research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and photophysical properties of mono- and dinuclear ZnII complexes flanked by tri­ethyl­ammonium

crossmark logo

aDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bInstitute of Natural Sciences, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and cDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Edited by L. Suescun, Universidad de la República, Uruguay (Received 17 September 2024; accepted 22 October 2024; online 24 October 2024)

Two new zinc(II) complexes, tri­ethyl­ammonium di­chlorido­[2-(4-nitro­phen­yl)-4-phenyl­quinolin-8-olato]zinc(II), (C6H16N){Zn(C21H13N2O3)Cl2] (ZnOQ), and bis­(tri­ethyl­ammonium) {2,2′-[1,4-phenyl­enebis(nitrilo­methyl­idyne)]diphenolato}bis­[di­chlorido­zinc(II)], (C6H16N)2[Zn2(C20H14N2O2)Cl4] (ZnBS), were synthesized and their structures were determined using ESI–MS spectrometry, 1H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitro­phen­yl)-4-phenyl­quinolin-8-ol (HOQ) and N,N′-bis­(2-hy­droxy­benzyl­idene)benzene-1,4-di­amine (H2BS) were deprotonated by tri­ethyl-amine, forming the counter-ion Et3NH+, which inter­acts via an N—H⋯O hydrogen bond with the ligand. The ZnII atoms have a distorted trigonal–pyramidal (ZnOQ) and distorted tetra­hedral (ZnBS) geometries with a coord­ination number of four, coordinating with the ligands via N and O atoms. The N atoms coordinating with ZnII correspond to the heterocyclic nitro­gen for the HOQ ligand, while for the H2BS ligand, it is the nitro­gen of the imine (CH=N). The crystal packing of ZnOQ is characterized by C—H⋯π inter­actions, while that of ZnBS by C—H⋯Cl inter­actions. The emission spectra showed that ZnBS complex exhibits green fluorescence in the solid state with a small band-gap energy, and the ZnOQ complex does exhibit non-fluorescence.

1. Chemical context

Numerous ZnII complexes have attracted inter­est from many scientists and have been used in various applications, such as biological sensors (Liu et al., 2020[Liu, C.-H., Guan, Q.-L., Yang, X.-D., Bai, F.-Y., Sun, L.-X. & Xing, Y.-H. (2020). Inorg. Chem. 59, 8081-8098.]; He et al., 2020[He, X., Xie, Q., Fan, J., Xu, C., Xu, W., Li, Y., Ding, F., Deng, H., Chen, H. & Shen, J. (2020). Dyes Pigments, 177, 108255.]), anti­microbial agents (Kargar et al., 2021a[Kargar, H., Ardakani, A. A., Tahir, M. N., Ashfaq, M. & Munawar, K. S. (2021a). J. Mol. Struct. 1229, 129842.]b[Kargar, H., Ardakani, A. A., Tahir, M. N., Ashfaq, M. & Munawar, K. S. (2021b). J. Mol. Struct. 1233, 130112.]), anti­cancer drugs (Du et al., 2023[Du, L., Zhang, T., Huang, X., Xu, Y., Tan, M., Huang, Y., Chen, Y. & Qin, Q. (2023). Dalton Trans. 52, 4737-4751.]) and particularly in luminescent materials for organic light-emitting diode (OLED) devices (Gusev et al., 2019[Gusev, A. N., Kiskin, M. A., Braga, E. V., Chapran, M., Wiosna-Salyga, G., Baryshnikov, G. V., Minaeva, V. A., Minaev, B. F., Ivaniuk, K., Stakhira, P., Ågren, H. & Linert, W. (2019). J. Phys. Chem. C, 123, 11850-11859.], 2021[Gusev, A. N., Kiskin, M. A., Braga, E. V., Kryukova, M. A., Baryshnikov, G. V., Karaush-Karmazin, N. N., Minaeva, V. A., Minaev, B. F., Ivaniuk, K., Stakhira, P., Ågren, H. & Linert, W. (2021). ACS Appl. Electron. Mater. 3, 3436-3444.]; Rashamuse et al., 2023[Rashamuse, T. J., Mohlala, R. L., Coyanis, E. M. & Magwa, N. P. (2023). Molecules, 28, 5272.]). ZnII complexes are noted for their impressive fluorescence and cost-effectiveness in OLED applications. Among all ligands, 8-hy­droxy­quinoline is a classical one. It has the ability to form a five-membered ring with the metal center via N and O atoms, which appeals to many scientists from all over the world (Côrte-Real et al., 2023[Côrte-Real, L., Pósa, V., Martins, M., Colucas, R., May, N. V., Fontrodona, X., Romero, I., Mendes, F., Pinto Reis, C., Gaspar, M. M., Pessoa, J. C., Enyedy, E. A., ÉA, & Correia, I. (2023). Inorg. Chem. 62, 11466-11486.]; Harmošová et al., 2023[Harmošová, M., Kello, M., Goga, M., Tkáčiková, L., Vilková, M., Sabolová, D., Sovová, S., Samoľová, E., Litecká, M., Kuchárová, V., Kuchár, J. & Potočňák, I. (2023). Inorganics, 11, 60.]). In order to improve the photophysical properties of ZnII complexes with 8-hy­droxy­quinoline, many strategies have been conducted to synthesize new neutral ZnII complexes including different substituents at various positions on 8-hy­droxy­quinoline (Singh et al., 2018[Singh, D., Nishal, V., Bhagwan, S., Saini, R. K. & Singh, I. (2018). Mater. Des. 156, 215-228.]), with the approach of extending the π-conjugation system with aryl substituents to increase photoluminiscence quantum yield (PLQY) and to shift the emission to blue yielding potential results (Harmošová et al., 2023[Harmošová, M., Kello, M., Goga, M., Tkáčiková, L., Vilková, M., Sabolová, D., Sovová, S., Samoľová, E., Litecká, M., Kuchárová, V., Kuchár, J. & Potočňák, I. (2023). Inorganics, 11, 60.]; Jianbo et al., 2018[Jianbo, H., Tingting, Z., Yongjing, C., Yuanyuan, Z., Weiqing, Y. & Menglin, M. (2018). J. Fluoresc. 28, 1121-1126.]; Hien et al., 2024[Hien, N., Ninh, N. H., Hieu, L. H., Linh, N. T. B., Pham, V. T., Dung, T. N., Van Meervelt, L., Chi, N. T. T. & Hai, L. T. H. (2024). J. Mol. Struct. 1311, 138464.]). In particular, a series of six new ZnII complexes bearing diaryl-8-hy­droxy­quinoline were synthesized, indicating that electron-donating groups (like OCH3) enhance the PLQY, while electron-withdrawing groups (like NO2) show the opposite result (Hien et al., 2024[Hien, N., Ninh, N. H., Hieu, L. H., Linh, N. T. B., Pham, V. T., Dung, T. N., Van Meervelt, L., Chi, N. T. T. & Hai, L. T. H. (2024). J. Mol. Struct. 1311, 138464.]). These complexes are synthesized by direct reaction between ZnCl2 and the ligands to obtain neutral complexes [Zn(OQ)2], in which ZnII coordinates with deprotonated 8-hy­droxy­quinoline via N and O atoms, as in previous publications. However, in this work, upon the reaction of 2-(4-nitro­phen­yl)-4-phenyl­quinolin-8-ol (HOQ) with ZnCl2 in the presence of tri­ethyl­amine, an ionic complex with the mol­ecular formula [Et3NH][Zn(OQ)Cl2] (ZnOQ) was obtained, in which the ratio of ZnII and ligand is 1:1 instead of 1:2 as in the published ZnII complexes (Singh et al., 2018[Singh, D., Nishal, V., Bhagwan, S., Saini, R. K. & Singh, I. (2018). Mater. Des. 156, 215-228.]; Hien et al., 2024[Hien, N., Ninh, N. H., Hieu, L. H., Linh, N. T. B., Pham, V. T., Dung, T. N., Van Meervelt, L., Chi, N. T. T. & Hai, L. T. H. (2024). J. Mol. Struct. 1311, 138464.]). Furthermore, the same reaction condition between ZnCl2 and a similar NO-Schiff base ligand, namely N,N′-bis­(2-hy­droxy­benzyl­idine)benzene-1,4-di­amine (H2BS) gives a similar ion complex [Zn2(BS)Cl2][Et3NH]2 (ZnBS).

[Scheme 1]

In this report, the ligands HOQ and H2BS were successfully prepared, and characterized. Furthermore, two complexes ZnOQ and ZnBS were also successfully prepared, isolated and characterized by ESI–MS and 1H NMR, and the crystal structures of the complexes were elucidated. The optical properties of the ligands and complexes were studied using absorption and emission spectra in both solid state and in solution in di­methyl­sulfoxide (DMSO) or tetra­hydro­furan (THF) solvents.

2. Structural commentary

The mononuclear complex ZnOQ crystallizes in the monoclinic space group P21/c with one mol­ecule in the asymmetric unit (Fig. 1[link]). The ZnII atom coordinates to the N and O atoms of a deprotonated 8-hydoxyquinoline derivative and two chlorine atoms with a distorted trigonal–pyramidal geometry (τ4 parameter is 0.86; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The negative charge of the complex is compensated by the inter­action with tri­ethyl­ammonium via an N—H⋯O hydrogen bond (Table 1[link]). The Zn atom is part of a five-membered ring and is located 0.081 (1) Å above the planar quinoline plane (r.m.s. deviation = 0.058 Å), which makes dihedral angles of 50.88 (12) and 46.95 (13)° with the C10–C15 and C16-C21 phenyl rings, respectively. The mutual angle between the two phenyl rings is 79.42 (16)°. The plane of the nitro group makes an angle of 14.38 (19)° with the C10–C15 phenyl ring.

Table 1
Hydrogen-bond geometry (Å, °) for ZnOQ[link]

Cg3 and Cg5 are the centroids of C4-C9 and C16-C21, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.88 (4) 1.92 (4) 2.807 (4) 178 (4)
C12—H12⋯Cg3i 0.93 2.78 3.553 (4) 141
C14—H14⋯Cg3ii 0.93 3.04 3.837 (4) 145
C24—H24BCg5iii 0.97 2.94 3.809 (5) 149
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [x-1, y, z].
[Figure 1]
Figure 1
The mol­ecular structure of ZnOQ showing the atom-labeling scheme and displacement ellipsoids at the 30% probability level. The N—H⋯O hydrogen bond is shown as a red dashed line.

The dinuclear complex ZnBS also crystallizes in the monoclinic space group P21/c but with half a mol­ecule in the asymmetric unit (Fig. 2[link]). The second half is generated by inversion symmetry. The complex is flanked at both ends by a tri­ethyl­ammonium moiety via an N—H⋯O inter­action (Table 2[link]). The ZnII coordination sphere resembles that observed in ZnOQ, but is now inter­mediate between trigonal–pyramidal and tetra­gonal geometries (τ4 parameter is 0.91). The ZnII atom is part of a six-membered ring and is located 0.405 (3) Å above the best plane through atoms C1–C7/O1/N1 (r.m.s. deviation = 0.027 Å). The inter­planar angle between the aromatic rings is 33.4 (2)°. The stereochemistry of the C7=N1 bond is E, as illustrated by the torsion angle C6—C7=N1—C8 of 176.9 (4)°.

Table 2
Hydrogen-bond geometry (Å, °) for ZnBS[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.96 (4) 1.84 (4) 2.782 (4) 165 (4)
C9—H9⋯Cl1i 0.93 2.83 3.752 (4) 171
C11—H11⋯Cl2ii 0.97 2.68 3.625 (6) 164
C13—H13⋯Cl2iii 0.97 2.68 3.562 (6) 151
C15—H15A⋯Cl1 0.97 2.80 3.684 (5) 152
C15—H15B⋯Cl1iii 0.97 2.81 3.769 (5) 169
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, -y+1, -z+1]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of ZnBS showing the atom-labeling scheme and displacement ellipsoids at the 30% probability level. The N—H⋯O hydrogen bonds are shown as a red dashed line. Symmetry code: (i) −x + 1, −y + 1, −z + 2.

3. Supra­molecular features

Despite the presence of aromatic rings in ZnOQ, no ππ stacking is observed in the crystal packing. However, the phenyl part of the quinoline ring system (C4–C9) and one of the phenyl rings (C16–C21) participate in three C—H⋯π inter­actions (Table 1[link], Fig. 3[link]). Centrosymmetric dimers are formed by inter­action of C14—H14 with a nearby C4–C9 ring. In addition, the other side of the nitro­phenyl ring (C12—H12) also inter­acts with a close by C4–C9 ring. The last inter­action involves the tri­ethyl­ammonium ion, with C24—H24A inter­acting with a neighboring C16–C21 ring, resulting in chain formation along the a-axis direction. One of the nitro oxygen atoms (O2) shows an O⋯π inter­action with the pyridine part of the quinoline ring system [O2⋯Cg2i = 3.372 (3) Å; Cg2 is the centroid of the N1/C1–C4/C9 ring; symmetry code: (i) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]].

[Figure 3]
Figure 3
Partial crystal packing of ZnOQ showing the C—H⋯π and N—O⋯π inter­actions as gray dashed lines. The N—H⋯O hydrogen bond is shown as a red dashed line. Further details are given in Table 1[link]. For clarity, hydrogen atoms not involved in hydrogen bonding are omitted and the tri­ethyl­ammonium ion is shown in pink.

In contrast to ZnOQ, the crystal packing in ZnBS is characterized by C—H⋯Cl inter­actions (Table 2[link], Fig. 4[link]). The tri­ethyl­ammonium ion plays an important role in these inter­actions and acts as a stabilizing glue between three complexes via one N—H⋯O and four C—H⋯Cl inter­actions. The fifth C—H⋯Cl inter­action is between an H atom of the central phenyl ring (H9) and a nearby chlorine atom (Cl1), which results in the formation of chains running in the b-axis direction (Fig. 5[link]).

[Figure 4]
Figure 4
Partial crystal packing of ZnBS showing the C—H⋯Cl inter­actions as gray dashed lines. The N—H⋯O hydrogen bond is shown as a red dashed line. Further details are given in Table 2[link]. For clarity, hydrogen atoms not involved in hydrogen bonding are omitted and the tri­ethyl­ammonium ion is shown in pink.
[Figure 5]
Figure 5
Chain formation in the b-axis direction by C—H⋯Cl inter­actions (gray dashed lines) in the crystal packing of ZnBS.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.45, last update September 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the five-membered ring fragment shown in Fig. 6[link]a (comparable to a part of ZnOQ) resulted in three hits, CSD refcodes MOXFOX, MOXPEX and MOXPIB (Samanta et al., 2019[Samanta, D., Saha, P. & Ghosh, P. (2019). Inorg. Chem. 58, 15060-15077.]). In these structures, the deviation of the ZnII atom from the best plane through the C, N and O atoms of the fragment (ranging between 0.145 and 0.195 Å) is comparable to that observed for ZnOQ [0.203 (3) Å]. The negative charge of the complexes is compensated by a second protonated ligand.

[Figure 6]
Figure 6
Search fragments used in Conquest to perform the CSD survey: (a) five-membered ring fragment present in ZnOQ, (b) six-membered ring fragment present in ZnBS.

A similar search for the six-membered ring fragment shown in Fig. 6[link]b (comparable to a part of ZnBS) resulted in 63 hits. The deviation of the ZnII atom from the best plane through the C, N and O atoms of the fragment shows a large variation between 0.003 and 0.927 Å [mean value is 0.327 Å, 0.405 (3) Å for ZnBS].

Of the 1876 crystal structures containing a tri­ethyl­ammonium ion in the CSD, the N—H group inter­acts with an O atom in 383 structures (133 organic and 250 coordination compounds).

A quick search for a nitro group inter­action with a phenyl groups gives 6252 hits for an O⋯Cg distance shorter than 3.5 Å (Cg is the centroid of the phenyl ring).

5. Photophysical properties

The absorption and emission spectra at room temperature of both ligands and complexes in DMSO or THF solvents at a concentration of 10 µM (H2BS, ZnBS); 50 µM (HOQ; ZnOQ) and in the solid state (H2BS, ZnBS) are listed in Table 3[link]. In the absorption spectra, H2BS and ZnBS (Fig. S9) show an absorption band at 371–372nm in both solvents, while two absorption bands were observed at 243–265nm and 295–312nm for HOQ and ZnOQ (Fig. S4), corresponding to ππ* or n→π* transitions. The results of the solid-state electron absorption spectrum of H2BS and ZnBS (Fig. 7[link]a) show that the band-gap energies of H2BS and ZnBS, calculated according to the equation Egap = hc/λonset (UV–vis) (Chiyindiko et al., 2022[Chiyindiko, E., Langner, E. H. G. & Conradie, J. (2022). Molecules, 27, 6033.]) are approximately 1.8 eV and 2.0 eV, respectively, which has potential for applications in OLED devices (Dumur, 2014[Dumur, F. (2014). Synth. Met. 195, 241-251.]; Lakshmanan et al., 2018[Lakshmanan, R., Shivaprakash, N. & Sindhu, S. (2018). J. Lumin. 196, 136-145.]).

Table 3
Photophysical data of the examined compounds at room temperature

Compound Solvent (polarity) λABS (nm) / ɛ (M−1.cm−1.103) λem (nm) Stokes shift (cm−1) λemb (nm)/Intensity
H2BS DMSO (3.96) 371 (35) 531 8122 575 / 34624
  THF (1.73) 371 (56) 534 8228  
ZnBS DMSO (3.96) 372 (32) 520 7651 515 / 10616
  THF (1.73) 372 (12) 551 8878  
HOQ DMSO (3.96) 264 (34); 312 (32) 528 13112  
  THF (1.73) 247 (60); 295 (56) 533 15136  
ZnOQ DMSO (3.96) 265 (25); 297 (35); 450 (3)a 518 2917  
  THF (1.73) 243 (48); 307 (35); 380 (6)a 467 4902  
Notes: (a) shoulder excited; (b) in the solid state.
[Figure 7]
Figure 7
(a) Absorption and (b) emission spectra in the solid state at λex = 425 nm of H2BS and ZnBS.

The emission spectra of the examined complexes in DMSO and THF solvents demonstrate that all compounds show no fluorescence (Figs. S5 and S10). However, in the solid state, H2BS fluorescences at 575 nm with an intensity of approximately 35000 a.u., while the emission wavelength of ZnBS is 515 nm with an intensity of about 10000 a.u., showing a blue shift compared to the ligand with Δλ = 60 nm (Fig. 7[link]b and S11).

6. Synthesis and crystallization

The reaction sequence for ZnOQ and ZnBS is shown in Fig. 8[link]. The ligands HOQ and H2BS were synthesized according to modified procedures described by Yu et al. (2018[Yu, S., Wu, J., Lan, H., Xu, H., Shi, X., Zhu, X. & Yin, Z. (2018). RSC Adv. 8, 33968-33971.]; for HOQ) and Das & Ghosh (1998[Das, M. K. & Ghosh, S. (1998). Indian J. Chem. 3, 272-275.]; for H2BS).

[Figure 8]
Figure 8
Synthesis of the complexes (a) ZnOQ and (b) ZnBS.

Synthesis of HOQ

A mixture of ortho-amino­phenol (120 mg, 1.1 mmol), 4-nitro­benzaldehyde (151 mg, 1 mmol), phenyl­acetyl­ene (139 mg, 1.2 mmol), AgOTf (13 mg, 0.5 mol%) and TFA (456 mg, 400 mol%) in 4 mL of di­chloro­ethane was heated to 353 K for 24 h. After cooling, the reaction mixture was diluted with 15 mL of ethyl acetate and extracted three times with 10 mL of saturated NaHCO3 solution. Then, it was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The resulting residue was purified by silica gel chromatography using hexa­ne/ethyl acetate (v/v = 19:1) as eluent. HOQ was obtained as a yellow solid with a yield of 52%.

1H NMR (600 MHz, chloro­form-d1, δ ppm): 8.41 (br, 1H, OH), 8.39 [d, 3J(H,H) = 9.0 Hz, 2H, Ar-H], 8.36 [d, 3J(H,H) = 9.0 Hz, 2H, Ar-H], 7.90 (s, 1H, Ar-H), 7.57 [d, 3J(H,H) = 4.5 Hz, 4H, Ar-H], 7.56–7.54 (m, 1H, Ar-H), 7.48–7.43 (m, 2H, Ar-H), 7.26 (ov, 1H, Ar-H).

The 1H NMR spectrum of HOQ is given in Fig. S1.

Synthesis of [(Et3NH)ZnCl2(OQ)] (ZnOQ)

A reaction mixture consisting of ligand HOQ (32 mg, 0.1 mmol), zinc(II) chloride (55 mg, 0.1 mmol) and 5 mL of acetone was stirred at room temperature and 25 µL of tri­ethyl­amine were added to the reaction vessel and stirred for 6 h to obtain an orange solution. Evaporation of the solution gave orange crystals (yield 67%).

1H NMR (600 MHz, d6–DMSO, δ ppm): 8.44 (m, 4H, Ar-H), 7.64 (s, 1H, Ar-H), 7.55 (m, 6H, Ar-H), 7.43 (m, 1H, Ar-H), 7.15 (d, 1H, Ar-H), 6.85 (m, 1H, NH), 3.31 (q, 6H, CH2), 1,40 (t, 9H, CH3). ESI–MS: 787.5 (100%, Zn(OQ)2 + ACN + H+).

The 1H NMR and ESI–MS spectra of ZnOQ are given in Figs. S2 and S3, respectively.

Synthesis of H2BS

A mixture of p-phenyl­enedi­amine (108 mg, 1 mmol) and salicyl­aldehyde (122 mg, 1 mmol) in 10 mL of ethanol was heated to 333 K for 5 h to obtain the red–orange solid H2BS, which was washed with hot ethanol, with a yield of 85%.

1H NMR (600 MHz, DMSO-d6, δ ppm): 13.00 (s, 1H, OH), 9.00 (s, 1H, CHimine), 7.68 (dd, 1H, Ar-H), 7.54 (s, 2H, Ar-H), 7.43 (m, 1H, Ar-H), 6.95 (m, 2H, Ar-H).

The 1H NMR spectrum of H2BS is given in Fig. S6.

Synthesis of [(Et3NH)2Zn2Cl4(BS)] (ZnBS)

A reaction mixture consisting of ligand 2BS (32 mg, 0.1 mmol), zinc(II) chloride (55 mg, 0.4 mmol) and 5 mL of aceto­nitrile was stirred for 4 h at room temperature to obtain an orange–red solid. To dissolve the precipitate, 40 µL of tri­ethyl­amine were added to the reaction vessel, forming a yellow solution. After filtering the solution and slow evaporation, transparent yellow–green crystals were obtained (yield 68%).

1H NMR (600 MHz, d6–DMSO, δ ppm): 9.03 (s, 1H, CHimine); 8.63 (s, 1H, NHamminium salt), 7.73 (m, 2H, Ar-H), 7.50 (m, 1H, Ar-H), 7.27 (m, 1H, Ar-H), 7.00 (m, 1H, Ar-H), 6.50 (m, 1H, Ar-H), 3.30 (m, 6H, CH2), 1.10 (m, 9H, CH3). ESI–MS: 653.3 (100%, M – Et3NH – Cl).

The 1H NMR and ESI–MS spectra of ZnBS are given in Figs. S7 and S8, respectively.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hydrogen atom H2 was located in a difference Fourier map for ZnBS and subsequently refined freely. All other H atoms were placed in idealized positions and refined in riding mode with N—H distance of 0.89 Å, C—H distances of 0.93 (aromatic), 0.97 (CH2) and 0.96 Å (CH3). Non-hydrogen atoms were refined anisotropically and hydrogen atoms with isotropic temperature factors fixed at 1.2 times Ueq of the parent atoms (1.5 for methyl groups).

Table 4
Experimental details

  ZnOQ ZnBS
Crystal data
Chemical formula (C6H16N){Zn(C21H13N2O3)Cl2] (C6H16N)2[Zn2(C20H14N2O2)Cl4]
Mr 579.80 791.24
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 293 293
a, b, c (Å) 10.4571 (5), 13.9115 (5), 18.5703 (10) 11.9843 (9), 13.4570 (7), 11.9944 (11)
β (°) 100.372 (5) 103.838 (9)
V3) 2657.4 (2) 1878.2 (3)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.16 1.59
Crystal size (mm) 0.5 × 0.3 × 0.2 0.5 × 0.5 × 0.5
 
Data collection
Diffractometer SuperNova, Single source at offset/far, Eos SuperNova, Single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.728, 1.000 0.473, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 27564, 5416, 4166 10514, 3814, 2836
Rint 0.042 0.044
(sin θ/λ)max−1) 0.625 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.03 0.053, 0.158, 1.05
No. of reflections 5416 3814
No. of parameters 331 206
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.70, −0.38 0.93, −0.39
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Dichlorido[2-(4-nitrophenyl)-4-phenylquinolin-8-olato]zinc(II) (ZnOQ) top
Crystal data top
(C6H16N){Zn(C21H13N2O3)Cl2]F(000) = 1200
Mr = 579.80Dx = 1.449 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.4571 (5) ÅCell parameters from 8040 reflections
b = 13.9115 (5) Åθ = 2.8–25.8°
c = 18.5703 (10) ŵ = 1.16 mm1
β = 100.372 (5)°T = 293 K
V = 2657.4 (2) Å3Block, brown
Z = 40.5 × 0.3 × 0.2 mm
Data collection top
SuperNova, Single source at offset/far, Eos
diffractometer
5416 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source4166 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.042
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.5°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1717
Tmin = 0.728, Tmax = 1.000l = 2323
27564 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.045P)2 + 2.5402P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5416 reflectionsΔρmax = 0.70 e Å3
331 parametersΔρmin = 0.38 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.28872 (3)0.61247 (2)0.31683 (2)0.03891 (12)
Cl10.17475 (9)0.51997 (7)0.37894 (5)0.0576 (2)
O10.2901 (2)0.75402 (14)0.33465 (14)0.0497 (6)
N10.4792 (2)0.62069 (15)0.37204 (12)0.0310 (5)
C10.5666 (3)0.55364 (19)0.39637 (15)0.0309 (6)
Cl20.25071 (10)0.58325 (7)0.19686 (5)0.0625 (3)
O20.3841 (3)0.14048 (19)0.26870 (18)0.0795 (9)
N20.4125 (3)0.16534 (19)0.3326 (2)0.0556 (8)
C20.6879 (3)0.5769 (2)0.43761 (16)0.0353 (6)
H20.7446740.5277400.4561080.042*
O30.4033 (3)0.11346 (17)0.38411 (19)0.0855 (10)
C30.7251 (3)0.6709 (2)0.45149 (15)0.0338 (6)
C40.6353 (3)0.7449 (2)0.42257 (16)0.0346 (6)
C50.6627 (3)0.8446 (2)0.42810 (19)0.0442 (8)
H50.7453720.8658610.4490130.053*
C60.5672 (3)0.9091 (2)0.4026 (2)0.0500 (8)
H60.5865160.9744370.4055720.060*
C70.4418 (3)0.8802 (2)0.3722 (2)0.0483 (8)
H70.3784300.9266060.3576520.058*
C80.4088 (3)0.7843 (2)0.36310 (18)0.0402 (7)
C90.5106 (3)0.71540 (19)0.38649 (15)0.0328 (6)
C100.5301 (3)0.45145 (19)0.37934 (15)0.0320 (6)
C110.4760 (3)0.4245 (2)0.30856 (17)0.0386 (7)
H110.4636700.4703660.2715350.046*
C120.4404 (3)0.3306 (2)0.29243 (18)0.0440 (7)
H120.4053160.3122730.2448130.053*
C130.4580 (3)0.26455 (19)0.34855 (18)0.0405 (7)
C140.5133 (3)0.2881 (2)0.41919 (18)0.0433 (7)
H140.5248370.2418720.4559360.052*
C150.5514 (3)0.3825 (2)0.43439 (17)0.0381 (7)
H150.5912520.3997810.4814910.046*
C160.8549 (3)0.6934 (2)0.49497 (16)0.0373 (7)
C170.9647 (3)0.6483 (2)0.47914 (18)0.0426 (7)
H170.9562100.6025540.4420390.051*
C181.0869 (3)0.6706 (2)0.5180 (2)0.0540 (9)
H181.1600420.6406090.5063680.065*
C191.1004 (3)0.7367 (3)0.5737 (2)0.0567 (9)
H191.1825560.7520050.5994410.068*
C200.9924 (3)0.7802 (3)0.59125 (19)0.0544 (9)
H201.0014790.8242860.6295040.065*
C210.8703 (3)0.7590 (2)0.55239 (17)0.0462 (8)
H210.7976710.7887950.5647640.055*
N30.0767 (3)0.87944 (19)0.31940 (17)0.0474 (7)
H30.145 (4)0.841 (3)0.3240 (19)0.057*
C220.1087 (4)0.9707 (3)0.2842 (2)0.0616 (10)
H22A0.1703201.0071370.3190010.074*
H22B0.0303571.0089190.2714280.074*
C230.1659 (4)0.9534 (3)0.2159 (2)0.0664 (10)
H23A0.0987120.9319490.1769960.100*
H23B0.2324430.9051840.2257310.100*
H23C0.2027621.0120920.2016950.100*
C240.0430 (5)0.8986 (3)0.3938 (3)0.0767 (12)
H24A0.0255940.9464220.3885510.092*
H24B0.0091350.8399390.4114210.092*
C250.1544 (5)0.9329 (4)0.4497 (2)0.0923 (15)
H25A0.2253330.8884230.4527990.139*
H25B0.1278440.9373750.4964480.139*
H25C0.1816590.9950740.4358010.139*
C260.0375 (5)0.8324 (4)0.2696 (3)0.1022 (17)
H26A0.1141920.8716180.2696220.123*
H26B0.0199110.8319700.2201010.123*
C270.0658 (5)0.7353 (3)0.2895 (3)0.0954 (16)
H27A0.1258670.7064410.2502020.143*
H27B0.1035920.7363670.3329070.143*
H27C0.0130900.6984630.2984430.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0347 (2)0.02971 (19)0.0491 (2)0.00194 (14)0.00099 (15)0.00165 (15)
Cl10.0515 (5)0.0583 (5)0.0652 (6)0.0095 (4)0.0166 (4)0.0010 (4)
O10.0354 (12)0.0274 (10)0.0807 (16)0.0054 (9)0.0048 (11)0.0021 (11)
N10.0323 (12)0.0226 (11)0.0377 (13)0.0017 (9)0.0053 (10)0.0002 (10)
C10.0342 (15)0.0242 (13)0.0347 (14)0.0018 (11)0.0077 (12)0.0005 (11)
Cl20.0686 (6)0.0675 (6)0.0451 (5)0.0157 (5)0.0061 (4)0.0039 (4)
O20.094 (2)0.0442 (15)0.096 (2)0.0164 (14)0.0075 (18)0.0254 (15)
N20.0536 (18)0.0287 (14)0.088 (2)0.0003 (13)0.0215 (17)0.0089 (16)
C20.0335 (15)0.0281 (14)0.0429 (16)0.0045 (12)0.0033 (13)0.0006 (12)
O30.127 (3)0.0299 (13)0.109 (3)0.0107 (15)0.046 (2)0.0033 (15)
C30.0312 (14)0.0335 (14)0.0362 (15)0.0015 (12)0.0052 (12)0.0037 (12)
C40.0320 (15)0.0301 (14)0.0417 (16)0.0006 (12)0.0065 (12)0.0014 (12)
C50.0398 (17)0.0305 (15)0.061 (2)0.0055 (13)0.0049 (15)0.0029 (14)
C60.053 (2)0.0232 (14)0.072 (2)0.0038 (14)0.0077 (17)0.0020 (15)
C70.0447 (18)0.0264 (14)0.071 (2)0.0056 (13)0.0039 (16)0.0023 (15)
C80.0389 (17)0.0286 (14)0.0517 (18)0.0040 (13)0.0043 (14)0.0002 (13)
C90.0363 (15)0.0248 (13)0.0374 (15)0.0009 (11)0.0064 (12)0.0014 (12)
C100.0290 (14)0.0249 (13)0.0422 (16)0.0037 (11)0.0066 (12)0.0028 (12)
C110.0439 (17)0.0282 (14)0.0419 (16)0.0026 (13)0.0031 (13)0.0021 (13)
C120.0461 (18)0.0354 (16)0.0488 (18)0.0018 (14)0.0034 (15)0.0090 (14)
C130.0397 (17)0.0232 (13)0.061 (2)0.0013 (12)0.0142 (15)0.0068 (14)
C140.0517 (19)0.0275 (14)0.0531 (19)0.0081 (13)0.0158 (15)0.0088 (14)
C150.0407 (16)0.0334 (15)0.0406 (16)0.0045 (13)0.0084 (13)0.0018 (13)
C160.0361 (16)0.0333 (15)0.0410 (16)0.0030 (12)0.0027 (13)0.0000 (13)
C170.0395 (17)0.0353 (15)0.0506 (18)0.0024 (13)0.0015 (14)0.0052 (14)
C180.0375 (18)0.0501 (19)0.070 (2)0.0072 (15)0.0023 (16)0.0028 (18)
C190.0406 (19)0.055 (2)0.067 (2)0.0060 (16)0.0117 (17)0.0032 (18)
C200.056 (2)0.054 (2)0.049 (2)0.0070 (17)0.0011 (16)0.0154 (17)
C210.0415 (18)0.0480 (18)0.0480 (18)0.0014 (14)0.0048 (15)0.0114 (15)
N30.0412 (15)0.0396 (15)0.0621 (18)0.0017 (12)0.0112 (14)0.0001 (13)
C220.060 (2)0.048 (2)0.076 (3)0.0071 (17)0.009 (2)0.0089 (19)
C230.065 (2)0.074 (3)0.059 (2)0.008 (2)0.010 (2)0.010 (2)
C240.082 (3)0.070 (3)0.085 (3)0.009 (2)0.034 (3)0.001 (2)
C250.126 (4)0.091 (3)0.064 (3)0.024 (3)0.028 (3)0.016 (3)
C260.097 (4)0.087 (4)0.118 (4)0.032 (3)0.007 (3)0.008 (3)
C270.104 (4)0.079 (3)0.100 (4)0.025 (3)0.011 (3)0.007 (3)
Geometric parameters (Å, º) top
Zn1—Cl12.2140 (10)C15—H150.9300
Zn1—O11.996 (2)C16—C171.386 (4)
Zn1—N12.073 (2)C16—C211.390 (4)
Zn1—Cl22.2289 (10)C17—H170.9300
O1—C81.327 (4)C17—C181.385 (4)
N1—C11.327 (3)C18—H180.9300
N1—C91.373 (3)C18—C191.372 (5)
C1—C21.396 (4)C19—H190.9300
C1—C101.491 (4)C19—C201.371 (5)
O2—N21.220 (4)C20—H200.9300
N2—O31.216 (4)C20—C211.381 (4)
N2—C131.472 (4)C21—H210.9300
C2—H20.9300N3—H30.89 (4)
C2—C31.376 (4)N3—C221.493 (4)
C3—C41.432 (4)N3—C241.509 (5)
C3—C161.482 (4)N3—C261.519 (5)
C4—C51.415 (4)C22—H22A0.9700
C4—C91.416 (4)C22—H22B0.9700
C5—H50.9300C22—C231.515 (5)
C5—C61.363 (4)C23—H23A0.9600
C6—H60.9300C23—H23B0.9600
C6—C71.391 (5)C23—H23C0.9600
C7—H70.9300C24—H24A0.9700
C7—C81.380 (4)C24—H24B0.9700
C8—C91.440 (4)C24—C251.493 (6)
C10—C111.386 (4)C25—H25A0.9600
C10—C151.390 (4)C25—H25B0.9600
C11—H110.9300C25—H25C0.9600
C11—C121.376 (4)C26—H26A0.9700
C12—H120.9300C26—H26B0.9700
C12—C131.377 (4)C26—C271.446 (6)
C13—C141.375 (4)C27—H27A0.9600
C14—H140.9300C27—H27B0.9600
C14—C151.387 (4)C27—H27C0.9600
Cl1—Zn1—Cl2113.51 (4)C17—C16—C21118.3 (3)
O1—Zn1—Cl1118.40 (8)C21—C16—C3121.7 (3)
O1—Zn1—N183.44 (8)C16—C17—H17119.7
O1—Zn1—Cl2109.89 (8)C18—C17—C16120.7 (3)
N1—Zn1—Cl1109.50 (7)C18—C17—H17119.7
N1—Zn1—Cl2119.15 (7)C17—C18—H18119.9
C8—O1—Zn1110.95 (17)C19—C18—C17120.2 (3)
C1—N1—Zn1132.16 (18)C19—C18—H18119.9
C1—N1—C9118.9 (2)C18—C19—H19120.1
C9—N1—Zn1108.92 (17)C20—C19—C18119.9 (3)
N1—C1—C2121.7 (2)C20—C19—H19120.1
N1—C1—C10117.6 (2)C19—C20—H20119.9
C2—C1—C10120.6 (2)C19—C20—C21120.3 (3)
O2—N2—C13118.4 (3)C21—C20—H20119.9
O3—N2—O2123.8 (3)C16—C21—H21119.7
O3—N2—C13117.8 (3)C20—C21—C16120.7 (3)
C1—C2—H2119.3C20—C21—H21119.7
C3—C2—C1121.4 (3)C22—N3—H3109 (2)
C3—C2—H2119.3C22—N3—C24111.0 (3)
C2—C3—C4118.0 (2)C22—N3—C26108.2 (3)
C2—C3—C16120.3 (3)C24—N3—H3110 (2)
C4—C3—C16121.8 (2)C24—N3—C26110.2 (3)
C5—C4—C3124.5 (3)C26—N3—H3109 (2)
C5—C4—C9118.4 (3)N3—C22—H22A109.1
C9—C4—C3117.1 (2)N3—C22—H22B109.1
C4—C5—H5120.2N3—C22—C23112.7 (3)
C6—C5—C4119.6 (3)H22A—C22—H22B107.8
C6—C5—H5120.2C23—C22—H22A109.1
C5—C6—H6119.1C23—C22—H22B109.1
C5—C6—C7121.9 (3)C22—C23—H23A109.5
C7—C6—H6119.1C22—C23—H23B109.5
C6—C7—H7119.1C22—C23—H23C109.5
C8—C7—C6121.7 (3)H23A—C23—H23B109.5
C8—C7—H7119.1H23A—C23—H23C109.5
O1—C8—C7123.4 (3)H23B—C23—H23C109.5
O1—C8—C9119.8 (2)N3—C24—H24A108.7
C7—C8—C9116.8 (3)N3—C24—H24B108.7
N1—C9—C4122.6 (2)H24A—C24—H24B107.6
N1—C9—C8116.2 (2)C25—C24—N3114.3 (4)
C4—C9—C8121.2 (2)C25—C24—H24A108.7
C11—C10—C1120.3 (3)C25—C24—H24B108.7
C11—C10—C15119.7 (3)C24—C25—H25A109.5
C15—C10—C1120.0 (3)C24—C25—H25B109.5
C10—C11—H11119.6C24—C25—H25C109.5
C12—C11—C10120.8 (3)H25A—C25—H25B109.5
C12—C11—H11119.6H25A—C25—H25C109.5
C11—C12—H12120.8H25B—C25—H25C109.5
C11—C12—C13118.3 (3)N3—C26—H26A108.5
C13—C12—H12120.8N3—C26—H26B108.5
C12—C13—N2118.6 (3)H26A—C26—H26B107.5
C14—C13—N2118.8 (3)C27—C26—N3115.0 (4)
C14—C13—C12122.6 (3)C27—C26—H26A108.5
C13—C14—H14120.8C27—C26—H26B108.5
C13—C14—C15118.5 (3)C26—C27—H27A109.5
C15—C14—H14120.8C26—C27—H27B109.5
C10—C15—H15120.0C26—C27—H27C109.5
C14—C15—C10120.1 (3)H27A—C27—H27B109.5
C14—C15—H15120.0H27A—C27—H27C109.5
C17—C16—C3120.0 (3)H27B—C27—H27C109.5
Zn1—O1—C8—C7171.4 (3)C4—C3—C16—C2148.1 (4)
Zn1—O1—C8—C98.9 (4)C4—C5—C6—C71.2 (5)
Zn1—N1—C1—C2175.0 (2)C5—C4—C9—N1173.4 (3)
Zn1—N1—C1—C103.8 (4)C5—C4—C9—C86.9 (4)
Zn1—N1—C9—C4178.8 (2)C5—C6—C7—C83.1 (6)
Zn1—N1—C9—C81.5 (3)C6—C7—C8—O1179.7 (3)
O1—C8—C9—N15.0 (4)C6—C7—C8—C90.1 (5)
O1—C8—C9—C4174.7 (3)C7—C8—C9—N1175.2 (3)
N1—C1—C2—C33.7 (4)C7—C8—C9—C45.1 (5)
N1—C1—C10—C1148.7 (4)C9—N1—C1—C21.6 (4)
N1—C1—C10—C15131.9 (3)C9—N1—C1—C10179.5 (2)
C1—N1—C9—C43.9 (4)C9—C4—C5—C63.7 (5)
C1—N1—C9—C8175.9 (3)C10—C1—C2—C3177.5 (3)
C1—C2—C3—C40.3 (4)C10—C11—C12—C131.0 (5)
C1—C2—C3—C16179.5 (3)C11—C10—C15—C142.9 (4)
C1—C10—C11—C12179.1 (3)C11—C12—C13—N2176.2 (3)
C1—C10—C15—C14177.7 (3)C11—C12—C13—C142.1 (5)
O2—N2—C13—C1213.8 (5)C12—C13—C14—C150.7 (5)
O2—N2—C13—C14167.8 (3)C13—C14—C15—C101.8 (5)
N2—C13—C14—C15177.6 (3)C15—C10—C11—C121.5 (4)
C2—C1—C10—C11132.4 (3)C16—C3—C4—C54.1 (5)
C2—C1—C10—C1547.0 (4)C16—C3—C4—C9175.5 (3)
C2—C3—C4—C5175.7 (3)C16—C17—C18—C191.1 (5)
C2—C3—C4—C94.7 (4)C17—C16—C21—C201.7 (5)
C2—C3—C16—C1747.5 (4)C17—C18—C19—C200.6 (6)
C2—C3—C16—C21132.1 (3)C18—C19—C20—C211.1 (6)
O3—N2—C13—C12164.9 (3)C19—C20—C21—C160.1 (5)
O3—N2—C13—C1413.5 (5)C21—C16—C17—C182.2 (5)
C3—C4—C5—C6175.9 (3)C22—N3—C24—C2567.7 (5)
C3—C4—C9—N17.0 (4)C22—N3—C26—C27169.5 (4)
C3—C4—C9—C8172.7 (3)C24—N3—C22—C23169.8 (3)
C3—C16—C17—C18178.2 (3)C24—N3—C26—C2768.9 (6)
C3—C16—C21—C20178.7 (3)C26—N3—C22—C2369.1 (4)
C4—C3—C16—C17132.3 (3)C26—N3—C24—C25172.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg5 are the centroids of C4-C9 and C16-C21, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.88 (4)1.92 (4)2.807 (4)178 (4)
C12—H12···Cg3i0.932.783.553 (4)141
C14—H14···Cg3ii0.933.043.837 (4)145
C24—H24B···Cg5iii0.972.943.809 (5)149
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1, y, z.
Bis(triethylammonium) {2,2'-[1,4-phenylenebis(nitrilomethylidyne)]diphenolato}bis[dichloridozinc(II)] (ZnBS) top
Crystal data top
(C6H16N)2[Zn2(C20H14N2O2)Cl4]F(000) = 820
Mr = 791.24Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.9843 (9) ÅCell parameters from 3646 reflections
b = 13.4570 (7) Åθ = 3.0–27.7°
c = 11.9944 (11) ŵ = 1.59 mm1
β = 103.838 (9)°T = 293 K
V = 1878.2 (3) Å3Block, orangish brown
Z = 20.5 × 0.5 × 0.5 mm
Data collection top
SuperNova, Single source at offset/far, Eos
diffractometer
3814 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2836 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.6°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1615
Tmin = 0.473, Tmax = 1.000l = 1414
10514 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0813P)2 + 0.7323P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3814 reflectionsΔρmax = 0.93 e Å3
206 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.26755 (4)0.45138 (3)0.68426 (4)0.0407 (2)
Cl10.37732 (10)0.32105 (8)0.66656 (10)0.0572 (3)
O10.2337 (3)0.5315 (2)0.5445 (2)0.0478 (7)
N10.3640 (3)0.5558 (2)0.7831 (3)0.0356 (7)
C10.2399 (3)0.6292 (3)0.5442 (3)0.0389 (9)
Cl20.11116 (10)0.41690 (10)0.74634 (14)0.0734 (4)
C20.1859 (4)0.6806 (3)0.4441 (4)0.0495 (10)
H2A0.1460660.6450110.3804960.059*
C30.1907 (4)0.7823 (4)0.4379 (4)0.0577 (12)
H30.1538340.8143140.3704710.069*
C40.2495 (4)0.8379 (4)0.5303 (4)0.0619 (13)
H40.2520950.9068590.5259490.074*
C50.3038 (4)0.7891 (3)0.6282 (4)0.0600 (13)
H50.3450750.8261850.6898990.072*
C60.3000 (3)0.6862 (3)0.6396 (3)0.0399 (9)
C70.3605 (3)0.6466 (3)0.7493 (3)0.0423 (9)
H70.4017180.6920820.8016150.051*
C80.4335 (3)0.5297 (3)0.8932 (3)0.0370 (8)
C90.5314 (3)0.5822 (3)0.9465 (3)0.0421 (9)
H90.5536300.6374020.9103440.051*
C100.5960 (4)0.5531 (3)1.0529 (4)0.0422 (9)
H100.6602300.5899881.0885570.051*
N20.2124 (3)0.4098 (3)0.3531 (3)0.0542 (9)
C110.1537 (5)0.4581 (4)0.2419 (5)0.0652 (14)
H11A0.1953580.5180790.2323680.078*
H11B0.0769080.4776010.2460960.078*
C120.1446 (6)0.3922 (5)0.1357 (5)0.0908 (19)
H12A0.1066660.4282370.0681690.136*
H12B0.1012260.3335560.1428330.136*
H12C0.2202440.3735390.1295890.136*
C130.1557 (5)0.3189 (4)0.3848 (5)0.0790 (16)
H13A0.1521960.2692000.3254220.095*
H13B0.2028580.2922500.4556650.095*
C140.0394 (5)0.3356 (5)0.3998 (6)0.095 (2)
H14A0.0098630.3560260.3280640.142*
H14B0.0413760.3865980.4562190.142*
H14C0.0105730.2752060.4249670.142*
C150.3399 (5)0.3890 (4)0.3623 (4)0.0692 (14)
H15A0.3730860.3589100.4362890.083*
H15B0.3468970.3417480.3033050.083*
C160.4060 (6)0.4798 (6)0.3498 (6)0.100 (2)
H16A0.3893630.4990310.2704130.150*
H16B0.4866730.4666400.3764300.150*
H16C0.3845660.5326250.3943280.150*
H20.217 (4)0.461 (3)0.410 (4)0.054 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0438 (3)0.0306 (3)0.0447 (3)0.00034 (18)0.0046 (2)0.00142 (17)
Cl10.0699 (8)0.0381 (6)0.0628 (7)0.0139 (5)0.0142 (6)0.0004 (5)
O10.0635 (19)0.0363 (15)0.0399 (16)0.0023 (13)0.0055 (13)0.0005 (11)
N10.0391 (17)0.0307 (17)0.0368 (17)0.0030 (13)0.0089 (14)0.0018 (12)
C10.040 (2)0.037 (2)0.040 (2)0.0022 (16)0.0120 (17)0.0023 (16)
Cl20.0423 (6)0.0692 (8)0.1099 (11)0.0044 (6)0.0208 (6)0.0289 (7)
C20.053 (3)0.051 (3)0.043 (2)0.005 (2)0.0069 (19)0.0054 (18)
C30.062 (3)0.056 (3)0.056 (3)0.013 (2)0.015 (2)0.021 (2)
C40.079 (3)0.038 (2)0.067 (3)0.002 (2)0.013 (3)0.013 (2)
C50.073 (3)0.036 (2)0.068 (3)0.005 (2)0.010 (3)0.002 (2)
C60.042 (2)0.035 (2)0.045 (2)0.0018 (16)0.0143 (18)0.0015 (16)
C70.045 (2)0.038 (2)0.043 (2)0.0027 (17)0.0067 (17)0.0054 (17)
C80.041 (2)0.036 (2)0.033 (2)0.0018 (16)0.0085 (16)0.0004 (15)
C90.049 (2)0.036 (2)0.042 (2)0.0082 (17)0.0109 (18)0.0081 (16)
C100.045 (2)0.040 (2)0.040 (2)0.0126 (17)0.0068 (17)0.0005 (16)
N20.069 (3)0.043 (2)0.055 (2)0.0016 (18)0.0244 (19)0.0083 (18)
C110.061 (3)0.068 (3)0.065 (3)0.018 (2)0.014 (2)0.002 (2)
C120.094 (4)0.113 (5)0.060 (4)0.010 (4)0.007 (3)0.013 (3)
C130.102 (4)0.055 (3)0.076 (4)0.014 (3)0.013 (3)0.010 (3)
C140.063 (4)0.103 (5)0.123 (6)0.031 (3)0.031 (4)0.008 (4)
C150.084 (4)0.073 (4)0.053 (3)0.025 (3)0.021 (3)0.006 (2)
C160.081 (4)0.118 (6)0.116 (6)0.003 (4)0.050 (4)0.008 (4)
Geometric parameters (Å, º) top
Zn1—Cl12.2327 (11)C10—H100.9300
Zn1—O11.952 (3)N2—C111.499 (6)
Zn1—N12.015 (3)N2—C131.492 (7)
Zn1—Cl22.2248 (13)N2—C151.531 (6)
O1—C11.316 (4)N2—H20.96 (5)
N1—C71.284 (5)C11—H11A0.9700
N1—C81.427 (5)C11—H11B0.9700
C1—C21.403 (5)C11—C121.534 (8)
C1—C61.422 (5)C12—H12A0.9600
C2—H2A0.9300C12—H12B0.9600
C2—C31.372 (6)C12—H12C0.9600
C3—H30.9300C13—H13A0.9700
C3—C41.383 (7)C13—H13B0.9700
C4—H40.9300C13—C141.465 (8)
C4—C51.367 (6)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C5—C61.394 (6)C14—H14C0.9600
C6—C71.444 (5)C15—H15A0.9700
C7—H70.9300C15—H15B0.9700
C8—C91.388 (5)C15—C161.483 (9)
C8—C10i1.376 (5)C16—H16A0.9600
C9—H90.9300C16—H16B0.9600
C9—C101.382 (5)C16—H16C0.9600
C10—C8i1.376 (5)
O1—Zn1—Cl1111.00 (9)C11—N2—H2105 (3)
O1—Zn1—N195.27 (12)C13—N2—C11115.9 (4)
O1—Zn1—Cl2112.58 (10)C13—N2—C15109.8 (4)
N1—Zn1—Cl1109.60 (9)C13—N2—H2111 (3)
N1—Zn1—Cl2111.06 (10)C15—N2—H2101 (3)
Cl2—Zn1—Cl1115.51 (5)N2—C11—H11A108.7
C1—O1—Zn1123.6 (2)N2—C11—H11B108.7
C7—N1—Zn1120.5 (3)N2—C11—C12114.4 (4)
C7—N1—C8119.6 (3)H11A—C11—H11B107.6
C8—N1—Zn1119.9 (2)C12—C11—H11A108.7
O1—C1—C2118.7 (3)C12—C11—H11B108.7
O1—C1—C6123.6 (3)C11—C12—H12A109.5
C2—C1—C6117.6 (4)C11—C12—H12B109.5
C1—C2—H2A119.3C11—C12—H12C109.5
C3—C2—C1121.4 (4)H12A—C12—H12B109.5
C3—C2—H2A119.3H12A—C12—H12C109.5
C2—C3—H3119.4H12B—C12—H12C109.5
C2—C3—C4121.1 (4)N2—C13—H13A108.7
C4—C3—H3119.4N2—C13—H13B108.7
C3—C4—H4120.8H13A—C13—H13B107.6
C5—C4—C3118.4 (4)C14—C13—N2114.2 (5)
C5—C4—H4120.8C14—C13—H13A108.7
C4—C5—H5118.6C14—C13—H13B108.7
C4—C5—C6122.8 (4)C13—C14—H14A109.5
C6—C5—H5118.6C13—C14—H14B109.5
C1—C6—C7125.6 (3)C13—C14—H14C109.5
C5—C6—C1118.7 (4)H14A—C14—H14B109.5
C5—C6—C7115.8 (4)H14A—C14—H14C109.5
N1—C7—C6127.6 (4)H14B—C14—H14C109.5
N1—C7—H7116.2N2—C15—H15A109.0
C6—C7—H7116.2N2—C15—H15B109.0
C9—C8—N1122.9 (3)H15A—C15—H15B107.8
C10i—C8—N1118.4 (3)C16—C15—N2112.9 (5)
C10i—C8—C9118.7 (3)C16—C15—H15A109.0
C8—C9—H9119.8C16—C15—H15B109.0
C10—C9—C8120.4 (4)C15—C16—H16A109.5
C10—C9—H9119.8C15—C16—H16B109.5
C8i—C10—C9120.9 (4)C15—C16—H16C109.5
C8i—C10—H10119.5H16A—C16—H16B109.5
C9—C10—H10119.5H16A—C16—H16C109.5
C11—N2—C15113.0 (4)H16B—C16—H16C109.5
Zn1—O1—C1—C2163.5 (3)C4—C5—C6—C11.9 (7)
Zn1—O1—C1—C617.6 (5)C4—C5—C6—C7179.1 (5)
Zn1—N1—C7—C65.5 (6)C5—C6—C7—N1175.5 (4)
Zn1—N1—C8—C9154.8 (3)C6—C1—C2—C30.0 (6)
Zn1—N1—C8—C10i23.2 (5)C7—N1—C8—C927.6 (6)
O1—C1—C2—C3179.0 (4)C7—N1—C8—C10i154.5 (4)
O1—C1—C6—C5178.0 (4)C8—N1—C7—C6176.9 (4)
O1—C1—C6—C71.0 (6)C8—C9—C10—C8i1.6 (7)
N1—C8—C9—C10179.5 (4)C10i—C8—C9—C101.6 (7)
C1—C2—C3—C40.3 (7)C11—N2—C13—C1461.3 (6)
C1—C6—C7—N15.5 (7)C11—N2—C15—C1657.8 (6)
C2—C1—C6—C51.0 (6)C13—N2—C11—C1261.6 (6)
C2—C1—C6—C7180.0 (4)C13—N2—C15—C16171.1 (5)
C2—C3—C4—C50.5 (7)C15—N2—C11—C1266.4 (6)
C3—C4—C5—C61.6 (8)C15—N2—C13—C14169.1 (5)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.96 (4)1.84 (4)2.782 (4)165 (4)
C9—H9···Cl1ii0.932.833.752 (4)171
C11—H11···Cl2iii0.972.683.625 (6)164
C13—H13···Cl2iv0.972.683.562 (6)151
C15—H15A···Cl10.972.803.684 (5)152
C15—H15B···Cl1iv0.972.813.769 (5)169
Symmetry codes: (ii) x+1, y+1/2, z+3/2; (iii) x, y+1, z+1; (iv) x, y+1/2, z1/2.
Photophysical data of the examined compounds at room temperature top
CompoundSolvent (polarity)λabs (nm) / ε (M-1.cm-1.103)λem (nm)Stokes shift (cm-1)λemb (nm)/Intensity
H2BSDMSO (3.96)371 (35)5318122575 / 34624
THF (1.73)371 (56)5348228
ZnBSDMSO (3.96)372 (32)5207651515 / 10616
THF (1.73)372 (12)5518878
HOQDMSO (3.96)264 (34); 312 (32)52813112
THF (1.73)247 (60); 295 (56)53315136
ZnOQDMSO (3.96)265 (25); 297 (35); 450 (3)a5182917
THF (1.73)243 (48); 307 (35); 380 (6)a4674902
Notes: (a) shoulder excited; (b) in the solid state.
 

Acknowledgements

The authors would like to thank the Hanoi National University of Education for providing a fruitful working environment.

Funding information

NNK was funded by the Master, PhD Scholarship Program of Vingroup Innovation Foundation (VINIF), code VINIF.2023.ThS.066. LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationChiyindiko, E., Langner, E. H. G. & Conradie, J. (2022). Molecules, 27, 6033.  CrossRef PubMed Google Scholar
First citationCôrte-Real, L., Pósa, V., Martins, M., Colucas, R., May, N. V., Fontrodona, X., Romero, I., Mendes, F., Pinto Reis, C., Gaspar, M. M., Pessoa, J. C., Enyedy, E. A., ÉA, & Correia, I. (2023). Inorg. Chem. 62, 11466–11486.  Google Scholar
First citationDas, M. K. & Ghosh, S. (1998). Indian J. Chem. 3, 272–275.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDu, L., Zhang, T., Huang, X., Xu, Y., Tan, M., Huang, Y., Chen, Y. & Qin, Q. (2023). Dalton Trans. 52, 4737–4751.  CSD CrossRef CAS PubMed Google Scholar
First citationDumur, F. (2014). Synth. Met. 195, 241–251.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGusev, A. N., Kiskin, M. A., Braga, E. V., Chapran, M., Wiosna-Salyga, G., Baryshnikov, G. V., Minaeva, V. A., Minaev, B. F., Ivaniuk, K., Stakhira, P., Ågren, H. & Linert, W. (2019). J. Phys. Chem. C, 123, 11850–11859.  CSD CrossRef CAS Google Scholar
First citationGusev, A. N., Kiskin, M. A., Braga, E. V., Kryukova, M. A., Baryshnikov, G. V., Karaush-Karmazin, N. N., Minaeva, V. A., Minaev, B. F., Ivaniuk, K., Stakhira, P., Ågren, H. & Linert, W. (2021). ACS Appl. Electron. Mater. 3, 3436–3444.  CrossRef CAS Google Scholar
First citationHarmošová, M., Kello, M., Goga, M., Tkáčiková, L., Vilková, M., Sabolová, D., Sovová, S., Samoľová, E., Litecká, M., Kuchárová, V., Kuchár, J. & Potočňák, I. (2023). Inorganics, 11, 60.  Google Scholar
First citationHe, X., Xie, Q., Fan, J., Xu, C., Xu, W., Li, Y., Ding, F., Deng, H., Chen, H. & Shen, J. (2020). Dyes Pigments, 177, 108255.  CrossRef Google Scholar
First citationHien, N., Ninh, N. H., Hieu, L. H., Linh, N. T. B., Pham, V. T., Dung, T. N., Van Meervelt, L., Chi, N. T. T. & Hai, L. T. H. (2024). J. Mol. Struct. 1311, 138464.  CSD CrossRef Google Scholar
First citationJianbo, H., Tingting, Z., Yongjing, C., Yuanyuan, Z., Weiqing, Y. & Menglin, M. (2018). J. Fluoresc. 28, 1121–1126.  CrossRef CAS PubMed Google Scholar
First citationKargar, H., Ardakani, A. A., Tahir, M. N., Ashfaq, M. & Munawar, K. S. (2021a). J. Mol. Struct. 1229, 129842.  CSD CrossRef Google Scholar
First citationKargar, H., Ardakani, A. A., Tahir, M. N., Ashfaq, M. & Munawar, K. S. (2021b). J. Mol. Struct. 1233, 130112.  CSD CrossRef Google Scholar
First citationLakshmanan, R., Shivaprakash, N. & Sindhu, S. (2018). J. Lumin. 196, 136–145.  CrossRef CAS Google Scholar
First citationLiu, C.-H., Guan, Q.-L., Yang, X.-D., Bai, F.-Y., Sun, L.-X. & Xing, Y.-H. (2020). Inorg. Chem. 59, 8081–8098.  CSD CrossRef CAS PubMed Google Scholar
First citationRashamuse, T. J., Mohlala, R. L., Coyanis, E. M. & Magwa, N. P. (2023). Molecules, 28, 5272.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSamanta, D., Saha, P. & Ghosh, P. (2019). Inorg. Chem. 58, 15060–15077.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, D., Nishal, V., Bhagwan, S., Saini, R. K. & Singh, I. (2018). Mater. Des. 156, 215–228.  CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYu, S., Wu, J., Lan, H., Xu, H., Shi, X., Zhu, X. & Yin, Z. (2018). RSC Adv. 8, 33968–33971.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds