research communications
Crystal structures and photophysical properties of mono- and dinuclear ZnII complexes flanked by triethylammonium
aDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bInstitute of Natural Sciences, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and cDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be
Two new zinc(II) complexes, triethylammonium dichlorido[2-(4-nitrophenyl)-4-phenylquinolin-8-olato]zinc(II), (C6H16N){Zn(C21H13N2O3)Cl2] (ZnOQ), and bis(triethylammonium) {2,2′-[1,4-phenylenebis(nitrilomethylidyne)]diphenolato}bis[dichloridozinc(II)], (C6H16N)2[Zn2(C20H14N2O2)Cl4] (ZnBS), were synthesized and their structures were determined using ESI–MS spectrometry, 1H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitrophenyl)-4-phenylquinolin-8-ol (HOQ) and N,N′-bis(2-hydroxybenzylidene)benzene-1,4-diamine (H2BS) were deprotonated by triethyl-amine, forming the counter-ion Et3NH+, which interacts via an N—H⋯O hydrogen bond with the ligand. The ZnII atoms have a distorted trigonal–pyramidal (ZnOQ) and distorted tetrahedral (ZnBS) geometries with a coordination number of four, coordinating with the ligands via N and O atoms. The N atoms coordinating with ZnII correspond to the heterocyclic nitrogen for the HOQ ligand, while for the H2BS ligand, it is the nitrogen of the imine (CH=N). The crystal packing of ZnOQ is characterized by C—H⋯π interactions, while that of ZnBS by C—H⋯Cl interactions. The emission spectra showed that ZnBS complex exhibits green fluorescence in the solid state with a small band-gap energy, and the ZnOQ complex does exhibit non-fluorescence.
1. Chemical context
Numerous ZnII complexes have attracted interest from many scientists and have been used in various applications, such as biological sensors (Liu et al., 2020; He et al., 2020), antimicrobial agents (Kargar et al., 2021ab), anticancer drugs (Du et al., 2023) and particularly in luminescent materials for organic light-emitting diode (OLED) devices (Gusev et al., 2019, 2021; Rashamuse et al., 2023). ZnII complexes are noted for their impressive fluorescence and cost-effectiveness in OLED applications. Among all ligands, 8-hydroxyquinoline is a classical one. It has the ability to form a five-membered ring with the metal center via N and O atoms, which appeals to many scientists from all over the world (Côrte-Real et al., 2023; Harmošová et al., 2023). In order to improve the photophysical properties of ZnII complexes with 8-hydroxyquinoline, many strategies have been conducted to synthesize new neutral ZnII complexes including different substituents at various positions on 8-hydroxyquinoline (Singh et al., 2018), with the approach of extending the π-conjugation system with aryl substituents to increase photoluminiscence (PLQY) and to shift the emission to blue yielding potential results (Harmošová et al., 2023; Jianbo et al., 2018; Hien et al., 2024). In particular, a series of six new ZnII complexes bearing diaryl-8-hydroxyquinoline were synthesized, indicating that electron-donating groups (like OCH3) enhance the PLQY, while electron-withdrawing groups (like NO2) show the opposite result (Hien et al., 2024). These complexes are synthesized by direct reaction between ZnCl2 and the ligands to obtain neutral complexes [Zn(OQ)2], in which ZnII coordinates with deprotonated 8-hydroxyquinoline via N and O atoms, as in previous publications. However, in this work, upon the reaction of 2-(4-nitrophenyl)-4-phenylquinolin-8-ol (HOQ) with ZnCl2 in the presence of triethylamine, an ionic complex with the molecular formula [Et3NH][Zn(OQ)Cl2] (ZnOQ) was obtained, in which the ratio of ZnII and ligand is 1:1 instead of 1:2 as in the published ZnII complexes (Singh et al., 2018; Hien et al., 2024). Furthermore, the same reaction condition between ZnCl2 and a similar NO-Schiff base ligand, namely N,N′-bis(2-hydroxybenzylidine)benzene-1,4-diamine (H2BS) gives a similar ion complex [Zn2(BS)Cl2][Et3NH]2 (ZnBS).
In this report, the ligands HOQ and H2BS were successfully prepared, and characterized. Furthermore, two complexes ZnOQ and ZnBS were also successfully prepared, isolated and characterized by ESI–MS and 1H NMR, and the crystal structures of the complexes were elucidated. The optical properties of the ligands and complexes were studied using absorption and emission spectra in both solid state and in solution in dimethylsulfoxide (DMSO) or tetrahydrofuran (THF) solvents.
2. Structural commentary
The mononuclear complex ZnOQ crystallizes in the monoclinic P21/c with one molecule in the (Fig. 1). The ZnII atom coordinates to the N and O atoms of a deprotonated 8-hydoxyquinoline derivative and two chlorine atoms with a distorted trigonal–pyramidal geometry (τ4 parameter is 0.86; Yang et al., 2007). The negative charge of the complex is compensated by the interaction with triethylammonium via an N—H⋯O hydrogen bond (Table 1). The Zn atom is part of a five-membered ring and is located 0.081 (1) Å above the planar quinoline plane (r.m.s. deviation = 0.058 Å), which makes dihedral angles of 50.88 (12) and 46.95 (13)° with the C10–C15 and C16-C21 phenyl rings, respectively. The mutual angle between the two phenyl rings is 79.42 (16)°. The plane of the nitro group makes an angle of 14.38 (19)° with the C10–C15 phenyl ring.
The dinuclear complex ZnBS also crystallizes in the monoclinic P21/c but with half a molecule in the (Fig. 2). The second half is generated by inversion symmetry. The complex is flanked at both ends by a triethylammonium moiety via an N—H⋯O interaction (Table 2). The ZnII coordination sphere resembles that observed in ZnOQ, but is now intermediate between trigonal–pyramidal and tetragonal geometries (τ4 parameter is 0.91). The ZnII atom is part of a six-membered ring and is located 0.405 (3) Å above the best plane through atoms C1–C7/O1/N1 (r.m.s. deviation = 0.027 Å). The interplanar angle between the aromatic rings is 33.4 (2)°. The stereochemistry of the C7=N1 bond is E, as illustrated by the torsion angle C6—C7=N1—C8 of 176.9 (4)°.
3. Supramolecular features
Despite the presence of aromatic rings in ZnOQ, no π–π stacking is observed in the crystal packing. However, the phenyl part of the quinoline ring system (C4–C9) and one of the phenyl rings (C16–C21) participate in three C—H⋯π interactions (Table 1, Fig. 3). Centrosymmetric dimers are formed by interaction of C14—H14 with a nearby C4–C9 ring. In addition, the other side of the nitrophenyl ring (C12—H12) also interacts with a close by C4–C9 ring. The last interaction involves the triethylammonium ion, with C24—H24A interacting with a neighboring C16–C21 ring, resulting in chain formation along the a-axis direction. One of the nitro oxygen atoms (O2) shows an O⋯π interaction with the pyridine part of the quinoline ring system [O2⋯Cg2i = 3.372 (3) Å; Cg2 is the centroid of the N1/C1–C4/C9 ring; symmetry code: (i) −x + 1, y − , −z + ].
In contrast to ZnOQ, the crystal packing in ZnBS is characterized by C—H⋯Cl interactions (Table 2, Fig. 4). The triethylammonium ion plays an important role in these interactions and acts as a stabilizing glue between three complexes via one N—H⋯O and four C—H⋯Cl interactions. The fifth C—H⋯Cl interaction is between an H atom of the central phenyl ring (H9) and a nearby chlorine atom (Cl1), which results in the formation of chains running in the b-axis direction (Fig. 5).
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.45, last update September 2024; Groom et al., 2016) for the five-membered ring fragment shown in Fig. 6a (comparable to a part of ZnOQ) resulted in three hits, CSD refcodes MOXFOX, MOXPEX and MOXPIB (Samanta et al., 2019). In these structures, the deviation of the ZnII atom from the best plane through the C, N and O atoms of the fragment (ranging between 0.145 and 0.195 Å) is comparable to that observed for ZnOQ [0.203 (3) Å]. The negative charge of the complexes is compensated by a second protonated ligand.
A similar search for the six-membered ring fragment shown in Fig. 6b (comparable to a part of ZnBS) resulted in 63 hits. The deviation of the ZnII atom from the best plane through the C, N and O atoms of the fragment shows a large variation between 0.003 and 0.927 Å [mean value is 0.327 Å, 0.405 (3) Å for ZnBS].
Of the 1876 crystal structures containing a triethylammonium ion in the CSD, the N—H group interacts with an O atom in 383 structures (133 organic and 250 coordination compounds).
A quick search for a nitro group interaction with a phenyl groups gives 6252 hits for an O⋯Cg distance shorter than 3.5 Å (Cg is the centroid of the phenyl ring).
5. Photophysical properties
The absorption and emission spectra at room temperature of both ligands and complexes in DMSO or THF solvents at a concentration of 10 µM (H2BS, ZnBS); 50 µM (HOQ; ZnOQ) and in the solid state (H2BS, ZnBS) are listed in Table 3. In the absorption spectra, H2BS and ZnBS (Fig. S9) show an absorption band at 371–372nm in both solvents, while two absorption bands were observed at 243–265nm and 295–312nm for HOQ and ZnOQ (Fig. S4), corresponding to π→π* or n→π* transitions. The results of the solid-state electron of H2BS and ZnBS (Fig. 7a) show that the band-gap energies of H2BS and ZnBS, calculated according to the equation Egap = hc/λonset (UV–vis) (Chiyindiko et al., 2022) are approximately 1.8 eV and 2.0 eV, respectively, which has potential for applications in OLED devices (Dumur, 2014; Lakshmanan et al., 2018).
|
The emission spectra of the examined complexes in DMSO and THF solvents demonstrate that all compounds show no fluorescence (Figs. S5 and S10). However, in the solid state, H2BS fluorescences at 575 nm with an intensity of approximately 35000 a.u., while the emission wavelength of ZnBS is 515 nm with an intensity of about 10000 a.u., showing a blue shift compared to the ligand with Δλ = 60 nm (Fig. 7b and S11).
6. Synthesis and crystallization
The reaction sequence for ZnOQ and ZnBS is shown in Fig. 8. The ligands HOQ and H2BS were synthesized according to modified procedures described by Yu et al. (2018; for HOQ) and Das & Ghosh (1998; for H2BS).
Synthesis of HOQ
A mixture of ortho-aminophenol (120 mg, 1.1 mmol), 4-nitrobenzaldehyde (151 mg, 1 mmol), phenylacetylene (139 mg, 1.2 mmol), AgOTf (13 mg, 0.5 mol%) and TFA (456 mg, 400 mol%) in 4 mL of dichloroethane was heated to 353 K for 24 h. After cooling, the reaction mixture was diluted with 15 mL of ethyl acetate and extracted three times with 10 mL of saturated NaHCO3 solution. Then, it was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The resulting residue was purified by silica gel using hexane/ethyl acetate (v/v = 19:1) as HOQ was obtained as a yellow solid with a yield of 52%.
1H NMR (600 MHz, chloroform-d1, δ ppm): 8.41 (br, 1H, OH), 8.39 [d, 3J(H,H) = 9.0 Hz, 2H, Ar-H], 8.36 [d, 3J(H,H) = 9.0 Hz, 2H, Ar-H], 7.90 (s, 1H, Ar-H), 7.57 [d, 3J(H,H) = 4.5 Hz, 4H, Ar-H], 7.56–7.54 (m, 1H, Ar-H), 7.48–7.43 (m, 2H, Ar-H), 7.26 (ov, 1H, Ar-H).
The 1H NMR spectrum of HOQ is given in Fig. S1.
Synthesis of [(Et3NH)ZnCl2(OQ)] (ZnOQ)
A reaction mixture consisting of ligand HOQ (32 mg, 0.1 mmol), zinc(II) chloride (55 mg, 0.1 mmol) and 5 mL of acetone was stirred at room temperature and 25 µL of triethylamine were added to the reaction vessel and stirred for 6 h to obtain an orange solution. Evaporation of the solution gave orange crystals (yield 67%).
1H NMR (600 MHz, d6–DMSO, δ ppm): 8.44 (m, 4H, Ar-H), 7.64 (s, 1H, Ar-H), 7.55 (m, 6H, Ar-H), 7.43 (m, 1H, Ar-H), 7.15 (d, 1H, Ar-H), 6.85 (m, 1H, NH), 3.31 (q, 6H, CH2), 1,40 (t, 9H, CH3). ESI–MS: 787.5 (100%, Zn(OQ)2 + ACN + H+).
The 1H NMR and ESI–MS spectra of ZnOQ are given in Figs. S2 and S3, respectively.
Synthesis of H2BS
A mixture of p-phenylenediamine (108 mg, 1 mmol) and salicylaldehyde (122 mg, 1 mmol) in 10 mL of ethanol was heated to 333 K for 5 h to obtain the red–orange solid H2BS, which was washed with hot ethanol, with a yield of 85%.
1H NMR (600 MHz, DMSO-d6, δ ppm): 13.00 (s, 1H, OH), 9.00 (s, 1H, CHimine), 7.68 (dd, 1H, Ar-H), 7.54 (s, 2H, Ar-H), 7.43 (m, 1H, Ar-H), 6.95 (m, 2H, Ar-H).
The 1H NMR spectrum of H2BS is given in Fig. S6.
Synthesis of [(Et3NH)2Zn2Cl4(BS)] (ZnBS)
A reaction mixture consisting of ligand H2BS (32 mg, 0.1 mmol), zinc(II) chloride (55 mg, 0.4 mmol) and 5 mL of acetonitrile was stirred for 4 h at room temperature to obtain an orange–red solid. To dissolve the precipitate, 40 µL of triethylamine were added to the reaction vessel, forming a yellow solution. After filtering the solution and slow evaporation, transparent yellow–green crystals were obtained (yield 68%).
1H NMR (600 MHz, d6–DMSO, δ ppm): 9.03 (s, 1H, CHimine); 8.63 (s, 1H, NHamminium salt), 7.73 (m, 2H, Ar-H), 7.50 (m, 1H, Ar-H), 7.27 (m, 1H, Ar-H), 7.00 (m, 1H, Ar-H), 6.50 (m, 1H, Ar-H), 3.30 (m, 6H, CH2), 1.10 (m, 9H, CH3). ESI–MS: 653.3 (100%, M – Et3NH – Cl).
The 1H NMR and ESI–MS spectra of ZnBS are given in Figs. S7 and S8, respectively.
7. Refinement
Crystal data, data collection and structure . Hydrogen atom H2 was located in a difference Fourier map for ZnBS and subsequently refined freely. All other H atoms were placed in idealized positions and refined in riding mode with N—H distance of 0.89 Å, C—H distances of 0.93 (aromatic), 0.97 (CH2) and 0.96 Å (CH3). Non-hydrogen atoms were refined anisotropically and hydrogen atoms with isotropic temperature factors fixed at 1.2 times Ueq of the parent atoms (1.5 for methyl groups).
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989024010302/oo2008sup1.cif
contains datablocks ZnOQ, ZnBS. DOI:Structure factors: contains datablock ZnOQ. DOI: https://doi.org/10.1107/S2056989024010302/oo2008ZnOQsup2.hkl
Structure factors: contains datablock ZnBS. DOI: https://doi.org/10.1107/S2056989024010302/oo2008ZnBSsup3.hkl
Spectroscopic data ligands and complexes. DOI: https://doi.org/10.1107/S2056989024010302/oo2008sup4.docx
(C6H16N){Zn(C21H13N2O3)Cl2] | F(000) = 1200 |
Mr = 579.80 | Dx = 1.449 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.4571 (5) Å | Cell parameters from 8040 reflections |
b = 13.9115 (5) Å | θ = 2.8–25.8° |
c = 18.5703 (10) Å | µ = 1.16 mm−1 |
β = 100.372 (5)° | T = 293 K |
V = 2657.4 (2) Å3 | Block, brown |
Z = 4 | 0.5 × 0.3 × 0.2 mm |
SuperNova, Single source at offset/far, Eos diffractometer | 5416 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 4166 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.042 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.5° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −17→17 |
Tmin = 0.728, Tmax = 1.000 | l = −23→23 |
27564 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.045P)2 + 2.5402P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
5416 reflections | Δρmax = 0.70 e Å−3 |
331 parameters | Δρmin = −0.38 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.28872 (3) | 0.61247 (2) | 0.31683 (2) | 0.03891 (12) | |
Cl1 | 0.17475 (9) | 0.51997 (7) | 0.37894 (5) | 0.0576 (2) | |
O1 | 0.2901 (2) | 0.75402 (14) | 0.33465 (14) | 0.0497 (6) | |
N1 | 0.4792 (2) | 0.62069 (15) | 0.37204 (12) | 0.0310 (5) | |
C1 | 0.5666 (3) | 0.55364 (19) | 0.39637 (15) | 0.0309 (6) | |
Cl2 | 0.25071 (10) | 0.58325 (7) | 0.19686 (5) | 0.0625 (3) | |
O2 | 0.3841 (3) | 0.14048 (19) | 0.26870 (18) | 0.0795 (9) | |
N2 | 0.4125 (3) | 0.16534 (19) | 0.3326 (2) | 0.0556 (8) | |
C2 | 0.6879 (3) | 0.5769 (2) | 0.43761 (16) | 0.0353 (6) | |
H2 | 0.744674 | 0.527740 | 0.456108 | 0.042* | |
O3 | 0.4033 (3) | 0.11346 (17) | 0.38411 (19) | 0.0855 (10) | |
C3 | 0.7251 (3) | 0.6709 (2) | 0.45149 (15) | 0.0338 (6) | |
C4 | 0.6353 (3) | 0.7449 (2) | 0.42257 (16) | 0.0346 (6) | |
C5 | 0.6627 (3) | 0.8446 (2) | 0.42810 (19) | 0.0442 (8) | |
H5 | 0.745372 | 0.865861 | 0.449013 | 0.053* | |
C6 | 0.5672 (3) | 0.9091 (2) | 0.4026 (2) | 0.0500 (8) | |
H6 | 0.586516 | 0.974437 | 0.405572 | 0.060* | |
C7 | 0.4418 (3) | 0.8802 (2) | 0.3722 (2) | 0.0483 (8) | |
H7 | 0.378430 | 0.926606 | 0.357652 | 0.058* | |
C8 | 0.4088 (3) | 0.7843 (2) | 0.36310 (18) | 0.0402 (7) | |
C9 | 0.5106 (3) | 0.71540 (19) | 0.38649 (15) | 0.0328 (6) | |
C10 | 0.5301 (3) | 0.45145 (19) | 0.37934 (15) | 0.0320 (6) | |
C11 | 0.4760 (3) | 0.4245 (2) | 0.30856 (17) | 0.0386 (7) | |
H11 | 0.463670 | 0.470366 | 0.271535 | 0.046* | |
C12 | 0.4404 (3) | 0.3306 (2) | 0.29243 (18) | 0.0440 (7) | |
H12 | 0.405316 | 0.312273 | 0.244813 | 0.053* | |
C13 | 0.4580 (3) | 0.26455 (19) | 0.34855 (18) | 0.0405 (7) | |
C14 | 0.5133 (3) | 0.2881 (2) | 0.41919 (18) | 0.0433 (7) | |
H14 | 0.524837 | 0.241872 | 0.455936 | 0.052* | |
C15 | 0.5514 (3) | 0.3825 (2) | 0.43439 (17) | 0.0381 (7) | |
H15 | 0.591252 | 0.399781 | 0.481491 | 0.046* | |
C16 | 0.8549 (3) | 0.6934 (2) | 0.49497 (16) | 0.0373 (7) | |
C17 | 0.9647 (3) | 0.6483 (2) | 0.47914 (18) | 0.0426 (7) | |
H17 | 0.956210 | 0.602554 | 0.442039 | 0.051* | |
C18 | 1.0869 (3) | 0.6706 (2) | 0.5180 (2) | 0.0540 (9) | |
H18 | 1.160042 | 0.640609 | 0.506368 | 0.065* | |
C19 | 1.1004 (3) | 0.7367 (3) | 0.5737 (2) | 0.0567 (9) | |
H19 | 1.182556 | 0.752005 | 0.599441 | 0.068* | |
C20 | 0.9924 (3) | 0.7802 (3) | 0.59125 (19) | 0.0544 (9) | |
H20 | 1.001479 | 0.824286 | 0.629504 | 0.065* | |
C21 | 0.8703 (3) | 0.7590 (2) | 0.55239 (17) | 0.0462 (8) | |
H21 | 0.797671 | 0.788795 | 0.564764 | 0.055* | |
N3 | 0.0767 (3) | 0.87944 (19) | 0.31940 (17) | 0.0474 (7) | |
H3 | 0.145 (4) | 0.841 (3) | 0.3240 (19) | 0.057* | |
C22 | 0.1087 (4) | 0.9707 (3) | 0.2842 (2) | 0.0616 (10) | |
H22A | 0.170320 | 1.007137 | 0.319001 | 0.074* | |
H22B | 0.030357 | 1.008919 | 0.271428 | 0.074* | |
C23 | 0.1659 (4) | 0.9534 (3) | 0.2159 (2) | 0.0664 (10) | |
H23A | 0.098712 | 0.931949 | 0.176996 | 0.100* | |
H23B | 0.232443 | 0.905184 | 0.225731 | 0.100* | |
H23C | 0.202762 | 1.012092 | 0.201695 | 0.100* | |
C24 | 0.0430 (5) | 0.8986 (3) | 0.3938 (3) | 0.0767 (12) | |
H24A | −0.025594 | 0.946422 | 0.388551 | 0.092* | |
H24B | 0.009135 | 0.839939 | 0.411421 | 0.092* | |
C25 | 0.1544 (5) | 0.9329 (4) | 0.4497 (2) | 0.0923 (15) | |
H25A | 0.225333 | 0.888423 | 0.452799 | 0.139* | |
H25B | 0.127844 | 0.937375 | 0.496448 | 0.139* | |
H25C | 0.181659 | 0.995074 | 0.435801 | 0.139* | |
C26 | −0.0375 (5) | 0.8324 (4) | 0.2696 (3) | 0.1022 (17) | |
H26A | −0.114192 | 0.871618 | 0.269622 | 0.123* | |
H26B | −0.019911 | 0.831970 | 0.220101 | 0.123* | |
C27 | −0.0658 (5) | 0.7353 (3) | 0.2895 (3) | 0.0954 (16) | |
H27A | −0.125867 | 0.706441 | 0.250202 | 0.143* | |
H27B | −0.103592 | 0.736367 | 0.332907 | 0.143* | |
H27C | 0.013090 | 0.698463 | 0.298443 | 0.143* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0347 (2) | 0.02971 (19) | 0.0491 (2) | 0.00194 (14) | −0.00099 (15) | −0.00165 (15) |
Cl1 | 0.0515 (5) | 0.0583 (5) | 0.0652 (6) | −0.0095 (4) | 0.0166 (4) | −0.0010 (4) |
O1 | 0.0354 (12) | 0.0274 (10) | 0.0807 (16) | 0.0054 (9) | −0.0048 (11) | −0.0021 (11) |
N1 | 0.0323 (12) | 0.0226 (11) | 0.0377 (13) | 0.0017 (9) | 0.0053 (10) | −0.0002 (10) |
C1 | 0.0342 (15) | 0.0242 (13) | 0.0347 (14) | 0.0018 (11) | 0.0077 (12) | 0.0005 (11) |
Cl2 | 0.0686 (6) | 0.0675 (6) | 0.0451 (5) | 0.0157 (5) | −0.0061 (4) | 0.0039 (4) |
O2 | 0.094 (2) | 0.0442 (15) | 0.096 (2) | −0.0164 (14) | 0.0075 (18) | −0.0254 (15) |
N2 | 0.0536 (18) | 0.0287 (14) | 0.088 (2) | 0.0003 (13) | 0.0215 (17) | −0.0089 (16) |
C2 | 0.0335 (15) | 0.0281 (14) | 0.0429 (16) | 0.0045 (12) | 0.0033 (13) | −0.0006 (12) |
O3 | 0.127 (3) | 0.0299 (13) | 0.109 (3) | −0.0107 (15) | 0.046 (2) | 0.0033 (15) |
C3 | 0.0312 (14) | 0.0335 (14) | 0.0362 (15) | 0.0015 (12) | 0.0052 (12) | −0.0037 (12) |
C4 | 0.0320 (15) | 0.0301 (14) | 0.0417 (16) | 0.0006 (12) | 0.0065 (12) | −0.0014 (12) |
C5 | 0.0398 (17) | 0.0305 (15) | 0.061 (2) | −0.0055 (13) | 0.0049 (15) | −0.0029 (14) |
C6 | 0.053 (2) | 0.0232 (14) | 0.072 (2) | −0.0038 (14) | 0.0077 (17) | −0.0020 (15) |
C7 | 0.0447 (18) | 0.0264 (14) | 0.071 (2) | 0.0056 (13) | 0.0039 (16) | 0.0023 (15) |
C8 | 0.0389 (17) | 0.0286 (14) | 0.0517 (18) | 0.0040 (13) | 0.0043 (14) | 0.0002 (13) |
C9 | 0.0363 (15) | 0.0248 (13) | 0.0374 (15) | 0.0009 (11) | 0.0064 (12) | −0.0014 (12) |
C10 | 0.0290 (14) | 0.0249 (13) | 0.0422 (16) | 0.0037 (11) | 0.0066 (12) | −0.0028 (12) |
C11 | 0.0439 (17) | 0.0282 (14) | 0.0419 (16) | 0.0026 (13) | 0.0031 (13) | 0.0021 (13) |
C12 | 0.0461 (18) | 0.0354 (16) | 0.0488 (18) | 0.0018 (14) | 0.0034 (15) | −0.0090 (14) |
C13 | 0.0397 (17) | 0.0232 (13) | 0.061 (2) | 0.0013 (12) | 0.0142 (15) | −0.0068 (14) |
C14 | 0.0517 (19) | 0.0275 (14) | 0.0531 (19) | 0.0081 (13) | 0.0158 (15) | 0.0088 (14) |
C15 | 0.0407 (16) | 0.0334 (15) | 0.0406 (16) | 0.0045 (13) | 0.0084 (13) | 0.0018 (13) |
C16 | 0.0361 (16) | 0.0333 (15) | 0.0410 (16) | −0.0030 (12) | 0.0027 (13) | 0.0000 (13) |
C17 | 0.0395 (17) | 0.0353 (15) | 0.0506 (18) | 0.0024 (13) | 0.0015 (14) | −0.0052 (14) |
C18 | 0.0375 (18) | 0.0501 (19) | 0.070 (2) | 0.0072 (15) | −0.0023 (16) | −0.0028 (18) |
C19 | 0.0406 (19) | 0.055 (2) | 0.067 (2) | −0.0060 (16) | −0.0117 (17) | −0.0032 (18) |
C20 | 0.056 (2) | 0.054 (2) | 0.049 (2) | −0.0070 (17) | −0.0011 (16) | −0.0154 (17) |
C21 | 0.0415 (18) | 0.0480 (18) | 0.0480 (18) | 0.0014 (14) | 0.0048 (15) | −0.0114 (15) |
N3 | 0.0412 (15) | 0.0396 (15) | 0.0621 (18) | −0.0017 (12) | 0.0112 (14) | 0.0001 (13) |
C22 | 0.060 (2) | 0.048 (2) | 0.076 (3) | 0.0071 (17) | 0.009 (2) | 0.0089 (19) |
C23 | 0.065 (2) | 0.074 (3) | 0.059 (2) | −0.008 (2) | 0.010 (2) | 0.010 (2) |
C24 | 0.082 (3) | 0.070 (3) | 0.085 (3) | 0.009 (2) | 0.034 (3) | 0.001 (2) |
C25 | 0.126 (4) | 0.091 (3) | 0.064 (3) | −0.024 (3) | 0.028 (3) | −0.016 (3) |
C26 | 0.097 (4) | 0.087 (4) | 0.118 (4) | −0.032 (3) | 0.007 (3) | −0.008 (3) |
C27 | 0.104 (4) | 0.079 (3) | 0.100 (4) | −0.025 (3) | 0.011 (3) | 0.007 (3) |
Zn1—Cl1 | 2.2140 (10) | C15—H15 | 0.9300 |
Zn1—O1 | 1.996 (2) | C16—C17 | 1.386 (4) |
Zn1—N1 | 2.073 (2) | C16—C21 | 1.390 (4) |
Zn1—Cl2 | 2.2289 (10) | C17—H17 | 0.9300 |
O1—C8 | 1.327 (4) | C17—C18 | 1.385 (4) |
N1—C1 | 1.327 (3) | C18—H18 | 0.9300 |
N1—C9 | 1.373 (3) | C18—C19 | 1.372 (5) |
C1—C2 | 1.396 (4) | C19—H19 | 0.9300 |
C1—C10 | 1.491 (4) | C19—C20 | 1.371 (5) |
O2—N2 | 1.220 (4) | C20—H20 | 0.9300 |
N2—O3 | 1.216 (4) | C20—C21 | 1.381 (4) |
N2—C13 | 1.472 (4) | C21—H21 | 0.9300 |
C2—H2 | 0.9300 | N3—H3 | 0.89 (4) |
C2—C3 | 1.376 (4) | N3—C22 | 1.493 (4) |
C3—C4 | 1.432 (4) | N3—C24 | 1.509 (5) |
C3—C16 | 1.482 (4) | N3—C26 | 1.519 (5) |
C4—C5 | 1.415 (4) | C22—H22A | 0.9700 |
C4—C9 | 1.416 (4) | C22—H22B | 0.9700 |
C5—H5 | 0.9300 | C22—C23 | 1.515 (5) |
C5—C6 | 1.363 (4) | C23—H23A | 0.9600 |
C6—H6 | 0.9300 | C23—H23B | 0.9600 |
C6—C7 | 1.391 (5) | C23—H23C | 0.9600 |
C7—H7 | 0.9300 | C24—H24A | 0.9700 |
C7—C8 | 1.380 (4) | C24—H24B | 0.9700 |
C8—C9 | 1.440 (4) | C24—C25 | 1.493 (6) |
C10—C11 | 1.386 (4) | C25—H25A | 0.9600 |
C10—C15 | 1.390 (4) | C25—H25B | 0.9600 |
C11—H11 | 0.9300 | C25—H25C | 0.9600 |
C11—C12 | 1.376 (4) | C26—H26A | 0.9700 |
C12—H12 | 0.9300 | C26—H26B | 0.9700 |
C12—C13 | 1.377 (4) | C26—C27 | 1.446 (6) |
C13—C14 | 1.375 (4) | C27—H27A | 0.9600 |
C14—H14 | 0.9300 | C27—H27B | 0.9600 |
C14—C15 | 1.387 (4) | C27—H27C | 0.9600 |
Cl1—Zn1—Cl2 | 113.51 (4) | C17—C16—C21 | 118.3 (3) |
O1—Zn1—Cl1 | 118.40 (8) | C21—C16—C3 | 121.7 (3) |
O1—Zn1—N1 | 83.44 (8) | C16—C17—H17 | 119.7 |
O1—Zn1—Cl2 | 109.89 (8) | C18—C17—C16 | 120.7 (3) |
N1—Zn1—Cl1 | 109.50 (7) | C18—C17—H17 | 119.7 |
N1—Zn1—Cl2 | 119.15 (7) | C17—C18—H18 | 119.9 |
C8—O1—Zn1 | 110.95 (17) | C19—C18—C17 | 120.2 (3) |
C1—N1—Zn1 | 132.16 (18) | C19—C18—H18 | 119.9 |
C1—N1—C9 | 118.9 (2) | C18—C19—H19 | 120.1 |
C9—N1—Zn1 | 108.92 (17) | C20—C19—C18 | 119.9 (3) |
N1—C1—C2 | 121.7 (2) | C20—C19—H19 | 120.1 |
N1—C1—C10 | 117.6 (2) | C19—C20—H20 | 119.9 |
C2—C1—C10 | 120.6 (2) | C19—C20—C21 | 120.3 (3) |
O2—N2—C13 | 118.4 (3) | C21—C20—H20 | 119.9 |
O3—N2—O2 | 123.8 (3) | C16—C21—H21 | 119.7 |
O3—N2—C13 | 117.8 (3) | C20—C21—C16 | 120.7 (3) |
C1—C2—H2 | 119.3 | C20—C21—H21 | 119.7 |
C3—C2—C1 | 121.4 (3) | C22—N3—H3 | 109 (2) |
C3—C2—H2 | 119.3 | C22—N3—C24 | 111.0 (3) |
C2—C3—C4 | 118.0 (2) | C22—N3—C26 | 108.2 (3) |
C2—C3—C16 | 120.3 (3) | C24—N3—H3 | 110 (2) |
C4—C3—C16 | 121.8 (2) | C24—N3—C26 | 110.2 (3) |
C5—C4—C3 | 124.5 (3) | C26—N3—H3 | 109 (2) |
C5—C4—C9 | 118.4 (3) | N3—C22—H22A | 109.1 |
C9—C4—C3 | 117.1 (2) | N3—C22—H22B | 109.1 |
C4—C5—H5 | 120.2 | N3—C22—C23 | 112.7 (3) |
C6—C5—C4 | 119.6 (3) | H22A—C22—H22B | 107.8 |
C6—C5—H5 | 120.2 | C23—C22—H22A | 109.1 |
C5—C6—H6 | 119.1 | C23—C22—H22B | 109.1 |
C5—C6—C7 | 121.9 (3) | C22—C23—H23A | 109.5 |
C7—C6—H6 | 119.1 | C22—C23—H23B | 109.5 |
C6—C7—H7 | 119.1 | C22—C23—H23C | 109.5 |
C8—C7—C6 | 121.7 (3) | H23A—C23—H23B | 109.5 |
C8—C7—H7 | 119.1 | H23A—C23—H23C | 109.5 |
O1—C8—C7 | 123.4 (3) | H23B—C23—H23C | 109.5 |
O1—C8—C9 | 119.8 (2) | N3—C24—H24A | 108.7 |
C7—C8—C9 | 116.8 (3) | N3—C24—H24B | 108.7 |
N1—C9—C4 | 122.6 (2) | H24A—C24—H24B | 107.6 |
N1—C9—C8 | 116.2 (2) | C25—C24—N3 | 114.3 (4) |
C4—C9—C8 | 121.2 (2) | C25—C24—H24A | 108.7 |
C11—C10—C1 | 120.3 (3) | C25—C24—H24B | 108.7 |
C11—C10—C15 | 119.7 (3) | C24—C25—H25A | 109.5 |
C15—C10—C1 | 120.0 (3) | C24—C25—H25B | 109.5 |
C10—C11—H11 | 119.6 | C24—C25—H25C | 109.5 |
C12—C11—C10 | 120.8 (3) | H25A—C25—H25B | 109.5 |
C12—C11—H11 | 119.6 | H25A—C25—H25C | 109.5 |
C11—C12—H12 | 120.8 | H25B—C25—H25C | 109.5 |
C11—C12—C13 | 118.3 (3) | N3—C26—H26A | 108.5 |
C13—C12—H12 | 120.8 | N3—C26—H26B | 108.5 |
C12—C13—N2 | 118.6 (3) | H26A—C26—H26B | 107.5 |
C14—C13—N2 | 118.8 (3) | C27—C26—N3 | 115.0 (4) |
C14—C13—C12 | 122.6 (3) | C27—C26—H26A | 108.5 |
C13—C14—H14 | 120.8 | C27—C26—H26B | 108.5 |
C13—C14—C15 | 118.5 (3) | C26—C27—H27A | 109.5 |
C15—C14—H14 | 120.8 | C26—C27—H27B | 109.5 |
C10—C15—H15 | 120.0 | C26—C27—H27C | 109.5 |
C14—C15—C10 | 120.1 (3) | H27A—C27—H27B | 109.5 |
C14—C15—H15 | 120.0 | H27A—C27—H27C | 109.5 |
C17—C16—C3 | 120.0 (3) | H27B—C27—H27C | 109.5 |
Zn1—O1—C8—C7 | 171.4 (3) | C4—C3—C16—C21 | 48.1 (4) |
Zn1—O1—C8—C9 | −8.9 (4) | C4—C5—C6—C7 | 1.2 (5) |
Zn1—N1—C1—C2 | −175.0 (2) | C5—C4—C9—N1 | 173.4 (3) |
Zn1—N1—C1—C10 | 3.8 (4) | C5—C4—C9—C8 | −6.9 (4) |
Zn1—N1—C9—C4 | −178.8 (2) | C5—C6—C7—C8 | −3.1 (6) |
Zn1—N1—C9—C8 | 1.5 (3) | C6—C7—C8—O1 | 179.7 (3) |
O1—C8—C9—N1 | 5.0 (4) | C6—C7—C8—C9 | −0.1 (5) |
O1—C8—C9—C4 | −174.7 (3) | C7—C8—C9—N1 | −175.2 (3) |
N1—C1—C2—C3 | −3.7 (4) | C7—C8—C9—C4 | 5.1 (5) |
N1—C1—C10—C11 | 48.7 (4) | C9—N1—C1—C2 | 1.6 (4) |
N1—C1—C10—C15 | −131.9 (3) | C9—N1—C1—C10 | −179.5 (2) |
C1—N1—C9—C4 | 3.9 (4) | C9—C4—C5—C6 | 3.7 (5) |
C1—N1—C9—C8 | −175.9 (3) | C10—C1—C2—C3 | 177.5 (3) |
C1—C2—C3—C4 | 0.3 (4) | C10—C11—C12—C13 | 1.0 (5) |
C1—C2—C3—C16 | −179.5 (3) | C11—C10—C15—C14 | −2.9 (4) |
C1—C10—C11—C12 | −179.1 (3) | C11—C12—C13—N2 | 176.2 (3) |
C1—C10—C15—C14 | 177.7 (3) | C11—C12—C13—C14 | −2.1 (5) |
O2—N2—C13—C12 | 13.8 (5) | C12—C13—C14—C15 | 0.7 (5) |
O2—N2—C13—C14 | −167.8 (3) | C13—C14—C15—C10 | 1.8 (5) |
N2—C13—C14—C15 | −177.6 (3) | C15—C10—C11—C12 | 1.5 (4) |
C2—C1—C10—C11 | −132.4 (3) | C16—C3—C4—C5 | 4.1 (5) |
C2—C1—C10—C15 | 47.0 (4) | C16—C3—C4—C9 | −175.5 (3) |
C2—C3—C4—C5 | −175.7 (3) | C16—C17—C18—C19 | 1.1 (5) |
C2—C3—C4—C9 | 4.7 (4) | C17—C16—C21—C20 | 1.7 (5) |
C2—C3—C16—C17 | 47.5 (4) | C17—C18—C19—C20 | 0.6 (6) |
C2—C3—C16—C21 | −132.1 (3) | C18—C19—C20—C21 | −1.1 (6) |
O3—N2—C13—C12 | −164.9 (3) | C19—C20—C21—C16 | −0.1 (5) |
O3—N2—C13—C14 | 13.5 (5) | C21—C16—C17—C18 | −2.2 (5) |
C3—C4—C5—C6 | −175.9 (3) | C22—N3—C24—C25 | −67.7 (5) |
C3—C4—C9—N1 | −7.0 (4) | C22—N3—C26—C27 | 169.5 (4) |
C3—C4—C9—C8 | 172.7 (3) | C24—N3—C22—C23 | 169.8 (3) |
C3—C16—C17—C18 | 178.2 (3) | C24—N3—C26—C27 | −68.9 (6) |
C3—C16—C21—C20 | −178.7 (3) | C26—N3—C22—C23 | −69.1 (4) |
C4—C3—C16—C17 | −132.3 (3) | C26—N3—C24—C25 | 172.4 (4) |
Cg3 and Cg5 are the centroids of C4-C9 and C16-C21, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1 | 0.88 (4) | 1.92 (4) | 2.807 (4) | 178 (4) |
C12—H12···Cg3i | 0.93 | 2.78 | 3.553 (4) | 141 |
C14—H14···Cg3ii | 0.93 | 3.04 | 3.837 (4) | 145 |
C24—H24B···Cg5iii | 0.97 | 2.94 | 3.809 (5) | 149 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z. |
(C6H16N)2[Zn2(C20H14N2O2)Cl4] | F(000) = 820 |
Mr = 791.24 | Dx = 1.399 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.9843 (9) Å | Cell parameters from 3646 reflections |
b = 13.4570 (7) Å | θ = 3.0–27.7° |
c = 11.9944 (11) Å | µ = 1.59 mm−1 |
β = 103.838 (9)° | T = 293 K |
V = 1878.2 (3) Å3 | Block, orangish brown |
Z = 2 | 0.5 × 0.5 × 0.5 mm |
SuperNova, Single source at offset/far, Eos diffractometer | 3814 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 2836 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.044 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.6° |
ω scans | h = −14→14 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −16→15 |
Tmin = 0.473, Tmax = 1.000 | l = −14→14 |
10514 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.158 | w = 1/[σ2(Fo2) + (0.0813P)2 + 0.7323P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3814 reflections | Δρmax = 0.93 e Å−3 |
206 parameters | Δρmin = −0.39 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.26755 (4) | 0.45138 (3) | 0.68426 (4) | 0.0407 (2) | |
Cl1 | 0.37732 (10) | 0.32105 (8) | 0.66656 (10) | 0.0572 (3) | |
O1 | 0.2337 (3) | 0.5315 (2) | 0.5445 (2) | 0.0478 (7) | |
N1 | 0.3640 (3) | 0.5558 (2) | 0.7831 (3) | 0.0356 (7) | |
C1 | 0.2399 (3) | 0.6292 (3) | 0.5442 (3) | 0.0389 (9) | |
Cl2 | 0.11116 (10) | 0.41690 (10) | 0.74634 (14) | 0.0734 (4) | |
C2 | 0.1859 (4) | 0.6806 (3) | 0.4441 (4) | 0.0495 (10) | |
H2A | 0.146066 | 0.645011 | 0.380496 | 0.059* | |
C3 | 0.1907 (4) | 0.7823 (4) | 0.4379 (4) | 0.0577 (12) | |
H3 | 0.153834 | 0.814314 | 0.370471 | 0.069* | |
C4 | 0.2495 (4) | 0.8379 (4) | 0.5303 (4) | 0.0619 (13) | |
H4 | 0.252095 | 0.906859 | 0.525949 | 0.074* | |
C5 | 0.3038 (4) | 0.7891 (3) | 0.6282 (4) | 0.0600 (13) | |
H5 | 0.345075 | 0.826185 | 0.689899 | 0.072* | |
C6 | 0.3000 (3) | 0.6862 (3) | 0.6396 (3) | 0.0399 (9) | |
C7 | 0.3605 (3) | 0.6466 (3) | 0.7493 (3) | 0.0423 (9) | |
H7 | 0.401718 | 0.692082 | 0.801615 | 0.051* | |
C8 | 0.4335 (3) | 0.5297 (3) | 0.8932 (3) | 0.0370 (8) | |
C9 | 0.5314 (3) | 0.5822 (3) | 0.9465 (3) | 0.0421 (9) | |
H9 | 0.553630 | 0.637402 | 0.910344 | 0.051* | |
C10 | 0.5960 (4) | 0.5531 (3) | 1.0529 (4) | 0.0422 (9) | |
H10 | 0.660230 | 0.589988 | 1.088557 | 0.051* | |
N2 | 0.2124 (3) | 0.4098 (3) | 0.3531 (3) | 0.0542 (9) | |
C11 | 0.1537 (5) | 0.4581 (4) | 0.2419 (5) | 0.0652 (14) | |
H11A | 0.195358 | 0.518079 | 0.232368 | 0.078* | |
H11B | 0.076908 | 0.477601 | 0.246096 | 0.078* | |
C12 | 0.1446 (6) | 0.3922 (5) | 0.1357 (5) | 0.0908 (19) | |
H12A | 0.106666 | 0.428237 | 0.068169 | 0.136* | |
H12B | 0.101226 | 0.333556 | 0.142833 | 0.136* | |
H12C | 0.220244 | 0.373539 | 0.129589 | 0.136* | |
C13 | 0.1557 (5) | 0.3189 (4) | 0.3848 (5) | 0.0790 (16) | |
H13A | 0.152196 | 0.269200 | 0.325422 | 0.095* | |
H13B | 0.202858 | 0.292250 | 0.455665 | 0.095* | |
C14 | 0.0394 (5) | 0.3356 (5) | 0.3998 (6) | 0.095 (2) | |
H14A | −0.009863 | 0.356026 | 0.328064 | 0.142* | |
H14B | 0.041376 | 0.386598 | 0.456219 | 0.142* | |
H14C | 0.010573 | 0.275206 | 0.424967 | 0.142* | |
C15 | 0.3399 (5) | 0.3890 (4) | 0.3623 (4) | 0.0692 (14) | |
H15A | 0.373086 | 0.358910 | 0.436289 | 0.083* | |
H15B | 0.346897 | 0.341748 | 0.303305 | 0.083* | |
C16 | 0.4060 (6) | 0.4798 (6) | 0.3498 (6) | 0.100 (2) | |
H16A | 0.389363 | 0.499031 | 0.270413 | 0.150* | |
H16B | 0.486673 | 0.466640 | 0.376430 | 0.150* | |
H16C | 0.384566 | 0.532625 | 0.394328 | 0.150* | |
H2 | 0.217 (4) | 0.461 (3) | 0.410 (4) | 0.054 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0438 (3) | 0.0306 (3) | 0.0447 (3) | −0.00034 (18) | 0.0046 (2) | 0.00142 (17) |
Cl1 | 0.0699 (8) | 0.0381 (6) | 0.0628 (7) | 0.0139 (5) | 0.0142 (6) | 0.0004 (5) |
O1 | 0.0635 (19) | 0.0363 (15) | 0.0399 (16) | 0.0023 (13) | 0.0055 (13) | −0.0005 (11) |
N1 | 0.0391 (17) | 0.0307 (17) | 0.0368 (17) | −0.0030 (13) | 0.0089 (14) | 0.0018 (12) |
C1 | 0.040 (2) | 0.037 (2) | 0.040 (2) | 0.0022 (16) | 0.0120 (17) | 0.0023 (16) |
Cl2 | 0.0423 (6) | 0.0692 (8) | 0.1099 (11) | 0.0044 (6) | 0.0208 (6) | 0.0289 (7) |
C2 | 0.053 (3) | 0.051 (3) | 0.043 (2) | 0.005 (2) | 0.0069 (19) | 0.0054 (18) |
C3 | 0.062 (3) | 0.056 (3) | 0.056 (3) | 0.013 (2) | 0.015 (2) | 0.021 (2) |
C4 | 0.079 (3) | 0.038 (2) | 0.067 (3) | 0.002 (2) | 0.013 (3) | 0.013 (2) |
C5 | 0.073 (3) | 0.036 (2) | 0.068 (3) | −0.005 (2) | 0.010 (3) | 0.002 (2) |
C6 | 0.042 (2) | 0.035 (2) | 0.045 (2) | −0.0018 (16) | 0.0143 (18) | 0.0015 (16) |
C7 | 0.045 (2) | 0.038 (2) | 0.043 (2) | −0.0027 (17) | 0.0067 (17) | −0.0054 (17) |
C8 | 0.041 (2) | 0.036 (2) | 0.033 (2) | −0.0018 (16) | 0.0085 (16) | −0.0004 (15) |
C9 | 0.049 (2) | 0.036 (2) | 0.042 (2) | −0.0082 (17) | 0.0109 (18) | 0.0081 (16) |
C10 | 0.045 (2) | 0.040 (2) | 0.040 (2) | −0.0126 (17) | 0.0068 (17) | 0.0005 (16) |
N2 | 0.069 (3) | 0.043 (2) | 0.055 (2) | −0.0016 (18) | 0.0244 (19) | −0.0083 (18) |
C11 | 0.061 (3) | 0.068 (3) | 0.065 (3) | 0.018 (2) | 0.014 (2) | −0.002 (2) |
C12 | 0.094 (4) | 0.113 (5) | 0.060 (4) | 0.010 (4) | 0.007 (3) | −0.013 (3) |
C13 | 0.102 (4) | 0.055 (3) | 0.076 (4) | −0.014 (3) | 0.013 (3) | −0.010 (3) |
C14 | 0.063 (4) | 0.103 (5) | 0.123 (6) | −0.031 (3) | 0.031 (4) | −0.008 (4) |
C15 | 0.084 (4) | 0.073 (4) | 0.053 (3) | 0.025 (3) | 0.021 (3) | −0.006 (2) |
C16 | 0.081 (4) | 0.118 (6) | 0.116 (6) | −0.003 (4) | 0.050 (4) | −0.008 (4) |
Zn1—Cl1 | 2.2327 (11) | C10—H10 | 0.9300 |
Zn1—O1 | 1.952 (3) | N2—C11 | 1.499 (6) |
Zn1—N1 | 2.015 (3) | N2—C13 | 1.492 (7) |
Zn1—Cl2 | 2.2248 (13) | N2—C15 | 1.531 (6) |
O1—C1 | 1.316 (4) | N2—H2 | 0.96 (5) |
N1—C7 | 1.284 (5) | C11—H11A | 0.9700 |
N1—C8 | 1.427 (5) | C11—H11B | 0.9700 |
C1—C2 | 1.403 (5) | C11—C12 | 1.534 (8) |
C1—C6 | 1.422 (5) | C12—H12A | 0.9600 |
C2—H2A | 0.9300 | C12—H12B | 0.9600 |
C2—C3 | 1.372 (6) | C12—H12C | 0.9600 |
C3—H3 | 0.9300 | C13—H13A | 0.9700 |
C3—C4 | 1.383 (7) | C13—H13B | 0.9700 |
C4—H4 | 0.9300 | C13—C14 | 1.465 (8) |
C4—C5 | 1.367 (6) | C14—H14A | 0.9600 |
C5—H5 | 0.9300 | C14—H14B | 0.9600 |
C5—C6 | 1.394 (6) | C14—H14C | 0.9600 |
C6—C7 | 1.444 (5) | C15—H15A | 0.9700 |
C7—H7 | 0.9300 | C15—H15B | 0.9700 |
C8—C9 | 1.388 (5) | C15—C16 | 1.483 (9) |
C8—C10i | 1.376 (5) | C16—H16A | 0.9600 |
C9—H9 | 0.9300 | C16—H16B | 0.9600 |
C9—C10 | 1.382 (5) | C16—H16C | 0.9600 |
C10—C8i | 1.376 (5) | ||
O1—Zn1—Cl1 | 111.00 (9) | C11—N2—H2 | 105 (3) |
O1—Zn1—N1 | 95.27 (12) | C13—N2—C11 | 115.9 (4) |
O1—Zn1—Cl2 | 112.58 (10) | C13—N2—C15 | 109.8 (4) |
N1—Zn1—Cl1 | 109.60 (9) | C13—N2—H2 | 111 (3) |
N1—Zn1—Cl2 | 111.06 (10) | C15—N2—H2 | 101 (3) |
Cl2—Zn1—Cl1 | 115.51 (5) | N2—C11—H11A | 108.7 |
C1—O1—Zn1 | 123.6 (2) | N2—C11—H11B | 108.7 |
C7—N1—Zn1 | 120.5 (3) | N2—C11—C12 | 114.4 (4) |
C7—N1—C8 | 119.6 (3) | H11A—C11—H11B | 107.6 |
C8—N1—Zn1 | 119.9 (2) | C12—C11—H11A | 108.7 |
O1—C1—C2 | 118.7 (3) | C12—C11—H11B | 108.7 |
O1—C1—C6 | 123.6 (3) | C11—C12—H12A | 109.5 |
C2—C1—C6 | 117.6 (4) | C11—C12—H12B | 109.5 |
C1—C2—H2A | 119.3 | C11—C12—H12C | 109.5 |
C3—C2—C1 | 121.4 (4) | H12A—C12—H12B | 109.5 |
C3—C2—H2A | 119.3 | H12A—C12—H12C | 109.5 |
C2—C3—H3 | 119.4 | H12B—C12—H12C | 109.5 |
C2—C3—C4 | 121.1 (4) | N2—C13—H13A | 108.7 |
C4—C3—H3 | 119.4 | N2—C13—H13B | 108.7 |
C3—C4—H4 | 120.8 | H13A—C13—H13B | 107.6 |
C5—C4—C3 | 118.4 (4) | C14—C13—N2 | 114.2 (5) |
C5—C4—H4 | 120.8 | C14—C13—H13A | 108.7 |
C4—C5—H5 | 118.6 | C14—C13—H13B | 108.7 |
C4—C5—C6 | 122.8 (4) | C13—C14—H14A | 109.5 |
C6—C5—H5 | 118.6 | C13—C14—H14B | 109.5 |
C1—C6—C7 | 125.6 (3) | C13—C14—H14C | 109.5 |
C5—C6—C1 | 118.7 (4) | H14A—C14—H14B | 109.5 |
C5—C6—C7 | 115.8 (4) | H14A—C14—H14C | 109.5 |
N1—C7—C6 | 127.6 (4) | H14B—C14—H14C | 109.5 |
N1—C7—H7 | 116.2 | N2—C15—H15A | 109.0 |
C6—C7—H7 | 116.2 | N2—C15—H15B | 109.0 |
C9—C8—N1 | 122.9 (3) | H15A—C15—H15B | 107.8 |
C10i—C8—N1 | 118.4 (3) | C16—C15—N2 | 112.9 (5) |
C10i—C8—C9 | 118.7 (3) | C16—C15—H15A | 109.0 |
C8—C9—H9 | 119.8 | C16—C15—H15B | 109.0 |
C10—C9—C8 | 120.4 (4) | C15—C16—H16A | 109.5 |
C10—C9—H9 | 119.8 | C15—C16—H16B | 109.5 |
C8i—C10—C9 | 120.9 (4) | C15—C16—H16C | 109.5 |
C8i—C10—H10 | 119.5 | H16A—C16—H16B | 109.5 |
C9—C10—H10 | 119.5 | H16A—C16—H16C | 109.5 |
C11—N2—C15 | 113.0 (4) | H16B—C16—H16C | 109.5 |
Zn1—O1—C1—C2 | −163.5 (3) | C4—C5—C6—C1 | 1.9 (7) |
Zn1—O1—C1—C6 | 17.6 (5) | C4—C5—C6—C7 | −179.1 (5) |
Zn1—N1—C7—C6 | −5.5 (6) | C5—C6—C7—N1 | 175.5 (4) |
Zn1—N1—C8—C9 | 154.8 (3) | C6—C1—C2—C3 | 0.0 (6) |
Zn1—N1—C8—C10i | −23.2 (5) | C7—N1—C8—C9 | −27.6 (6) |
O1—C1—C2—C3 | −179.0 (4) | C7—N1—C8—C10i | 154.5 (4) |
O1—C1—C6—C5 | 178.0 (4) | C8—N1—C7—C6 | 176.9 (4) |
O1—C1—C6—C7 | −1.0 (6) | C8—C9—C10—C8i | 1.6 (7) |
N1—C8—C9—C10 | −179.5 (4) | C10i—C8—C9—C10 | −1.6 (7) |
C1—C2—C3—C4 | 0.3 (7) | C11—N2—C13—C14 | −61.3 (6) |
C1—C6—C7—N1 | −5.5 (7) | C11—N2—C15—C16 | 57.8 (6) |
C2—C1—C6—C5 | −1.0 (6) | C13—N2—C11—C12 | −61.6 (6) |
C2—C1—C6—C7 | −180.0 (4) | C13—N2—C15—C16 | −171.1 (5) |
C2—C3—C4—C5 | 0.5 (7) | C15—N2—C11—C12 | 66.4 (6) |
C3—C4—C5—C6 | −1.6 (8) | C15—N2—C13—C14 | 169.1 (5) |
Symmetry code: (i) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1 | 0.96 (4) | 1.84 (4) | 2.782 (4) | 165 (4) |
C9—H9···Cl1ii | 0.93 | 2.83 | 3.752 (4) | 171 |
C11—H11···Cl2iii | 0.97 | 2.68 | 3.625 (6) | 164 |
C13—H13···Cl2iv | 0.97 | 2.68 | 3.562 (6) | 151 |
C15—H15A···Cl1 | 0.97 | 2.80 | 3.684 (5) | 152 |
C15—H15B···Cl1iv | 0.97 | 2.81 | 3.769 (5) | 169 |
Symmetry codes: (ii) −x+1, y+1/2, −z+3/2; (iii) −x, −y+1, −z+1; (iv) x, −y+1/2, z−1/2. |
Compound | Solvent (polarity) | λabs (nm) / ε (M-1.cm-1.103) | λem (nm) | Stokes shift (cm-1) | λemb (nm)/Intensity |
H2BS | DMSO (3.96) | 371 (35) | 531 | 8122 | 575 / 34624 |
THF (1.73) | 371 (56) | 534 | 8228 | ||
ZnBS | DMSO (3.96) | 372 (32) | 520 | 7651 | 515 / 10616 |
THF (1.73) | 372 (12) | 551 | 8878 | ||
HOQ | DMSO (3.96) | 264 (34); 312 (32) | 528 | 13112 | |
THF (1.73) | 247 (60); 295 (56) | 533 | 15136 | ||
ZnOQ | DMSO (3.96) | 265 (25); 297 (35); 450 (3)a | 518 | 2917 | |
THF (1.73) | 243 (48); 307 (35); 380 (6)a | 467 | 4902 |
Notes: (a) shoulder excited; (b) in the solid state. |
Acknowledgements
The authors would like to thank the Hanoi National University of Education for providing a fruitful working environment.
Funding information
NNK was funded by the Master, PhD Scholarship Program of Vingroup Innovation Foundation (VINIF), code VINIF.2023.ThS.066. LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.
References
Chiyindiko, E., Langner, E. H. G. & Conradie, J. (2022). Molecules, 27, 6033. CrossRef PubMed Google Scholar
Côrte-Real, L., Pósa, V., Martins, M., Colucas, R., May, N. V., Fontrodona, X., Romero, I., Mendes, F., Pinto Reis, C., Gaspar, M. M., Pessoa, J. C., Enyedy, E. A., ÉA, & Correia, I. (2023). Inorg. Chem. 62, 11466–11486. Google Scholar
Das, M. K. & Ghosh, S. (1998). Indian J. Chem. 3, 272–275. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Du, L., Zhang, T., Huang, X., Xu, Y., Tan, M., Huang, Y., Chen, Y. & Qin, Q. (2023). Dalton Trans. 52, 4737–4751. CSD CrossRef CAS PubMed Google Scholar
Dumur, F. (2014). Synth. Met. 195, 241–251. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gusev, A. N., Kiskin, M. A., Braga, E. V., Chapran, M., Wiosna-Salyga, G., Baryshnikov, G. V., Minaeva, V. A., Minaev, B. F., Ivaniuk, K., Stakhira, P., Ågren, H. & Linert, W. (2019). J. Phys. Chem. C, 123, 11850–11859. CSD CrossRef CAS Google Scholar
Gusev, A. N., Kiskin, M. A., Braga, E. V., Kryukova, M. A., Baryshnikov, G. V., Karaush-Karmazin, N. N., Minaeva, V. A., Minaev, B. F., Ivaniuk, K., Stakhira, P., Ågren, H. & Linert, W. (2021). ACS Appl. Electron. Mater. 3, 3436–3444. CrossRef CAS Google Scholar
Harmošová, M., Kello, M., Goga, M., Tkáčiková, L., Vilková, M., Sabolová, D., Sovová, S., Samoľová, E., Litecká, M., Kuchárová, V., Kuchár, J. & Potočňák, I. (2023). Inorganics, 11, 60. Google Scholar
He, X., Xie, Q., Fan, J., Xu, C., Xu, W., Li, Y., Ding, F., Deng, H., Chen, H. & Shen, J. (2020). Dyes Pigments, 177, 108255. CrossRef Google Scholar
Hien, N., Ninh, N. H., Hieu, L. H., Linh, N. T. B., Pham, V. T., Dung, T. N., Van Meervelt, L., Chi, N. T. T. & Hai, L. T. H. (2024). J. Mol. Struct. 1311, 138464. CSD CrossRef Google Scholar
Jianbo, H., Tingting, Z., Yongjing, C., Yuanyuan, Z., Weiqing, Y. & Menglin, M. (2018). J. Fluoresc. 28, 1121–1126. CrossRef CAS PubMed Google Scholar
Kargar, H., Ardakani, A. A., Tahir, M. N., Ashfaq, M. & Munawar, K. S. (2021a). J. Mol. Struct. 1229, 129842. CSD CrossRef Google Scholar
Kargar, H., Ardakani, A. A., Tahir, M. N., Ashfaq, M. & Munawar, K. S. (2021b). J. Mol. Struct. 1233, 130112. CSD CrossRef Google Scholar
Lakshmanan, R., Shivaprakash, N. & Sindhu, S. (2018). J. Lumin. 196, 136–145. CrossRef CAS Google Scholar
Liu, C.-H., Guan, Q.-L., Yang, X.-D., Bai, F.-Y., Sun, L.-X. & Xing, Y.-H. (2020). Inorg. Chem. 59, 8081–8098. CSD CrossRef CAS PubMed Google Scholar
Rashamuse, T. J., Mohlala, R. L., Coyanis, E. M. & Magwa, N. P. (2023). Molecules, 28, 5272. Web of Science CrossRef PubMed Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Samanta, D., Saha, P. & Ghosh, P. (2019). Inorg. Chem. 58, 15060–15077. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, D., Nishal, V., Bhagwan, S., Saini, R. K. & Singh, I. (2018). Mater. Des. 156, 215–228. CrossRef CAS Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yu, S., Wu, J., Lan, H., Xu, H., Shi, X., Zhu, X. & Yin, Z. (2018). RSC Adv. 8, 33968–33971. CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.