research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [Ni(OH2)6]Cl2·(18-crown-6)2·2H2O

crossmark logo

aDepartment of Chemistry & Biochemistry, California State Polytechnic University, Pomona, 3801 W. Temple Ave., Pomona, CA 91768, USA
*Correspondence e-mail: sestieber@cpp.edu

Edited by S.-L. Zheng, Harvard University, USA (Received 28 August 2024; accepted 14 October 2024; online 24 October 2024)

The crystal structure of the title compound, hexa­aqua­nickel(II) dichloride–1,4,7,10,13,16-hexa­oxa­cyclo­octa­deca­ne–water (1/2/2), [Ni(H2O)6]Cl2·2C12H24O6·2H2O, is reported. The asymmetric unit contains half of the Ni(OH2)6 moiety with a formula of C12H32ClNi0.50O10 at 105 K and triclinic (P1) symmetry. The [Ni(OH2)6]2+ cation has close to ideal octa­hedral geometry with O—Ni—O bond angles that are within 3° of idealized values. The supra­molecular structure includes hydrogen bonding between the water ligands, 18-crown-6 mol­ecules, Cl anions, and co-crystallized water solvent. Two crown ether mol­ecules flank the [Ni(OH2)6]2+ mol­ecule at the axial positions in a sandwich-like structure. The relatively symmetric hydrogen-bonding network is enabled by small Cl counter-ions and likely influences the more idealized octa­hedral geometry of [Ni(OH2)6]2+.

1. Chemical context

Crown ethers are common chelating agents that are widely used in organometallic chemistry to encapsulate counter-ions for more facile crystallization (Kundu et al., 2019[Kundu, S., Phu, P. N., Ghosh, P., Kozimor, S. A., Bertke, J. A., Stieber, S. C. E. & Warren, T. H. (2019). J. Am. Chem. Soc. 141, 1415-1419.]; Tondreau et al., 2013[Tondreau, A. M., Stieber, S. C. E., Milsmann, C., Lobkovsky, E., Weyhermüller, T., Semproni, S. P. & Chirik, P. J. (2013). Inorg. Chem. 52, 635-646.]), but crown ethers also have broader applications in materials, sensing, and medicines (Gokel et al., 2004[Gokel, G. W., Leevy, W. M. & Weber, M. E. (2004). Chem. Rev. 104, 2723-2750.]; Li et al., 2017[Li, J., Yim, D., Jang, W.-D. & Yoon, J. (2017). Chem. Soc. Rev. 46, 2437-2458.]). Among the first reports of using a crown ether as a chelating agent for a metal was in 1967, demonstrating that crown ethers can chelate directly to metals via the oxygen atoms, as evidenced by shifts in the IR spectra (Pedersen, 1967[Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.]). The oxygen atoms on crown ethers can also act as hydrogen-bond acceptors, with some examples of donors being NH4+ (Akutagawa et al., 2002[Akutagawa, T., Hasegawa, T., Nakamura, T., Takeda, S., Inabe, T., Sugiura, K., Sakata, Y. & Underhill, A. E. (2000). Inorg. Chem. 39, 2645-2651.]), RNH3+ (Pedersen, 1967[Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.]; Shinkai et al., 1985[Shinkai, S., Ishihara, M., Ueda, K. & Manabe, O. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 511-518.]; Sutherland, 1986[Sutherland, I. O. (1986). Chem. Soc. Rev. 15, 63-91.]; Stoddart, 1988[Stoddart, J. F. (1988). Top. Stereochem. 17, 207-288.]; Izatt et al., 1995[Izatt, R. M., Pawlak, K., Bradshaw, J. S. & Bruening, R. L. (1995). Chem. Rev. 95, 2529-2586.]), R2NH2+ (Kolchinski et al., 1995[Kolchinski, A. G., Busch, D. H. & Alcock, N. W. (1995). J. Chem. Soc. Chem. Commun. pp. 1289-1291.]; Ashton et al., 1997[Ashton, P. R., Ballardini, R., Balzani, V., Gómez-López, M., Lawrence, S. E., Martínez-Díaz, M. V., Montalti, M., Piersanti, A., Prodi, L., Stoddart, J. F. & Williams, D. J. (1997). J. Am. Chem. Soc. 119, 10641-10651.]), and M—OH2 (Cusack et al., 1984[Cusack, P. A., Patel, B. N., Smith, P. J., Allen, D. W. & Nowell, I. W. (1984). J. Chem. Soc. Dalton Trans. pp. 1239-1243.]).

18-Crown-6 has also been shown to stabilize octa­hedral metal complexes via hydrogen-bonding networks, for example, in metal nitrate complexes (Junk et al., 1998[Junk, P. C., Lynch, S. M. & McCool, B. J. (1998). Supramol. Chem. 9, 151-158.]). The [18-crown-6][Ni(NO3)(H2O)5]NO3·H2O complex is reported to have a pseudo-octa­hedral NiII center, with one nitrate and five water ligands, although the nickel complex was not explicitly discussed in the paper, and the full structural data are not in the Cambridge Structural Database (Junk et al., 1998[Junk, P. C., Lynch, S. M. & McCool, B. J. (1998). Supramol. Chem. 9, 151-158.]). The hydrogen-bonding network is reported to be between water ligands and two neighboring 18-crown-6 mol­ecules, the nitrate counter-ion, and water, at distances ranging from 2.679 (9) to 3.05 (1) Å. Water ligands on NiII have also been shown to act as hydrogen-bond donors intra­molecularly (Brazzolotto et al., 2019[Brazzolotto, D., Bogart, J. A., Ross, D. L., Ziller, J. W. & Borovik, A. S. (2019). Inorg. Chim. Acta, 495, 118960.]).

There are few crystallographically characterized systems containing [Ni(OH2)6]2+ and 18-crown-6, with two examples reported in the same study: [Ni(OH2)6][ClO4]2·(18-crown-6)2·2H2O and [Ni(OH2)6]3[NiBr2(H2O)4][Br]6·(18-crown-6)4·2H2O (Steed et al., 1998[Steed, J. W., McCool, B. J. & Junk, P. C. (1998). J. Chem. Soc. Dalton Trans., pp. 3417-3424.]). This current work highlights the effect that a smaller Cl ancillary counter-ion has on the supra­molecular structure and octa­hedral distortion of [Ni(OH2)6]2+ co-crystallized with 18-crown-6.

[Scheme 1]

2. Structural commentary

Two asymmetric units make up the structure of [Ni(OH2)6]Cl2·(18-crown-6)2·2H2O, which has two Cl counter-ions to balance the NiII center in [Ni(OH2)6]2+ (Fig. 1[link]). The [Ni(OH2)6]2+ has close to perfect octa­hedral geometry with O—Ni—O bond angles of 91.62 (3)° for O1—Ni1—O2, 91.05 (3)° for O1—Ni1—O3, and 92.90 (3)° for O2—Ni1—O2. The bond angles for all trans-water substituents on nickel are 180° (O—Ni—O), as a result of the triclinic (P[\overline{1}]) symmetry. This represents a much more symmetric [Ni(OH2)6]2+ cation than the previously reported structure with 18-crown-6, which had trans water-ligand angles in the range of 174.43 (7)–178.42 (7)° (Steed et al., 1998[Steed, J. W., McCool, B. J. & Junk, P. C. (1998). J. Chem. Soc. Dalton Trans., pp. 3417-3424.]).

[Figure 1]
Figure 1
View of [Ni(OH2)6]Cl2·(18-crown-6)2·2H2O with 50% probability ellipsoids. H atoms are omitted for clarity.

The Ni—O bond distances are 2.0310 (8) Å for Ni1—O1, 2.0567 (8) Å for Ni1—O2, and 2.0474 (8) Å for Ni1—O3. These distances are consistent with a slight axial compression for Ni1—O1, but it is not as pronounced as the axial Ni—O distance of 2.0066 (16) Å reported for [Ni(OH2)6][ClO4]2·(18-crown-6)2·2H2O (Steed et al., 1998[Steed, J. W., McCool, B. J. & Junk, P. C. (1998). J. Chem. Soc. Dalton Trans., pp. 3417-3424.]).

3. Supra­molecular features

The supra­molecular structure of [Ni(OH2)6]Cl2·(18-crown-6)2·2H2O is stabilized via extensive hydrogen bonding (Figs. 2[link] and 3[link]). The differences in Ni—O bond distances are rationalized by differing hydrogen-bonding inter­actions to each water moiety bound to Ni in the asymmetric unit. The axial water moiety has hydrogen bonding to only 18-crown-6, whereas the equatorial water moieties have hydrogen bonding to 18-crown-6 and chloride or water. The axial water moiety containing O1, H1C, and H1D, has hydrogen bonding to the neighboring 18-crown-6 mol­ecule with distances of 1.973 (18) Å for O4⋯H1C and 1.956 (18) Å for O6⋯H1D (Table 1[link]). By contrast, the equatorial water moiety containing O2, H2C, and H2D, has hydrogen bonding to the neighboring 18-crown-6 mol­ecule with a distance of 1.991 (15) Å for O5⋯H2C, and to one Cl atom with a distance of 2.335 (19) Å for Cl1⋯H2D. The second equatorial water moiety containing O3, H3C, and H3D, has hydrogen bonding to the neighboring 18-crown-6 mol­ecule with a distance of 2.146 (18) Å for O7⋯H3D, and to one water mol­ecule with a distance of 1.84 (2) Å for O10⋯H3C. Combined, these differing hydrogen-bonding partners for the H2O ligands result in the varying Ni—O bond distances in [Ni(OH2)6]2+. An additional hydrogen bond stabilizes the structure between H2O and Cl with 2.30 (2) Å for H10D⋯Cl1.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯O4 0.797 (18) 1.973 (18) 2.7679 (12) 174.7 (17)
O1—H1D⋯O6 0.780 (18) 1.956 (18) 2.7360 (12) 177.3 (17)
O2—H2C⋯O5i 0.79 (2) 1.99 (2) 2.7695 (12) 167 (1)
O2—H2D⋯Cl1 0.803 (19) 2.335 (19) 3.1258 (9) 168.6 (16)
O3—H3C⋯O10 0.82 (2) 1.84 (2) 2.6229 (12) 160 (2)
O3—H3D⋯O7 0.780 (18) 2.146 (18) 2.8819 (11) 157.4 (17)
O10—H10C⋯Cl1ii 0.83 (2) 2.38 (2) 3.2038 (10) 171 (2)
O10—H10D⋯Cl1 0.86 (2) 2.30 (2) 3.1559 (10) 173 (2)
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, -y+2, -z+1].
[Figure 2]
Figure 2
View of the unit cell for [Ni(OH2)6]Cl2·(18-crown-6)2·2H2O with 50% probability ellipsoids, highlighting inter­molecular distances. Distances including H atoms are listed without standard deviations because the H atoms were positionally fixed. Additional distances are labeled in Fig. 3[link] for clarity.
[Figure 3]
Figure 3
View of the asymmetric unit for [Ni(OH2)6]Cl2·(18-crown-6)2·2H2O with 50% probability ellipsoids, highlighting inter­molecular distances. Distances including H atoms are listed without standard deviations because the H atoms were positionally fixed.

The significant effect of the counter-ion on the supra­molecular structure and hydrogen bonding is evident from the smaller Cl counter-ions as compared to the ClO4 counter-ions in the previously reported structure (Steed et al., 1998[Steed, J. W., McCool, B. J. & Junk, P. C. (1998). J. Chem. Soc. Dalton Trans., pp. 3417-3424.]). The counter-ion size and hydrogen bonding likely influences the [Ni(OH2)6]2+ geometry and level of distortion from octa­hedral symmetry. In both structures, each of the axial OH2 moieties forms two hydrogen bonds the neighboring 18-crown-6 mol­ecule (Figs. 3[link] and 4[link]). When Cl counter-ions are present, one equatorial water forms a hydrogen bond to the top 18-crown-6 mol­ecule, and one equatorial water forms a hydrogen bond to the bottom 18-crown-6 mol­ecule, with both having an additional hydrogen bond each to Cl counter-ions. The other two trans equatorial water ligands have hydrogen bonds to additional neighboring 18-crown-6 mol­ecules and a water mol­ecule each. The 1H NMR spectrum in CDCl3 suggests that at least some of the supra­molecular structure is maintained in solution, with two proton signals at 3.52 and 3.58 ppm, assigned to the equatorial water ligands due to lack of HSQC or HMBC carbon correlations. This is significantly shifted from the expected shift for free water in CDCl3 at 1.56 ppm (Babij et al., 2016[Babij, N. R., McCusker, E. O., Whiteker, G. T., Canturk, B., Choy, N., Creemer, L. C., Amicis, C. V. D., Hewlett, N. M., Johnson, P. L., Knobelsdorf, J. A., Li, F., Lorsbach, B. A., Nugent, B. M., Ryan, S. J., Smith, M. R. & Yang, Q. (2016). Org. Process Res. Dev. 20, 661-667.]), and is consistent with a previous NMR and crystallographic study of {[(CH3)2SnCl2·H2O]2·18-crown-6}n, where water ligand hydrogen bonding to 18-crown-6 was maintained in non-coordinating solvents (Amini et al., 2006[Amini, M. M., Azadmher, A., Bijanzadeh, H. R. & Hadipour, N. (2006). J. Incl Phenom. Macrocycl Chem. 54, 77-80.]). The overall structure is therefore relatively symmetric with minimal distortion to the octa­hedral symmetry of [Ni(OH2)6]2+, and NMR data suggest that hydrogen bonding to the 18-crown-6 mol­ecule is preserved in deuterated chloro­form solvent.

[Figure 4]
Figure 4
View of [Ni(OH2)6][ClO4]2·(18-crown-6)2 (Steed et al., 1998[Steed, J. W., McCool, B. J. & Junk, P. C. (1998). J. Chem. Soc. Dalton Trans., pp. 3417-3424.]), highlighting hydrogen bonding from axial and equatorial water ligands.

The structure for [Ni(OH2)6][ClO4]2·(18-crown-6)2·2H2O is much less symmetric at a supra­molecular level (Fig. 4[link]), which is attributed to the ClO4 counter-ions (Steed et al., 1998[Steed, J. W., McCool, B. J. & Junk, P. C. (1998). J. Chem. Soc. Dalton Trans., pp. 3417-3424.]). One equatorial water ligand forms a hydrogen bond to each of the top and bottom 18-crown-6 mol­ecules, resulting in those mol­ecules being brought closer to each other on one side. The flanking trans equatorial water ligands each form a hydrogen bond to a neighboring 18-crown-6 mol­ecule, and a second hydrogen bond to a ClO4 counter-ion. This less symmetric network of hydrogen bonding results in stronger distortions in both the Ni—O bond lengths and O—Ni—O bond angles, as compared to the structure with Cl counter-ions.

4. Database survey

The Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) has almost 400 structures containing a Ni(OH2)6 moiety; however, only two reported structures were found that contain 18-crown-6 (Web accessed June 3, 2024). The two reported structures are [Ni(OH2)6][ClO4]2·(18-crown-6)2·2H2O and [Ni(OH2)6]3[NiBr2(H2O)4][Br]6·(18-crown-6)4·2H2O (CSD Nos. 113101 and 113105; Steed et al., 1998[Steed, J. W., McCool, B. J. & Junk, P. C. (1998). J. Chem. Soc. Dalton Trans., pp. 3417-3424.]). By contrast, there are 64 reported structures in the Cambridge Structural Database that contain a Ni(OH2)6 moiety with 15-crown-5 (Web accessed June 3, 2024).

5. Synthesis and crystallization

General considerations. All reagents were purchased from commercial suppliers and used without further purification. 1H and 13C NMR data were collected on a Varian 400 MHz instrument and referenced to residual CHCl3 (7.26 ppm). Full NMR data can be accessed through Zenodo (Brannon & Stieber, 2024[Brannon, J. P. & Stieber, S. C. E. (2024). Zenodo, https://doi.org/10.5281/zenodo.11544292.]).

Synthesis of [Ni(OH2)6]Cl2·(18-crown-6)2·2H2O. A scintillation vial was charged with 0.025 g (0.19 mmol, 1 eq.) of NiCl2 to 0.105 g (0.386 mmol, 2 eq.) of 18-crown-6 ether in 10 mL of tetra­hydro­furan or aceto­nitrile. The vial was heated to 353 K for 1.5 h and placed in a 277 K fridge to cool for 1 week. After 1 week, the cap was removed for slow evaporation over 5 days, resulting in a non-crystalline light-blue solid. The solid was taken into deionized water and light blue crystals suitable for X-ray diffraction were obtained after 2 months in a 277 K fridge and identified as [Ni(OH2)6(18-crown-6)2]Cl2·2H2O. 1H NMR (CDCl3, 399.777 MHz): δ = 3.68 (s, 48H, CH2-18-crown-6), 3.58 (s, 4H, H2Oeq—Ni), 3.52 (s, 4H, H2Oeq—Ni). 13C NMR (CDCl3, 399.777 MHz): δ = 70.72 (s, 18-crown-6). Analysis calculated for C24H64Cl2Ni1O20: C, 35.93; H, 8.04; N, 0.00. Found: C, 35.97; H, 8.00; N, <0.10.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms attached to oxygen were freely refined, and those attached to carbon were refined using a riding model.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(H2O)6]Cl2·2C12H24O6·2H2O
Mr 401.18
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 105
a, b, c (Å) 7.6472 (2), 10.4180 (3), 12.7214 (3)
α, β, γ (°) 77.288 (1), 77.649 (1), 75.400 (1)
V3) 943.16 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.73
Crystal size (mm) 0.3 × 0.2 × 0.15
 
Data collection
Diffractometer Bruker D8 Venture Kappa
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.708, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 57779, 4152, 4021
Rint 0.030
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.05
No. of reflections 4152
No. of parameters 243
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.55, −0.27
Computer programs: APEX4 and SAINT (Bruker, 2016[Bruker (2016). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Hexaaquanickel(II) dichloride–1,4,7,10,13,16-hexaoxacyclooctadecane–water (1/2/2) top
Crystal data top
[Ni(H2O)6]Cl2·2C12H24O6·2H2OZ = 2
Mr = 401.18F(000) = 430
Triclinic, P1Dx = 1.413 Mg m3
a = 7.6472 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4180 (3) ÅCell parameters from 401129 reflections
c = 12.7214 (3) Åθ = 3.3–61.8°
α = 77.288 (1)°µ = 0.73 mm1
β = 77.649 (1)°T = 105 K
γ = 75.400 (1)°Prism, blue
V = 943.16 (4) Å30.3 × 0.2 × 0.15 mm
Data collection top
Bruker D8 Ventrue Kappa
diffractometer
4021 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Krause et al. 2015)
θmax = 27.1°, θmin = 2.8°
Tmin = 0.708, Tmax = 0.753h = 99
57779 measured reflectionsk = 1313
4152 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.4776P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4152 reflectionsΔρmax = 0.55 e Å3
243 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.5000000.5000000.00937 (6)
O10.74883 (11)0.54896 (9)0.47148 (7)0.01664 (16)
H1C0.821 (2)0.5382 (17)0.4171 (15)0.030 (4)*
H1D0.778 (2)0.5951 (18)0.5023 (14)0.029 (4)*
O20.41319 (11)0.65045 (8)0.37574 (6)0.01457 (15)
H2C0.305 (2)0.6640 (11)0.3818 (7)0.022*
H2D0.444 (2)0.7214 (19)0.3595 (14)0.033 (4)*
O30.40189 (11)0.62253 (8)0.61474 (7)0.01512 (16)
H3C0.408 (3)0.700 (2)0.5864 (9)0.050 (6)*
H3D0.405 (2)0.6015 (17)0.6772 (15)0.030 (4)*
Cl10.47188 (4)0.94579 (3)0.31034 (2)0.02239 (7)
O40.98032 (11)0.51777 (8)0.27500 (6)0.01835 (17)
O51.04252 (11)0.72559 (8)0.36473 (6)0.01574 (16)
O60.83961 (11)0.71618 (8)0.57969 (7)0.01876 (17)
C11.04444 (16)0.38560 (12)0.24807 (10)0.0199 (2)
H1A1.0827800.3934170.1679090.024*
H1B0.9425980.3373260.2698840.024*
C21.08752 (17)0.61212 (12)0.21450 (9)0.0205 (2)
H2A1.0819620.6254780.1356920.025*
H2B1.2171200.5777410.2242600.025*
C31.01268 (17)0.74326 (12)0.25528 (9)0.0209 (2)
H3A1.0747620.8135110.2082310.025*
H3B0.8798440.7726960.2526430.025*
C40.95456 (17)0.84335 (11)0.41173 (10)0.0209 (2)
H4A0.8269660.8743420.3975010.025*
H4B1.0206410.9167320.3783650.025*
C50.95495 (17)0.80970 (12)0.53261 (10)0.0214 (2)
H5A1.0812480.7695810.5470920.026*
H5B0.9088200.8924420.5651540.026*
C60.79639 (16)0.69565 (12)0.69632 (10)0.0198 (2)
H6A0.6932100.6487710.7204400.024*
H6B0.7552950.7844740.7198850.024*
O70.36897 (11)0.62695 (8)0.84393 (6)0.01766 (17)
O80.25973 (11)0.31411 (8)0.99165 (6)0.01729 (16)
O90.03393 (11)0.18666 (8)1.05124 (6)0.01760 (16)
C70.35114 (16)0.75844 (11)0.86804 (9)0.0179 (2)
H7A0.4470880.8009130.8179110.021*
H7B0.3741230.7481310.9434560.021*
C80.29069 (15)0.53668 (11)0.93233 (9)0.0151 (2)
H8A0.1556300.5671910.9461360.018*
H8B0.3375910.5341520.9996740.018*
C90.34296 (15)0.39801 (11)0.90153 (9)0.0154 (2)
H9A0.2966470.3994900.8342200.018*
H9B0.4777880.3657140.8891780.018*
C100.27876 (15)0.18097 (11)0.97362 (9)0.0167 (2)
H10A0.4061930.1297000.9763580.020*
H10B0.2500800.1835740.9007920.020*
C110.14764 (15)0.11431 (11)1.06188 (9)0.0170 (2)
H11A0.1624650.0194551.0542090.020*
H11B0.1730900.1151941.1347940.020*
C120.16698 (16)0.14810 (11)1.14179 (9)0.0174 (2)
H12A0.1294680.1519281.2106640.021*
H12B0.1756790.0543521.1437990.021*
O100.36399 (13)0.88510 (9)0.56722 (8)0.02240 (18)
H10C0.419 (3)0.923 (2)0.5967 (16)0.041 (5)*
H10D0.398 (3)0.9071 (19)0.4982 (17)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00966 (9)0.00851 (9)0.01044 (9)0.00317 (6)0.00040 (6)0.00254 (6)
O10.0145 (4)0.0227 (4)0.0167 (4)0.0104 (3)0.0035 (3)0.0103 (3)
O20.0130 (4)0.0122 (4)0.0178 (4)0.0037 (3)0.0030 (3)0.0002 (3)
O30.0218 (4)0.0117 (4)0.0116 (4)0.0040 (3)0.0014 (3)0.0025 (3)
Cl10.02783 (15)0.01424 (13)0.02534 (15)0.00744 (11)0.00474 (11)0.00032 (10)
O40.0194 (4)0.0197 (4)0.0153 (4)0.0040 (3)0.0016 (3)0.0065 (3)
O50.0155 (4)0.0136 (4)0.0179 (4)0.0015 (3)0.0043 (3)0.0030 (3)
O60.0210 (4)0.0196 (4)0.0188 (4)0.0061 (3)0.0045 (3)0.0068 (3)
C10.0180 (5)0.0260 (6)0.0184 (5)0.0046 (4)0.0010 (4)0.0113 (5)
C20.0208 (6)0.0239 (6)0.0136 (5)0.0046 (5)0.0028 (4)0.0021 (4)
C30.0258 (6)0.0182 (5)0.0151 (5)0.0031 (4)0.0032 (4)0.0023 (4)
C40.0248 (6)0.0120 (5)0.0266 (6)0.0040 (4)0.0041 (5)0.0048 (4)
C50.0211 (6)0.0214 (6)0.0270 (6)0.0080 (5)0.0049 (5)0.0105 (5)
C60.0160 (5)0.0234 (6)0.0217 (6)0.0035 (4)0.0002 (4)0.0110 (5)
O70.0225 (4)0.0152 (4)0.0140 (4)0.0077 (3)0.0035 (3)0.0023 (3)
O80.0224 (4)0.0142 (4)0.0143 (4)0.0067 (3)0.0027 (3)0.0032 (3)
O90.0151 (4)0.0186 (4)0.0157 (4)0.0034 (3)0.0003 (3)0.0015 (3)
C70.0180 (5)0.0170 (5)0.0198 (5)0.0081 (4)0.0007 (4)0.0043 (4)
C80.0155 (5)0.0165 (5)0.0125 (5)0.0054 (4)0.0000 (4)0.0006 (4)
C90.0153 (5)0.0174 (5)0.0126 (5)0.0050 (4)0.0001 (4)0.0015 (4)
C100.0165 (5)0.0141 (5)0.0189 (5)0.0023 (4)0.0012 (4)0.0045 (4)
C110.0173 (5)0.0130 (5)0.0195 (5)0.0017 (4)0.0040 (4)0.0012 (4)
C120.0200 (5)0.0161 (5)0.0152 (5)0.0072 (4)0.0005 (4)0.0006 (4)
O100.0265 (5)0.0146 (4)0.0268 (5)0.0077 (3)0.0014 (4)0.0044 (3)
Geometric parameters (Å, º) top
Ni1—O12.0310 (8)C4—C51.5007 (17)
Ni1—O1i2.0310 (8)C5—H5A0.9900
Ni1—O22.0567 (8)C5—H5B0.9900
Ni1—O2i2.0567 (8)C6—H6A0.9900
Ni1—O32.0474 (8)C6—H6B0.9900
Ni1—O3i2.0473 (8)O7—C71.4359 (13)
O1—H1C0.796 (19)O7—C81.4275 (13)
O1—H1D0.782 (19)O8—C91.4179 (13)
O2—H2C0.796 (18)O8—C101.4218 (13)
O2—H2D0.803 (19)O9—C111.4221 (13)
O3—H3C0.81 (2)O9—C121.4229 (13)
O3—H3D0.780 (19)C7—H7A0.9900
O4—C11.4314 (14)C7—H7B0.9900
O4—C21.4262 (14)C7—C12iii1.5091 (16)
O5—C31.4236 (14)C8—H8A0.9900
O5—C41.4317 (13)C8—H8B0.9900
O6—C51.4270 (14)C8—C91.5137 (15)
O6—C61.4292 (14)C9—H9A0.9900
C1—H1A0.9900C9—H9B0.9900
C1—H1B0.9900C10—H10A0.9900
C1—C6ii1.5113 (17)C10—H10B0.9900
C2—H2A0.9900C10—C111.5082 (15)
C2—H2B0.9900C11—H11A0.9900
C2—C31.5013 (17)C11—H11B0.9900
C3—H3A0.9900C12—H12A0.9900
C3—H3B0.9900C12—H12B0.9900
C4—H4A0.9900O10—H10C0.83 (2)
C4—H4B0.9900O10—H10D0.86 (2)
O1—Ni1—O1i180.0O6—C5—H5A110.0
O1—Ni1—O2i88.38 (3)O6—C5—H5B110.0
O1i—Ni1—O2i91.62 (3)C4—C5—H5A110.0
O1—Ni1—O291.62 (3)C4—C5—H5B110.0
O1i—Ni1—O288.38 (3)H5A—C5—H5B108.4
O1—Ni1—O3i88.95 (3)O6—C6—C1ii113.46 (9)
O1—Ni1—O391.05 (3)O6—C6—H6A108.9
O1i—Ni1—O3i91.05 (3)O6—C6—H6B108.9
O1i—Ni1—O388.95 (3)C1ii—C6—H6A108.9
O2—Ni1—O2i180.0C1ii—C6—H6B108.9
O3—Ni1—O2i87.10 (3)H6A—C6—H6B107.7
O3i—Ni1—O287.10 (3)C8—O7—C7113.97 (8)
O3—Ni1—O292.90 (3)C9—O8—C10113.64 (8)
O3i—Ni1—O2i92.90 (3)C11—O9—C12113.03 (8)
O3i—Ni1—O3180.0O7—C7—H7A108.6
Ni1—O1—H1C122.3 (12)O7—C7—H7B108.6
Ni1—O1—H1D126.2 (13)O7—C7—C12iii114.74 (9)
H1C—O1—H1D109.8 (17)H7A—C7—H7B107.6
Ni1—O2—H2C109.5C12iii—C7—H7A108.6
Ni1—O2—H2D123.9 (13)C12iii—C7—H7B108.6
H2C—O2—H2D108.9O7—C8—H8A110.1
Ni1—O3—H3C109.5O7—C8—H8B110.1
Ni1—O3—H3D126.3 (13)O7—C8—C9108.12 (8)
H3C—O3—H3D117.7H8A—C8—H8B108.4
C2—O4—C1114.07 (9)C9—C8—H8A110.1
C3—O5—C4111.15 (9)C9—C8—H8B110.1
C5—O6—C6114.59 (9)O8—C9—C8105.27 (8)
O4—C1—H1A109.1O8—C9—H9A110.7
O4—C1—H1B109.1O8—C9—H9B110.7
O4—C1—C6ii112.49 (9)C8—C9—H9A110.7
H1A—C1—H1B107.8C8—C9—H9B110.7
C6ii—C1—H1A109.1H9A—C9—H9B108.8
C6ii—C1—H1B109.1O8—C10—H10A110.1
O4—C2—H2A110.0O8—C10—H10B110.1
O4—C2—H2B110.0O8—C10—C11107.97 (9)
O4—C2—C3108.55 (9)H10A—C10—H10B108.4
H2A—C2—H2B108.4C11—C10—H10A110.1
C3—C2—H2A110.0C11—C10—H10B110.1
C3—C2—H2B110.0O9—C11—C10108.25 (9)
O5—C3—C2109.06 (9)O9—C11—H11A110.0
O5—C3—H3A109.9O9—C11—H11B110.0
O5—C3—H3B109.9C10—C11—H11A110.0
C2—C3—H3A109.9C10—C11—H11B110.0
C2—C3—H3B109.9H11A—C11—H11B108.4
H3A—C3—H3B108.3O9—C12—C7iii109.84 (9)
O5—C4—H4A109.9O9—C12—H12A109.7
O5—C4—H4B109.9O9—C12—H12B109.7
O5—C4—C5108.90 (9)C7iii—C12—H12A109.7
H4A—C4—H4B108.3C7iii—C12—H12B109.7
C5—C4—H4A109.9H12A—C12—H12B108.2
C5—C4—H4B109.9H10C—O10—H10D105.9 (18)
O6—C5—C4108.27 (9)
O4—C2—C3—O566.72 (12)O7—C8—C9—O8179.36 (8)
O5—C4—C5—O666.75 (12)O8—C10—C11—O962.92 (11)
C1—O4—C2—C3176.61 (9)C7—O7—C8—C9172.00 (9)
C2—O4—C1—C6ii80.37 (12)C8—O7—C7—C12iii80.86 (12)
C3—O5—C4—C5167.84 (9)C9—O8—C10—C11166.27 (9)
C4—O5—C3—C2173.18 (9)C10—O8—C9—C8174.26 (9)
C5—O6—C6—C1ii72.73 (12)C11—O9—C12—C7iii172.32 (9)
C6—O6—C5—C4167.84 (9)C12—O9—C11—C10169.24 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O40.797 (18)1.973 (18)2.7679 (12)174.7 (17)
O1—H1D···O60.780 (18)1.956 (18)2.7360 (12)177.3 (17)
O2—H2C···O5iv0.79 (2)1.99 (2)2.7695 (12)167 (1)
O2—H2D···Cl10.803 (19)2.335 (19)3.1258 (9)168.6 (16)
O3—H3C···O100.82 (2)1.84 (2)2.6229 (12)160 (2)
O3—H3D···O70.780 (18)2.146 (18)2.8819 (11)157.4 (17)
O10—H10C···Cl1v0.83 (2)2.38 (2)3.2038 (10)171 (2)
O10—H10D···Cl10.86 (2)2.30 (2)3.1559 (10)173 (2)
Symmetry codes: (iv) x1, y, z; (v) x+1, y+2, z+1.
 

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. 1847926 to S. Chantal E. Stieber; award No. 1040566); Camille and Henry Dreyfus Foundation (award to S. Chantal E. Stieber); US Department of Defense, US Army (award No. W911NF-17-1-0537 to S. Chantal E. Stieber).

References

First citationAmini, M. M., Azadmher, A., Bijanzadeh, H. R. & Hadipour, N. (2006). J. Incl Phenom. Macrocycl Chem. 54, 77–80.  CrossRef CAS Google Scholar
First citationAshton, P. R., Ballardini, R., Balzani, V., Gómez-López, M., Lawrence, S. E., Martínez-Díaz, M. V., Montalti, M., Piersanti, A., Prodi, L., Stoddart, J. F. & Williams, D. J. (1997). J. Am. Chem. Soc. 119, 10641–10651.  CSD CrossRef CAS Web of Science Google Scholar
First citationAkutagawa, T., Hasegawa, T., Nakamura, T., Takeda, S., Inabe, T., Sugiura, K., Sakata, Y. & Underhill, A. E. (2000). Inorg. Chem. 39, 2645–2651.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBabij, N. R., McCusker, E. O., Whiteker, G. T., Canturk, B., Choy, N., Creemer, L. C., Amicis, C. V. D., Hewlett, N. M., Johnson, P. L., Knobelsdorf, J. A., Li, F., Lorsbach, B. A., Nugent, B. M., Ryan, S. J., Smith, M. R. & Yang, Q. (2016). Org. Process Res. Dev. 20, 661–667.  CrossRef CAS Google Scholar
First citationBrannon, J. P. & Stieber, S. C. E. (2024). Zenodo, https://doi.org/10.5281/zenodo.11544292.  Google Scholar
First citationBrazzolotto, D., Bogart, J. A., Ross, D. L., Ziller, J. W. & Borovik, A. S. (2019). Inorg. Chim. Acta, 495, 118960.  CSD CrossRef Google Scholar
First citationBruker (2016). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCusack, P. A., Patel, B. N., Smith, P. J., Allen, D. W. & Nowell, I. W. (1984). J. Chem. Soc. Dalton Trans. pp. 1239–1243.  CSD CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGokel, G. W., Leevy, W. M. & Weber, M. E. (2004). Chem. Rev. 104, 2723–2750.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIzatt, R. M., Pawlak, K., Bradshaw, J. S. & Bruening, R. L. (1995). Chem. Rev. 95, 2529–2586.  CrossRef CAS Web of Science Google Scholar
First citationJunk, P. C., Lynch, S. M. & McCool, B. J. (1998). Supramol. Chem. 9, 151–158.  CSD CrossRef CAS Google Scholar
First citationKolchinski, A. G., Busch, D. H. & Alcock, N. W. (1995). J. Chem. Soc. Chem. Commun. pp. 1289–1291.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKundu, S., Phu, P. N., Ghosh, P., Kozimor, S. A., Bertke, J. A., Stieber, S. C. E. & Warren, T. H. (2019). J. Am. Chem. Soc. 141, 1415–1419.  CSD CrossRef CAS PubMed Google Scholar
First citationLi, J., Yim, D., Jang, W.-D. & Yoon, J. (2017). Chem. Soc. Rev. 46, 2437–2458.  CrossRef CAS PubMed Google Scholar
First citationPedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017–7036.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShinkai, S., Ishihara, M., Ueda, K. & Manabe, O. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 511–518.  CrossRef Google Scholar
First citationSteed, J. W., McCool, B. J. & Junk, P. C. (1998). J. Chem. Soc. Dalton Trans., pp. 3417–3424.  Google Scholar
First citationStoddart, J. F. (1988). Top. Stereochem. 17, 207–288.  CrossRef Google Scholar
First citationSutherland, I. O. (1986). Chem. Soc. Rev. 15, 63–91.  CrossRef CAS Google Scholar
First citationTondreau, A. M., Stieber, S. C. E., Milsmann, C., Lobkovsky, E., Weyhermüller, T., Semproni, S. P. & Chirik, P. J. (2013). Inorg. Chem. 52, 635–646.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds