research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (nitrato-κ2O,O′)(1,4,7,10-tetra­aza­cyclo­do­decane-κ4N)nickel(II) nitrate

crossmark logo

aDepartment of Chemistry, Texas A&M University, College Station, Texas 77843, USA, bPrairie View A&M University, Prairie View, Texas 77446, USA, and cRigaku Americas Corporation, The Woodlands, Texas, 77381, USA
*Correspondence e-mail: j-reibenspies@tamu.edu

Edited by S. Parkin, University of Kentucky, USA (Received 15 August 2024; accepted 25 September 2024; online 11 October 2024)

The crystal structure of the title compound, [Ni(C8H20N4)(NO3)]NO3, at room temperature, has monoclinic (P21/n) symmetry. The structure displays inter­molecular hydrogen bonding. The nickel displays a distorted bipyramidal geometry with the symmetric bidentate bonded nitrate occupying an equatorial site. The 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) backbone has the [4,8] configuration, with three nitro­gen-bound H atoms directed above the plane of the nitro­gen atoms towards the offset nickel atom with the fourth nitro­gen-bound hydrogen directed below from the plane of the nitro­gen atoms. The nitrate anion O atoms are seen to hydrogen bond to the H atoms bound to the N atoms of the ligand.

1. Chemical context

The scientific community has long been acquainted with 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) transition-metal complexes to nitrate with nitrate as a counter-ion. Nevertheless, it is important to emphasize that the structure of the coordinated complex of nickel(cyclen) and nitrate, with nitrate as the counter-ion, has not been previously documented. The absence of such a publication can be attributed to the difficulties encountered in crystallizing the [Ni(cyclen)NO3]NO3 complex. This manuscript provides a comprehensive overview of the synthesis, crystallization, and structural analysis of [Ni(cyclen)NO3]NO3. It is noteworthy to mention that this manuscript represents the culmination of a crystallographic workshop conducted by students and faculty of Prairie View A&M and Texas A&M Universities.

[Scheme 1]

2. Structural commentary

Fig. 1[link] illustrates the structure of the title compound, which crystallizes in the P21/n space group and also displays a cyclen backbone that exhibits the [4,8] configuration (four bonds between the corner atoms C3 and C7 and eight bonds between C7 back to C3; Meyer et al., 1998[Meyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178-180, 1313-1405.]). Three of the four hydrogen atoms bound to nitro­gens (N2, N5, N8) of the cyclen ring are positioned above the plane of the nitro­gen atoms and on the same side as the displaced nickel atom, and the hydrogen bound to the remaining nitro­gen (N11) is below the plane of the nitro­gen atoms. The nickel atom can be characterized as having a distorted trigonal–bipyramidal structure, with N2 and N8 (cyclen) occupying the axial positions, and N5 (cyclen), N11 (cyclen), and the bidentate nitrate occupying the equatorial sites. There are two nitrates present, one nitrate is the counter-ion and the second nitrate is bonded to the nickel in a bidentate B01 configuration (Morozov et al., 2008[Morozov, I. V., Serezhkin, V. N. & Troyanov, S. I. (2008). Russ. Chem. Bull. 57, 439-450.]). The cause of distortion to the expected [3,3,3,3] conformation (as seen in CuII structures) is unknown but can possibly be attributed to the Jahn–Teller effect expected in the CuII species versus NiII, which is greater for CuII than for NiII (Reinen et al., 1988[Reinen, D., Atanasov, M., Nikolov, G. & Steffens, F. (1988). Inorg. Chem. 27, 1678-1686.]).

[Figure 1]
Figure 1
Displacement plot (50% probability ellipsoids) of [Ni(cyclen)NO3]NO3.

There exists a ‘twisting’ around the trigonal plane (of the trigonal–bipyramidal structure) of nitrate oxygens to the nitro­gen N11 – H (on N11) to N5 – H (on N5). In the CuII cyclen nitrate study by Gasser et al. (2007[Gasser, G., Belousoff, M. J., Bond, A. M. & Spiccia, L. (2007). Inorg. Chem. 46, 3876-3888.]), they showed that there was repulsion between the hydrogen of the nitro­gen between the two most distorted angles, which caused a longer Cu—O bond on that side of the complex versus the Cu—O bond closer to the more symmetric N—Cu—N angles. This distortion, potentially caused by the nitrate, is also seen in the nickel macrocycle reported here, to the point of causing a shift in the coordination sphere geometry of the nickel.

Additionally, the nitrate group bond in [Ni(cyclen)NO3]NO3, has a distorted bidentate bond to the nickel atom [Ni1⋯O1 = 2.151 (3) Å, Ni1⋯ O3 2.113 (3) Å] with a potentially large area of inter­action with nickel's coordination space. The nitrate ligand is bound by two separate bonds (bidentate) and occupies more than a single bond space, with its resonance causing an increase of ligand energy close to the metal. This contributes to the ‘twisting’ of the structure that was also seen in the similar structure of nickel cyclen acetate (Verma et al., 2022[Verma, A., Bhuvanesh, N., Reibenspies, J., Tayade, S. B., Kumbhar, A. S., Bretosh, K., Sutter, J.-P. & Sunkari, S. (2022). Chem. Eng. Commun. 24, 119-131.]). Most notably, copper and nickel structures of the same form, experience distortions to their cyclen conformations when nitrate is present. For copper, there is a distortion to the [3,3,3,3] symmetry and for nickel, there is a ‘twisting’ causing a [4,8] conformation.

3. Supra­molecular features

The anion, NO3, forms a hydrogen bond with the hydrogen bound to N2 of the cyclen ring and the hydrogen bound to N11 of an adjacent [Ni(cyclen)NO3]+ complex, effectively bridging the two cationic complexes through the same nitrate oxygen atom (O4) (see Fig. 2[link], Table 1[link]). The remaining oxygens atoms of the anion (O5, O6) form hydrogen bonds to the hydrogen bound to N8 of an adjacent cation. Hydrogen bonds to the NO3 anion are: N11⋯O4 = 3.030 (5) Å, N2⋯O4(−x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]) = 3.091 (5) Å, N8⋯O5(x + 1, y, z) = 3.253 (5) Å, N8 ⋯ O6(x + 1, y, z) = 3.273 (5) Å and to the bound nitrate the distances are: N5⋯O3(−x + 1, −y + 1, −z + 1) = 3.130 (4) Å, see Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.98 2.22 3.091 (5) 147
N5—H5⋯O3ii 0.98 2.32 3.130 (4) 139
N8—H8⋯O5iii 0.98 2.28 3.253 (5) 172
N8—H8⋯O6iii 0.98 2.50 3.273 (5) 135
N11—H11⋯O4 0.98 2.14 3.030 (5) 151
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [x+1, y, z].
[Figure 2]
Figure 2
A packing plot (with unit-cell box, viewed down the c axis, where the a axis is horizontal and the b axis is vertical) highlighting the hydrogen bonds to NO3 in [Ni(cyclen)NO3]NO3. Dashed lines indicate hydrogen bonds (Table 1[link]).

Fig. 3[link] shows the Hirshfeld surface (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and indicates short contacts for hydrogens bound to nitro­gen and nitrate oxygens of the unbound nitrate (anion) and a slightly longer contact between the carbon hydrogens and the terminal oxygen of the bound nitrate, while the bound oxygen atom of the bound nitrate forms a long hydrogen bond to the nitro­gen atom of a nearby cation. The fingerprint plot (Fig. 4[link]) indicates that the [Ni(cyclen)NO3]+ hydrogens to nitrate anion oxygen contacts make about 33.3% (N—Hinside⋯Ooutside) of all close contacts, while the fingerprint plot (Fig. 5[link]) indicates that the [Ni(cyclen)NO3]+ oxygens to [Ni(cyclen)NO3]+ hydrogens (adjacent mol­ecules) make about 15.6% [Oinside⋯H—Noutside and Oinside⋯H—Coutside] of the close contacts.

[Figure 3]
Figure 3
Hirshfeld surface plot of [Ni(cyclen)NO3]NO3. Dashed lines indicate hydrogen bonds and close contacts.
[Figure 4]
Figure 4
Fingerprint plot of the close contacts between [Ni(cyclen)NO3]+ cation H atoms to the adjacent nitrate anion O atoms [H(in)⋯O(out)], which equals 33.3% of the surface area.
[Figure 5]
Figure 5
Fingerprint plot of the close contacts between [Ni(cyclen)NO3]+ cation O atoms to adjacent [Ni(cycle)NO3] H atoms [O(in)⋯H(out)], which equals 15.6% of the surface area.

4. Database survey

A search of the Cambridge Structural Database (CSD, updated to June 2024, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found the [Ni(cyclen)acetate]Br complex (CSD refcode: KALQUN; Verma et al., 2022[Verma, A., Bhuvanesh, N., Reibenspies, J., Tayade, S. B., Kumbhar, A. S., Bretosh, K., Sutter, J.-P. & Sunkari, S. (2022). Chem. Eng. Commun. 24, 119-131.]), which displays a similar trigonal–bipyramidal nickel complexed to a cyclen in a [4,8] configuration with a bidentate acetate bound in one of the axial positions of the trigonal bipyramid. This configuration is relatively common for nickel cyclen complexes as opposed to the similar size copper cyclen complexes, which have the [3,3,3,3] ‘square’ configuration (Verma et al., 2022[Verma, A., Bhuvanesh, N., Reibenspies, J., Tayade, S. B., Kumbhar, A. S., Bretosh, K., Sutter, J.-P. & Sunkari, S. (2022). Chem. Eng. Commun. 24, 119-131.]). However, Gasser et al. (2007[Gasser, G., Belousoff, M. J., Bond, A. M. & Spiccia, L. (2007). Inorg. Chem. 46, 3876-3888.]) reported a distortion to some copper cyclen complex geometries including one with a monodentate nitrate (CSD refcode: TZCDCU; Clay et al., 1979[Clay, R., Murray-Rust, P. & Murray-Rust, J. (1979). Acta Cryst. B35, 1894-1895.]) and one with an additional ligand (ferrocene meth­yl) that caused the nitrate to appear bidentate (CSD refcode: UDINOL; Gasser et al. 2007[Gasser, G., Belousoff, M. J., Bond, A. M. & Spiccia, L. (2007). Inorg. Chem. 46, 3876-3888.]). They suspect that the second bond of the nitrate to the copper was electrostatic due to the steric inter­ference of the ligand on the cyclen. The zinc cyclen nitrate compound, as described by Vargova et al. (2007[Vargová, Z., Kotek, J., Rudovský, J., Plutnar, J., Gyepes, R., Hermann, P., Györyová, K. & Lukeš, I. (2007). Eur. J. Inorg. Chem. pp. 3974-3987.]) (CSD refcode: MIKBOY), displays the nitrate ligand in a monodentate coordination, while the tetra­methyl­cyclen nickel nitrate structure, as reported by Yenuganti et al. (2020[Yenuganti, M., Das, S., Kulbir, A., Ghosh, S., Bhardwaj, P., Pawar, S. S., Sahoo, S. C. & Kumar, P. (2020). Inorg. Chem. Front. 7, 4872-4882.]) (CSD refcode: XACDEO), showcases a symmetrical bidentate B01 nitrate ligand. Furthermore, both structures share the cyclen backbone in the [3,3,3,3] ‘square’ structure, which is also seen in the uncomplexed (free) cyclen ligand (CSD refcode:VUCGEF; Reibenspies, 1992[Reibenspies, J. H. (1992). Acta Cryst. C48, 1717-1718.])

5. Synthesis and crystallization

0.2 g of cyclen were added to a solution of Ni(NO3)2·6H2O (0.3 g dissolved in 1 ml of distilled water), resulting in the formation of a deep-blue solution, which was then transferred to a 5 ml uncapped vial, which was placed inside a 10 ml vial. The 10 ml vial was filled with 3 ml of absolute ethanol (outside of the 5 ml vial). The 10 ml vial was capped and after 24 h, the ethanol had diffused into the aqueous solution, but no crystals were observed. To address this, the cap of the vapor diffusion apparatus (10 ml vial) was removed, allowing the aqueous/ethanol solution to evaporate. After an additional 24 h, light-blue crystals were discovered above the concentrated blue solution and collected from the 5 ml vial. It is important to note that normal evaporation of the aqueous solution will yield a blue oil without any crystallization.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. During the final stages of refinement a twin was detected from analysis of the structure factor file (FCF), which contains the calculated and observed structure factors (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). The refinement of the twin (1 0 0.139 0 − 1 0 0 0 − 1, BASF of 0.177, twofold about the a axis) resulted in an improved structure and a decrease in the residual values. Publication documents were generated with the program publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C8H20N4)(NO3)]NO3
Mr 355.01
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 8.7321 (5), 15.2444 (9), 10.8545 (6)
β (°) 94.973 (5)
V3) 1439.47 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.39
Crystal size (mm) 0.4 × 0.3 × 0.02
 
Data collection
Diffractometer XtaLAB Mini II
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.899, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12195, 12195, 9604
Rint 0.038
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.09
No. of reflections 12195
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.28
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

(Nitrato-κ2O,O')(1,4,7,10-tetraazacyclododecane-κ4N)nickel(II) nitrate top
Crystal data top
[Ni(C8H20N4)(NO3)]NO3F(000) = 744
Mr = 355.01Dx = 1.638 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.7321 (5) ÅCell parameters from 4001 reflections
b = 15.2444 (9) Åθ = 2.3–29.9°
c = 10.8545 (6) ŵ = 1.39 mm1
β = 94.973 (5)°T = 293 K
V = 1439.47 (14) Å3Plate, blue
Z = 40.4 × 0.3 × 0.02 mm
Data collection top
XtaLAB Mini II
diffractometer
9604 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.038
ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2024)
h = 108
Tmin = 0.899, Tmax = 1.000k = 1919
12195 measured reflectionsl = 1313
12195 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.8788P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
12195 reflectionsΔρmax = 0.39 e Å3
191 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Experimental. Single crystals of C8H20N6NiO6 [Ni(cyclen)NO3]NO3 were obtained by vapor diffusion followed by evaporation. A suitable crystal was selected and mounted on a RIGAKU XtaLAB Mini II diffractometer. The crystal was kept at 293 (2) K during data collection (CrysAlis PRO : Rigaku Oxford Diffraction, 2024). Employing Olex2 (Dolomanov et al., 2009), the structure was solved with the SHELXT (Sheldrick, 2015a) structure solution program and refined with the SHELXL (Sheldrick, 2015b) refinement package using full-matrix least-squares minimization.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.47429 (5)0.40178 (3)0.71868 (4)0.02627 (16)
O10.6641 (3)0.44290 (18)0.8450 (2)0.0402 (7)
O20.8551 (3)0.5139 (2)0.7739 (3)0.0626 (10)
O30.6572 (3)0.47217 (18)0.6500 (2)0.0414 (8)
N10.7303 (4)0.4775 (2)0.7575 (3)0.0395 (9)
N20.3234 (4)0.5046 (2)0.7480 (3)0.0323 (8)
H20.3815370.5588700.7649910.039*
N50.3440 (3)0.38312 (19)0.5547 (3)0.0292 (8)
H50.3927300.4132340.4885100.035*
N80.5615 (3)0.2762 (2)0.6909 (3)0.0313 (8)
H80.6740940.2771120.7009100.038*
N110.3508 (3)0.3385 (2)0.8461 (3)0.0298 (8)
H110.2552010.3142130.8059490.036*
C10.2362 (5)0.4818 (3)0.8563 (4)0.0418 (11)
H1A0.1332060.4629310.8273280.050*
H1B0.2275600.5333120.9077390.050*
C30.2243 (5)0.5135 (3)0.6305 (4)0.0396 (11)
H3A0.2743680.5514360.5743980.048*
H3B0.1275460.5405080.6468620.048*
C40.1937 (4)0.4249 (3)0.5703 (4)0.0362 (10)
H4A0.1343590.3885250.6219930.043*
H4B0.1358150.4319780.4905750.043*
C60.3441 (4)0.2873 (3)0.5311 (3)0.0344 (10)
H6A0.3107350.2755530.4450870.041*
H6B0.2741290.2580790.5823610.041*
C70.5067 (5)0.2534 (3)0.5614 (4)0.0386 (11)
H7A0.5084920.1902410.5508620.046*
H7B0.5745740.2792170.5051880.046*
C90.5013 (5)0.2164 (3)0.7832 (4)0.0379 (11)
H9A0.5797470.1739540.8106340.045*
H9B0.4131830.1846020.7452630.045*
C100.4544 (5)0.2678 (3)0.8934 (4)0.0399 (11)
H10A0.4022530.2296810.9478940.048*
H10B0.5443930.2922620.9396300.048*
C120.3177 (5)0.4090 (3)0.9320 (3)0.0382 (10)
H12A0.4124670.4308230.9743360.046*
H12B0.2527120.3872930.9933620.046*
O40.1146 (4)0.2042 (2)0.7487 (3)0.0663 (10)
O50.0669 (4)0.2984 (2)0.7302 (4)0.0846 (13)
O60.1194 (4)0.1630 (2)0.7286 (4)0.0803 (12)
N30.0252 (4)0.2221 (3)0.7343 (3)0.0398 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0229 (3)0.0294 (3)0.0263 (3)0.0023 (3)0.0015 (2)0.0014 (3)
O10.0360 (17)0.050 (2)0.0343 (16)0.0097 (15)0.0008 (13)0.0018 (14)
O20.0263 (17)0.059 (2)0.101 (3)0.0173 (17)0.0009 (18)0.000 (2)
O30.0414 (17)0.048 (2)0.0355 (16)0.0093 (16)0.0057 (14)0.0057 (15)
N10.029 (2)0.036 (2)0.053 (2)0.0034 (18)0.0035 (18)0.0012 (19)
N20.0348 (19)0.0290 (19)0.0328 (18)0.0017 (17)0.0005 (15)0.0021 (16)
N50.0276 (18)0.033 (2)0.0273 (17)0.0006 (16)0.0020 (14)0.0025 (15)
N80.0221 (17)0.036 (2)0.0353 (19)0.0023 (16)0.0023 (15)0.0006 (16)
N110.0271 (18)0.034 (2)0.0284 (18)0.0007 (16)0.0028 (14)0.0029 (16)
C10.038 (3)0.050 (3)0.037 (2)0.009 (2)0.007 (2)0.008 (2)
C30.041 (3)0.037 (3)0.040 (2)0.010 (2)0.001 (2)0.004 (2)
C40.031 (2)0.045 (3)0.032 (2)0.006 (2)0.0025 (18)0.002 (2)
C60.035 (2)0.041 (3)0.028 (2)0.001 (2)0.0012 (18)0.006 (2)
C70.041 (3)0.038 (3)0.038 (2)0.004 (2)0.007 (2)0.006 (2)
C90.037 (3)0.031 (2)0.045 (2)0.006 (2)0.001 (2)0.006 (2)
C100.044 (3)0.040 (3)0.036 (2)0.003 (2)0.003 (2)0.011 (2)
C120.039 (2)0.045 (3)0.031 (2)0.004 (2)0.0088 (19)0.000 (2)
O40.0309 (18)0.064 (2)0.105 (3)0.0029 (18)0.0066 (19)0.005 (2)
O50.087 (3)0.045 (2)0.128 (4)0.025 (2)0.045 (3)0.020 (2)
O60.054 (2)0.075 (3)0.113 (3)0.029 (2)0.012 (2)0.026 (2)
N30.037 (2)0.044 (3)0.039 (2)0.001 (2)0.0092 (18)0.000 (2)
Geometric parameters (Å, º) top
Ni1—O12.151 (3)C1—H1B0.9700
Ni1—O32.113 (3)C1—C121.521 (5)
Ni1—N22.090 (3)C3—H3A0.9700
Ni1—N52.048 (3)C3—H3B0.9700
Ni1—N82.092 (3)C3—C41.515 (5)
Ni1—N112.065 (3)C4—H4A0.9700
O1—N11.269 (4)C4—H4B0.9700
O2—N11.221 (4)C6—H6A0.9700
O3—N11.283 (4)C6—H6B0.9700
N2—H20.9800C6—C71.520 (5)
N2—C11.496 (5)C7—H7A0.9700
N2—C31.484 (4)C7—H7B0.9700
N5—H50.9800C9—H9A0.9700
N5—C41.481 (4)C9—H9B0.9700
N5—C61.483 (4)C9—C101.516 (5)
N8—H80.9800C10—H10A0.9700
N8—C71.487 (4)C10—H10B0.9700
N8—C91.484 (4)C12—H12A0.9700
N11—H110.9800C12—H12B0.9700
N11—C101.471 (4)O4—N31.248 (4)
N11—C121.467 (4)O5—N31.218 (4)
C1—H1A0.9700O6—N31.218 (4)
O3—Ni1—O160.82 (10)C12—C1—H1A109.6
N2—Ni1—O198.38 (11)C12—C1—H1B109.6
N2—Ni1—O3100.29 (12)N2—C3—H3A109.5
N2—Ni1—N8161.91 (12)N2—C3—H3B109.5
N5—Ni1—O1159.07 (12)N2—C3—C4110.9 (3)
N5—Ni1—O398.27 (11)H3A—C3—H3B108.1
N5—Ni1—N285.77 (12)C4—C3—H3A109.5
N5—Ni1—N885.96 (12)C4—C3—H3B109.5
N5—Ni1—N11103.55 (12)N5—C4—C3107.9 (3)
N8—Ni1—O195.08 (11)N5—C4—H4A110.1
N8—Ni1—O396.80 (11)N5—C4—H4B110.1
N11—Ni1—O197.33 (12)C3—C4—H4A110.1
N11—Ni1—O3158.13 (11)C3—C4—H4B110.1
N11—Ni1—N282.85 (12)H4A—C4—H4B108.4
N11—Ni1—N883.49 (12)N5—C6—H6A110.1
N1—O1—Ni191.2 (2)N5—C6—H6B110.1
N1—O3—Ni192.5 (2)N5—C6—C7108.2 (3)
O1—N1—O3115.5 (3)H6A—C6—H6B108.4
O2—N1—O1122.6 (4)C7—C6—H6A110.1
O2—N1—O3121.9 (4)C7—C6—H6B110.1
Ni1—N2—H2109.8N8—C7—C6110.1 (3)
C1—N2—Ni1108.4 (2)N8—C7—H7A109.6
C1—N2—H2109.8N8—C7—H7B109.6
C3—N2—Ni1105.5 (2)C6—C7—H7A109.6
C3—N2—H2109.8C6—C7—H7B109.6
C3—N2—C1113.5 (3)H7A—C7—H7B108.2
Ni1—N5—H5109.1N8—C9—H9A109.5
C4—N5—Ni1105.7 (2)N8—C9—H9B109.5
C4—N5—H5109.1N8—C9—C10110.5 (3)
C4—N5—C6117.2 (3)H9A—C9—H9B108.1
C6—N5—Ni1106.2 (2)C10—C9—H9A109.5
C6—N5—H5109.1C10—C9—H9B109.5
Ni1—N8—H8110.2N11—C10—C9107.7 (3)
C7—N8—Ni1105.0 (2)N11—C10—H10A110.2
C7—N8—H8110.2N11—C10—H10B110.2
C9—N8—Ni1108.1 (2)C9—C10—H10A110.2
C9—N8—H8110.2C9—C10—H10B110.2
C9—N8—C7113.0 (3)H10A—C10—H10B108.5
Ni1—N11—H11110.6N11—C12—C1107.5 (3)
C10—N11—Ni1103.6 (2)N11—C12—H12A110.2
C10—N11—H11110.6N11—C12—H12B110.2
C12—N11—Ni1103.1 (2)C1—C12—H12A110.2
C12—N11—H11110.6C1—C12—H12B110.2
C12—N11—C10117.6 (3)H12A—C12—H12B108.5
N2—C1—H1A109.6O5—N3—O4120.0 (4)
N2—C1—H1B109.6O5—N3—O6120.4 (4)
N2—C1—C12110.3 (3)O6—N3—O4119.6 (4)
H1A—C1—H1B108.1
Ni1—O1—N1—O2179.3 (3)N2—C1—C12—N1150.0 (4)
Ni1—O1—N1—O31.0 (3)N2—C3—C4—N555.3 (4)
Ni1—O3—N1—O11.0 (3)N5—C6—C7—N856.3 (4)
Ni1—O3—N1—O2179.3 (3)N8—C9—C10—N1152.0 (4)
Ni1—N2—C1—C1217.8 (4)C1—N2—C3—C483.8 (4)
Ni1—N2—C3—C434.8 (4)C3—N2—C1—C12134.6 (3)
Ni1—N5—C4—C345.1 (3)C4—N5—C6—C7160.9 (3)
Ni1—N5—C6—C743.1 (3)C6—N5—C4—C3163.1 (3)
Ni1—N8—C7—C638.1 (4)C7—N8—C9—C10138.3 (3)
Ni1—N8—C9—C1022.5 (4)C9—N8—C7—C679.5 (4)
Ni1—N11—C10—C953.5 (3)C10—N11—C12—C1168.9 (3)
Ni1—N11—C12—C155.7 (3)C12—N11—C10—C9166.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.982.223.091 (5)147
N5—H5···O3ii0.982.323.130 (4)139
N8—H8···O5iii0.982.283.253 (5)172
N8—H8···O6iii0.982.503.273 (5)135
N11—H11···O40.982.143.030 (5)151
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors wish to thank the Dean of Arts and Sciences at Texas A&M and Prairie View A&M for funding, support and use of their laboratories and classrooms for the Prairie View A&M Crystallography School. The authors also wish to thank Rigaku Americas Corporation for use of the Rigaku XtaLAB Mini II single crystal X-ray diffractometer and Dr Lee Daniels (Rigaku) for his time and expertise.

Funding information

Funding for this research was provided by: College of Arts and Sciences, Texas A&M University (grant No. U309060 to Joseph Reibenspies).

References

First citationClay, R., Murray-Rust, P. & Murray-Rust, J. (1979). Acta Cryst. B35, 1894–1895.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGasser, G., Belousoff, M. J., Bond, A. M. & Spiccia, L. (2007). Inorg. Chem. 46, 3876–3888.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMeyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178–180, 1313–1405.  Web of Science CrossRef CAS Google Scholar
First citationMorozov, I. V., Serezhkin, V. N. & Troyanov, S. I. (2008). Russ. Chem. Bull. 57, 439–450.  Web of Science CrossRef CAS Google Scholar
First citationReibenspies, J. H. (1992). Acta Cryst. C48, 1717–1718.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationReinen, D., Atanasov, M., Nikolov, G. & Steffens, F. (1988). Inorg. Chem. 27, 1678–1686.  CrossRef Web of Science Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVargová, Z., Kotek, J., Rudovský, J., Plutnar, J., Gyepes, R., Hermann, P., Györyová, K. & Lukeš, I. (2007). Eur. J. Inorg. Chem. pp. 3974–3987.  Google Scholar
First citationVerma, A., Bhuvanesh, N., Reibenspies, J., Tayade, S. B., Kumbhar, A. S., Bretosh, K., Sutter, J.-P. & Sunkari, S. (2022). Chem. Eng. Commun. 24, 119–131.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYenuganti, M., Das, S., Kulbir, A., Ghosh, S., Bhardwaj, P., Pawar, S. S., Sahoo, S. C. & Kumar, P. (2020). Inorg. Chem. Front. 7, 4872–4882.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds