research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 2-{4-[(2-chloro­phen­yl)meth­yl]-3-methyl-6-oxopyridazin-1-yl}-N-phenyl­acetamide

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco, bLaboratoire de Chimie et Biochimie, Institut Superieur des Techniques Medicales Kinshasa, Republique Democratique, du, Congo, cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 9 October 2024; accepted 22 October 2024; online 31 October 2024)

In the title mol­ecule, C20H18ClN3O2, the 2-chloro­phenyl group is disordered to a small extent [occupancies 0.875 (2)/0.125 (2)]. The phenyl­acetamide moiety is nearly planar due to a weak, intra­molecular C—H⋯O hydrogen bond. In the crystal, N—H⋯O hydrogen bonds and π-stacking inter­actions between pyridazine and phenyl rings form helical chains of mol­ecules in the b-axis direction, which are linked by C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis was performed, which showed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions to dominate the inter­molecular contacts in the crystal.

1. Chemical context

Various classes of heterocyclic compounds have been widely proven to exhibit diverse biological activities (Ameziane El Hassani et al., 2023[Ameziane El Hassani, I., Rouzi, K., Assila, H., Karrouchi, K. & Ansar, M. (2023). Reactions 4, 478-504.]; Missioui et al., 2022a[Missioui, M., Lgaz, H., Guerrab, W., Lee, H., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022a). J. Mol. Struct. 1253, 132132.]). Among them, pyridazin-3(2H)-one derivatives have emerged as one of the most studied scaffolds in recent decades (Akhtar et al., 2016[Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256-281.]; Dubey & Bhosle, 2015[Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579-3598.]). Known as a ‘wonder nucleus’, pyridazin-3(2H)-one has provided numerous derivatives with diverse pharmacological profiles. This heterocyclic compound has been shown to possess various biological activities, including anti-microbial (Özdem\?r et al., 2019[Özdemır, Z., Alagöz, M. A., Akdemır, A. G., Özçelık, A. B. & Uysal, M. (2019). J. Res. Pharm. 23, 960-972.]), anti-cancer (Bouchmaa et al., 2019[Bouchmaa, N., Mrid, R. B., Boukharsa, Y., Bouargalne, Y., Nhiri, M., Idir, A., Taoufik, J., Ansar, M. & Zyad, A. (2019). Drug Res (Stuttg), 69, 528-536.]), butyrylcholinesterase inhibitors (Dundar et al., 2019[Dundar, Y., Kuyrukcu, O., Eren, G., Senol Deniz, F. S., Onkol, T. & Orhan, I. E. (2019). Bioorg. Chem. 92, 103304.]), anti-convulsant (Siddiqui et al., 2020[Siddiqui, A. A., Partap, S., Khisal, S., Yar, M. S. & Mishra, R. (2020). Bioorg. Chem. 99, 103584.]), anti-inflammatory (Boukharsa et al., 2018[Boukharsa, Y., Lakhlili, W., El harti, J., Meddah, B., Tiendrebeogo, R. Y., Taoufik, J., El Abbes Faouzi, M., Ibrahimi, A. & Ansar, M. (2018). J. Mol. Struct. 1153, 119-127.]; Zaoui et al., 2021[Zaoui, Y., Ramli, Y., Tan, S. L., Tiekink, E. R. T., Chemlal, L., Mague, J. T., Taoufik, J., Faouzi, M. E. A. & Ansar, M. (2021). J. Mol. Struct. 1234, 130177.]), anti-diabetic (Assila et al., 2024[Assila, H., Brandán, S. A., Mortada, S., Zaoui, Y., Alzahrani, A. Y. A., Arshad, S., Ramli, Y., Faouzi, M. E. A., Karrouchi, K. & Ansar, M. (2024). J. Mol. Struct. 1308, 138145.]; Boukharsa et al., 2024[Boukharsa, Y., Alhaji Isa, M., Sayah, K., Alsalme, A., Oulmidi, A., Shehzadi, S., El Abbes Faouzi, M., Karrouchi, K. & Ansar, M. (2024). ChemistrySelect 9, e202401557.]). Acetamide derivatives, due to their wide range of activities (Missioui et al., 2022a[Missioui, M., Lgaz, H., Guerrab, W., Lee, H., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022a). J. Mol. Struct. 1253, 132132.],b[Missioui, M., Mortada, S., Guerrab, W., Demirtaş, G., Mague, J. T., Ansar, M., El Abbes Faouzi, M., Essassi, E. M., Mehdar, Y. T. H., Aljohani, F. S., Said, M. A. & Ramli, Y. (2022b). Arab. J.Chem. 15, 103851.]; Mortada et al., 2023[Mortada, S., Guerrab, W., Missioui, M., Salhi, N., Naceiri Mrabti, H., Rouass, L., Benkirane, S., Hassane, M., Masrar, A., Mezzour, H., Faouzi, M. E. A. & Ramli, Y. (2023). J. Biomol. Struct. Dyn. 42, 6711-6725.]; Dahmani et al., 2024[Dahmani, K., Allah, A. E. M. A., Ech-chebab, A., Kharbouch, O., Khattabi, M., Galai, M., AlObaid, A. A., Warad, I., Elgendy, A., Touhami, M. E., Ramli, Y. & cherkaoui, M. (2024). J. Mol. Struct. 1312, 138612.]), continue to hold significant importance as inter­mediates in organic chemistry. As a continuation of our work in synthesizing new N-aryl­acetamide derivatives (Guerrab et al., 2021[Guerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133-134.]; Missioui et al., 2020[Missioui, M., Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1429-1430.], 2021[Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484.]), and developing new pyridazine-3(2H)-one compounds (Zaoui et al., 2022[Zaoui, Y., Assila, H., Mague, J. T., Alsubari, A., Taoufik, J., Ramli, Y. & Ansar, M. (2022). IUCrData, 7, x220582.]), the title compound, C20H18ClN3O2, was synthesized and its crystal structure is reported here. A Hirshfeld surface analysis was performed to analyze the inter­molecular inter­actions.

[Scheme 1]

2. Structural commentary

The dihedral angle between the mean planes of the C15–C20 and the pyridazine rings is 56.13 (13)° while that between the mean planes of the pyridazine and the major component of the disordered 2-chloro­phenyl rings is 80.98 (11)°. The two components of the latter ring make a dihedral angle of 4.2 (12)°. The phenyl­acetamide moiety is nearly planar [largest deviation of an atom from the mean plane is 0.003 (3) Å] due to the weak, intra­molecular C16—H16⋯O2 hydrogen bond (Table 1[link], Fig. 1[link]) and the sum of the angles about N3 is 360° within experimental error. This suggests involvement of its lone pair in N→C π bonding in support of which, the N3—C14 and N3—C15 bond distances are, respectively, 1.363 (4) and 1.409 (5) Å.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the C8/C9/C10/N1/N2/C11 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.90 (1) 1.96 (2) 2.843 (4) 168 (4)
C3—H3ACg3ii 0.95 2.94 3.791 (3) 149
C7—H7A⋯O2iii 0.99 2.33 3.303 (5) 167
C12—H12BCg1iii 0.98 2.99 3.670 (4) 128
C16—H16⋯O2 0.95 2.32 2.918 (4) 121
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) [x, y, z-1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular C—H⋯O hydrogen bond is depicted by a dashed line. Only the major portion of the disordered 2-chloro­phenyl group is shown.

3. Supra­molecular features

In the crystal, N3—H3⋯O1 hydrogen bonds and π-stacking inter­actions between pyridazine and C15–C20 rings related by the symmetry operationx, y + [{1\over 2}], −z + 1 [centroid–centroid distance = 3.691 (2) Å, dihedral angle = 2.13 (18)°, slippage = 1.25 Å] form helical chains of mol­ecules extending along the b-axis direction (Table 1[link] and Fig. 2[link]). These are connected by C7—H7A⋯O2 hydrogen bonds and C3—H3ACg3 and C12—H12BCg1 inter­actions (Table 1[link]; Cg1 and Cg3 are the centroids of the C8/C9/C10/N1/N2/C11 and C15–C20 rings, respectively), forming the full three-dimensional structure (Fig. 3[link]).

[Figure 2]
Figure 2
Perspective view of a portion of one chain of mol­ecules. N—H⋯O hydrogen bonds and π-stacking inter­actions are depicted, respectively, by violet and orange dashed lines. Non-inter­acting hydrogen atoms and the minor portion of the disordered 2-chloro­phenyl group are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with N—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by violet and black dashed lines while C—H⋯π(ring) inter­actions are depicted by light-blue dashed lines. The π-stacking inter­actions, non-inter­acting hydrogen atoms and the minor portion of the disordered 2-chloro­phenyl group are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, updated to June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the fragment shown in Fig. 4[link] (R = R′ = R′′ = C) gave 15 hits of which 12 were considered similar to the title mol­ecule. The closest analog has R = 4-FC6H4NHC(=O)CH2, R′ = Me, R′′ = 2-ClC6H4 (FITXUF; Assila et al., 2023[Assila, H., Ameziane El Hassani, I., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T., Ramli, Y. & Ansar, M. H. (2023). IUCrData, 8, x230901.]) and is largely the same in all respects, even down to the disorder in the 2-chloro­phenyl group. The packing is somewhat different due to the presence of inter­molecular C—H⋯F hydrogen bonds. Among the others is a group of structures having R′ = R′′ = Ph and R = –CH2COOH (CIPTOL; Aydin et al., 2007[Aydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4522.]), (4-meth­yl)piperazin-1-yl-C(=O)CH2CH2– (LOBTAY; Aydin et al., 2008[Aydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1030.]) and (4-chloro­phen­yl)piperazin-1-yl-C(=O)CH2CH2– (QEDXXA; Aydin et al., 2012[Aydın, A., Akkurt, M., Doğruer, D. S. & Büyükgüngör, O. (2012). Acta Cryst. E68, o2720.]). The remainder are those with R = –CH2COOEt, R′ = Me, R′′ = 4-MeC6H4CH2– (EMOGUL; Zaoui et al., 2021[Zaoui, Y., Ramli, Y., Tan, S. L., Tiekink, E. R. T., Chemlal, L., Mague, J. T., Taoufik, J., Faouzi, M. E. A. & Ansar, M. (2021). J. Mol. Struct. 1234, 130177.]); R = –CH2CH2OH, R′ = Me, R′′ = 2-ClC6H4CH2– (IJEMOZ; Abourichaa et al., 2003[Abourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., Mimouni, M., El Bali, B. & Bolte, M. (2003). Acta Cryst. E59, o1041-o1042.]); R = (5-(tri­fluoro­meth­yl)benzo[d]thia­zol-2-yl)CH2– (JOXVUN; Mylari et al., 1992[Mylari, B. L., Zembrowski, W. J., Beyer, T. A., Aldinger, C. E. & Siegel, T. W. (1992). J. Med. Chem. 35, 2155-2162.]); R = R′′ = Ph, R′ = 4-ClC6H4– (QOLLOU; Mantovani et al., 2014[Mantovani, A. C., Goulart, T. A. C., Back, D. F. & Zeni, G. (2014). Chem. Eur. J. 20, 12663-12668.]); R = –CH2COOEt, R′ = Me, R′′ = 4-ClC6H4CH2– (SIQXAV; Zaoui et al., 2023[Zaoui, Y., Temel, E., Taoufik, J., Mague, J. T., Abbes Faouzi, M. E., Ramli, Y. & Ansar, M. (2023). J. Mol. Struct. 1289, 135867.]); R = –CH2COOEt, R′ = Me, R′′ = C6H5CH2– (WOCGON; Zaoui et al., 2019[Zaoui, Y., Ramli, Y., Taoufik, J., Mague, J. T., Jotani, M. M., Tiekink, E. R. T. & Ansar, M. (2019). Acta Cryst. E75, 392-396.]); R = –CH2COOEt, R′ = Me, R′′ = 5-chloro­benzo­furan-2-yl-CH2– (XULSEE; Boukharsa et al., 2015[Boukharsa, Y., El Ammari, L., Taoufik, J., Saadi, M. & Ansar, M. (2015). Acta Cryst. E71, o291-o292.]); R = –CH2COOEt, R′ = Me, R′′ = 4-MeOC6H4CH2– (YAZLEU; Zaoui et al., 2022[Zaoui, Y., Assila, H., Mague, J. T., Alsubari, A., Taoufik, J., Ramli, Y. & Ansar, M. (2022). IUCrData, 7, x220582.]). In EMOGUL, IJEMOZ and WOCGON, the pyridazine ring is planar with deviations from the mean plane by no more than 0.007 Å while in CIPTOL, XULSEE and YAZLEU the ring is more ‘ruffled’; with deviations ranging from 0.022 to 0.031 Å. The most non-planar pyridazine ring was found in QEDXAA where the largest deviation is 0.062 (2) Å. In those structures where a ring or ring system is attached to the pyridazine ring via a methyl­ene group, that ring is nearly perpendicular to the mean plane of the pyridazine ring as is the 2-chloro­phenyl group in the title mol­ecule. Other flexible substituents are generally rotated well out of the mean plane of the pyridazine ring. In FITXUF and CIPTOL, the primary inter­molecular inter­actions are classical hydrogen bonds (N—H⋯O and O—H⋯O, respectively), which generate chains of mol­ecules as the basic building blocks of the 3-D structures. In the others, chains of mol­ecules or chains of inversion dimers are formed in most cases by C—H⋯O hydrogen bonds with additional C—H⋯O and, in some instances, C—H⋯N hydrogen bonds serving to generate the complete 3-D structures.

[Figure 4]
Figure 4
The search fragment used in the Cambridge Structural Database search.

5. Hirshfeld surface analysis

A Hirshfeld surface analysis of the inter­molecular inter­actions in the crystal of the title mol­ecule was performed with Crystal­Explorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) with general details of the plots produced and their inter­pretation provided in a recent publication (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). Fig. 5[link]a shows the dnorm surface calculated over the range −0.5868 to 1.6936 in arbitrary units with neighboring mol­ecules that are hydrogen bonded to it (green dashed lines). Fig. 5[link]b shows the surface calculated over the shape function with one neighboring mol­ecule showing the π-stacking inter­action (red dashed lines). Fingerprint plots showing the major contributions to the inter­molecular inter­actions in the crystal are presented in Fig. 6[link]. In Fig. 6[link]a all these inter­actions are shown, while Fig. 6[link]b–6d highlight the H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions, respectively. The H⋯H contacts account for 43.8% of all inter­molecular inter­actions, and result from the significant hydrogen content of the mol­ecule and the fact that most of the hydrogen atoms comprise its periphery. The C⋯H/H⋯C contacts contribute 21.0% with those indicated by peaks having the highest density at de + di = 3.3 Å coming primarily from the C—H⋯π(ring) inter­actions (Table 1[link]). The O⋯H/H⋯O inter­actions contribute 13.7% and are represented by a pair of sharp spikes having de + di = 2.2 Å, which can be attributed to the N—H⋯O hydrogen bonds as well as a pair of rather broad peaks at longer distances. The latter likely represent the C—H⋯O hydrogen bonds, which have a wider distribution of H⋯O distances. Other atom–atom contacts each contribute less than 10% to the overall inter­molecular inter­actions in the crystal.

[Figure 5]
Figure 5
(a) The dnorm surface with neighboring mol­ecules showing the hydrogen bonds as green dashed lines and (b) the surface calculated over the shape-index function with one neighboring mol­ecule showing the π-stacking inter­actions as red dashed lines.
[Figure 6]
Figure 6
Fingerprint plots showing (a) all inter­molecular inter­actions and those delineated into (b) H⋯H inter­actions, (c) C⋯H/H⋯C inter­actions and (d) O⋯H/H⋯O inter­actions.

6. Synthesis and crystallization

A mixture of the 3-benzyl­idene-4-oxo­penta­noic acid derivative (0.01 mol) and hydrazine monohydrate (0.02 mol) in 30 mL of ethanol was refluxed to produce the 5-(2-chloro­benz­yl)-6-methyl­pyridazin-3(2H)-one precursor. To this pyridazin-3(2H)-one derivative (0.01 mol), 2-chloro-N-phenyl­acetamide (0.01 mol), potassium bicarbonate (0.02 mol), and a small amount of BTBA (benzyl­tri­butyl­ammonium bromide) as a phase-transfer catalyst were added. The reaction mixture was stirred at room temperature for 24 h, and the reaction progress was monitored by TLC. Afterwards, 200 mL of distilled water were added, and the resulting precipitate was filtered, dried, and recrystallized from absolute acetone, yielding transparent crystals of the target compound.

Yield 90%; m.p: (461–463 K). IR (KBr, ν (cm−1): 1597 (C=O pyridazinone), 1655 (C=O acetamide), 3279 (NH amide). 1H NMR [500 MHz, DMSO-d6, δ(ppm)]: 2.25 (s, 3H, CH3); 3.96 (s, 2H, phen­yl–CH2–pyridazinone); 4.80 (s, 2H, N–CH2–CO); 6.07 (s, 1H, pyridazinone); 6.95–7.57 (m, 9H, two phen­yl); 10.26 (s, 1H, NH). 13C NMR [126 MHz, DMSO-d6, δ(ppm)]: 19.07, 35.33, 54.69, 119.53, 123.94, 126.57, 128.31, 129.35, 129.72, 130.16, 132.08, 134.03, 134.87, 139.29, 144.85, 159.86, 165.74. MS (ESI+): m/z = 368.11530 [M + H]+

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms attached to carbon were placed in calculated positions and were included as riding contributions with isotropic displacement parameters tied to those of the attached atoms. That attached to nitro­gen was placed in a location derived from a difference map and refined with a DFIX 0.91 0.01 instruction. The 2-chloro­phenyl ring is disordered over two sites by an approximate 180° rotation about the C1—C7 bond and a small translation in the plane of the ring. The two rings were refined as rigid hexa­gons and additional restraints were applied to render the geometries of the two components similar. The refined ratio for the disorder is 0.875 (2)/0.125 (2).

Table 2
Experimental details

Crystal data
Chemical formula C20H18ClN3O2
Mr 367.82
Crystal system, space group Monoclinic, P21
Temperature (K) 125
a, b, c (Å) 10.1898 (6), 6.7445 (4), 14.2538 (11)
β (°) 110.901 (2)
V3) 915.13 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.35 × 0.32 × 0.05
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.92, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 21487, 3700, 3381
Rint 0.039
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.111, 1.09
No. of reflections 3700
No. of parameters 237
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.17
Absolute structure Flack x determined using 1318 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.06 (3)
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA..]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

2-{4-[(2-Chlorophenyl)methyl]-3-methyl-6-oxopyridazin-1-yl}-N-phenylacetamide top
Crystal data top
C20H18ClN3O2F(000) = 384
Mr = 367.82Dx = 1.335 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.1898 (6) ÅCell parameters from 9927 reflections
b = 6.7445 (4) Åθ = 3.0–26.4°
c = 14.2538 (11) ŵ = 0.23 mm1
β = 110.901 (2)°T = 125 K
V = 915.13 (10) Å3Plate, colourless
Z = 20.35 × 0.32 × 0.05 mm
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
3700 independent reflections
Radiation source: fine-focus sealed tube3381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 7.3910 pixels mm-1θmax = 26.4°, θmin = 2.1°
φ and ω scansh = 1212
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.92, Tmax = 0.99l = 1717
21487 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.4761P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.49 e Å3
3700 reflectionsΔρmin = 0.17 e Å3
237 parametersAbsolute structure: Flack x determined using 1318 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
4 restraintsAbsolute structure parameter: 0.06 (3)
Special details top

Experimental. The diffraction data were obtained from 4 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was 25 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. That attached to nitrogen was placed in a location derived from a difference map and refined with a DFIX 0.91 0.01 instruction. The 2-chlorophenyl ring is disordered over two sites by an approximate 180° rotation about the C1—C7 bond and a small translation in the plane of the ring. The two rings were refined as rigid hexagons and additional restraints were applied to render the geometries of the two components similar. The refined ratio for the disorder is 0.875 (2)/0,125 (2).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.27934 (12)0.6674 (2)0.04167 (9)0.0495 (3)0.875 (2)
Cl1A0.6147 (9)0.3441 (14)0.3447 (6)0.0495 (3)0.125 (2)
O10.0861 (3)0.3089 (4)0.3685 (2)0.0370 (6)
O20.2464 (2)0.3392 (4)0.5976 (2)0.0374 (6)
N10.1739 (3)0.6043 (4)0.4408 (2)0.0291 (7)
N20.2548 (3)0.7696 (4)0.4533 (2)0.0298 (7)
N30.0797 (3)0.4603 (5)0.6563 (2)0.0307 (6)
H30.016 (3)0.559 (4)0.646 (3)0.037*
C10.4556 (3)0.4862 (3)0.21149 (17)0.0290 (9)0.875 (2)
C20.3839 (3)0.4761 (4)0.10839 (17)0.0290 (9)0.875 (2)
C30.3975 (3)0.3096 (4)0.05509 (14)0.0363 (10)0.875 (2)
H3A0.3484630.3027570.0153800.044*0.875 (2)
C40.4828 (3)0.1532 (4)0.1049 (2)0.0441 (12)0.875 (2)
H40.4920790.0394540.0684610.053*0.875 (2)
C50.5545 (3)0.1633 (3)0.2080 (2)0.0420 (10)0.875 (2)
H50.6127920.0563890.2420310.050*0.875 (2)
C60.5409 (3)0.3298 (4)0.26129 (15)0.0355 (10)0.875 (2)
H60.5898900.3366280.3317610.043*0.875 (2)
C1A0.418 (2)0.519 (3)0.1856 (11)0.0290 (9)0.125 (2)
C2A0.506 (2)0.356 (3)0.2204 (7)0.0290 (9)0.125 (2)
C3A0.508 (2)0.205 (2)0.1544 (14)0.0363 (10)0.125 (2)
H3B0.5676920.0935250.1781010.044*0.125 (2)
C4A0.423 (2)0.218 (2)0.0536 (12)0.0441 (12)0.125 (2)
H4A0.4245470.1146480.0085090.053*0.125 (2)
C5A0.336 (2)0.381 (3)0.0189 (6)0.0420 (10)0.125 (2)
H5A0.2775630.3891800.0499630.050*0.125 (2)
C6A0.333 (2)0.531 (2)0.0849 (12)0.0355 (10)0.125 (2)
H6A0.2737230.6425920.0611570.043*0.125 (2)
C70.4373 (4)0.6682 (6)0.2715 (3)0.0377 (8)
H7A0.5306220.7064600.3200000.045*
H7B0.4018340.7802940.2243790.045*
C80.3387 (3)0.6365 (5)0.3282 (2)0.0275 (7)
C90.2553 (3)0.4749 (5)0.3170 (3)0.0282 (7)
H90.2560250.3752220.2700670.034*
C100.1656 (3)0.4513 (5)0.3749 (3)0.0293 (7)
C110.3333 (3)0.7870 (5)0.3987 (2)0.0275 (7)
C120.4186 (4)0.9741 (6)0.4144 (3)0.0377 (9)
H12A0.3946361.0452730.3505440.057*
H12B0.5188000.9408120.4395370.057*
H12C0.3979541.0583680.4634720.057*
C130.0906 (4)0.5972 (5)0.5049 (3)0.0318 (8)
H13A0.0069530.5588490.4640550.038*
H13B0.0877880.7309150.5327100.038*
C140.1493 (3)0.4510 (5)0.5906 (3)0.0293 (7)
C150.0918 (3)0.3325 (6)0.7371 (3)0.0308 (8)
C160.1674 (4)0.1558 (6)0.7552 (3)0.0356 (8)
H160.2212070.1203350.7153970.043*
C170.1635 (4)0.0319 (7)0.8320 (3)0.0452 (10)
H170.2143800.0892530.8439600.054*
C180.0871 (5)0.0822 (7)0.8909 (3)0.0505 (11)
H180.0840050.0044870.9426380.061*
C190.0149 (5)0.2595 (8)0.8743 (3)0.0522 (12)
H190.0362430.2959410.9158170.063*
C200.0162 (4)0.3842 (7)0.7983 (3)0.0400 (9)
H200.0343350.5056120.7872910.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0450 (6)0.0538 (7)0.0516 (6)0.0160 (6)0.0197 (5)0.0161 (6)
Cl1A0.0450 (6)0.0538 (7)0.0516 (6)0.0160 (6)0.0197 (5)0.0161 (6)
O10.0345 (13)0.0240 (13)0.0591 (16)0.0059 (11)0.0247 (12)0.0021 (12)
O20.0287 (13)0.0395 (16)0.0501 (15)0.0115 (12)0.0215 (11)0.0096 (12)
N10.0264 (14)0.0222 (15)0.0441 (17)0.0008 (12)0.0194 (13)0.0030 (12)
N20.0280 (15)0.0199 (14)0.0423 (17)0.0021 (12)0.0137 (13)0.0044 (13)
N30.0265 (14)0.0277 (16)0.0419 (16)0.0062 (13)0.0172 (13)0.0015 (14)
C10.024 (2)0.028 (2)0.040 (2)0.0051 (18)0.0176 (17)0.0035 (19)
C20.0255 (19)0.028 (2)0.037 (2)0.0005 (16)0.0149 (16)0.0055 (19)
C30.039 (2)0.032 (2)0.046 (2)0.006 (2)0.024 (2)0.003 (2)
C40.051 (3)0.027 (2)0.073 (3)0.003 (2)0.045 (3)0.006 (2)
C50.037 (2)0.030 (2)0.067 (3)0.005 (2)0.028 (2)0.018 (2)
C60.029 (2)0.040 (3)0.039 (2)0.0026 (19)0.0138 (19)0.015 (2)
C1A0.024 (2)0.028 (2)0.040 (2)0.0051 (18)0.0176 (17)0.0035 (19)
C2A0.0255 (19)0.028 (2)0.037 (2)0.0005 (16)0.0149 (16)0.0055 (19)
C3A0.039 (2)0.032 (2)0.046 (2)0.006 (2)0.024 (2)0.003 (2)
C4A0.051 (3)0.027 (2)0.073 (3)0.003 (2)0.045 (3)0.006 (2)
C5A0.037 (2)0.030 (2)0.067 (3)0.005 (2)0.028 (2)0.018 (2)
C6A0.029 (2)0.040 (3)0.039 (2)0.0026 (19)0.0138 (19)0.015 (2)
C70.041 (2)0.0331 (19)0.046 (2)0.0146 (19)0.0252 (17)0.0070 (19)
C80.0227 (15)0.0263 (18)0.0326 (17)0.0000 (14)0.0089 (13)0.0054 (15)
C90.0264 (16)0.0240 (18)0.0350 (17)0.0009 (15)0.0121 (13)0.0015 (15)
C100.0233 (16)0.0239 (17)0.0426 (19)0.0010 (15)0.0139 (14)0.0057 (16)
C110.0238 (16)0.0235 (17)0.0355 (19)0.0001 (14)0.0109 (14)0.0037 (15)
C120.0381 (19)0.0272 (19)0.053 (2)0.0102 (17)0.0222 (17)0.0051 (18)
C130.0287 (17)0.0249 (18)0.049 (2)0.0045 (14)0.0221 (16)0.0034 (15)
C140.0218 (15)0.0254 (17)0.0426 (19)0.0024 (15)0.0140 (14)0.0003 (16)
C150.0247 (16)0.034 (2)0.0339 (18)0.0034 (15)0.0105 (15)0.0024 (15)
C160.0340 (18)0.037 (2)0.0361 (18)0.0036 (18)0.0130 (15)0.0006 (18)
C170.045 (2)0.046 (3)0.040 (2)0.0059 (19)0.0106 (18)0.0084 (18)
C180.052 (3)0.057 (3)0.043 (2)0.003 (2)0.018 (2)0.016 (2)
C190.047 (2)0.075 (3)0.042 (2)0.002 (2)0.025 (2)0.003 (2)
C200.0321 (19)0.047 (2)0.044 (2)0.0025 (18)0.0175 (17)0.0005 (18)
Geometric parameters (Å, º) top
Cl1—C21.726 (2)C4A—H4A0.9500
Cl1A—C2A1.725 (3)C5A—C6A1.3900
O1—C101.238 (4)C5A—H5A0.9500
O2—C141.220 (4)C6A—H6A0.9500
N1—N21.360 (4)C7—C81.512 (4)
N1—C101.377 (5)C7—H7A0.9900
N1—C131.454 (4)C7—H7B0.9900
N2—C111.305 (4)C8—C91.356 (5)
N3—C141.363 (4)C8—C111.444 (5)
N3—C151.409 (5)C9—C101.443 (5)
N3—H30.902 (14)C9—H90.9500
C1—C21.3900C11—C121.503 (5)
C1—C61.3900C12—H12A0.9800
C1—C71.545 (4)C12—H12B0.9800
C2—C31.3900C12—H12C0.9800
C3—C41.3900C13—C141.517 (5)
C3—H3A0.9500C13—H13A0.9900
C4—C51.3900C13—H13B0.9900
C4—H40.9500C15—C161.393 (5)
C5—C61.3900C15—C201.397 (5)
C5—H50.9500C16—C171.388 (6)
C6—H60.9500C16—H160.9500
C1A—C2A1.3900C17—C181.377 (6)
C1A—C6A1.3900C17—H170.9500
C1A—C71.544 (5)C18—C191.379 (7)
C2A—C3A1.3900C18—H180.9500
C3A—C4A1.3900C19—C201.376 (6)
C3A—H3B0.9500C19—H190.9500
C4A—C5A1.3900C20—H200.9500
N2—N1—C10126.2 (3)C1—C7—H7B108.6
N2—N1—C13114.0 (3)H7A—C7—H7B107.6
C10—N1—C13119.7 (3)C9—C8—C11118.0 (3)
C11—N2—N1117.8 (3)C9—C8—C7124.0 (3)
C14—N3—C15128.2 (3)C11—C8—C7118.1 (3)
C14—N3—H3116 (3)C8—C9—C10121.3 (3)
C15—N3—H3115 (3)C8—C9—H9119.3
C2—C1—C6120.0C10—C9—H9119.3
C2—C1—C7120.2 (2)O1—C10—N1120.7 (3)
C6—C1—C7119.8 (2)O1—C10—C9125.1 (3)
C1—C2—C3120.0N1—C10—C9114.2 (3)
C1—C2—Cl1122.29 (16)N2—C11—C8122.4 (3)
C3—C2—Cl1117.70 (16)N2—C11—C12115.5 (3)
C4—C3—C2120.0C8—C11—C12122.1 (3)
C4—C3—H3A120.0C11—C12—H12A109.5
C2—C3—H3A120.0C11—C12—H12B109.5
C3—C4—C5120.0H12A—C12—H12B109.5
C3—C4—H4120.0C11—C12—H12C109.5
C5—C4—H4120.0H12A—C12—H12C109.5
C6—C5—C4120.0H12B—C12—H12C109.5
C6—C5—H5120.0N1—C13—C14112.1 (3)
C4—C5—H5120.0N1—C13—H13A109.2
C5—C6—C1120.0C14—C13—H13A109.2
C5—C6—H6120.0N1—C13—H13B109.2
C1—C6—H6120.0C14—C13—H13B109.2
C2A—C1A—C6A120.0H13A—C13—H13B107.9
C2A—C1A—C7110.6 (14)O2—C14—N3125.3 (3)
C6A—C1A—C7129.4 (14)O2—C14—C13122.9 (3)
C1A—C2A—C3A120.0N3—C14—C13111.8 (3)
C1A—C2A—Cl1A119.8 (13)C16—C15—C20119.3 (3)
C3A—C2A—Cl1A120.2 (13)C16—C15—N3123.8 (3)
C4A—C3A—C2A120.0C20—C15—N3116.8 (3)
C4A—C3A—H3B120.0C17—C16—C15119.5 (3)
C2A—C3A—H3B120.0C17—C16—H16120.3
C3A—C4A—C5A120.0C15—C16—H16120.3
C3A—C4A—H4A120.0C18—C17—C16120.9 (4)
C5A—C4A—H4A120.0C18—C17—H17119.5
C6A—C5A—C4A120.0C16—C17—H17119.5
C6A—C5A—H5A120.0C17—C18—C19119.4 (4)
C4A—C5A—H5A120.0C17—C18—H18120.3
C5A—C6A—C1A120.0C19—C18—H18120.3
C5A—C6A—H6A120.0C20—C19—C18120.7 (4)
C1A—C6A—H6A120.0C20—C19—H19119.6
C8—C7—C1A114.4 (10)C18—C19—H19119.6
C8—C7—C1114.7 (3)C19—C20—C15120.1 (4)
C8—C7—H7A108.6C19—C20—H20120.0
C1—C7—H7A108.6C15—C20—H20120.0
C8—C7—H7B108.6
C10—N1—N2—C110.4 (5)C1—C7—C8—C11170.1 (3)
C13—N1—N2—C11179.7 (3)C11—C8—C9—C101.1 (5)
C6—C1—C2—C30.0C7—C8—C9—C10178.7 (3)
C7—C1—C2—C3178.2 (3)N2—N1—C10—O1178.7 (3)
C6—C1—C2—Cl1178.6 (2)C13—N1—C10—O11.1 (5)
C7—C1—C2—Cl13.2 (3)N2—N1—C10—C91.2 (5)
C1—C2—C3—C40.0C13—N1—C10—C9179.0 (3)
Cl1—C2—C3—C4178.6 (2)C8—C9—C10—O1179.6 (3)
C2—C3—C4—C50.0C8—C9—C10—N10.3 (5)
C3—C4—C5—C60.0N1—N2—C11—C81.3 (5)
C4—C5—C6—C10.0N1—N2—C11—C12179.0 (3)
C2—C1—C6—C50.0C9—C8—C11—N22.0 (5)
C7—C1—C6—C5178.2 (3)C7—C8—C11—N2177.8 (3)
C6A—C1A—C2A—C3A0.0C9—C8—C11—C12178.3 (3)
C7—C1A—C2A—C3A178.3 (19)C7—C8—C11—C121.9 (5)
C6A—C1A—C2A—Cl1A178.2 (17)N2—N1—C13—C14105.6 (3)
C7—C1A—C2A—Cl1A0.1 (16)C10—N1—C13—C1474.6 (4)
C1A—C2A—C3A—C4A0.0C15—N3—C14—O28.2 (6)
Cl1A—C2A—C3A—C4A178.2 (17)C15—N3—C14—C13171.3 (3)
C2A—C3A—C4A—C5A0.0N1—C13—C14—O27.1 (5)
C3A—C4A—C5A—C6A0.0N1—C13—C14—N3173.5 (3)
C4A—C5A—C6A—C1A0.0C14—N3—C15—C168.5 (6)
C2A—C1A—C6A—C5A0.0C14—N3—C15—C20175.1 (3)
C7—C1A—C6A—C5A178 (2)C20—C15—C16—C171.6 (5)
C2A—C1A—C7—C891.0 (12)N3—C15—C16—C17174.7 (4)
C6A—C1A—C7—C890.9 (16)C15—C16—C17—C180.6 (6)
C2—C1—C7—C8101.0 (3)C16—C17—C18—C190.9 (7)
C6—C1—C7—C877.2 (3)C17—C18—C19—C201.4 (7)
C1A—C7—C8—C99.9 (9)C18—C19—C20—C150.4 (6)
C1—C7—C8—C99.7 (5)C16—C15—C20—C191.1 (6)
C1A—C7—C8—C11170.3 (8)N3—C15—C20—C19175.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C8/C9/C10/N1/N2/C11 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.90 (1)1.96 (2)2.843 (4)168 (4)
C3—H3A···Cg3ii0.952.943.791 (3)149
C7—H7A···O2iii0.992.333.303 (5)167
C12—H12B···Cg1iii0.982.993.670 (4)128
C16—H16···O20.952.322.918 (4)121
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y, z1; (iii) x+1, y+1/2, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. The contributions of the authors are as follows: conceptualization, MA and YR; methodology, AA; investigation, HA and YZ; writing (original draft), JTM and HA; writing (review and editing of the manuscript), YR; formal analysis, WG; supervision, MA and YR; crystal structure determination and validation, JTM; resources, CKM

References

First citationAbourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., Mimouni, M., El Bali, B. & Bolte, M. (2003). Acta Cryst. E59, o1041–o1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAmeziane El Hassani, I., Rouzi, K., Assila, H., Karrouchi, K. & Ansar, M. (2023). Reactions 4, 478–504.  CrossRef CAS Google Scholar
First citationAssila, H., Ameziane El Hassani, I., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T., Ramli, Y. & Ansar, M. H. (2023). IUCrData, 8, x230901.  Google Scholar
First citationAssila, H., Brandán, S. A., Mortada, S., Zaoui, Y., Alzahrani, A. Y. A., Arshad, S., Ramli, Y., Faouzi, M. E. A., Karrouchi, K. & Ansar, M. (2024). J. Mol. Struct. 1308, 138145.  CSD CrossRef Google Scholar
First citationAydın, A., Akkurt, M., Doğruer, D. S. & Büyükgüngör, O. (2012). Acta Cryst. E68, o2720.  CSD CrossRef IUCr Journals Google Scholar
First citationAydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1030.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouchmaa, N., Mrid, R. B., Boukharsa, Y., Bouargalne, Y., Nhiri, M., Idir, A., Taoufik, J., Ansar, M. & Zyad, A. (2019). Drug Res (Stuttg), 69, 528–536.  Web of Science CAS PubMed Google Scholar
First citationBoukharsa, Y., Alhaji Isa, M., Sayah, K., Alsalme, A., Oulmidi, A., Shehzadi, S., El Abbes Faouzi, M., Karrouchi, K. & Ansar, M. (2024). ChemistrySelect 9, e202401557.  CrossRef Google Scholar
First citationBoukharsa, Y., El Ammari, L., Taoufik, J., Saadi, M. & Ansar, M. (2015). Acta Cryst. E71, o291–o292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoukharsa, Y., Lakhlili, W., El harti, J., Meddah, B., Tiendrebeogo, R. Y., Taoufik, J., El Abbes Faouzi, M., Ibrahimi, A. & Ansar, M. (2018). J. Mol. Struct. 1153, 119–127.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA..  Google Scholar
First citationDahmani, K., Allah, A. E. M. A., Ech-chebab, A., Kharbouch, O., Khattabi, M., Galai, M., AlObaid, A. A., Warad, I., Elgendy, A., Touhami, M. E., Ramli, Y. & cherkaoui, M. (2024). J. Mol. Struct. 1312, 138612.  CrossRef Google Scholar
First citationDubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598.  Web of Science CrossRef CAS Google Scholar
First citationDundar, Y., Kuyrukcu, O., Eren, G., Senol Deniz, F. S., Onkol, T. & Orhan, I. E. (2019). Bioorg. Chem. 92, 103304.  CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMantovani, A. C., Goulart, T. A. C., Back, D. F. & Zeni, G. (2014). Chem. Eur. J. 20, 12663–12668.  CSD CrossRef CAS PubMed Google Scholar
First citationMissioui, M., Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1429–1430.  Web of Science CSD CrossRef CAS Google Scholar
First citationMissioui, M., Lgaz, H., Guerrab, W., Lee, H., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022a). J. Mol. Struct. 1253, 132132.  Web of Science CSD CrossRef Google Scholar
First citationMissioui, M., Mortada, S., Guerrab, W., Demirtaş, G., Mague, J. T., Ansar, M., El Abbes Faouzi, M., Essassi, E. M., Mehdar, Y. T. H., Aljohani, F. S., Said, M. A. & Ramli, Y. (2022b). Arab. J.Chem. 15, 103851.  CSD CrossRef Google Scholar
First citationMissioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484.  Web of Science CSD CrossRef Google Scholar
First citationMortada, S., Guerrab, W., Missioui, M., Salhi, N., Naceiri Mrabti, H., Rouass, L., Benkirane, S., Hassane, M., Masrar, A., Mezzour, H., Faouzi, M. E. A. & Ramli, Y. (2023). J. Biomol. Struct. Dyn. 42, 6711–6725.  CrossRef PubMed Google Scholar
First citationMylari, B. L., Zembrowski, W. J., Beyer, T. A., Aldinger, C. E. & Siegel, T. W. (1992). J. Med. Chem. 35, 2155–2162.  CSD CrossRef PubMed CAS Google Scholar
First citationÖzdemır, Z., Alagöz, M. A., Akdemır, A. G., Özçelık, A. B. & Uysal, M. (2019). J. Res. Pharm. 23, 960–972.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, A. A., Partap, S., Khisal, S., Yar, M. S. & Mishra, R. (2020). Bioorg. Chem. 99, 103584.  CrossRef PubMed Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZaoui, Y., Assila, H., Mague, J. T., Alsubari, A., Taoufik, J., Ramli, Y. & Ansar, M. (2022). IUCrData, 7, x220582.  Google Scholar
First citationZaoui, Y., Ramli, Y., Tan, S. L., Tiekink, E. R. T., Chemlal, L., Mague, J. T., Taoufik, J., Faouzi, M. E. A. & Ansar, M. (2021). J. Mol. Struct. 1234, 130177.  Web of Science CSD CrossRef Google Scholar
First citationZaoui, Y., Ramli, Y., Taoufik, J., Mague, J. T., Jotani, M. M., Tiekink, E. R. T. & Ansar, M. (2019). Acta Cryst. E75, 392–396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZaoui, Y., Temel, E., Taoufik, J., Mague, J. T., Abbes Faouzi, M. E., Ramli, Y. & Ansar, M. (2023). J. Mol. Struct. 1289, 135867.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds