research communications
Synthesis, N-phenylacetamide
and Hirshfeld surface analysis of 2-{4-[(2-chlorophenyl)methyl]-3-methyl-6-oxopyridazin-1-yl}-aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco, bLaboratoire de Chimie et Biochimie, Institut Superieur des Techniques Medicales Kinshasa, Republique Democratique, du, Congo, cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma
In the title molecule, C20H18ClN3O2, the 2-chlorophenyl group is disordered to a small extent [occupancies 0.875 (2)/0.125 (2)]. The phenylacetamide moiety is nearly planar due to a weak, intramolecular C—H⋯O hydrogen bond. In the crystal, N—H⋯O hydrogen bonds and π-stacking interactions between pyridazine and phenyl rings form helical chains of molecules in the b-axis direction, which are linked by C—H⋯O hydrogen bonds and C—H⋯π(ring) interactions. A Hirshfeld surface analysis was performed, which showed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O interactions to dominate the intermolecular contacts in the crystal.
Keywords: crystal structure; hydrogen bond; C—H⋯π(ring) interaction; acetamide; pyridazine.
CCDC reference: 2392686
1. Chemical context
Various classes of et al., 2023; Missioui et al., 2022a). Among them, pyridazin-3(2H)-one derivatives have emerged as one of the most studied scaffolds in recent decades (Akhtar et al., 2016; Dubey & Bhosle, 2015). Known as a ‘wonder nucleus’, pyridazin-3(2H)-one has provided numerous derivatives with diverse pharmacological profiles. This heterocyclic compound has been shown to possess various biological activities, including anti-microbial (Özdem\?r et al., 2019), anti-cancer (Bouchmaa et al., 2019), butyrylcholinesterase inhibitors (Dundar et al., 2019), anti-convulsant (Siddiqui et al., 2020), anti-inflammatory (Boukharsa et al., 2018; Zaoui et al., 2021), anti-diabetic (Assila et al., 2024; Boukharsa et al., 2024). Acetamide derivatives, due to their wide range of activities (Missioui et al., 2022a,b; Mortada et al., 2023; Dahmani et al., 2024), continue to hold significant importance as intermediates in organic chemistry. As a continuation of our work in synthesizing new N-arylacetamide derivatives (Guerrab et al., 2021; Missioui et al., 2020, 2021), and developing new pyridazine-3(2H)-one compounds (Zaoui et al., 2022), the title compound, C20H18ClN3O2, was synthesized and its is reported here. A Hirshfeld surface analysis was performed to analyze the intermolecular interactions.
have been widely proven to exhibit diverse biological activities (Ameziane El Hassani2. Structural commentary
The dihedral angle between the mean planes of the C15–C20 and the pyridazine rings is 56.13 (13)° while that between the mean planes of the pyridazine and the major component of the disordered 2-chlorophenyl rings is 80.98 (11)°. The two components of the latter ring make a dihedral angle of 4.2 (12)°. The phenylacetamide moiety is nearly planar [largest deviation of an atom from the mean plane is 0.003 (3) Å] due to the weak, intramolecular C16—H16⋯O2 hydrogen bond (Table 1, Fig. 1) and the sum of the angles about N3 is 360° within experimental error. This suggests involvement of its lone pair in N→C π bonding in support of which, the N3—C14 and N3—C15 bond distances are, respectively, 1.363 (4) and 1.409 (5) Å.
3. Supramolecular features
In the crystal, N3—H3⋯O1 hydrogen bonds and π-stacking interactions between pyridazine and C15–C20 rings related by the −x, y + , −z + 1 [centroid–centroid distance = 3.691 (2) Å, dihedral angle = 2.13 (18)°, slippage = 1.25 Å] form helical chains of molecules extending along the b-axis direction (Table 1 and Fig. 2). These are connected by C7—H7A⋯O2 hydrogen bonds and C3—H3A⋯Cg3 and C12—H12B⋯Cg1 interactions (Table 1; Cg1 and Cg3 are the centroids of the C8/C9/C10/N1/N2/C11 and C15–C20 rings, respectively), forming the full three-dimensional structure (Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (CSD, updated to June 2024; Groom et al., 2016) with the fragment shown in Fig. 4 (R = R′ = R′′ = C) gave 15 hits of which 12 were considered similar to the title molecule. The closest analog has R = 4-FC6H4NHC(=O)CH2, R′ = Me, R′′ = 2-ClC6H4 (FITXUF; Assila et al., 2023) and is largely the same in all respects, even down to the disorder in the 2-chlorophenyl group. The packing is somewhat different due to the presence of intermolecular C—H⋯F hydrogen bonds. Among the others is a group of structures having R′ = R′′ = Ph and R = –CH2COOH (CIPTOL; Aydin et al., 2007), (4-methyl)piperazin-1-yl-C(=O)CH2CH2– (LOBTAY; Aydin et al., 2008) and (4-chlorophenyl)piperazin-1-yl-C(=O)CH2CH2– (QEDXXA; Aydin et al., 2012). The remainder are those with R = –CH2COOEt, R′ = Me, R′′ = 4-MeC6H4CH2– (EMOGUL; Zaoui et al., 2021); R = –CH2CH2OH, R′ = Me, R′′ = 2-ClC6H4CH2– (IJEMOZ; Abourichaa et al., 2003); R = (5-(trifluoromethyl)benzo[d]thiazol-2-yl)CH2– (JOXVUN; Mylari et al., 1992); R = R′′ = Ph, R′ = 4-ClC6H4– (QOLLOU; Mantovani et al., 2014); R = –CH2COOEt, R′ = Me, R′′ = 4-ClC6H4CH2– (SIQXAV; Zaoui et al., 2023); R = –CH2COOEt, R′ = Me, R′′ = C6H5CH2– (WOCGON; Zaoui et al., 2019); R = –CH2COOEt, R′ = Me, R′′ = 5-chlorobenzofuran-2-yl-CH2– (XULSEE; Boukharsa et al., 2015); R = –CH2COOEt, R′ = Me, R′′ = 4-MeOC6H4CH2– (YAZLEU; Zaoui et al., 2022). In EMOGUL, IJEMOZ and WOCGON, the pyridazine ring is planar with deviations from the mean plane by no more than 0.007 Å while in CIPTOL, XULSEE and YAZLEU the ring is more ‘ruffled’; with deviations ranging from 0.022 to 0.031 Å. The most non-planar pyridazine ring was found in QEDXAA where the largest deviation is 0.062 (2) Å. In those structures where a ring or ring system is attached to the pyridazine ring via a methylene group, that ring is nearly perpendicular to the mean plane of the pyridazine ring as is the 2-chlorophenyl group in the title molecule. Other flexible substituents are generally rotated well out of the mean plane of the pyridazine ring. In FITXUF and CIPTOL, the primary intermolecular interactions are classical hydrogen bonds (N—H⋯O and O—H⋯O, respectively), which generate chains of molecules as the basic building blocks of the 3-D structures. In the others, chains of molecules or chains of inversion dimers are formed in most cases by C—H⋯O hydrogen bonds with additional C—H⋯O and, in some instances, C—H⋯N hydrogen bonds serving to generate the complete 3-D structures.
5. Hirshfeld surface analysis
A Hirshfeld surface analysis of the intermolecular interactions in the crystal of the title molecule was performed with CrystalExplorer (Spackman et al., 2021) with general details of the plots produced and their interpretation provided in a recent publication (Tan et al., 2019). Fig. 5a shows the dnorm surface calculated over the range −0.5868 to 1.6936 in arbitrary units with neighboring molecules that are hydrogen bonded to it (green dashed lines). Fig. 5b shows the surface calculated over the shape function with one neighboring molecule showing the π-stacking interaction (red dashed lines). Fingerprint plots showing the major contributions to the intermolecular interactions in the crystal are presented in Fig. 6. In Fig. 6a all these interactions are shown, while Fig. 6b–6d highlight the H⋯H, C⋯H/H⋯C and O⋯H/H⋯O interactions, respectively. The H⋯H contacts account for 43.8% of all intermolecular interactions, and result from the significant hydrogen content of the molecule and the fact that most of the hydrogen atoms comprise its periphery. The C⋯H/H⋯C contacts contribute 21.0% with those indicated by peaks having the highest density at de + di = 3.3 Å coming primarily from the C—H⋯π(ring) interactions (Table 1). The O⋯H/H⋯O interactions contribute 13.7% and are represented by a pair of sharp spikes having de + di = 2.2 Å, which can be attributed to the N—H⋯O hydrogen bonds as well as a pair of rather broad peaks at longer distances. The latter likely represent the C—H⋯O hydrogen bonds, which have a wider distribution of H⋯O distances. Other atom–atom contacts each contribute less than 10% to the overall intermolecular interactions in the crystal.
6. Synthesis and crystallization
A mixture of the 3-benzylidene-4-oxopentanoic acid derivative (0.01 mol) and hydrazine monohydrate (0.02 mol) in 30 mL of ethanol was refluxed to produce the 5-(2-chlorobenzyl)-6-methylpyridazin-3(2H)-one precursor. To this pyridazin-3(2H)-one derivative (0.01 mol), 2-chloro-N-phenylacetamide (0.01 mol), potassium bicarbonate (0.02 mol), and a small amount of BTBA (benzyltributylammonium bromide) as a phase-transfer catalyst were added. The reaction mixture was stirred at room temperature for 24 h, and the reaction progress was monitored by TLC. Afterwards, 200 mL of distilled water were added, and the resulting precipitate was filtered, dried, and recrystallized from absolute acetone, yielding transparent crystals of the target compound.
Yield 90%; m.p: (461–463 K). IR (KBr, ν (cm−1): 1597 (C=O pyridazinone), 1655 (C=O acetamide), 3279 (NH amide). 1H NMR [500 MHz, DMSO-d6, δ(ppm)]: 2.25 (s, 3H, CH3); 3.96 (s, 2H, phenyl–CH2–pyridazinone); 4.80 (s, 2H, N–CH2–CO); 6.07 (s, 1H, pyridazinone); 6.95–7.57 (m, 9H, two phenyl); 10.26 (s, 1H, NH). 13C NMR [126 MHz, DMSO-d6, δ(ppm)]: 19.07, 35.33, 54.69, 119.53, 123.94, 126.57, 128.31, 129.35, 129.72, 130.16, 132.08, 134.03, 134.87, 139.29, 144.85, 159.86, 165.74. MS (ESI+): m/z = 368.11530 [M + H]+
7. Refinement
Crystal data, data collection and structure . H atoms attached to carbon were placed in calculated positions and were included as riding contributions with isotropic displacement parameters tied to those of the attached atoms. That attached to nitrogen was placed in a location derived from a difference map and refined with a DFIX 0.91 0.01 instruction. The 2-chlorophenyl ring is disordered over two sites by an approximate 180° rotation about the C1—C7 bond and a small translation in the plane of the ring. The two rings were refined as rigid hexagons and additional restraints were applied to render the geometries of the two components similar. The refined ratio for the disorder is 0.875 (2)/0.125 (2).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2392686
https://doi.org/10.1107/S2056989024010296/vm2308sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024010296/vm2308Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024010296/vm2308Isup3.cml
C20H18ClN3O2 | F(000) = 384 |
Mr = 367.82 | Dx = 1.335 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.1898 (6) Å | Cell parameters from 9927 reflections |
b = 6.7445 (4) Å | θ = 3.0–26.4° |
c = 14.2538 (11) Å | µ = 0.23 mm−1 |
β = 110.901 (2)° | T = 125 K |
V = 915.13 (10) Å3 | Plate, colourless |
Z = 2 | 0.35 × 0.32 × 0.05 mm |
Bruker D8 QUEST PHOTON 3 diffractometer | 3700 independent reflections |
Radiation source: fine-focus sealed tube | 3381 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 26.4°, θmin = 2.1° |
φ and ω scans | h = −12→12 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.92, Tmax = 0.99 | l = −17→17 |
21487 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.049 | w = 1/[σ2(Fo2) + (0.0454P)2 + 0.4761P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.111 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 0.49 e Å−3 |
3700 reflections | Δρmin = −0.17 e Å−3 |
237 parameters | Absolute structure: Flack x determined using 1318 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
4 restraints | Absolute structure parameter: 0.06 (3) |
Experimental. The diffraction data were obtained from 4 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was 25 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. That attached to nitrogen was placed in a location derived from a difference map and refined with a DFIX 0.91 0.01 instruction. The 2-chlorophenyl ring is disordered over two sites by an approximate 180° rotation about the C1—C7 bond and a small translation in the plane of the ring. The two rings were refined as rigid hexagons and additional restraints were applied to render the geometries of the two components similar. The refined ratio for the disorder is 0.875 (2)/0,125 (2). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.27934 (12) | 0.6674 (2) | 0.04167 (9) | 0.0495 (3) | 0.875 (2) |
Cl1A | 0.6147 (9) | 0.3441 (14) | 0.3447 (6) | 0.0495 (3) | 0.125 (2) |
O1 | 0.0861 (3) | 0.3089 (4) | 0.3685 (2) | 0.0370 (6) | |
O2 | 0.2464 (2) | 0.3392 (4) | 0.5976 (2) | 0.0374 (6) | |
N1 | 0.1739 (3) | 0.6043 (4) | 0.4408 (2) | 0.0291 (7) | |
N2 | 0.2548 (3) | 0.7696 (4) | 0.4533 (2) | 0.0298 (7) | |
N3 | 0.0797 (3) | 0.4603 (5) | 0.6563 (2) | 0.0307 (6) | |
H3 | 0.016 (3) | 0.559 (4) | 0.646 (3) | 0.037* | |
C1 | 0.4556 (3) | 0.4862 (3) | 0.21149 (17) | 0.0290 (9) | 0.875 (2) |
C2 | 0.3839 (3) | 0.4761 (4) | 0.10839 (17) | 0.0290 (9) | 0.875 (2) |
C3 | 0.3975 (3) | 0.3096 (4) | 0.05509 (14) | 0.0363 (10) | 0.875 (2) |
H3A | 0.348463 | 0.302757 | −0.015380 | 0.044* | 0.875 (2) |
C4 | 0.4828 (3) | 0.1532 (4) | 0.1049 (2) | 0.0441 (12) | 0.875 (2) |
H4 | 0.492079 | 0.039454 | 0.068461 | 0.053* | 0.875 (2) |
C5 | 0.5545 (3) | 0.1633 (3) | 0.2080 (2) | 0.0420 (10) | 0.875 (2) |
H5 | 0.612792 | 0.056389 | 0.242031 | 0.050* | 0.875 (2) |
C6 | 0.5409 (3) | 0.3298 (4) | 0.26129 (15) | 0.0355 (10) | 0.875 (2) |
H6 | 0.589890 | 0.336628 | 0.331761 | 0.043* | 0.875 (2) |
C1A | 0.418 (2) | 0.519 (3) | 0.1856 (11) | 0.0290 (9) | 0.125 (2) |
C2A | 0.506 (2) | 0.356 (3) | 0.2204 (7) | 0.0290 (9) | 0.125 (2) |
C3A | 0.508 (2) | 0.205 (2) | 0.1544 (14) | 0.0363 (10) | 0.125 (2) |
H3B | 0.567692 | 0.093525 | 0.178101 | 0.044* | 0.125 (2) |
C4A | 0.423 (2) | 0.218 (2) | 0.0536 (12) | 0.0441 (12) | 0.125 (2) |
H4A | 0.424547 | 0.114648 | 0.008509 | 0.053* | 0.125 (2) |
C5A | 0.336 (2) | 0.381 (3) | 0.0189 (6) | 0.0420 (10) | 0.125 (2) |
H5A | 0.277563 | 0.389180 | −0.049963 | 0.050* | 0.125 (2) |
C6A | 0.333 (2) | 0.531 (2) | 0.0849 (12) | 0.0355 (10) | 0.125 (2) |
H6A | 0.273723 | 0.642592 | 0.061157 | 0.043* | 0.125 (2) |
C7 | 0.4373 (4) | 0.6682 (6) | 0.2715 (3) | 0.0377 (8) | |
H7A | 0.530622 | 0.706460 | 0.320000 | 0.045* | |
H7B | 0.401834 | 0.780294 | 0.224379 | 0.045* | |
C8 | 0.3387 (3) | 0.6365 (5) | 0.3282 (2) | 0.0275 (7) | |
C9 | 0.2553 (3) | 0.4749 (5) | 0.3170 (3) | 0.0282 (7) | |
H9 | 0.256025 | 0.375222 | 0.270067 | 0.034* | |
C10 | 0.1656 (3) | 0.4513 (5) | 0.3749 (3) | 0.0293 (7) | |
C11 | 0.3333 (3) | 0.7870 (5) | 0.3987 (2) | 0.0275 (7) | |
C12 | 0.4186 (4) | 0.9741 (6) | 0.4144 (3) | 0.0377 (9) | |
H12A | 0.394636 | 1.045273 | 0.350544 | 0.057* | |
H12B | 0.518800 | 0.940812 | 0.439537 | 0.057* | |
H12C | 0.397954 | 1.058368 | 0.463472 | 0.057* | |
C13 | 0.0906 (4) | 0.5972 (5) | 0.5049 (3) | 0.0318 (8) | |
H13A | −0.006953 | 0.558849 | 0.464055 | 0.038* | |
H13B | 0.087788 | 0.730915 | 0.532710 | 0.038* | |
C14 | 0.1493 (3) | 0.4510 (5) | 0.5906 (3) | 0.0293 (7) | |
C15 | 0.0918 (3) | 0.3325 (6) | 0.7371 (3) | 0.0308 (8) | |
C16 | 0.1674 (4) | 0.1558 (6) | 0.7552 (3) | 0.0356 (8) | |
H16 | 0.221207 | 0.120335 | 0.715397 | 0.043* | |
C17 | 0.1635 (4) | 0.0319 (7) | 0.8320 (3) | 0.0452 (10) | |
H17 | 0.214380 | −0.089253 | 0.843960 | 0.054* | |
C18 | 0.0871 (5) | 0.0822 (7) | 0.8909 (3) | 0.0505 (11) | |
H18 | 0.084005 | −0.004487 | 0.942638 | 0.061* | |
C19 | 0.0149 (5) | 0.2595 (8) | 0.8743 (3) | 0.0522 (12) | |
H19 | −0.036243 | 0.295941 | 0.915817 | 0.063* | |
C20 | 0.0162 (4) | 0.3842 (7) | 0.7983 (3) | 0.0400 (9) | |
H20 | −0.034335 | 0.505612 | 0.787291 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0450 (6) | 0.0538 (7) | 0.0516 (6) | 0.0160 (6) | 0.0197 (5) | 0.0161 (6) |
Cl1A | 0.0450 (6) | 0.0538 (7) | 0.0516 (6) | 0.0160 (6) | 0.0197 (5) | 0.0161 (6) |
O1 | 0.0345 (13) | 0.0240 (13) | 0.0591 (16) | −0.0059 (11) | 0.0247 (12) | 0.0021 (12) |
O2 | 0.0287 (13) | 0.0395 (16) | 0.0501 (15) | 0.0115 (12) | 0.0215 (11) | 0.0096 (12) |
N1 | 0.0264 (14) | 0.0222 (15) | 0.0441 (17) | −0.0008 (12) | 0.0194 (13) | 0.0030 (12) |
N2 | 0.0280 (15) | 0.0199 (14) | 0.0423 (17) | 0.0021 (12) | 0.0137 (13) | 0.0044 (13) |
N3 | 0.0265 (14) | 0.0277 (16) | 0.0419 (16) | 0.0062 (13) | 0.0172 (13) | 0.0015 (14) |
C1 | 0.024 (2) | 0.028 (2) | 0.040 (2) | −0.0051 (18) | 0.0176 (17) | 0.0035 (19) |
C2 | 0.0255 (19) | 0.028 (2) | 0.037 (2) | −0.0005 (16) | 0.0149 (16) | 0.0055 (19) |
C3 | 0.039 (2) | 0.032 (2) | 0.046 (2) | −0.006 (2) | 0.024 (2) | −0.003 (2) |
C4 | 0.051 (3) | 0.027 (2) | 0.073 (3) | −0.003 (2) | 0.045 (3) | −0.006 (2) |
C5 | 0.037 (2) | 0.030 (2) | 0.067 (3) | 0.005 (2) | 0.028 (2) | 0.018 (2) |
C6 | 0.029 (2) | 0.040 (3) | 0.039 (2) | −0.0026 (19) | 0.0138 (19) | 0.015 (2) |
C1A | 0.024 (2) | 0.028 (2) | 0.040 (2) | −0.0051 (18) | 0.0176 (17) | 0.0035 (19) |
C2A | 0.0255 (19) | 0.028 (2) | 0.037 (2) | −0.0005 (16) | 0.0149 (16) | 0.0055 (19) |
C3A | 0.039 (2) | 0.032 (2) | 0.046 (2) | −0.006 (2) | 0.024 (2) | −0.003 (2) |
C4A | 0.051 (3) | 0.027 (2) | 0.073 (3) | −0.003 (2) | 0.045 (3) | −0.006 (2) |
C5A | 0.037 (2) | 0.030 (2) | 0.067 (3) | 0.005 (2) | 0.028 (2) | 0.018 (2) |
C6A | 0.029 (2) | 0.040 (3) | 0.039 (2) | −0.0026 (19) | 0.0138 (19) | 0.015 (2) |
C7 | 0.041 (2) | 0.0331 (19) | 0.046 (2) | −0.0146 (19) | 0.0252 (17) | −0.0070 (19) |
C8 | 0.0227 (15) | 0.0263 (18) | 0.0326 (17) | 0.0000 (14) | 0.0089 (13) | 0.0054 (15) |
C9 | 0.0264 (16) | 0.0240 (18) | 0.0350 (17) | −0.0009 (15) | 0.0121 (13) | 0.0015 (15) |
C10 | 0.0233 (16) | 0.0239 (17) | 0.0426 (19) | 0.0010 (15) | 0.0139 (14) | 0.0057 (16) |
C11 | 0.0238 (16) | 0.0235 (17) | 0.0355 (19) | −0.0001 (14) | 0.0109 (14) | 0.0037 (15) |
C12 | 0.0381 (19) | 0.0272 (19) | 0.053 (2) | −0.0102 (17) | 0.0222 (17) | −0.0051 (18) |
C13 | 0.0287 (17) | 0.0249 (18) | 0.049 (2) | 0.0045 (14) | 0.0221 (16) | 0.0034 (15) |
C14 | 0.0218 (15) | 0.0254 (17) | 0.0426 (19) | −0.0024 (15) | 0.0140 (14) | 0.0003 (16) |
C15 | 0.0247 (16) | 0.034 (2) | 0.0339 (18) | −0.0034 (15) | 0.0105 (15) | −0.0024 (15) |
C16 | 0.0340 (18) | 0.037 (2) | 0.0361 (18) | 0.0036 (18) | 0.0130 (15) | 0.0006 (18) |
C17 | 0.045 (2) | 0.046 (3) | 0.040 (2) | 0.0059 (19) | 0.0106 (18) | 0.0084 (18) |
C18 | 0.052 (3) | 0.057 (3) | 0.043 (2) | −0.003 (2) | 0.018 (2) | 0.016 (2) |
C19 | 0.047 (2) | 0.075 (3) | 0.042 (2) | 0.002 (2) | 0.025 (2) | 0.003 (2) |
C20 | 0.0321 (19) | 0.047 (2) | 0.044 (2) | 0.0025 (18) | 0.0175 (17) | −0.0005 (18) |
Cl1—C2 | 1.726 (2) | C4A—H4A | 0.9500 |
Cl1A—C2A | 1.725 (3) | C5A—C6A | 1.3900 |
O1—C10 | 1.238 (4) | C5A—H5A | 0.9500 |
O2—C14 | 1.220 (4) | C6A—H6A | 0.9500 |
N1—N2 | 1.360 (4) | C7—C8 | 1.512 (4) |
N1—C10 | 1.377 (5) | C7—H7A | 0.9900 |
N1—C13 | 1.454 (4) | C7—H7B | 0.9900 |
N2—C11 | 1.305 (4) | C8—C9 | 1.356 (5) |
N3—C14 | 1.363 (4) | C8—C11 | 1.444 (5) |
N3—C15 | 1.409 (5) | C9—C10 | 1.443 (5) |
N3—H3 | 0.902 (14) | C9—H9 | 0.9500 |
C1—C2 | 1.3900 | C11—C12 | 1.503 (5) |
C1—C6 | 1.3900 | C12—H12A | 0.9800 |
C1—C7 | 1.545 (4) | C12—H12B | 0.9800 |
C2—C3 | 1.3900 | C12—H12C | 0.9800 |
C3—C4 | 1.3900 | C13—C14 | 1.517 (5) |
C3—H3A | 0.9500 | C13—H13A | 0.9900 |
C4—C5 | 1.3900 | C13—H13B | 0.9900 |
C4—H4 | 0.9500 | C15—C16 | 1.393 (5) |
C5—C6 | 1.3900 | C15—C20 | 1.397 (5) |
C5—H5 | 0.9500 | C16—C17 | 1.388 (6) |
C6—H6 | 0.9500 | C16—H16 | 0.9500 |
C1A—C2A | 1.3900 | C17—C18 | 1.377 (6) |
C1A—C6A | 1.3900 | C17—H17 | 0.9500 |
C1A—C7 | 1.544 (5) | C18—C19 | 1.379 (7) |
C2A—C3A | 1.3900 | C18—H18 | 0.9500 |
C3A—C4A | 1.3900 | C19—C20 | 1.376 (6) |
C3A—H3B | 0.9500 | C19—H19 | 0.9500 |
C4A—C5A | 1.3900 | C20—H20 | 0.9500 |
N2—N1—C10 | 126.2 (3) | C1—C7—H7B | 108.6 |
N2—N1—C13 | 114.0 (3) | H7A—C7—H7B | 107.6 |
C10—N1—C13 | 119.7 (3) | C9—C8—C11 | 118.0 (3) |
C11—N2—N1 | 117.8 (3) | C9—C8—C7 | 124.0 (3) |
C14—N3—C15 | 128.2 (3) | C11—C8—C7 | 118.1 (3) |
C14—N3—H3 | 116 (3) | C8—C9—C10 | 121.3 (3) |
C15—N3—H3 | 115 (3) | C8—C9—H9 | 119.3 |
C2—C1—C6 | 120.0 | C10—C9—H9 | 119.3 |
C2—C1—C7 | 120.2 (2) | O1—C10—N1 | 120.7 (3) |
C6—C1—C7 | 119.8 (2) | O1—C10—C9 | 125.1 (3) |
C1—C2—C3 | 120.0 | N1—C10—C9 | 114.2 (3) |
C1—C2—Cl1 | 122.29 (16) | N2—C11—C8 | 122.4 (3) |
C3—C2—Cl1 | 117.70 (16) | N2—C11—C12 | 115.5 (3) |
C4—C3—C2 | 120.0 | C8—C11—C12 | 122.1 (3) |
C4—C3—H3A | 120.0 | C11—C12—H12A | 109.5 |
C2—C3—H3A | 120.0 | C11—C12—H12B | 109.5 |
C3—C4—C5 | 120.0 | H12A—C12—H12B | 109.5 |
C3—C4—H4 | 120.0 | C11—C12—H12C | 109.5 |
C5—C4—H4 | 120.0 | H12A—C12—H12C | 109.5 |
C6—C5—C4 | 120.0 | H12B—C12—H12C | 109.5 |
C6—C5—H5 | 120.0 | N1—C13—C14 | 112.1 (3) |
C4—C5—H5 | 120.0 | N1—C13—H13A | 109.2 |
C5—C6—C1 | 120.0 | C14—C13—H13A | 109.2 |
C5—C6—H6 | 120.0 | N1—C13—H13B | 109.2 |
C1—C6—H6 | 120.0 | C14—C13—H13B | 109.2 |
C2A—C1A—C6A | 120.0 | H13A—C13—H13B | 107.9 |
C2A—C1A—C7 | 110.6 (14) | O2—C14—N3 | 125.3 (3) |
C6A—C1A—C7 | 129.4 (14) | O2—C14—C13 | 122.9 (3) |
C1A—C2A—C3A | 120.0 | N3—C14—C13 | 111.8 (3) |
C1A—C2A—Cl1A | 119.8 (13) | C16—C15—C20 | 119.3 (3) |
C3A—C2A—Cl1A | 120.2 (13) | C16—C15—N3 | 123.8 (3) |
C4A—C3A—C2A | 120.0 | C20—C15—N3 | 116.8 (3) |
C4A—C3A—H3B | 120.0 | C17—C16—C15 | 119.5 (3) |
C2A—C3A—H3B | 120.0 | C17—C16—H16 | 120.3 |
C3A—C4A—C5A | 120.0 | C15—C16—H16 | 120.3 |
C3A—C4A—H4A | 120.0 | C18—C17—C16 | 120.9 (4) |
C5A—C4A—H4A | 120.0 | C18—C17—H17 | 119.5 |
C6A—C5A—C4A | 120.0 | C16—C17—H17 | 119.5 |
C6A—C5A—H5A | 120.0 | C17—C18—C19 | 119.4 (4) |
C4A—C5A—H5A | 120.0 | C17—C18—H18 | 120.3 |
C5A—C6A—C1A | 120.0 | C19—C18—H18 | 120.3 |
C5A—C6A—H6A | 120.0 | C20—C19—C18 | 120.7 (4) |
C1A—C6A—H6A | 120.0 | C20—C19—H19 | 119.6 |
C8—C7—C1A | 114.4 (10) | C18—C19—H19 | 119.6 |
C8—C7—C1 | 114.7 (3) | C19—C20—C15 | 120.1 (4) |
C8—C7—H7A | 108.6 | C19—C20—H20 | 120.0 |
C1—C7—H7A | 108.6 | C15—C20—H20 | 120.0 |
C8—C7—H7B | 108.6 | ||
C10—N1—N2—C11 | −0.4 (5) | C1—C7—C8—C11 | 170.1 (3) |
C13—N1—N2—C11 | 179.7 (3) | C11—C8—C9—C10 | −1.1 (5) |
C6—C1—C2—C3 | 0.0 | C7—C8—C9—C10 | 178.7 (3) |
C7—C1—C2—C3 | −178.2 (3) | N2—N1—C10—O1 | −178.7 (3) |
C6—C1—C2—Cl1 | −178.6 (2) | C13—N1—C10—O1 | 1.1 (5) |
C7—C1—C2—Cl1 | 3.2 (3) | N2—N1—C10—C9 | 1.2 (5) |
C1—C2—C3—C4 | 0.0 | C13—N1—C10—C9 | −179.0 (3) |
Cl1—C2—C3—C4 | 178.6 (2) | C8—C9—C10—O1 | 179.6 (3) |
C2—C3—C4—C5 | 0.0 | C8—C9—C10—N1 | −0.3 (5) |
C3—C4—C5—C6 | 0.0 | N1—N2—C11—C8 | −1.3 (5) |
C4—C5—C6—C1 | 0.0 | N1—N2—C11—C12 | 179.0 (3) |
C2—C1—C6—C5 | 0.0 | C9—C8—C11—N2 | 2.0 (5) |
C7—C1—C6—C5 | 178.2 (3) | C7—C8—C11—N2 | −177.8 (3) |
C6A—C1A—C2A—C3A | 0.0 | C9—C8—C11—C12 | −178.3 (3) |
C7—C1A—C2A—C3A | −178.3 (19) | C7—C8—C11—C12 | 1.9 (5) |
C6A—C1A—C2A—Cl1A | 178.2 (17) | N2—N1—C13—C14 | −105.6 (3) |
C7—C1A—C2A—Cl1A | −0.1 (16) | C10—N1—C13—C14 | 74.6 (4) |
C1A—C2A—C3A—C4A | 0.0 | C15—N3—C14—O2 | −8.2 (6) |
Cl1A—C2A—C3A—C4A | −178.2 (17) | C15—N3—C14—C13 | 171.3 (3) |
C2A—C3A—C4A—C5A | 0.0 | N1—C13—C14—O2 | −7.1 (5) |
C3A—C4A—C5A—C6A | 0.0 | N1—C13—C14—N3 | 173.5 (3) |
C4A—C5A—C6A—C1A | 0.0 | C14—N3—C15—C16 | −8.5 (6) |
C2A—C1A—C6A—C5A | 0.0 | C14—N3—C15—C20 | 175.1 (3) |
C7—C1A—C6A—C5A | 178 (2) | C20—C15—C16—C17 | 1.6 (5) |
C2A—C1A—C7—C8 | −91.0 (12) | N3—C15—C16—C17 | −174.7 (4) |
C6A—C1A—C7—C8 | 90.9 (16) | C15—C16—C17—C18 | −0.6 (6) |
C2—C1—C7—C8 | 101.0 (3) | C16—C17—C18—C19 | −0.9 (7) |
C6—C1—C7—C8 | −77.2 (3) | C17—C18—C19—C20 | 1.4 (7) |
C1A—C7—C8—C9 | 9.9 (9) | C18—C19—C20—C15 | −0.4 (6) |
C1—C7—C8—C9 | −9.7 (5) | C16—C15—C20—C19 | −1.1 (6) |
C1A—C7—C8—C11 | −170.3 (8) | N3—C15—C20—C19 | 175.4 (4) |
Cg1 and Cg3 are the centroids of the C8/C9/C10/N1/N2/C11 and C15–C20 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1i | 0.90 (1) | 1.96 (2) | 2.843 (4) | 168 (4) |
C3—H3A···Cg3ii | 0.95 | 2.94 | 3.791 (3) | 149 |
C7—H7A···O2iii | 0.99 | 2.33 | 3.303 (5) | 167 |
C12—H12B···Cg1iii | 0.98 | 2.99 | 3.670 (4) | 128 |
C16—H16···O2 | 0.95 | 2.32 | 2.918 (4) | 121 |
Symmetry codes: (i) −x, y+1/2, −z+1; (ii) x, y, z−1; (iii) −x+1, y+1/2, −z+1. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. The contributions of the authors are as follows: conceptualization, MA and YR; methodology, AA; investigation, HA and YZ; writing (original draft), JTM and HA; writing (review and editing of the manuscript), YR; formal analysis, WG; supervision, MA and YR;
determination and validation, JTM; resources, CKMReferences
Abourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., Mimouni, M., El Bali, B. & Bolte, M. (2003). Acta Cryst. E59, o1041–o1042. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281. Web of Science CrossRef CAS PubMed Google Scholar
Ameziane El Hassani, I., Rouzi, K., Assila, H., Karrouchi, K. & Ansar, M. (2023). Reactions 4, 478–504. CrossRef CAS Google Scholar
Assila, H., Ameziane El Hassani, I., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T., Ramli, Y. & Ansar, M. H. (2023). IUCrData, 8, x230901. Google Scholar
Assila, H., Brandán, S. A., Mortada, S., Zaoui, Y., Alzahrani, A. Y. A., Arshad, S., Ramli, Y., Faouzi, M. E. A., Karrouchi, K. & Ansar, M. (2024). J. Mol. Struct. 1308, 138145. CSD CrossRef Google Scholar
Aydın, A., Akkurt, M., Doğruer, D. S. & Büyükgüngör, O. (2012). Acta Cryst. E68, o2720. CSD CrossRef IUCr Journals Google Scholar
Aydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4522. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1030. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouchmaa, N., Mrid, R. B., Boukharsa, Y., Bouargalne, Y., Nhiri, M., Idir, A., Taoufik, J., Ansar, M. & Zyad, A. (2019). Drug Res (Stuttg), 69, 528–536. Web of Science CAS PubMed Google Scholar
Boukharsa, Y., Alhaji Isa, M., Sayah, K., Alsalme, A., Oulmidi, A., Shehzadi, S., El Abbes Faouzi, M., Karrouchi, K. & Ansar, M. (2024). ChemistrySelect 9, e202401557. CrossRef Google Scholar
Boukharsa, Y., El Ammari, L., Taoufik, J., Saadi, M. & Ansar, M. (2015). Acta Cryst. E71, o291–o292. Web of Science CSD CrossRef IUCr Journals Google Scholar
Boukharsa, Y., Lakhlili, W., El harti, J., Meddah, B., Tiendrebeogo, R. Y., Taoufik, J., El Abbes Faouzi, M., Ibrahimi, A. & Ansar, M. (2018). J. Mol. Struct. 1153, 119–127. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.. Google Scholar
Dahmani, K., Allah, A. E. M. A., Ech-chebab, A., Kharbouch, O., Khattabi, M., Galai, M., AlObaid, A. A., Warad, I., Elgendy, A., Touhami, M. E., Ramli, Y. & cherkaoui, M. (2024). J. Mol. Struct. 1312, 138612. CrossRef Google Scholar
Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598. Web of Science CrossRef CAS Google Scholar
Dundar, Y., Kuyrukcu, O., Eren, G., Senol Deniz, F. S., Onkol, T. & Orhan, I. E. (2019). Bioorg. Chem. 92, 103304. CrossRef PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133–134. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mantovani, A. C., Goulart, T. A. C., Back, D. F. & Zeni, G. (2014). Chem. Eur. J. 20, 12663–12668. CSD CrossRef CAS PubMed Google Scholar
Missioui, M., Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1429–1430. Web of Science CSD CrossRef CAS Google Scholar
Missioui, M., Lgaz, H., Guerrab, W., Lee, H., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022a). J. Mol. Struct. 1253, 132132. Web of Science CSD CrossRef Google Scholar
Missioui, M., Mortada, S., Guerrab, W., Demirtaş, G., Mague, J. T., Ansar, M., El Abbes Faouzi, M., Essassi, E. M., Mehdar, Y. T. H., Aljohani, F. S., Said, M. A. & Ramli, Y. (2022b). Arab. J.Chem. 15, 103851. CSD CrossRef Google Scholar
Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484. Web of Science CSD CrossRef Google Scholar
Mortada, S., Guerrab, W., Missioui, M., Salhi, N., Naceiri Mrabti, H., Rouass, L., Benkirane, S., Hassane, M., Masrar, A., Mezzour, H., Faouzi, M. E. A. & Ramli, Y. (2023). J. Biomol. Struct. Dyn. 42, 6711–6725. CrossRef PubMed Google Scholar
Mylari, B. L., Zembrowski, W. J., Beyer, T. A., Aldinger, C. E. & Siegel, T. W. (1992). J. Med. Chem. 35, 2155–2162. CSD CrossRef PubMed CAS Google Scholar
Özdemır, Z., Alagöz, M. A., Akdemır, A. G., Özçelık, A. B. & Uysal, M. (2019). J. Res. Pharm. 23, 960–972. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, A. A., Partap, S., Khisal, S., Yar, M. S. & Mishra, R. (2020). Bioorg. Chem. 99, 103584. CrossRef PubMed Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Zaoui, Y., Assila, H., Mague, J. T., Alsubari, A., Taoufik, J., Ramli, Y. & Ansar, M. (2022). IUCrData, 7, x220582. Google Scholar
Zaoui, Y., Ramli, Y., Tan, S. L., Tiekink, E. R. T., Chemlal, L., Mague, J. T., Taoufik, J., Faouzi, M. E. A. & Ansar, M. (2021). J. Mol. Struct. 1234, 130177. Web of Science CSD CrossRef Google Scholar
Zaoui, Y., Ramli, Y., Taoufik, J., Mague, J. T., Jotani, M. M., Tiekink, E. R. T. & Ansar, M. (2019). Acta Cryst. E75, 392–396. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zaoui, Y., Temel, E., Taoufik, J., Mague, J. T., Abbes Faouzi, M. E., Ramli, Y. & Ansar, M. (2023). J. Mol. Struct. 1289, 135867. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.