research communications
H-pyrazol-1-yl)pyridin-2-yl]-1H-1,2,4-triazol-1-ido}nickel(II) methanol disolvate
of bis{5-(4-chlorophenyl)-3-[6-(1aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania, and cChemBioCenter, Kyiv National Taras Shevchenko University, Kyiv 02094, 61 Winston Churchill Street, Ukraine
*Correspondence e-mail: mlseredyuk@gmail.com
The 16H10ClN6)2]·2CH3OH, consists of a neutral complex and two methanol molecules. In the complex, the two tridentate 2-(3-(4-chlorophenyl)-1H-1,2,4-triazol-5-yl)-6-(1H-pyrazol-1-yl)pyridine ligands coordinate to the central NiII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudooctahedral coordination sphere. Neighbouring tapered molecules are linked through weak C—H(pz)⋯π(ph) interactions into monoperiodic chains, which are further linked through weak C—H⋯N/C interactions into diperiodic layers. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 32.8%, C⋯H/H⋯C 27.5%, N⋯H/H⋯N 15.1%, and Cl⋯H/H⋯Cl 14.0%. The average Ni—N bond distance is 2.095 Å. Energy framework analysis at the HF/3–21 G theory level was performed to quantify the interaction energies in the crystal structure.
of the title compound, [Ni(CKeywords: crystal structure; nickel(II) complexes; neutral complexes; tridentate ligands; bisazolepyridines.
CCDC reference: 2393088
1. Chemical context
A broad class of coordination compounds is represented by 3d-metal complexes based on tridentate bisazolepyridine ligands (Halcrow et al., 2019; Suryadevara et al., 2022), which find application in many fields, for example in catalysis (Xing et al., 2014; Wei et al., 2015) and molecular magnetism (Suryadevara et al., 2022). In the case of asymmetric ligand design, where one of the azole groups carries a hydrogen on a nitrogen heteroatom and acts as a Brønsted acid, deprotonation can compensate for the charge of the central ion and in some cases form neutral complexes (Seredyuk et al., 2014; Grunwald et al., 2023). The periphery of the complexes also plays an important role, determining the way the molecules interact with each other, influencing the intermolecular connectivity, interaction energy and the organization of the crystal.
Encouraged by our interest in spin-transition complexes of 3d-metals formed by N-heterocyclic ligands (Seredyuk et al., 2006, 2007; Bonhommeau et al., 2012; Piñeiro-López et al., 2018), we report a new neutral NiII complex based on an asymmetric deprotonated ligand with a monosubstituted phenyl group, 2-{5-[5-(4-chlorophenyl)-1H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyridine}, which continues our enduring project on the study of metal complexes of bisazolepyridines.
2. Structural commentary
The complex has a tapered structure with divergent phenyl groups. The phenyl group of the ligand is rotated by 26.2 (1)° relative to the pyrazole-pyridine-triazole (pz-py-trz) fragment, the arrangement of which is almost planar. There are two methanol molecules per complex, forming O—H⋯N hydrogen bonds with the trz rings (Fig. 1, Table 1). The central Ni ion has a distorted octahedral N6 coordination environment formed by the nitrogen donor atoms of two tridentate ligands. The average Ni—N bond length is 2.095 Å. The average trigonal distortion parameters Σ = Σ112(|90 − φi|), where φi is the angle N—Ni—N′ (Drew et al., 1995), and Θ = Σ124(|60 − θi|), where θi is the angle generated by superposition of two opposite faces of an octahedron (Chang et al., 1990) are 119.4 and 387.3°, respectively. The values reveal a deviation of the coordination environment from an ideal octahedron (where Σ = Θ = 0), which is, however, in the expected range for bisazolepyridine and similar ligands (see below). The calculated continuous shape measures [CShM(Oh)] value relative to the ideal octahedral symmetry is 3.714 (Kershaw Cook et al., 2015). The volume of the [NiN6] is 11.583 Å3.
3. Supramolecular features
As a result of the tapered structure, neighbouring complexes are embedded in each other and interact through weak C–H(pz)⋯π(ph) intermolecular contacts between the pyrazole and phenyl groups [the C2⋯Cg(ph) distance is 3.534 Å]. They form one-dimensional supramolecular chains extending along the b-axis direction with a stacking periodicity equal to 10.1523 (4) Å (= cell parameter b) (Fig. 2). Weak intermolecular C—H(pz, py)⋯N/C(pz, trz) interactions, ranging from 3.245 (4) to 3.743 (4) Å (Table 1), connect neighbouring chains into two-dimensional layers along the ab plane. The voids between the layers are occupied by solvent molecules, which also participate in the bonding within separate layers. The methanol molecules form a strong O—H⋯N hydrogen bond with the deprotonated trz groups and weak hydrogen bonds C—H⋯O with the pz and py groups of the ligand. A complete list of selected intermolecular interactions is provided in Table 1.
4. Hirshfeld surface and two-dimensional fingerprint plots
Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using CrystalExplorer (Spackman et al., 2021), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale from −0.6356 (red) to 1.6114 (blue) a.u. The pale-red spots symbolize short contacts and negative dnorm values on the surface corresponding to the interactions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 3a. The two-dimensional fingerprint plots, with their relative contributions to the Hirshfeld surface mapped over dnorm, are shown for the H⋯H, C⋯H/H⋯C, N⋯H/H⋯N and Cl⋯H/H⋯Cl contacts in Fig. 4. At 32.8%, the largest contribution to the overall crystal packing is from H⋯H interactions, which are located in the middle region of the fingerprint plot. C⋯H/H⋯C contacts contribute 27.5%, and Cl⋯H/H⋯Cl 14.0%, resulting in pairs of characteristic wings. The N⋯H/H⋯N contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 15.1% contribution to the surface. The electrostatic calculated using the HF/3-21G basis is mapped on the Hirshfeld surface (Fig. 3b). The negative charge localizes on the trz-ph moiety and the Cl atom of the complex, while the pz-py moiety is relatively positively charged, which justifies the stacking of the molecules in columns and packing of the columns in diperiodic two-dimensional layers.
5. Energy frameworks analysis
The energy framework (Spackman et al., 2021), calculated using the wave function at the HF/3-21G theory level, including the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), is shown in Fig. 5. The cylindrical radii, adjusted to the same scale factor of 100, are proportional to the relative strength of the corresponding energies. The major contribution is due to the dispersion forces (Edis), reflecting dominating interactions in the crystal of the neutral molecules. The topology of the energy framework resembles the topology of the interactions within and between layers described above. The calculated value Etot for the intrachain interactions is −47.0 kJ mol−1 and for interchain interactions is down to −93.9 kJ mol−1. The interlayer interactions have an energy of −31.9 kJ mol−1. The colour-coded interaction mappings within a radius of 3.8 Å from the complex, together with full information on the various contributions to the total energy (Eele, Epol, Edis, Erep) are shown in the table in Fig. 5.
6. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42; Groom et al., 2016) reveals several similar neutral 3d MII complexes with tridentate bisazolepyridine ligands with a deprotonated azole group, for example, of NiII: YOCFAZ (Yuan et al., 2014), ZOCKOT (Xing et al., 2014), and ZOTVIP (Wei et al., 2015); of FeII: EGIDIL (Seredyuk et al., 2024), LUTGEO (Senthil Kumar et al., 2015), and XODCEB (Shiga et al., 2019). In addition, two related complexes based on phenanthroline-benzimidazole, DOMQUT (Seredyuk et al., 2014) and dipyridylpyrrol, NIRLOT (Grunwald et al., 2023) were found. The values of the trigonal distortion indices and the CShM(Oh) values vary according to the length of the M—N distances, with shorter distances being systematically smaller. Table 2 collates the structural parameters of the complexes and of the title compound.
|
7. Synthesis and crystallization
The synthesis of the title compound was identical to that reported for a similar complex (Seredyuk et al., 2022). It was produced by using a layering technique in a standard test tube. The layering sequence was as follows: the bottom layer contained a solution of [Ni(L2)](ClO4)2 prepared by dissolving L = 2-[3-(4-chlorophenyl)-1H-1,2,4-triazol-5-yl]-6-(1H-pyrazol-1-yl)pyridine (89 mg, 0.274 mmol) and Ni(ClO4)2·6H2O (50 mg, 0.137 mmol) in boiling acetone, to which chloroform (5 ml) was then added. The middle layer was a methanol–chloroform mixture (1:10) (10 ml), which was covered by a layer of methanol (10 ml), to which 100 ml of NEt3 were added dropwise. The tube was sealed, and violet plate-like single crystals appeared after 2 weeks (yield ca 65%). Elemental analysis calculated for C34H28Cl2N12NiO2: C, 53.29; H, 3.68; N, 21.94. Found: C, 53.64; H, 3.42; N, 21.67.
8. Refinement
Crystal data, data collection and structure . H atoms were refined as riding [C—H = 0.95–0.98 Å with Uiso(H) = 1.2–1.5Ueq(C)], while the O-bound H atom was refined freely with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2393088
https://doi.org/10.1107/S2056989024010338/tx2090sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024010338/tx2090Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024010338/tx2090Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989024010338/tx2090Isup4.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989024010338/tx2090Isup5.cdx
[Ni(C16H10ClN6)2]·2CH4O | Dx = 1.419 Mg m−3 |
Mr = 766.29 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 3630 reflections |
a = 12.8146 (4) Å | θ = 2.2–26.9° |
b = 10.1523 (4) Å | µ = 0.74 mm−1 |
c = 27.5618 (10) Å | T = 200 K |
V = 3585.7 (2) Å3 | Plate, clear light colourless |
Z = 4 | 0.3 × 0.2 × 0.03 mm |
F(000) = 1576 |
Xcalibur, Eos diffractometer | 3169 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2460 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 25.0°, θmin = 2.2° |
ω scans | h = −15→12 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2024) | k = −8→12 |
Tmin = 0.982, Tmax = 1.000 | l = −28→32 |
11432 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0279P)2 + 2.4046P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3169 reflections | Δρmax = 0.38 e Å−3 |
236 parameters | Δρmin = −0.43 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.500000 | 0.69121 (4) | 0.750000 | 0.02084 (14) | |
Cl1 | 0.65525 (9) | 0.02490 (10) | 0.48765 (3) | 0.0732 (3) | |
N4 | 0.56268 (15) | 0.5528 (2) | 0.70190 (7) | 0.0232 (5) | |
N3 | 0.65534 (14) | 0.6994 (2) | 0.76563 (7) | 0.0213 (5) | |
N6 | 0.70584 (15) | 0.4439 (2) | 0.67758 (7) | 0.0260 (5) | |
O1 | 0.35256 (17) | 0.5580 (2) | 0.61839 (9) | 0.0536 (7) | |
N1 | 0.51184 (15) | 0.8366 (2) | 0.80671 (8) | 0.0254 (5) | |
N2 | 0.61374 (15) | 0.8598 (2) | 0.82014 (8) | 0.0248 (5) | |
N5 | 0.53272 (16) | 0.4702 (2) | 0.66553 (8) | 0.0261 (5) | |
C9 | 0.66590 (18) | 0.5348 (2) | 0.70733 (9) | 0.0225 (6) | |
C11 | 0.6257 (2) | 0.3115 (3) | 0.61194 (9) | 0.0286 (6) | |
C10 | 0.62050 (19) | 0.4072 (2) | 0.65185 (9) | 0.0240 (6) | |
C4 | 0.69229 (18) | 0.7853 (2) | 0.79721 (9) | 0.0226 (6) | |
C8 | 0.72106 (18) | 0.6191 (2) | 0.74160 (9) | 0.0232 (6) | |
C1 | 0.4560 (2) | 0.9114 (3) | 0.83634 (9) | 0.0278 (6) | |
H1 | 0.381914 | 0.915928 | 0.836126 | 0.033* | |
C5 | 0.79770 (19) | 0.8008 (3) | 0.80689 (10) | 0.0308 (7) | |
H5 | 0.822378 | 0.864474 | 0.829382 | 0.037* | |
C12 | 0.7100 (2) | 0.2265 (3) | 0.60884 (10) | 0.0387 (7) | |
H12 | 0.762240 | 0.228747 | 0.633302 | 0.046* | |
C15 | 0.5598 (3) | 0.2190 (3) | 0.53748 (10) | 0.0409 (8) | |
H15 | 0.508238 | 0.216511 | 0.512739 | 0.049* | |
C16 | 0.5500 (2) | 0.3065 (3) | 0.57582 (10) | 0.0346 (7) | |
H16 | 0.491181 | 0.363367 | 0.577433 | 0.041* | |
C14 | 0.6440 (3) | 0.1360 (3) | 0.53531 (10) | 0.0410 (8) | |
C3 | 0.6197 (2) | 0.9480 (3) | 0.85679 (10) | 0.0341 (7) | |
H3 | 0.681449 | 0.979665 | 0.871858 | 0.041* | |
C7 | 0.82769 (19) | 0.6262 (3) | 0.74938 (10) | 0.0316 (7) | |
H7 | 0.874286 | 0.569090 | 0.732760 | 0.038* | |
C2 | 0.5197 (2) | 0.9827 (3) | 0.86793 (11) | 0.0373 (7) | |
H2 | 0.497898 | 1.043138 | 0.892220 | 0.045* | |
C13 | 0.7197 (3) | 0.1382 (3) | 0.57077 (11) | 0.0464 (8) | |
H13 | 0.777684 | 0.080013 | 0.569161 | 0.056* | |
C6 | 0.8646 (2) | 0.7190 (3) | 0.78215 (10) | 0.0352 (7) | |
H6 | 0.937557 | 0.726096 | 0.787585 | 0.042* | |
C17 | 0.3810 (3) | 0.6355 (4) | 0.57866 (13) | 0.0666 (11) | |
H17A | 0.401889 | 0.578408 | 0.551683 | 0.100* | |
H17B | 0.439474 | 0.692602 | 0.587693 | 0.100* | |
H17C | 0.321473 | 0.689799 | 0.568711 | 0.100* | |
H1A | 0.407 (3) | 0.529 (3) | 0.6315 (12) | 0.062 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0141 (2) | 0.0264 (3) | 0.0220 (3) | 0.000 | −0.00045 (19) | 0.000 |
Cl1 | 0.1083 (8) | 0.0673 (7) | 0.0441 (6) | 0.0039 (6) | 0.0019 (5) | −0.0299 (5) |
N4 | 0.0192 (11) | 0.0277 (12) | 0.0226 (12) | −0.0017 (9) | −0.0003 (9) | −0.0023 (10) |
N3 | 0.0172 (10) | 0.0247 (12) | 0.0219 (12) | −0.0013 (9) | −0.0013 (8) | 0.0004 (10) |
N6 | 0.0214 (11) | 0.0309 (13) | 0.0257 (12) | 0.0007 (9) | −0.0002 (9) | −0.0073 (10) |
O1 | 0.0324 (13) | 0.0715 (17) | 0.0569 (16) | −0.0044 (12) | −0.0083 (11) | 0.0242 (13) |
N1 | 0.0172 (11) | 0.0318 (13) | 0.0273 (12) | 0.0025 (9) | −0.0012 (9) | 0.0001 (10) |
N2 | 0.0190 (11) | 0.0281 (12) | 0.0273 (12) | 0.0009 (9) | −0.0016 (9) | −0.0066 (11) |
N5 | 0.0234 (12) | 0.0288 (13) | 0.0261 (13) | −0.0031 (9) | −0.0016 (9) | −0.0038 (11) |
C9 | 0.0182 (13) | 0.0261 (15) | 0.0231 (14) | −0.0005 (10) | 0.0000 (11) | −0.0007 (12) |
C11 | 0.0332 (15) | 0.0261 (15) | 0.0264 (15) | −0.0059 (12) | 0.0032 (12) | −0.0007 (13) |
C10 | 0.0248 (14) | 0.0249 (14) | 0.0223 (14) | −0.0023 (11) | 0.0000 (11) | −0.0011 (12) |
C4 | 0.0211 (13) | 0.0236 (14) | 0.0230 (14) | −0.0006 (11) | −0.0002 (11) | −0.0034 (12) |
C8 | 0.0204 (13) | 0.0252 (14) | 0.0239 (14) | 0.0014 (11) | 0.0032 (11) | −0.0013 (12) |
C1 | 0.0218 (13) | 0.0344 (16) | 0.0271 (16) | 0.0081 (12) | 0.0020 (12) | 0.0005 (13) |
C5 | 0.0222 (14) | 0.0355 (16) | 0.0347 (16) | −0.0032 (12) | −0.0032 (12) | −0.0118 (14) |
C12 | 0.0413 (18) | 0.0392 (18) | 0.0357 (17) | 0.0035 (14) | −0.0053 (14) | −0.0104 (15) |
C15 | 0.058 (2) | 0.0399 (19) | 0.0250 (16) | −0.0099 (16) | −0.0079 (14) | 0.0027 (15) |
C16 | 0.0413 (17) | 0.0325 (17) | 0.0299 (16) | −0.0039 (14) | −0.0024 (13) | −0.0007 (14) |
C14 | 0.064 (2) | 0.0343 (18) | 0.0248 (16) | −0.0042 (16) | 0.0065 (15) | −0.0068 (14) |
C3 | 0.0307 (15) | 0.0366 (17) | 0.0351 (17) | −0.0001 (13) | −0.0034 (13) | −0.0123 (15) |
C7 | 0.0181 (13) | 0.0383 (16) | 0.0385 (17) | 0.0034 (11) | −0.0015 (12) | −0.0111 (15) |
C2 | 0.0333 (17) | 0.0425 (18) | 0.0360 (17) | 0.0097 (13) | 0.0023 (13) | −0.0128 (15) |
C13 | 0.052 (2) | 0.0437 (19) | 0.0432 (19) | 0.0106 (16) | 0.0036 (16) | −0.0111 (16) |
C6 | 0.0138 (13) | 0.0484 (19) | 0.0434 (18) | −0.0013 (12) | −0.0026 (12) | −0.0089 (16) |
C17 | 0.082 (3) | 0.057 (2) | 0.061 (3) | −0.014 (2) | −0.015 (2) | 0.017 (2) |
Ni1—N4i | 2.092 (2) | C4—C5 | 1.386 (3) |
Ni1—N4 | 2.092 (2) | C8—C7 | 1.385 (3) |
Ni1—N3 | 2.0383 (19) | C1—H1 | 0.9500 |
Ni1—N3i | 2.0384 (19) | C1—C2 | 1.396 (4) |
Ni1—N1 | 2.155 (2) | C5—H5 | 0.9500 |
Ni1—N1i | 2.155 (2) | C5—C6 | 1.374 (4) |
Cl1—C14 | 1.737 (3) | C12—H12 | 0.9500 |
N4—N5 | 1.363 (3) | C12—C13 | 1.386 (4) |
N4—C9 | 1.344 (3) | C15—H15 | 0.9500 |
N3—C4 | 1.320 (3) | C15—C16 | 1.386 (4) |
N3—C8 | 1.346 (3) | C15—C14 | 1.371 (4) |
N6—C9 | 1.337 (3) | C16—H16 | 0.9500 |
N6—C10 | 1.355 (3) | C14—C13 | 1.377 (4) |
O1—C17 | 1.396 (4) | C3—H3 | 0.9500 |
O1—H1A | 0.84 (3) | C3—C2 | 1.363 (4) |
N1—N2 | 1.378 (3) | C7—H7 | 0.9500 |
N1—C1 | 1.325 (3) | C7—C6 | 1.388 (4) |
N2—C4 | 1.409 (3) | C2—H2 | 0.9500 |
N2—C3 | 1.352 (3) | C13—H13 | 0.9500 |
N5—C10 | 1.347 (3) | C6—H6 | 0.9500 |
C9—C8 | 1.458 (3) | C17—H17A | 0.9800 |
C11—C10 | 1.470 (4) | C17—H17B | 0.9800 |
C11—C12 | 1.386 (4) | C17—H17C | 0.9800 |
C11—C16 | 1.392 (4) | ||
N4—Ni1—N4i | 95.63 (11) | N3—C8—C9 | 111.8 (2) |
N4i—Ni1—N1 | 91.57 (8) | N3—C8—C7 | 120.6 (2) |
N4—Ni1—N1i | 91.58 (8) | C7—C8—C9 | 127.5 (2) |
N4—Ni1—N1 | 153.19 (7) | N1—C1—H1 | 124.3 |
N4i—Ni1—N1i | 153.19 (7) | N1—C1—C2 | 111.4 (2) |
N3—Ni1—N4 | 77.66 (8) | C2—C1—H1 | 124.3 |
N3i—Ni1—N4i | 77.66 (8) | C4—C5—H5 | 121.8 |
N3i—Ni1—N4 | 105.57 (8) | C6—C5—C4 | 116.3 (2) |
N3—Ni1—N4i | 105.58 (8) | C6—C5—H5 | 121.8 |
N3—Ni1—N3i | 175.32 (12) | C11—C12—H12 | 119.4 |
N3—Ni1—N1 | 75.52 (8) | C11—C12—C13 | 121.3 (3) |
N3i—Ni1—N1 | 101.19 (8) | C13—C12—H12 | 119.4 |
N3—Ni1—N1i | 101.19 (8) | C16—C15—H15 | 120.0 |
N3i—Ni1—N1i | 75.52 (8) | C14—C15—H15 | 120.0 |
N1i—Ni1—N1 | 93.53 (11) | C14—C15—C16 | 119.9 (3) |
N5—N4—Ni1 | 140.50 (15) | C11—C16—H16 | 119.8 |
C9—N4—Ni1 | 113.52 (16) | C15—C16—C11 | 120.3 (3) |
C9—N4—N5 | 105.97 (19) | C15—C16—H16 | 119.8 |
C4—N3—Ni1 | 121.12 (16) | C15—C14—Cl1 | 119.8 (2) |
C4—N3—C8 | 120.0 (2) | C15—C14—C13 | 120.9 (3) |
C8—N3—Ni1 | 118.84 (16) | C13—C14—Cl1 | 119.3 (3) |
C9—N6—C10 | 101.6 (2) | N2—C3—H3 | 126.7 |
C17—O1—H1A | 108 (2) | N2—C3—C2 | 106.7 (2) |
N2—N1—Ni1 | 112.27 (14) | C2—C3—H3 | 126.7 |
C1—N1—Ni1 | 143.26 (18) | C8—C7—H7 | 120.9 |
C1—N1—N2 | 104.4 (2) | C8—C7—C6 | 118.2 (2) |
N1—N2—C4 | 117.7 (2) | C6—C7—H7 | 120.9 |
C3—N2—N1 | 111.6 (2) | C1—C2—H2 | 127.0 |
C3—N2—C4 | 130.6 (2) | C3—C2—C1 | 106.0 (2) |
C10—N5—N4 | 105.23 (19) | C3—C2—H2 | 127.0 |
N4—C9—C8 | 118.0 (2) | C12—C13—H13 | 120.5 |
N6—C9—N4 | 113.8 (2) | C14—C13—C12 | 119.0 (3) |
N6—C9—C8 | 128.1 (2) | C14—C13—H13 | 120.5 |
C12—C11—C10 | 119.6 (2) | C5—C6—C7 | 121.4 (2) |
C12—C11—C16 | 118.5 (3) | C5—C6—H6 | 119.3 |
C16—C11—C10 | 121.9 (2) | C7—C6—H6 | 119.3 |
N6—C10—C11 | 122.4 (2) | O1—C17—H17A | 109.5 |
N5—C10—N6 | 113.4 (2) | O1—C17—H17B | 109.5 |
N5—C10—C11 | 124.1 (2) | O1—C17—H17C | 109.5 |
N3—C4—N2 | 113.2 (2) | H17A—C17—H17B | 109.5 |
N3—C4—C5 | 123.5 (2) | H17A—C17—H17C | 109.5 |
C5—C4—N2 | 123.3 (2) | H17B—C17—H17C | 109.5 |
Ni1—N4—N5—C10 | −178.80 (19) | C9—N6—C10—N5 | −1.1 (3) |
Ni1—N4—C9—N6 | 178.29 (16) | C9—N6—C10—C11 | 176.9 (2) |
Ni1—N4—C9—C8 | −5.4 (3) | C9—C8—C7—C6 | 176.6 (3) |
Ni1—N3—C4—N2 | 4.2 (3) | C11—C12—C13—C14 | 0.4 (5) |
Ni1—N3—C4—C5 | −175.7 (2) | C10—N6—C9—N4 | 1.4 (3) |
Ni1—N3—C8—C9 | −0.9 (3) | C10—N6—C9—C8 | −174.6 (3) |
Ni1—N3—C8—C7 | 176.8 (2) | C10—C11—C12—C13 | −177.6 (3) |
Ni1—N1—N2—C4 | −2.1 (3) | C10—C11—C16—C15 | 177.0 (2) |
Ni1—N1—N2—C3 | −178.00 (17) | C4—N3—C8—C9 | −178.1 (2) |
Ni1—N1—C1—C2 | 176.5 (2) | C4—N3—C8—C7 | −0.5 (4) |
Cl1—C14—C13—C12 | −179.6 (2) | C4—N2—C3—C2 | −174.7 (3) |
N4—N5—C10—N6 | 0.4 (3) | C4—C5—C6—C7 | 0.0 (4) |
N4—N5—C10—C11 | −177.5 (2) | C8—N3—C4—N2 | −178.6 (2) |
N4—C9—C8—N3 | 4.2 (3) | C8—N3—C4—C5 | 1.5 (4) |
N4—C9—C8—C7 | −173.3 (3) | C8—C7—C6—C5 | 0.9 (4) |
N3—C4—C5—C6 | −1.2 (4) | C1—N1—N2—C4 | 175.2 (2) |
N3—C8—C7—C6 | −0.7 (4) | C1—N1—N2—C3 | −0.7 (3) |
N6—C9—C8—N3 | 180.0 (2) | C12—C11—C10—N6 | 19.7 (4) |
N6—C9—C8—C7 | 2.5 (4) | C12—C11—C10—N5 | −162.5 (3) |
N1—N2—C4—N3 | −1.1 (3) | C12—C11—C16—C15 | −0.6 (4) |
N1—N2—C4—C5 | 178.9 (2) | C15—C14—C13—C12 | −0.4 (5) |
N1—N2—C3—C2 | 0.5 (3) | C16—C11—C10—N6 | −157.9 (3) |
N1—C1—C2—C3 | −0.4 (3) | C16—C11—C10—N5 | 19.9 (4) |
N2—N1—C1—C2 | 0.7 (3) | C16—C11—C12—C13 | 0.1 (4) |
N2—C4—C5—C6 | 178.9 (2) | C16—C15—C14—Cl1 | 179.1 (2) |
N2—C3—C2—C1 | 0.0 (3) | C16—C15—C14—C13 | −0.1 (5) |
N5—N4—C9—N6 | −1.2 (3) | C14—C15—C16—C11 | 0.6 (4) |
N5—N4—C9—C8 | 175.2 (2) | C3—N2—C4—N3 | 173.9 (2) |
C9—N4—N5—C10 | 0.4 (3) | C3—N2—C4—C5 | −6.2 (4) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···C14ii | 0.95 | 2.86 | 3.73 (4) | 153 |
C2—H2···C15ii | 0.95 | 2.74 | 3.686 (4) | 178 |
C2—H2···C16ii | 0.95 | 2.88 | 3.743 (4) | 151 |
C3—H3···O1iii | 0.95 | 2.35 | 3.259 (4) | 160 |
C5—H5···O1iii | 0.95 | 2.47 | 3.399 (4) | 167 |
C1—H1···N6iv | 0.95 | 2.31 | 3.245 (6) | 170 |
C7—H7···C1iv | 0.95 | 2.70 | 3.611 (4) | 161 |
O1—H1A···N5 | 0.84 | 1.96 | 2.795 (6) | 176 |
Symmetry codes: (ii) −x+1, y+1, −z+3/2; (iii) x+1/2, y+1/2, −z+3/2; (iv) x−1/2, y+1/2, −z+3/2. |
CSD Refcode | Metal ion | <M—N>a | Σ | Θ | CShM(Oh) |
Title compound | Ni | 2.095 | 119.4 | 387.3 | 3.71 |
YOCFAZ | Ni | 2.088b | 120.8b | 397.6b | 3.65b |
ZOCKOT | Ni | 2.086 | 121.0 | 375.9 | 3.78 |
ZOTVIP | Ni | 2.110 | 124.9 | 382.4 | 3.55 |
EGIDIL | Fe | 1.955 | 89.8 | 314.6 | 2.25 |
EGIDIL02 | Fe | 2.167 | 146.8 | 492.8 | 5.28 |
LUTGEO | Fe | 1.933 | 85.0 | 309.6 | 2.10 |
XODCEB | Fe | 1.950 | 87.4 | 276.6 | 1.93 |
DOMQUT | Fe | 1.991 | 88.5 | 320.0 | 2.48 |
DOMQUT02 | Fe | 2.183 | 139.6 | 486.9 | 5.31 |
NIRLOT | Fe | 1.939 | 77.3 | 255.6 | 1.68 |
Notes: (a) averaged value; (b) value is averaged for two independent molecules. |
Acknowledgements
Author contributions are as follows: Conceptualization, KZ and MS; methodology, KZ; formal analysis, DMP; synthesis, SOM; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), NK, MS; visualization and calculations, KZ, IOF; funding acquisition, IOF, NK, MS.
Funding information
Funding for this research was provided by: grants from the Ministry of Education and Science of Ukraine (grant Nos. 22BF037-03, 22BF037-04, 24BF037-03) and EURIZON project funded by the European Union (grant No. 871072).
References
Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251–11255. Web of Science CrossRef CAS Google Scholar
Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038. CSD CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Grunwald, J., Torres, J., Buchholz, A., Näther, C., Kämmerer, L., Gruber, M., Rohlf, S., Thakur, S., Wende, H., Plass, W., Kuch, W. & Tuczek, F. (2023). Chem. Sci. 14, 7361–7380. Web of Science CSD CrossRef CAS PubMed Google Scholar
Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811–9821. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12. Web of Science CSD CrossRef CAS Google Scholar
Piñeiro-López, L., Valverde-Muñoz, F. J., Seredyuk, M., Bartual-Murgui, C., Muñoz, M. C. & Real, J. A. (2018). Eur. J. Inorg. Chem. pp. 289–296. Google Scholar
Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Senthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635–11644. Web of Science CSD CrossRef CAS Google Scholar
Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385–390. Web of Science CrossRef Google Scholar
Seredyuk, M., Gaspar, A. B., Kusz, J., Bednarek, G. & Gütlich, P. (2007). J. Appl. Cryst. 40, 1135–1145. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297–14309. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., Muñoz, M. C., Fritsky, I. O. & Real, J. A. (2024). Dalton Trans. 53, 8041–8049. CSD CrossRef CAS PubMed Google Scholar
Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387–16394. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658–5662. Web of Science CSD CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suryadevara, N., Mizuno, A., Spieker, L., Salamon, S., Sleziona, S., Maas, A., Pollmann, E., Heinrich, B., Schleberger, M., Wende, H., Kuppusamy, S. K. & Ruben, M. (2022). Chem. A Eur. J. 28, e202103853. Web of Science CSD CrossRef Google Scholar
Wei, S. Y., Wang, J. L., Zhang, C. S., Xu, X.-T., Zhang, X. X., Wang, J. X. & Xing, Y.-H. (2015). ChemPlusChem 80, 549-558. CSD CrossRef CAS PubMed Google Scholar
Xing, N., Xu, L. T., Liu, X., Wu, Q., Ma, X. T. & Xing, Y. H. (2014). ChemPlusChem 79, 1198-1207. CSD CrossRef CAS Google Scholar
Yuan, L.-Z., Ge, Q., Zhao, X.-F., Ouyang, Y., Li, S.-H., Xie, C.-Z. & Xu, J.-Y. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 1175–1182. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.