | 0.0248 (6) | 0.0120 (5) | 0.0266 (6) | −0.0040 (4) | −0.0041 (5) | −0.0048 (4) |
C5 | 0.0211 (6) | 0.0214 (6) | 0.0270 (6) | −0.0080 (5) | −0.0049 (5) | −0.0105 (5) |
C6 | 0.0160 (5) | 0.0234 (6) | 0.0217 (6) | −0.0035 (4) | −0.0002 (4) | −0.0110 (5) |
O7 | 0.0225 (4) | 0.0152 (4) | 0.0140 (4) | −0.0077 (3) | 0.0035 (3) | −0.0023 (3) |
O8 | 0.0224 (4) | 0.0142 (4) | 0.0143 (4) | −0.0067 (3) | 0.0027 (3) | −0.0032 (3) |
O9 | 0.0151 (4) | 0.0186 (4) | 0.0157 (4) | −0.0034 (3) | −0.0003 (3) | 0.0015 (3) |
C7 | 0.0180 (5) | 0.0170 (5) | 0.0198 (5) | −0.0081 (4) | 0.0007 (4) | −0.0043 (4) |
C8 | 0.0155 (5) | 0.0165 (5) | 0.0125 (5) | −0.0054 (4) | 0.0000 (4) | −0.0006 (4) |
C9 | 0.0153 (5) | 0.0174 (5) | 0.0126 (5) | −0.0050 (4) | 0.0001 (4) | −0.0015 (4) |
C10 | 0.0165 (5) | 0.0141 (5) | 0.0189 (5) | −0.0023 (4) | −0.0012 (4) | −0.0045 (4) |
C11 | 0.0173 (5) | 0.0130 (5) | 0.0195 (5) | −0.0017 (4) | −0.0040 (4) | −0.0012 (4) |
C12 | 0.0200 (5) | 0.0161 (5) | 0.0152 (5) | −0.0072 (4) | 0.0005 (4) | −0.0006 (4) |
O10 | 0.0265 (5) | 0.0146 (4) | 0.0268 (5) | −0.0077 (3) | −0.0014 (4) | −0.0044 (3) |
Ni1—O1 | 2.0310 (8) | C4—C5 | 1.5007 (17) |
Ni1—O1i | 2.0310 (8) | C5—H5A | 0.9900 |
Ni1—O2 | 2.0567 (8) | C5—H5B | 0.9900 |
Ni1—O2i | 2.0567 (8) | C6—H6A | 0.9900 |
Ni1—O3 | 2.0474 (8) | C6—H6B | 0.9900 |
Ni1—O3i | 2.0473 (8) | O7—C7 | 1.4359 (13) |
O1—H1C | 0.796 (19) | O7—C8 | 1.4275 (13) |
O1—H1D | 0.782 (19) | O8—C9 | 1.4179 (13) |
O2—H2C | 0.796 (18) | O8—C10 | 1.4218 (13) |
O2—H2D | 0.803 (19) | O9—C11 | 1.4221 (13) |
O3—H3C | 0.81 (2) | O9—C12 | 1.4229 (13) |
O3—H3D | 0.780 (19) | C7—H7A | 0.9900 |
O4—C1 | 1.4314 (14) | C7—H7B | 0.9900 |
O4—C2 | 1.4262 (14) | C7—C12iii | 1.5091 (16) |
O5—C3 | 1.4236 (14) | C8—H8A | 0.9900 |
O5—C4 | 1.4317 (13) | C8—H8B | 0.9900 |
O6—C5 | 1.4270 (14) | C8—C9 | 1.5137 (15) |
O6—C6 | 1.4292 (14) | C9—H9A | 0.9900 |
C1—H1A | 0.9900 | C9—H9B | 0.9900 |
C1—H1B | 0.9900 | C10—H10A | 0.9900 |
C1—C6ii | 1.5113 (17) | C10—H10B | 0.9900 |
C2—H2A | 0.9900 | C10—C11 | 1.5082 (15) |
C2—H2B | 0.9900 | C11—H11A | 0.9900 |
C2—C3 | 1.5013 (17) | C11—H11B | 0.9900 |
C3—H3A | 0.9900 | C12—H12A | 0.9900 |
C3—H3B | 0.9900 | C12—H12B | 0.9900 |
C4—H4A | 0.9900 | O10—H10C | 0.83 (2) |
C4—H4B | 0.9900 | O10—H10D | 0.86 (2) |
O1—Ni1—O1i | 180.0 | O6—C5—H5A | 110.0 |
O1—Ni1—O2i | 88.38 (3) | O6—C5—H5B | 110.0 |
O1i—Ni1—O2i | 91.62 (3) | C4—C5—H5A | 110.0 |
O1—Ni1—O2 | 91.62 (3) | C4—C5—H5B | 110.0 |
O1i—Ni1—O2 | 88.38 (3) | H5A—C5—H5B | 108.4 |
O1—Ni1—O3i | 88.95 (3) | O6—C6—C1ii | 113.46 (9) |
O1—Ni1—O3 | 91.05 (3) | O6—C6—H6A | 108.9 |
O1i—Ni1—O3i | 91.05 (3) | O6—C6—H6B | 108.9 |
O1i—Ni1—O3 | 88.95 (3) | C1ii—C6—H6A | 108.9 |
O2—Ni1—O2i | 180.0 | C1ii—C6—H6B | 108.9 |
O3—Ni1—O2i | 87.10 (3) | H6A—C6—H6B | 107.7 |
O3i—Ni1—O2 | 87.10 (3) | C8—O7—C7 | 113.97 (8) |
O3—Ni1—O2 | 92.90 (3) | C9—O8—C10 | 113.64 (8) |
O3i—Ni1—O2i | 92.90 (3) | C11—O9—C12 | 113.03 (8) |
O3i—Ni1—O3 | 180.0 | O7—C7—H7A | 108.6 |
Ni1—O1—H1C | 122.3 (12) | O7—C7—H7B | 108.6 |
Ni1—O1—H1D | 126.2 (13) | O7—C7—C12iii | 114.74 (9) |
H1C—O1—H1D | 109.8 (17) | H7A—C7—H7B | 107.6 |
Ni1—O2—H2C | 109.5 | C12iii—C7—H7A | 108.6 |
Ni1—O2—H2D | 123.9 (13) | C12iii—C7—H7B | 108.6 |
H2C—O2—H2D | 108.9 | O7—C8—H8A | 110.1 |
Ni1—O3—H3C | 109.5 | O7—C8—H8B | 110.1 |
Ni1—O3—H3D | 126.3 (13) | O7—C8—C9 | 108.12 (8) |
H3C—O3—H3D | 117.7 | H8A—C8—H8B | 108.4 |
C2—O4—C1 | 114.07 (9) | C9—C8—H8A | 110.1 |
C3—O5—C4 | 111.15 (9) | C9—C8—H8B | 110.1 |
C5—O6—C6 | 114.59 (9) | O8—C9—C8 | 105.27 (8) |
O4—C1—H1A | 109.1 | O8—C9—H9A | 110.7 |
O4—C1—H1B | 109.1 | O8—C9—H9B | 110.7 |
O4—C1—C6ii | 112.49 (9) | C8—C9—H9A | 110.7 |
H1A—C1—H1B | 107.8 | C8—C9—H9B | 110.7 |
C6ii—C1—H1A | 109.1 | H9A—C9—H9B | 108.8 |
C6ii—C1—H1B | 109.1 | O8—C10—H10A | 110.1 |
O4—C2—H2A | 110.0 | O8—C10—H10B | 110.1 |
O4—C2—H2B | 110.0 | O8—C10—C11 | 107.97 (9) |
O4—C2—C3 | 108.55 (9) | H10A—C10—H10B | 108.4 |
H2A—C2—H2B | 108.4 | C11—C10—H10A | 110.1 |
C3—C2—H2A | 110.0 | C11—C10—H10B | 110.1 |
C3—C2—H2B | 110.0 | O9—C11—C10 | 108.25 (9) |
O5—C3—C2 | 109.06 (9) | O9—C11—H11A | 110.0 |
O5—C3—H3A | 109.9 | O9—C11—H11B | 110.0 |
O5—C3—H3B | 109.9 | C10—C11—H11A | 110.0 |
C2—C3—H3A | 109.9 | C10—C11—H11B | 110.0 |
C2—C3—H3B | 109.9 | H11A—C11—H11B | 108.4 |
H3A—C3—H3B | 108.3 | O9—C12—C7iii | 109.84 (9) |
O5—C4—H4A | 109.9 | O9—C12—H12A | 109.7 |
O5—C4—H4B | 109.9 | O9—C12—H12B | 109.7 |
O5—C4—C5 | 108.90 (9) | C7iii—C12—H12A | 109.7 |
H4A—C4—H4B | 108.3 | C7iii—C12—H12B | 109.7 |
C5—C4—H4A | 109.9 | H12A—C12—H12B | 108.2 |
C5—C4—H4B | 109.9 | H10C—O10—H10D | 105.9 (18) |
O6—C5—C4 | 108.27 (9) | ||
O4—C2—C3—O5 | 66.72 (12) | O7—C8—C9—O8 | −179.36 (8) |
O5—C4—C5—O6 | −66.75 (12) | O8—C10—C11—O9 | 62.92 (11) |
C1—O4—C2—C3 | −176.61 (9) | C7—O7—C8—C9 | −172.00 (9) |
C2—O4—C1—C6ii | 80.37 (12) | C8—O7—C7—C12iii | −80.86 (12) |
C3—O5—C4—C5 | 167.84 (9) | C9—O8—C10—C11 | −166.27 (9) |
C4—O5—C3—C2 | −173.18 (9) | C10—O8—C9—C8 | 174.26 (9) |
C5—O6—C6—C1ii | −72.73 (12) | C11—O9—C12—C7iii | 172.32 (9) |
C6—O6—C5—C4 | −167.84 (9) | C12—O9—C11—C10 | −169.24 (9) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1C···O4 | 0.797 (18) | 1.973 (18) | 2.7679 (12) | 174.7 (17) |
O1—H1D···O6 | 0.780 (18) | 1.956 (18) | 2.7360 (12) | 177.3 (17) |
O2—H2C···O5iv | 0.79 (2) | 1.99 (2) | 2.7695 (12) | 167 (1) |
O2—H2D···Cl1 | 0.803 (19) | 2.335 (19) | 3.1258 (9) | 168.6 (16) |
O3—H3C···O10 | 0.82 (2) | 1.84 (2) | 2.6229 (12) | 160 (2) |
O3—H3D···O7 | 0.780 (18) | 2.146 (18) | 2.8819 (11) | 157.4 (17) |
O10—H10C···Cl1v | 0.83 (2) | 2.38 (2) | 3.2038 (10) | 171 (2) |
O10—H10D···Cl1 | 0.86 (2) | 2.30 (2) | 3.1559 (10) | 173 (2) |
Symmetry codes: (iv) x−1, y, z; (v) −x+1, −y+2, −z+1. |
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. 1847926 to S. Chantal E. Stieber; award No. 1040566); Camille and Henry Dreyfus Foundation (award to S. Chantal E. Stieber); US Department of Defense, US Army (award No. W911NF-17-1-0537 to S. Chantal E. Stieber).
References
Amini, M. M., Azadmher, A., Bijanzadeh, H. R. & Hadipour, N. (2006). J. Incl Phenom. Macrocycl Chem. 54, 77–80. CrossRef CAS Google Scholar
Ashton, P. R., Ballardini, R., Balzani, V., Gómez-López, M., Lawrence, S. E., Martínez-Díaz, M. V., Montalti, M., Piersanti, A., Prodi, L., Stoddart, J. F. & Williams, D. J. (1997). J. Am. Chem. Soc. 119, 10641–10651. CSD CrossRef CAS Web of Science Google Scholar
Akutagawa, T., Hasegawa, T., Nakamura, T., Takeda, S., Inabe, T., Sugiura, K., Sakata, Y. & Underhill, A. E. (2000). Inorg. Chem. 39, 2645–2651. Web of Science CSD CrossRef PubMed CAS Google Scholar
Babij, N. R., McCusker, E. O., Whiteker, G. T., Canturk, B., Choy, N., Creemer, L. C., Amicis, C. V. D., Hewlett, N. M., Johnson, P. L., Knobelsdorf, J. A., Li, F., Lorsbach, B. A., Nugent, B. M., Ryan, S. J., Smith, M. R. & Yang, Q. (2016). Org. Process Res. Dev. 20, 661–667. CrossRef CAS Google Scholar
Brannon, J. P. & Stieber, S. C. E. (2024). Zenodo, https://doi.org/10.5281/zenodo.11544292. Google Scholar
Brazzolotto, D., Bogart, J. A., Ross, D. L., Ziller, J. W. & Borovik, A. S. (2019). Inorg. Chim. Acta, 495, 118960. CSD CrossRef Google Scholar
Bruker (2016). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cusack, P. A., Patel, B. N., Smith, P. J., Allen, D. W. & Nowell, I. W. (1984). J. Chem. Soc. Dalton Trans. pp. 1239–1243. CSD CrossRef Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gokel, G. W., Leevy, W. M. & Weber, M. E. (2004). Chem. Rev. 104, 2723–2750. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Izatt, R. M., Pawlak, K., Bradshaw, J. S. & Bruening, R. L. (1995). Chem. Rev. 95, 2529–2586. CrossRef CAS Web of Science Google Scholar
Junk, P. C., Lynch, S. M. & McCool, B. J. (1998). Supramol. Chem. 9, 151–158. CSD CrossRef CAS Google Scholar
Kolchinski, A. G., Busch, D. H. & Alcock, N. W. (1995). J. Chem. Soc. Chem. Commun. pp. 1289–1291. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kundu, S., Phu, P. N., Ghosh, P., Kozimor, S. A., Bertke, J. A., Stieber, S. C. E. & Warren, T. H. (2019). J. Am. Chem. Soc. 141, 1415–1419. CSD CrossRef CAS PubMed Google Scholar
Li, J., Yim, D., Jang, W.-D. & Yoon, J. (2017). Chem. Soc. Rev. 46, 2437–2458. CrossRef CAS PubMed Google Scholar
Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017–7036. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shinkai, S., Ishihara, M., Ueda, K. & Manabe, O. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 511–518. CrossRef Google Scholar
Steed, J. W., McCool, B. J. & Junk, P. C. (1998). J. Chem. Soc. Dalton Trans., pp. 3417–3424. Google Scholar
Stoddart, J. F. (1988). Top. Stereochem. 17, 207–288. CrossRef Google Scholar
Sutherland, I. O. (1986). Chem. Soc. Rev. 15, 63–91. CrossRef CAS Google Scholar
Tondreau, A. M., Stieber, S. C. E., Milsmann, C., Lobkovsky, E., Weyhermüller, T., Semproni, S. P. & Chirik, P. J. (2013). Inorg. Chem. 52, 635–646. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.