research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{5-(4-chloro­phen­yl)-3-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-1H-1,2,4-triazol-1-ido}nickel(II) methanol disolvate

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania, and cChemBioCenter, Kyiv National Taras Shevchenko University, Kyiv 02094, 61 Winston Churchill Street, Ukraine
*Correspondence e-mail: mlseredyuk@gmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 1 October 2024; accepted 23 October 2024; online 31 October 2024)

The unit cell of the title compound, [Ni(C16H10ClN6)2]·2CH3OH, consists of a neutral complex and two methanol mol­ecules. In the complex, the two tridentate 2-(3-(4-chloro­phen­yl)-1H-1,2,4-triazol-5-yl)-6-(1H-pyrazol-1-yl)pyridine ligands coordinate to the central NiII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo­octa­hedral coordination sphere. Neighbouring tapered mol­ecules are linked through weak C—H(pz)⋯π(ph) inter­actions into monoperiodic chains, which are further linked through weak C—H⋯N/C inter­actions into diperiodic layers. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 32.8%, C⋯H/H⋯C 27.5%, N⋯H/H⋯N 15.1%, and Cl⋯H/H⋯Cl 14.0%. The average Ni—N bond distance is 2.095 Å. Energy framework analysis at the HF/3–21 G theory level was performed to qu­antify the inter­action energies in the crystal structure.

1. Chemical context

A broad class of coordination compounds is represented by 3d-metal complexes based on tridentate bis­azole­pyridine ligands (Halcrow et al., 2019[Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811-9821.]; Suryadevara et al., 2022[Suryadevara, N., Mizuno, A., Spieker, L., Salamon, S., Sleziona, S., Maas, A., Pollmann, E., Heinrich, B., Schleberger, M., Wende, H., Kuppusamy, S. K. & Ruben, M. (2022). Chem. A Eur. J. 28, e202103853.]), which find application in many fields, for example in catalysis (Xing et al., 2014[Xing, N., Xu, L. T., Liu, X., Wu, Q., Ma, X. T. & Xing, Y. H. (2014). ChemPlusChem 79, 1198-1207.]; Wei et al., 2015[Wei, S. Y., Wang, J. L., Zhang, C. S., Xu, X.-T., Zhang, X. X., Wang, J. X. & Xing, Y.-H. (2015). ChemPlusChem 80, 549-558.]) and mol­ecular magnetism (Suryadevara et al., 2022[Suryadevara, N., Mizuno, A., Spieker, L., Salamon, S., Sleziona, S., Maas, A., Pollmann, E., Heinrich, B., Schleberger, M., Wende, H., Kuppusamy, S. K. & Ruben, M. (2022). Chem. A Eur. J. 28, e202103853.]). In the case of asymmetric ligand design, where one of the azole groups carries a hydrogen on a nitro­gen heteroatom and acts as a Brønsted acid, deprotonation can compensate for the charge of the central ion and in some cases form neutral complexes (Seredyuk et al., 2014[Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387-16394.]; Grunwald et al., 2023[Grunwald, J., Torres, J., Buchholz, A., Näther, C., Kämmerer, L., Gruber, M., Rohlf, S., Thakur, S., Wende, H., Plass, W., Kuch, W. & Tuczek, F. (2023). Chem. Sci. 14, 7361-7380.]). The periphery of the complexes also plays an important role, determining the way the mol­ecules inter­act with each other, influencing the inter­molecular connectivity, inter­action energy and the organization of the crystal.

Encouraged by our inter­est in spin-transition complexes of 3d-metals formed by N-heterocyclic ligands (Seredyuk et al., 2006[Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385-390.], 2007[Seredyuk, M., Gaspar, A. B., Kusz, J., Bednarek, G. & Gütlich, P. (2007). J. Appl. Cryst. 40, 1135-1145.]; Bonhommeau et al., 2012[Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251-11255.]; Piñeiro-López et al., 2018[Piñeiro-López, L., Valverde-Muñoz, F. J., Seredyuk, M., Bartual-Murgui, C., Muñoz, M. C. & Real, J. A. (2018). Eur. J. Inorg. Chem. pp. 289-296.]), we report a new neutral NiII complex based on an asymmetric deprotonated ligand with a monosubstituted phenyl group, 2-{5-[5-(4-chloro­phen­yl)-1H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyridine}, which continues our enduring project on the study of metal complexes of bis­azole­pyridines.

[Scheme 1]

2. Structural commentary

The complex has a tapered structure with divergent phenyl groups. The phenyl group of the ligand is rotated by 26.2 (1)° relative to the pyrazole-pyridine-triazole (pz-py-trz) fragment, the arrangement of which is almost planar. There are two methanol mol­ecules per complex, forming O—H⋯N hydrogen bonds with the trz rings (Fig. 1[link], Table 1[link]). The central Ni ion has a distorted octa­hedral N6 coordination environment formed by the nitro­gen donor atoms of two tridentate ligands. The average Ni—N bond length is 2.095 Å. The average trigonal distortion parameters Σ = Σ112(|90 − φi|), where φi is the angle N—Ni—N′ (Drew et al., 1995[Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035-1038.]), and Θ = Σ124(|60 − θi|), where θi is the angle generated by superposition of two opposite faces of an octa­hedron (Chang et al., 1990[Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814-6827.]) are 119.4 and 387.3°, respectively. The values reveal a deviation of the coordination environment from an ideal octa­hedron (where Σ = Θ = 0), which is, however, in the expected range for bis­azole­pyridine and similar ligands (see below). The calculated continuous shape measures [CShM(Oh)] value relative to the ideal octa­hedral symmetry is 3.714 (Kershaw Cook et al., 2015[Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289-290, 2-12.]). The volume of the [NiN6] coordination polyhedron is 11.583 Å3.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯C14i 0.95 2.86 3.73 (4) 153
C2—H2⋯C15i 0.95 2.74 3.686 (4) 178
C2—H2⋯C16i 0.95 2.88 3.743 (4) 151
C3—H3⋯O1ii 0.95 2.35 3.259 (4) 160
C5—H5⋯O1ii 0.95 2.47 3.399 (4) 167
C1—H1⋯N6iii 0.95 2.31 3.245 (6) 170
C7—H7⋯C1iii 0.95 2.70 3.611 (4) 161
O1—H1A⋯N5 0.84 1.96 2.795 (6) 176
Symmetry codes: (i) [-x+1, y+1, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of half of the title compound, with displacement ellipsoids drawn at the 50% probability level. The strong O—H⋯N (red) and weak C–H⋯N/C/O (cyan) hydrogen bonds are shown with the nearest neighbours. Symmetry codes: (i) 1 − x, 1 + y, [{3\over 2}] − z; (ii) −[{1\over 2}] + x, [{1\over 2}] + y, [{3\over 2}] − z; (iii) [{1\over 2}] + x, [{1\over 2}] + y, [{3\over 2}] − z.

3. Supra­molecular features

As a result of the tapered structure, neighbouring complexes are embedded in each other and inter­act through weak C–H(pz)⋯π(ph) inter­molecular contacts between the pyrazole and phenyl groups [the C2⋯Cg(ph) distance is 3.534 Å]. They form one-dimensional supra­molecular chains extending along the b-axis direction with a stacking periodicity equal to 10.1523 (4) Å (= cell parameter b) (Fig. 2[link]). Weak inter­molecular C—H(pz, py)⋯N/C(pz, trz) inter­actions, ranging from 3.245 (4) to 3.743 (4) Å (Table 1[link]), connect neighbouring chains into two-dimensional layers along the ab plane. The voids between the layers are occupied by solvent mol­ecules, which also participate in the bonding within separate layers. The methanol mol­ecules form a strong O—H⋯N hydrogen bond with the deprotonated trz groups and weak hydrogen bonds C—H⋯O with the pz and py groups of the ligand. A complete list of selected inter­molecular inter­actions is provided in Table 1[link].

[Figure 2]
Figure 2
(a) A fragment of the monoperiodic supra­molecular column formed by stacking of mol­ecules along the b axis; (b) supra­molecular diperiodic layers formed by stacking of the supra­molecular columns in the ac plane. For a better representation, each column has a different colour; (c) stacking of the diperiodic layers along the b axis with the methanol mol­ecules (CPK model) in the voids.

4. Hirshfeld surface and two-dimensional fingerprint plots

Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale from −0.6356 (red) to 1.6114 (blue) a.u. The pale-red spots symbolize short contacts and negative dnorm values on the surface corresponding to the inter­actions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 3[link]a. The two-dimensional fingerprint plots, with their relative contributions to the Hirshfeld surface mapped over dnorm, are shown for the H⋯H, C⋯H/H⋯C, N⋯H/H⋯N and Cl⋯H/H⋯Cl contacts in Fig. 4[link]. At 32.8%, the largest contribution to the overall crystal packing is from H⋯H inter­actions, which are located in the middle region of the fingerprint plot. C⋯H/H⋯C contacts contribute 27.5%, and Cl⋯H/H⋯Cl 14.0%, resulting in pairs of characteristic wings. The N⋯H/H⋯N contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 15.1% contribution to the surface. The electrostatic potential energy calculated using the HF/3-21G basis is mapped on the Hirshfeld surface (Fig. 3[link]b). The negative charge localizes on the trz-ph moiety and the Cl atom of the complex, while the pz-py moiety is relatively positively charged, which justifies the stacking of the mol­ecules in columns and packing of the columns in diperiodic two-dimensional layers.

[Figure 3]
Figure 3
(a) A projection of dnorm mapped over the Hirshfeld surfaces, showing the inter­molecular inter­actions within the mol­ecule. Red/blue and white areas represent regions where contacts are shorter/larger than the sum and close to the sum of the van der Waals radii, respectively; (b) electrostatic potential for the title compound mapped over the Hirshfeld surface. Red/blue and white areas represent regions where the charge is negative/positive or close to zero.
[Figure 4]
Figure 4
(a) Decomposition of the two-dimensional fingerprint plot into specific inter­actions; (b) a projection of dnorm mapped on the Hirshfeld surfaces, showing the inter­molecular inter­actions within the mol­ecule. Red/blue and white areas represent regions where contacts are shorter/larger than the sum and close to the sum of the van der Waals radii, respectively.

5. Energy frameworks analysis

The energy framework (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), calculated using the wave function at the HF/3-21G theory level, including the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), is shown in Fig. 5[link]. The cylindrical radii, adjusted to the same scale factor of 100, are proportional to the relative strength of the corresponding energies. The major contribution is due to the dispersion forces (Edis), reflecting dominating inter­actions in the crystal of the neutral mol­ecules. The topology of the energy framework resembles the topology of the inter­actions within and between layers described above. The calculated value Etot for the intra­chain inter­actions is −47.0 kJ mol−1 and for inter­chain inter­actions is down to −93.9 kJ mol−1. The inter­layer inter­actions have an energy of −31.9 kJ mol−1. The colour-coded inter­action mappings within a radius of 3.8 Å from the complex, together with full information on the various contributions to the total energy (Eele, Epol, Edis, Erep) are shown in the table in Fig. 5[link].

[Figure 5]
Figure 5
(a) The calculated energy frameworks, showing the total energy diagrams (Etot), (b) decomposition of the energy framework into the part corresponding to the inter­actions within a supra­molecular layer and (c) inter­layer inter­actions. In the table the corresponding colour-coded energy values Etot are provided, including their Eele, Epol, Edis, and Erep components. Tube size is set at 100 scale, the blue colour corresponds to the attractive inter­action, yellow to the repulsive inter­actions.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals several similar neutral 3d MII complexes with tridentate bis­azolepyridine ligands with a deprotonated azole group, for example, of NiII: YOCFAZ (Yuan et al., 2014[Yuan, L.-Z., Ge, Q., Zhao, X.-F., Ouyang, Y., Li, S.-H., Xie, C.-Z. & Xu, J.-Y. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 1175-1182.]), ZOCKOT (Xing et al., 2014[Xing, N., Xu, L. T., Liu, X., Wu, Q., Ma, X. T. & Xing, Y. H. (2014). ChemPlusChem 79, 1198-1207.]), and ZOTVIP (Wei et al., 2015[Wei, S. Y., Wang, J. L., Zhang, C. S., Xu, X.-T., Zhang, X. X., Wang, J. X. & Xing, Y.-H. (2015). ChemPlusChem 80, 549-558.]); of FeII: EGIDIL (Seredyuk et al., 2024[Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., Muñoz, M. C., Fritsky, I. O. & Real, J. A. (2024). Dalton Trans. 53, 8041-8049.]), LUTGEO (Senthil Kumar et al., 2015[Senthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635-11644.]), and XODCEB (Shiga et al., 2019[Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658-5662.]). In addition, two related complexes based on phenanthroline-benzimidazole, DOMQUT (Seredyuk et al., 2014[Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387-16394.]) and di­pyridyl­pyrrol, NIRLOT (Grunwald et al., 2023[Grunwald, J., Torres, J., Buchholz, A., Näther, C., Kämmerer, L., Gruber, M., Rohlf, S., Thakur, S., Wende, H., Plass, W., Kuch, W. & Tuczek, F. (2023). Chem. Sci. 14, 7361-7380.]) were found. The values of the trigonal distortion indices and the CShM(Oh) values vary according to the length of the M—N distances, with shorter distances being systematically smaller. Table 2[link] collates the structural parameters of the complexes and of the title compound.

Table 2
Computed distortion indices (Å, °) for the title compound and for similar complexes reported in the literature

CSD Refcode Metal ion <MN>a Σ Θ CShM(Oh)
Title compound Ni 2.095 119.4 387.3 3.71
YOCFAZ Ni 2.088b 120.8b 397.6b 3.65b
ZOCKOT Ni 2.086 121.0 375.9 3.78
ZOTVIP Ni 2.110 124.9 382.4 3.55
EGIDIL Fe 1.955 89.8 314.6 2.25
EGIDIL02 Fe 2.167 146.8 492.8 5.28
LUTGEO Fe 1.933 85.0 309.6 2.10
XODCEB Fe 1.950 87.4 276.6 1.93
DOMQUT Fe 1.991 88.5 320.0 2.48
DOMQUT02 Fe 2.183 139.6 486.9 5.31
NIRLOT Fe 1.939 77.3 255.6 1.68
Notes: (a) averaged value; (b) value is averaged for two independent mol­ecules.

7. Synthesis and crystallization

The synthesis of the title compound was identical to that reported for a similar complex (Seredyuk et al., 2022[Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297-14309.]). It was produced by using a layering technique in a standard test tube. The layering sequence was as follows: the bottom layer contained a solution of [Ni(L2)](ClO4)2 prepared by dissolv­ing L = 2-[3-(4-chloro­phen­yl)-1H-1,2,4-triazol-5-yl]-6-(1H-pyra­zol-1-yl)pyridine (89 mg, 0.274 mmol) and Ni(ClO4)2·6H2O (50 mg, 0.137 mmol) in boiling acetone, to which chloro­form (5 ml) was then added. The middle layer was a methanol–chloro­form mixture (1:10) (10 ml), which was covered by a layer of methanol (10 ml), to which 100 ml of NEt3 were added dropwise. The tube was sealed, and violet plate-like single crystals appeared after 2 weeks (yield ca 65%). Elemental analysis calculated for C34H28Cl2N12NiO2: C, 53.29; H, 3.68; N, 21.94. Found: C, 53.64; H, 3.42; N, 21.67.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were refined as riding [C—H = 0.95–0.98 Å with Uiso(H) = 1.2–1.5Ueq(C)], while the O-bound H atom was refined freely with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C16H10ClN6)2]·2CH4O
Mr 766.29
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 200
a, b, c (Å) 12.8146 (4), 10.1523 (4), 27.5618 (10)
V3) 3585.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.74
Crystal size (mm) 0.3 × 0.2 × 0.03
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.982, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11432, 3169, 2460
Rint 0.040
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.087, 1.05
No. of reflections 3169
No. of parameters 236
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.43
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Bis{5-(4-chlorophenyl)-3-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-1H-1,2,4-triazol-1-ido}nickel(II) methanol disolvate top
Crystal data top
[Ni(C16H10ClN6)2]·2CH4ODx = 1.419 Mg m3
Mr = 766.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 3630 reflections
a = 12.8146 (4) Åθ = 2.2–26.9°
b = 10.1523 (4) ŵ = 0.74 mm1
c = 27.5618 (10) ÅT = 200 K
V = 3585.7 (2) Å3Plate, clear light colourless
Z = 40.3 × 0.2 × 0.03 mm
F(000) = 1576
Data collection top
Xcalibur, Eos
diffractometer
3169 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.1593 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 1512
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2024)
k = 812
Tmin = 0.982, Tmax = 1.000l = 2832
11432 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0279P)2 + 2.4046P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3169 reflectionsΔρmax = 0.38 e Å3
236 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.69121 (4)0.7500000.02084 (14)
Cl10.65525 (9)0.02490 (10)0.48765 (3)0.0732 (3)
N40.56268 (15)0.5528 (2)0.70190 (7)0.0232 (5)
N30.65534 (14)0.6994 (2)0.76563 (7)0.0213 (5)
N60.70584 (15)0.4439 (2)0.67758 (7)0.0260 (5)
O10.35256 (17)0.5580 (2)0.61839 (9)0.0536 (7)
N10.51184 (15)0.8366 (2)0.80671 (8)0.0254 (5)
N20.61374 (15)0.8598 (2)0.82014 (8)0.0248 (5)
N50.53272 (16)0.4702 (2)0.66553 (8)0.0261 (5)
C90.66590 (18)0.5348 (2)0.70733 (9)0.0225 (6)
C110.6257 (2)0.3115 (3)0.61194 (9)0.0286 (6)
C100.62050 (19)0.4072 (2)0.65185 (9)0.0240 (6)
C40.69229 (18)0.7853 (2)0.79721 (9)0.0226 (6)
C80.72106 (18)0.6191 (2)0.74160 (9)0.0232 (6)
C10.4560 (2)0.9114 (3)0.83634 (9)0.0278 (6)
H10.3819140.9159280.8361260.033*
C50.79770 (19)0.8008 (3)0.80689 (10)0.0308 (7)
H50.8223780.8644740.8293820.037*
C120.7100 (2)0.2265 (3)0.60884 (10)0.0387 (7)
H120.7622400.2287470.6333020.046*
C150.5598 (3)0.2190 (3)0.53748 (10)0.0409 (8)
H150.5082380.2165110.5127390.049*
C160.5500 (2)0.3065 (3)0.57582 (10)0.0346 (7)
H160.4911810.3633670.5774330.041*
C140.6440 (3)0.1360 (3)0.53531 (10)0.0410 (8)
C30.6197 (2)0.9480 (3)0.85679 (10)0.0341 (7)
H30.6814490.9796650.8718580.041*
C70.82769 (19)0.6262 (3)0.74938 (10)0.0316 (7)
H70.8742860.5690900.7327600.038*
C20.5197 (2)0.9827 (3)0.86793 (11)0.0373 (7)
H20.4978981.0431380.8922200.045*
C130.7197 (3)0.1382 (3)0.57077 (11)0.0464 (8)
H130.7776840.0800130.5691610.056*
C60.8646 (2)0.7190 (3)0.78215 (10)0.0352 (7)
H60.9375570.7260960.7875850.042*
C170.3810 (3)0.6355 (4)0.57866 (13)0.0666 (11)
H17A0.4018890.5784080.5516830.100*
H17B0.4394740.6926020.5876930.100*
H17C0.3214730.6897990.5687110.100*
H1A0.407 (3)0.529 (3)0.6315 (12)0.062 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0141 (2)0.0264 (3)0.0220 (3)0.0000.00045 (19)0.000
Cl10.1083 (8)0.0673 (7)0.0441 (6)0.0039 (6)0.0019 (5)0.0299 (5)
N40.0192 (11)0.0277 (12)0.0226 (12)0.0017 (9)0.0003 (9)0.0023 (10)
N30.0172 (10)0.0247 (12)0.0219 (12)0.0013 (9)0.0013 (8)0.0004 (10)
N60.0214 (11)0.0309 (13)0.0257 (12)0.0007 (9)0.0002 (9)0.0073 (10)
O10.0324 (13)0.0715 (17)0.0569 (16)0.0044 (12)0.0083 (11)0.0242 (13)
N10.0172 (11)0.0318 (13)0.0273 (12)0.0025 (9)0.0012 (9)0.0001 (10)
N20.0190 (11)0.0281 (12)0.0273 (12)0.0009 (9)0.0016 (9)0.0066 (11)
N50.0234 (12)0.0288 (13)0.0261 (13)0.0031 (9)0.0016 (9)0.0038 (11)
C90.0182 (13)0.0261 (15)0.0231 (14)0.0005 (10)0.0000 (11)0.0007 (12)
C110.0332 (15)0.0261 (15)0.0264 (15)0.0059 (12)0.0032 (12)0.0007 (13)
C100.0248 (14)0.0249 (14)0.0223 (14)0.0023 (11)0.0000 (11)0.0011 (12)
C40.0211 (13)0.0236 (14)0.0230 (14)0.0006 (11)0.0002 (11)0.0034 (12)
C80.0204 (13)0.0252 (14)0.0239 (14)0.0014 (11)0.0032 (11)0.0013 (12)
C10.0218 (13)0.0344 (16)0.0271 (16)0.0081 (12)0.0020 (12)0.0005 (13)
C50.0222 (14)0.0355 (16)0.0347 (16)0.0032 (12)0.0032 (12)0.0118 (14)
C120.0413 (18)0.0392 (18)0.0357 (17)0.0035 (14)0.0053 (14)0.0104 (15)
C150.058 (2)0.0399 (19)0.0250 (16)0.0099 (16)0.0079 (14)0.0027 (15)
C160.0413 (17)0.0325 (17)0.0299 (16)0.0039 (14)0.0024 (13)0.0007 (14)
C140.064 (2)0.0343 (18)0.0248 (16)0.0042 (16)0.0065 (15)0.0068 (14)
C30.0307 (15)0.0366 (17)0.0351 (17)0.0001 (13)0.0034 (13)0.0123 (15)
C70.0181 (13)0.0383 (16)0.0385 (17)0.0034 (11)0.0015 (12)0.0111 (15)
C20.0333 (17)0.0425 (18)0.0360 (17)0.0097 (13)0.0023 (13)0.0128 (15)
C130.052 (2)0.0437 (19)0.0432 (19)0.0106 (16)0.0036 (16)0.0111 (16)
C60.0138 (13)0.0484 (19)0.0434 (18)0.0013 (12)0.0026 (12)0.0089 (16)
C170.082 (3)0.057 (2)0.061 (3)0.014 (2)0.015 (2)0.017 (2)
Geometric parameters (Å, º) top
Ni1—N4i2.092 (2)C4—C51.386 (3)
Ni1—N42.092 (2)C8—C71.385 (3)
Ni1—N32.0383 (19)C1—H10.9500
Ni1—N3i2.0384 (19)C1—C21.396 (4)
Ni1—N12.155 (2)C5—H50.9500
Ni1—N1i2.155 (2)C5—C61.374 (4)
Cl1—C141.737 (3)C12—H120.9500
N4—N51.363 (3)C12—C131.386 (4)
N4—C91.344 (3)C15—H150.9500
N3—C41.320 (3)C15—C161.386 (4)
N3—C81.346 (3)C15—C141.371 (4)
N6—C91.337 (3)C16—H160.9500
N6—C101.355 (3)C14—C131.377 (4)
O1—C171.396 (4)C3—H30.9500
O1—H1A0.84 (3)C3—C21.363 (4)
N1—N21.378 (3)C7—H70.9500
N1—C11.325 (3)C7—C61.388 (4)
N2—C41.409 (3)C2—H20.9500
N2—C31.352 (3)C13—H130.9500
N5—C101.347 (3)C6—H60.9500
C9—C81.458 (3)C17—H17A0.9800
C11—C101.470 (4)C17—H17B0.9800
C11—C121.386 (4)C17—H17C0.9800
C11—C161.392 (4)
N4—Ni1—N4i95.63 (11)N3—C8—C9111.8 (2)
N4i—Ni1—N191.57 (8)N3—C8—C7120.6 (2)
N4—Ni1—N1i91.58 (8)C7—C8—C9127.5 (2)
N4—Ni1—N1153.19 (7)N1—C1—H1124.3
N4i—Ni1—N1i153.19 (7)N1—C1—C2111.4 (2)
N3—Ni1—N477.66 (8)C2—C1—H1124.3
N3i—Ni1—N4i77.66 (8)C4—C5—H5121.8
N3i—Ni1—N4105.57 (8)C6—C5—C4116.3 (2)
N3—Ni1—N4i105.58 (8)C6—C5—H5121.8
N3—Ni1—N3i175.32 (12)C11—C12—H12119.4
N3—Ni1—N175.52 (8)C11—C12—C13121.3 (3)
N3i—Ni1—N1101.19 (8)C13—C12—H12119.4
N3—Ni1—N1i101.19 (8)C16—C15—H15120.0
N3i—Ni1—N1i75.52 (8)C14—C15—H15120.0
N1i—Ni1—N193.53 (11)C14—C15—C16119.9 (3)
N5—N4—Ni1140.50 (15)C11—C16—H16119.8
C9—N4—Ni1113.52 (16)C15—C16—C11120.3 (3)
C9—N4—N5105.97 (19)C15—C16—H16119.8
C4—N3—Ni1121.12 (16)C15—C14—Cl1119.8 (2)
C4—N3—C8120.0 (2)C15—C14—C13120.9 (3)
C8—N3—Ni1118.84 (16)C13—C14—Cl1119.3 (3)
C9—N6—C10101.6 (2)N2—C3—H3126.7
C17—O1—H1A108 (2)N2—C3—C2106.7 (2)
N2—N1—Ni1112.27 (14)C2—C3—H3126.7
C1—N1—Ni1143.26 (18)C8—C7—H7120.9
C1—N1—N2104.4 (2)C8—C7—C6118.2 (2)
N1—N2—C4117.7 (2)C6—C7—H7120.9
C3—N2—N1111.6 (2)C1—C2—H2127.0
C3—N2—C4130.6 (2)C3—C2—C1106.0 (2)
C10—N5—N4105.23 (19)C3—C2—H2127.0
N4—C9—C8118.0 (2)C12—C13—H13120.5
N6—C9—N4113.8 (2)C14—C13—C12119.0 (3)
N6—C9—C8128.1 (2)C14—C13—H13120.5
C12—C11—C10119.6 (2)C5—C6—C7121.4 (2)
C12—C11—C16118.5 (3)C5—C6—H6119.3
C16—C11—C10121.9 (2)C7—C6—H6119.3
N6—C10—C11122.4 (2)O1—C17—H17A109.5
N5—C10—N6113.4 (2)O1—C17—H17B109.5
N5—C10—C11124.1 (2)O1—C17—H17C109.5
N3—C4—N2113.2 (2)H17A—C17—H17B109.5
N3—C4—C5123.5 (2)H17A—C17—H17C109.5
C5—C4—N2123.3 (2)H17B—C17—H17C109.5
Ni1—N4—N5—C10178.80 (19)C9—N6—C10—N51.1 (3)
Ni1—N4—C9—N6178.29 (16)C9—N6—C10—C11176.9 (2)
Ni1—N4—C9—C85.4 (3)C9—C8—C7—C6176.6 (3)
Ni1—N3—C4—N24.2 (3)C11—C12—C13—C140.4 (5)
Ni1—N3—C4—C5175.7 (2)C10—N6—C9—N41.4 (3)
Ni1—N3—C8—C90.9 (3)C10—N6—C9—C8174.6 (3)
Ni1—N3—C8—C7176.8 (2)C10—C11—C12—C13177.6 (3)
Ni1—N1—N2—C42.1 (3)C10—C11—C16—C15177.0 (2)
Ni1—N1—N2—C3178.00 (17)C4—N3—C8—C9178.1 (2)
Ni1—N1—C1—C2176.5 (2)C4—N3—C8—C70.5 (4)
Cl1—C14—C13—C12179.6 (2)C4—N2—C3—C2174.7 (3)
N4—N5—C10—N60.4 (3)C4—C5—C6—C70.0 (4)
N4—N5—C10—C11177.5 (2)C8—N3—C4—N2178.6 (2)
N4—C9—C8—N34.2 (3)C8—N3—C4—C51.5 (4)
N4—C9—C8—C7173.3 (3)C8—C7—C6—C50.9 (4)
N3—C4—C5—C61.2 (4)C1—N1—N2—C4175.2 (2)
N3—C8—C7—C60.7 (4)C1—N1—N2—C30.7 (3)
N6—C9—C8—N3180.0 (2)C12—C11—C10—N619.7 (4)
N6—C9—C8—C72.5 (4)C12—C11—C10—N5162.5 (3)
N1—N2—C4—N31.1 (3)C12—C11—C16—C150.6 (4)
N1—N2—C4—C5178.9 (2)C15—C14—C13—C120.4 (5)
N1—N2—C3—C20.5 (3)C16—C11—C10—N6157.9 (3)
N1—C1—C2—C30.4 (3)C16—C11—C10—N519.9 (4)
N2—N1—C1—C20.7 (3)C16—C11—C12—C130.1 (4)
N2—C4—C5—C6178.9 (2)C16—C15—C14—Cl1179.1 (2)
N2—C3—C2—C10.0 (3)C16—C15—C14—C130.1 (5)
N5—N4—C9—N61.2 (3)C14—C15—C16—C110.6 (4)
N5—N4—C9—C8175.2 (2)C3—N2—C4—N3173.9 (2)
C9—N4—N5—C100.4 (3)C3—N2—C4—C56.2 (4)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···C14ii0.952.863.73 (4)153
C2—H2···C15ii0.952.743.686 (4)178
C2—H2···C16ii0.952.883.743 (4)151
C3—H3···O1iii0.952.353.259 (4)160
C5—H5···O1iii0.952.473.399 (4)167
C1—H1···N6iv0.952.313.245 (6)170
C7—H7···C1iv0.952.703.611 (4)161
O1—H1A···N50.841.962.795 (6)176
Symmetry codes: (ii) x+1, y+1, z+3/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x1/2, y+1/2, z+3/2.
Computed distortion indices (Å, °)for the title compound and for similar complexes reported in the literature top
CSD RefcodeMetal ion<MN>aΣΘCShM(Oh)
Title compoundNi2.095119.4387.33.71
YOCFAZNi2.088b120.8b397.6b3.65b
ZOCKOTNi2.086121.0375.93.78
ZOTVIPNi2.110124.9382.43.55
EGIDILFe1.95589.8314.62.25
EGIDIL02Fe2.167146.8492.85.28
LUTGEOFe1.93385.0309.62.10
XODCEBFe1.95087.4276.61.93
DOMQUTFe1.99188.5320.02.48
DOMQUT02Fe2.183139.6486.95.31
NIRLOTFe1.93977.3255.61.68
Notes: (a) averaged value; (b) value is averaged for two independent molecules.
 

Acknowledgements

Author contributions are as follows: Conceptualization, KZ and MS; methodology, KZ; formal analysis, DMP; synthesis, SOM; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), NK, MS; visualization and calculations, KZ, IOF; funding acquisition, IOF, NK, MS.

Funding information

Funding for this research was provided by: grants from the Ministry of Education and Science of Ukraine (grant Nos. 22BF037-03, 22BF037-04, 24BF037-03) and EURIZON project funded by the European Union (grant No. 871072).

References

First citationBonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251–11255.  Web of Science CrossRef CAS Google Scholar
First citationChang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrunwald, J., Torres, J., Buchholz, A., Näther, C., Kämmerer, L., Gruber, M., Rohlf, S., Thakur, S., Wende, H., Plass, W., Kuch, W. & Tuczek, F. (2023). Chem. Sci. 14, 7361–7380.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHalcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811–9821.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiñeiro-López, L., Valverde-Muñoz, F. J., Seredyuk, M., Bartual-Murgui, C., Muñoz, M. C. & Real, J. A. (2018). Eur. J. Inorg. Chem. pp. 289–296.  Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSenthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635–11644.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385–390.  Web of Science CrossRef Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Kusz, J., Bednarek, G. & Gütlich, P. (2007). J. Appl. Cryst. 40, 1135–1145.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSeredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297–14309.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., Muñoz, M. C., Fritsky, I. O. & Real, J. A. (2024). Dalton Trans. 53, 8041–8049.  CSD CrossRef CAS PubMed Google Scholar
First citationSeredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387–16394.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658–5662.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuryadevara, N., Mizuno, A., Spieker, L., Salamon, S., Sleziona, S., Maas, A., Pollmann, E., Heinrich, B., Schleberger, M., Wende, H., Kuppusamy, S. K. & Ruben, M. (2022). Chem. A Eur. J. 28, e202103853.  Web of Science CSD CrossRef Google Scholar
First citationWei, S. Y., Wang, J. L., Zhang, C. S., Xu, X.-T., Zhang, X. X., Wang, J. X. & Xing, Y.-H. (2015). ChemPlusChem 80, 549-558.  CSD CrossRef CAS PubMed Google Scholar
First citationXing, N., Xu, L. T., Liu, X., Wu, Q., Ma, X. T. & Xing, Y. H. (2014). ChemPlusChem 79, 1198-1207.  CSD CrossRef CAS Google Scholar
First citationYuan, L.-Z., Ge, Q., Zhao, X.-F., Ouyang, Y., Li, S.-H., Xie, C.-Z. & Xu, J.-Y. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 1175–1182.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds