research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis, and DFT and mol­ecular docking studies of 6-cyanona­phthalen-2-yl 4-(benz­yl­oxy)benzoate

crossmark logo

aDepartment of Physics, Yuvaraja's College, University of Mysore, Mysore, 570005, Karnataka, India, bDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka-572103, India, and cRaman Research Institute, C. V. Raman, Avenue, Sadashivanagar, Bangalore, Karnataka, India
*Correspondence e-mail: palaksha.bspm@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 September 2024; accepted 11 October 2024; online 22 October 2024)

In the title compound, C25H17NO3, the torsion angle associated with the phenyl benzoate group is −173.7 (2)° and that for the benz­yloxy group is −174.8 (2)° establishing an anti-type conformation. The dihedral angles between the ten-membered cyanona­phthalene ring and the aromatic ring of the phenyl benzoate and the benz­yloxy fragments are 40.70 (10) and 87.51 (11)°, respectively, whereas the dihedral angle between the aromatic phenyl benzoate and the benz­yloxy fragments is 72.30 (13)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(4) chains propagating parallel to [010]. The packing is consolidated by three C—H⋯π inter­actions and two ππ stacking inter­actions between the aromatic rings of naphthalene and phenyl benzoate with centroid-to-centroid distances of 3.9698 (15) and 3.8568 (15) Å, respectively. Inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis. The mol­ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–311+ G(d,p) level, revealing that the energy gap between HOMO and LUMO is 3.17 eV. Mol­ecular docking studies were carried out for the title compound as a ligand and SARS-Covid-2(PDB ID:7QF0) protein as a receptor giving a binding affinity of −9.5 kcal mol−1.

1. Chemical context

Naphthalene derivatives play a vital role in drug design because they have shown to exhibit anti-microbial (El et al., 2018[El-Desoky, E.-S. I., Keshk, E. M., El-Sawi, A. A., Abozeid, M. A., Abouzeid, L. A. & Abdel-Rahman, A.-R. H. (2018). Saudi Pharm. J. 26, 852-859.]), anti-cancer (Valente et al., 2014[Valente, S., Trisciuoglio, D., De Luca, T., Nebbioso, A., Labella, D., Lenoci, A., Bigogno, C., Dondio, G., Miceli, M., Brosch, G., Del Bufalo, D., Altucci, L. & Mai, A. (2014). J. Med. Chem. 57, 6259-6265.]), anti-viral (Perrone et al., 2015[Perrone, R., Doria, F., Butovskaya, E., Frasson, I., Botti, S., Scalabrin, M., Lago, S., Grande, V., Nadai, M., Freccero, M. & Richter, S. N. (2015). J. Med. Chem. 58, 9639-9652.]), anti­convulsant (Özdemir et al., 2019[Özdemir, Z., Sari, S., Karakurt, A. & Dalkara, S. (2019). Drug Dev. Res. 80, 269-280.]), anti-tubercular (Das et al., 2007[Das, S. K., Panda, G., Chaturvedi, V., Manju, Y. S., Gaikwad, A. K. & Sinha, S. (2007). Bioorg. Med. Chem. Lett. 17, 5586-5589.]), anti-inflammatory (Boyle et al., 1982[Boyle, E. A., Freemanm, P. C., Mangan, F. R. & Thomson, M. J. (1982). J. Pharm. Pharmacol. 34, 562-569.]) and anti-bacterial activities (Ashraf et al., 2019[Ashraf, K., Yasrebi, K., Adeniyi, E. T., Hertlein, T., Ohlsen, K., Lalk, M., Erdmann, F. & Hilgeroth, A. (2019). Drug. Des. Dev. Ther. 13, 275-283.]). These properties are attributed to the naphthalene moiety because it is able to disrupt cell membranes, inter­fere with cell wall synthesis and inhibit enzyme activity. In this context, cyanona­phthalene derivatives have been explored for their possible anti-cancer properties (Hekal et al., 2024[Hekal, M., Abdalha, A. A., Farag, H. & Ali, A. T. (2024). Chem. Biodivers. pp. e202401023.]). These compounds can cause programmed cell death in cancer cells, which can help slow down tumour growth. They have also been shown to have anti­fungal activity (Prakash et al., 2015[Prakash, N., Elamaran, M. & Ingarsal, N. (2015). Chem. Sci. Trans. 4, 947-954.]) and to operate as potential inhibitors for the treatment of congestive heart failure and cardiac fibrosis (Voets et al., 2005[Voets, M., Antes, I., Scherer, C., Müller-Vieira, U., Biemel, K., Barassin, C., Marchais-Oberwinkler, S. & Hartmann, R. W. (2005). J. Med. Chem. 48, 6632-6642.]), or against plant pathogenic fungi (Jin et al., 2024[Jin, F., Peng, F., Li, W. R., Chai, J. Q., Chen, M., Lu, A. M. & Zhou, M. G. (2024). J. Saudi Chem. Soc. 28, 101928.]). Biological activities usually vary depending on the mol­ecular structure of the compound, its substitution pattern, and strains used. In this regard, benz­yloxy derivatives demonstrate anti-malarial, anti-platelet, and anti-bacterial activities (Mohebi et al., 2022[Mohebi, M., Fayazi, N., Esmaeili, S., Rostami, M., Bagheri, F., Aliabadi, A., Asadi, P. & Saghaie, L. (2022). Res. Pharma Sci. 17, 252-264.]; de Candia et al., 2015[Candia, M. de, Marini, E., Zaetta, G., Cellamare, S., Di Stilo, A. & Altomare, C. D. (2015). Eur. J. Pharm. Sci. 72, 69-80.]; Kaushik et al., 2018[Kaushik, C. P., Pahwa, A., Kumar, D., Kumar, A., Singh, D., Kumar, K. & Luxmi, R. (2018). J. Heterocycl. Chem. 55, 1720-1728.]), while pyrimidinyl­phenyl­amine-substituted benzo­yloxy derivatives are most potent in inhibiting HIV-1 (Rai et al., 2023[Rai, D., Chen, W., Tian, Y., Chen, X., Zhan, P., De Clercq, E., Pannecouque, C., Balzarini, J. & Liu, X. (2023). Bioorg. Med. Chem. 21, 7398-7405.]).

[Scheme 1]

In order to explore cyanona­phthalene and (benz­yloxy)benzoate groups, we have adopted these moieties for the formation of organic liquid-crystal materials (Srinivasa et al., 2020[Srinivasa, H. T., Prutha, N. & Pratibha, R. (2020). J. Mol. Struct. 1199, 126971.]). However, the toxicity of naphthalene and its potential carcinogenic properties may limit its use, and more research is needed to fully understand the mechanisms of potential action for therapeutic applications.

In the context given above, we present here the synthesis and structure elucidation of the cyanona­phthalene derivative, C25H17NO3, (I)[link].

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The cyanona­phthalene moiety (C1–C10, C11≡N1) is nearly planar with an r.m.s. deviation of 0.0762 Å, with a maximum deviation of −0.138 (2) for N1. The aromatic rings of the naphthalene system are inclined towards each other with a dihedral angle of 3.82 (12)o. The torsion angles at the phenyl benzoate group (C1–O2–C12–C13) and the benz­yloxy fragment (C15–O1–C19–C20) are −173.7 (2) and −174.8 (2)°, respectively, establishing an anti-type conformation. Otherwise, bond lengths and angles can be regarded as normal. The dihedral angle between the ten membered cyanona­phthalene ring (C1–C10) and the aromatic ring of the phenyl benzoate moiety (C13–C18) is 40.70 (10)° and between that of the benz­yloxy fragments (C20–C25) is 87.51 (11)°. The dihedral angle between the phenyl rings of the phenyl benzoate and the benz­yloxy systems is 72.30 (13)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal packing of (I)[link] includes C—H⋯π inter­actions between aromatic H atoms and phenyl rings, as detailed for the inter­actions C16—H16⋯π, C23—H23⋯π and C24—H24⋯π in Table 1[link] and shown in Fig. 2[link]. There are also slipped ππ inter­actions in the crystal between the two aromatic rings of the naphthalene ring system [Cg1 and Cg2 are the centroids of the C1–C3/C8–C10 and = C3–C8 rings, respectively] and phenyl benzoate ring [Cg3 is the centroid of the C13–C18 ring], with centroid-to-centroid distances for Cg1⋯Cg3 and Cg2⋯Cg3 of 3.9699 (15) Å (slippage 1.893 Å) and 3.8569 (10) Å (slippage 1.731 Å), respectively, as shown in Fig. 3[link]. In addition, a weak C10—H10⋯O2 inter­action (Table 1[link]) forming a chain parallel to [010] with an S(4) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) is an integral part of the crystal packing (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C3–C8 and C20–C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.93 2.68 3.579 (3) 164
C16—H16⋯Cg4ii 0.93 2.97 3.711 (3) 138
C23—H23⋯Cg4iii 0.93 2.76 3.611 (3) 153
C24—H24⋯Cg2iv 0.93 2.98 3.858 (3) 159
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) [x, y-1, z]; (iii) [-x+1, y+{\script{1\over 2}}, -z]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
The mol­ecular packing of (I)[link] with C—H ⋯π inter­actions depicted by dashed lines.
[Figure 3]
Figure 3
The mol­ecular packing of (I)[link] with ππ inter­actions depicted by pale-green dashed lines.
[Figure 4]
Figure 4
C—H⋯O inter­action in (I)[link] forming an S(4) chain running parallel to [010]; symmetry code as in Table 2[link].

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was used to visualize and qu­antify inter­molecular inter­actions using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 5[link] illustrates the Hirshfeld surface mapped over dnorm, where the colour code denotes inter­molecular inter­actions on the Hirshfeld surface: the contacts with distances equal to the sum of the van der Waals radii are indicated in white, while those with shorter and longer distances are represented in red and blue, respectively. For (I)[link], the C10—H10⋯O2 inter­action is responsible for the red regions. The two-dimensional fingerprint plots indicate that the major contributions to the crystal packing of (I)[link] are from H⋯H (34.5% contribution), C⋯H/H⋯C (34.1%), O⋯H/H⋯O (11.8%), N⋯H/H⋯N (10.4%) and C⋯C (5.5%) contacts, as shown in Fig. 6[link].

[Figure 5]
Figure 5
Hirshfeld surface of (I)[link] plotted over dnorm; the dashed lines indicate the C—H⋯O inter­actions.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots for the title compound, showing all inter­actions, and delineated into H⋯H, C⋯H/H⋯C, H⋯O/O⋯H, N⋯H/H⋯N, and C⋯C inter­actions.

5. Density functional theory (DFT) studies

Energies were computed using the basis set B3LYP\631-G(d,p). The net inter­action energies are Eele = 55.2 kJ mol−1, Epol = 17.1 kJ mol−1, Edis = 218.8 kJ mol−1, Erep = 105.8 kJ mol−1 and the total inter­action energy Etot = 189.9 kJ mol−1. The topology of energy frameworks for inter­action energies are shown in Fig. 7[link].

[Figure 7]
Figure 7
Energy frameworks calculated for the title compound, viewed along the a axis direction, showing (a) Coulomb potential force, (b) dispersion force and (c, d) total energy diagrams. The cylindrical radii are proportional to the relative strength of the corresponding energies; they were adjusted to a cutoff value of 5 kJ mol−1.

The energy absorbed between bonding (HOMO) and anti-bonding (LUMO) orbitals determines the band gap of the material. The HOMO and LUMO were generated and their energies evaluated from the optimized structure, as shown in Fig. 8[link]. The electron density in the HOMO of the mol­ecule (I)[link] mainly resides on the ester (O—C=O) group, and at the phenyl benzoate fragment to a lesser extent. In the LUMO, the electronic charge densities are delocalized to reside on the naphthalene ring and the ester group. The energies of HOMO and LUMO are −8.72 eV and −5.55 eV, respectively, resulting in an energy gap (Eg) of 3.17 eV. Other parameters calculated in the DFT study are compiled in Table 2[link].

Table 2
The energy values (eV) of global reactivity descriptors

E_HOMO −8.72
E_LUMO −5.55
Energy gap 3.17
Ionization energy 8.72
Electron affinity 5.55
Electronegativity 7.135
Electrophilicity index 16.059
Chemical hardness 1.585
Chemical softness 0.315 eV−1
Chemical potential −7.135
[Figure 8]
Figure 8
HOMO and LUMO of (I)[link] with the energy band gap Eg.

6. Mol­ecular Electrostatic Potential (MESP).

The mol­ecular electrostatic potential surface (MEPS) can be used to visualize the electrostatic potential of a mol­ecule. For (I)[link], the MEPS is illustrated in Fig. 9[link], which provides possible information about the reactive sites. The electron-rich part with a partial negative charge is shown by the combination of red and pale-yellow regions on the MEPS over the nitro­gen atom of the cyanona­phthalene moiety and the oxygen atom of the ester group, which is expected to undergo weak electrophilic attack. The faint blue colour spread all over the mol­ecule implies less electron deficient parts. The absence of a bright-blue region on the MEPS reveals that there are no possible sites on the mol­ecule for nucleophile attack (Friesner et al., 2006[Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C. & Mainz, D. T. (2006). J. Med. Chem. 49, 6177-6196.]).

[Figure 9]
Figure 9
MEP plots of the title compound; regions of attractive potential appear in red and those of repulsive potential appear in blue.

7. Mol­ecular docking studies

AutoDock Vina (Morris et al., 2009[Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). J. Comput. Chem. 30, 27852791.]) was used to carry out the docking studies. The SARS-Covid-2(PDB ID:7QF0; Planchais et al., 2022[Planchais, C., Fernández, I., Bruel, T., de Melo, G. D., Prot, M., Beretta, M., Guardado-Calvo, P., Dufloo, J., Molinos-Albert, L. M., Backovic, M., Chiaravalli, J., Giraud, E., Vesin, B., Conquet, L., Grzelak, L., Planas, D., Staropoli, I., Guivel-Benhassine, F., Hieu, T., Boullé, M., Cervantes-Gonzalez, M., Ungeheuer, M., Charneau, P., van der Werf, S., Agou, F., Bartoli, M., Diallo, A., Le Mestre, S., Paul, C., Petrov-Sanchez, V., Yazdanpanah, Y., Ficko, C., Chirouze, C., Andrejak, C., Malvy, D., Goehringer, F., Rossignol, P., Gigante, T., Gilg, M., Rossignol, B., Etienne, M., Beluze, M., Bachelet, D., Bhavsar, K., Bouadma, L., Cervantes-Gonzalez, M., Chair, A., Charpentier, C., Chenard, L., Couffignal, C., Debray, M., Descamps, D., Duval, X., Eloy, P., Esposito-Farese, M., Florence, A., Ghosn, J., Hoffmann, I., Kafif, O., Khalil, A., Lafhej, N., Laouénan, C., Laribi, S., Le, M., Le Hingrat, Q., Letrou, S., Mentré, F., Peytavin, G., Piquard, V., Roy, C., Schneider, M., Su, R., Tardivon, C., Timsit, J., Tubiana, S., Visseaux, B., Deplanque, D., Hulot, J., Diehl, J., Picone, O., Angoulvant, F., Abrous, A., Couffin-Cadiergues, S., Da Silva, F. D., Esperou, H., Houas, I., Jaafoura, S., Papadopoulos, A., Gaymard, A., Lina, B., Rosa-Calatrava, M., Dorival, C., Guedj, J., Lingas, G., Neant, N., Abel, L., Manda, V., Behillil, S., Enouf, V., Levy, Y., Wiedemann, A., Arowas, L., Perlaza, B. L., Perrin de Facci, L., Chaouche, S., Sangari, L., Renaudat, C., Fernandes Pellerin, S., van Platen, C., Jolly, N., Kuhmel, L., Garaud, V., Rafanoson, H., Gardais, S., de Parseval, N., Dugast, C., Jannet, C., Ropars, S., Momboisse, F., Porteret, I., Cailleau, I., Hoen, B., Tondeur, L., Besombes, C., Fontanet, A., Dimitrov, J. D., Simon-Lorière, E., Bourhy, H., Montagutelli, X., Rey, F. A., Schwartz, O. & Mouquet, H. (2022). J. Exp. Med. 219, e20220638.]) protein was selected as a receptor and the title compound as a ligand. A good binding affinity score of −9.5 kcal mol−1 was obtained. The inter­action as generated by Discovery Studio Visualizer (Biovia, 2017[Biovia (2017). Discovery Studio Visualizer. Biovia, San Diego, CA, USA.]) is shown in Fig. 10[link]. It clearly illustrates that there are eleven hydrogen bonds and twelve van der Waals inter­actions between the ligand and the amino acid residues of the protein. Hence, the title mol­ecule can be considered as a potential candidate for pharmaceutical applications.

[Figure 10]
Figure 10
A three-dimensional view of the SARS-Covid-2(PDB ID:7QF0) protein and two-dimensional view of the mol­ecular inter­action between the ligand and amino acid residues.

8. Database survey

A search in the Cambridge Crystallographic Database (CSD version 2.0.4 of December 2019; Groom et al.. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the mol­ecule containing a (benz­yloxy)benzoate fragment resulted in fourteen matches: in all these compounds, the torsion angles of the C—O—C—C unit indicate an anti-periplanar conformation. Among them, the compound with CCDC code VUCFEI (Harish Kumar et al., 2024[Harish Kumar, M., Vinduvahini, M., Devarajegowda, H. C., Srinivasa, H. T. & Palakshamurthy, B. S. (2024). Acta Cryst. E80, 1010-1013.]) is very similar to the title compound in which the cyano-biphenyl fragment is replaced by a cyano-naphthalene fragment. The search for mol­ecules containing cyanona­pthalene moieties resulted in twelve matches. In three of them, CIVZIR (Clegg et al., 2008[Clegg, W., Dale, S., Hevia, E., Hogg, L., Honeyman, G., Mulvey, R., O'Hara, C. & Russo, L. (2008). Angew. Chem. Int. Ed. 47, 731-734.]), IKUMOR (Li et al., 2010[Li, T., García, J. J., Brennessel, W. W. & Jones, W. D. (2010). Organo­metallics, 29, 2430-2445.]) and KOPTIU (Baya et al., 2015[Baya, M., Belío, Ú., Forniés, J., Martín, A., Perálvarez, M. & Sicilia, V. (2015). Inorg. Chim. Acta, 424, 136-149.]), a bulky group is attached to the cyanona­phthalene fragment, which widens the dihedral angle between the two aromatic rings of the naphthalene moiety to more than 2.57 (2)°. Otherwise the cyanona­phthalene fragment is nearly planar.

9. Synthesis and crystallization

6-Cyanona­phthalen-2-yl 4-(benz­yloxy)benzoate was synthesised by the Steglich esterification reaction method between 3-benzyl­oxybenzoic acid and 6-hy­droxy-2-naphtho­nitrile.

To a solution of 3-benzyl­oxybenzoic acid (0.228 g, 1.0 mol), 6-hy­droxy-2-naphtho­nitrile (0.169 g, 1.0 mol) and a catalytic amount of DMAP (0.05 g) in dry di­chloro­methane (25 ml), DCC (0.220 g, 1. 2 mol) was added in one portion and the reaction mixture was stirred in argon medium for 12 h. The precipitate was filtered off and the filtrate was evaporated. The crude product was purified by recrystallization from chloro­form, yield 65%; m.p. 396–398 K; IR: 3331, 2239, 1730, 1315, 1450, 1286, 1197, 1076, 1916, 740 cm−1; 1H NMR: 7.83 (m, 6H, Ar-H), 7.50 (m, 6H, Ar-H), 7.34 (m, 3H, Ar-4), 5.20 (s, 2H, –CH2O) ppm; 13C NMR: 169.2, 149.2, 135.7, 128.7, 123.8, 119.8, 115.6, 105.6, 71.2, 33.6, 26.124.4 ppm; elemental analysis: calculated C, 79.14; H, 4.52; N, 3.69%; found C, 79.19; H, 4.60; N, 3.75.

10. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geom­etrically (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C25H17NO3
Mr 379.39
Crystal system, space group Monoclinic, P21
Temperature (K) 285
a, b, c (Å) 9.3141 (3), 6.7593 (2), 15.3574 (5)
β (°) 105.163 (1)
V3) 933.19 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.42 × 0.31 × 0.27
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.966, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 26288, 4790, 4314
Rint 0.037
(sin θ/λ)max−1) 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.112, 1.11
No. of reflections 4790
No. of parameters 262
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.26
Absolute structure Flack x determined using 1567 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.0 (3)
Computer programs: APEX2 and SAINT (Bruker, 2017[Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

6-Cyanonaphthalen-2-yl 4-(benzyloxy)benzoate top
Crystal data top
C25H17NO3F(000) = 396
Mr = 379.39Dx = 1.350 Mg m3
Monoclinic, P21Melting point: 386 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.3141 (3) ÅCell parameters from 2709 reflections
b = 6.7593 (2) Åθ = 2.9–29.0°
c = 15.3574 (5) ŵ = 0.09 mm1
β = 105.163 (1)°T = 285 K
V = 933.19 (5) Å3Prism, colourless
Z = 20.42 × 0.31 × 0.27 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4790 independent reflections
Radiation source: fine-focus sealed tube4314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 0.012 pixels mm-1θmax = 29.1°, θmin = 2.9°
φ and Ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 89
Tmin = 0.966, Tmax = 0.975l = 2021
26288 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.1406P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
4790 reflectionsΔρmax = 0.18 e Å3
262 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack x determined using 1567 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0.012 constraintsAbsolute structure parameter: 0.0 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6200 (2)0.4858 (3)0.73167 (12)0.0472 (5)
O20.8441 (2)0.3738 (3)0.48087 (11)0.0429 (4)
O30.7449 (2)0.0904 (3)0.41447 (13)0.0562 (5)
N11.0966 (4)0.8151 (5)0.00409 (19)0.0720 (8)
C200.5314 (3)0.6692 (4)0.84087 (16)0.0404 (5)
C250.4012 (3)0.7744 (5)0.82984 (18)0.0484 (6)
H250.3147010.7298140.7893270.058*
C240.3981 (3)0.9466 (5)0.8788 (2)0.0545 (7)
H240.3093671.0153130.8719170.065*
C230.5259 (4)1.0150 (5)0.93713 (17)0.0519 (7)
H230.5243801.1303950.9698870.062*
C220.6562 (3)0.9121 (5)0.94689 (19)0.0559 (7)
H220.7432500.9593860.9859450.067*
C210.6599 (3)0.7402 (5)0.8998 (2)0.0510 (7)
H210.7488280.6713630.9075890.061*
C190.5315 (3)0.4734 (4)0.7946 (2)0.0522 (7)
H19A0.5713400.3720320.8391360.063*
H19B0.4304670.4369730.7633930.063*
C150.6204 (3)0.3220 (4)0.67884 (16)0.0369 (5)
C140.6894 (3)0.3444 (4)0.60972 (16)0.0362 (5)
H140.7336530.4642690.6020970.043*
C130.6925 (2)0.1874 (4)0.55184 (15)0.0348 (5)
C180.6267 (3)0.0076 (4)0.56294 (16)0.0413 (5)
H180.6270270.0966810.5234880.050*
C170.5613 (3)0.0141 (4)0.63296 (18)0.0473 (6)
H170.5193660.1351150.6413780.057*
C160.5568 (3)0.1408 (4)0.69109 (18)0.0441 (6)
H160.5116640.1241550.7379420.053*
C120.7611 (3)0.2051 (4)0.47543 (16)0.0387 (5)
C10.9033 (3)0.4198 (4)0.40816 (15)0.0369 (5)
C100.9968 (3)0.2840 (4)0.37968 (16)0.0400 (5)
H101.0208920.1632730.4089400.048*
C91.0511 (3)0.3335 (4)0.30832 (16)0.0377 (5)
H91.1120800.2449410.2884510.045*
C81.0162 (2)0.5176 (4)0.26402 (14)0.0338 (5)
C30.9284 (2)0.6563 (3)0.29738 (15)0.0342 (5)
C20.8722 (3)0.6006 (4)0.37101 (16)0.0386 (5)
H20.8140180.6884320.3936380.046*
C71.0641 (3)0.5664 (4)0.18674 (16)0.0391 (5)
H71.1218360.4775360.1643450.047*
C40.8978 (3)0.8423 (4)0.25446 (17)0.0419 (5)
H40.8453630.9362740.2779690.050*
C50.9433 (3)0.8867 (4)0.17954 (17)0.0435 (6)
H50.9206361.0089900.1515540.052*
C61.0253 (3)0.7458 (4)0.14457 (16)0.0403 (5)
C111.0668 (3)0.7861 (4)0.06199 (19)0.0496 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0643 (11)0.0366 (10)0.0515 (10)0.0114 (8)0.0341 (9)0.0087 (8)
O20.0574 (10)0.0396 (10)0.0374 (9)0.0067 (8)0.0224 (8)0.0056 (7)
O30.0713 (13)0.0535 (12)0.0519 (11)0.0164 (10)0.0305 (10)0.0191 (10)
N10.097 (2)0.070 (2)0.0591 (15)0.0155 (17)0.0381 (15)0.0228 (14)
C200.0513 (14)0.0390 (13)0.0384 (12)0.0067 (11)0.0251 (10)0.0015 (10)
C250.0464 (14)0.0527 (17)0.0452 (14)0.0026 (12)0.0104 (11)0.0016 (12)
C240.0602 (17)0.0483 (17)0.0603 (17)0.0132 (13)0.0250 (14)0.0054 (13)
C230.082 (2)0.0397 (14)0.0416 (13)0.0051 (14)0.0290 (13)0.0055 (11)
C220.0584 (17)0.0583 (18)0.0483 (15)0.0152 (15)0.0093 (13)0.0055 (13)
C210.0429 (13)0.0525 (17)0.0608 (16)0.0015 (12)0.0193 (12)0.0012 (13)
C190.0694 (18)0.0414 (16)0.0587 (16)0.0104 (13)0.0396 (14)0.0078 (12)
C150.0416 (12)0.0332 (12)0.0376 (11)0.0022 (9)0.0135 (10)0.0029 (9)
C140.0411 (12)0.0320 (12)0.0370 (11)0.0026 (9)0.0130 (9)0.0010 (9)
C130.0360 (11)0.0375 (13)0.0310 (10)0.0004 (9)0.0086 (8)0.0000 (9)
C180.0466 (13)0.0359 (13)0.0413 (12)0.0042 (11)0.0113 (10)0.0070 (10)
C170.0545 (14)0.0364 (14)0.0532 (14)0.0126 (12)0.0181 (12)0.0017 (11)
C160.0517 (14)0.0433 (15)0.0422 (13)0.0091 (11)0.0210 (11)0.0009 (10)
C120.0416 (12)0.0394 (13)0.0355 (11)0.0010 (10)0.0110 (9)0.0025 (10)
C10.0422 (12)0.0380 (13)0.0329 (11)0.0050 (10)0.0138 (9)0.0054 (9)
C100.0470 (13)0.0340 (12)0.0395 (12)0.0020 (10)0.0123 (10)0.0035 (10)
C90.0425 (12)0.0342 (12)0.0386 (11)0.0037 (10)0.0145 (10)0.0037 (9)
C80.0338 (10)0.0347 (12)0.0322 (10)0.0009 (9)0.0076 (8)0.0033 (9)
C30.0372 (11)0.0304 (11)0.0339 (11)0.0000 (9)0.0072 (9)0.0063 (9)
C20.0436 (13)0.0362 (13)0.0379 (11)0.0007 (10)0.0140 (10)0.0079 (10)
C70.0423 (12)0.0385 (13)0.0382 (11)0.0017 (10)0.0132 (10)0.0032 (10)
C40.0504 (13)0.0319 (13)0.0446 (13)0.0043 (10)0.0143 (11)0.0043 (10)
C50.0542 (14)0.0316 (13)0.0423 (12)0.0022 (11)0.0082 (11)0.0040 (10)
C60.0450 (13)0.0411 (14)0.0344 (11)0.0049 (11)0.0096 (10)0.0012 (10)
C110.0583 (16)0.0443 (15)0.0469 (14)0.0027 (12)0.0149 (12)0.0083 (12)
Geometric parameters (Å, º) top
O1—C151.373 (3)C13—C121.481 (3)
O1—C191.427 (3)C18—C171.375 (3)
O2—C121.368 (3)C18—H180.9300
O2—C11.404 (3)C17—C161.384 (4)
O3—C121.194 (3)C17—H170.9300
N1—C111.137 (4)C16—H160.9300
C20—C251.378 (4)C1—C21.348 (4)
C20—C211.384 (4)C1—C101.412 (3)
C20—C191.502 (4)C10—C91.363 (3)
C25—C241.390 (4)C10—H100.9300
C25—H250.9300C9—C81.415 (3)
C24—C231.369 (4)C9—H90.9300
C24—H240.9300C8—C71.412 (3)
C23—C221.373 (4)C8—C31.424 (3)
C23—H230.9300C3—C41.413 (3)
C22—C211.374 (4)C3—C21.416 (3)
C22—H220.9300C2—H20.9300
C21—H210.9300C7—C61.378 (4)
C19—H19A0.9700C7—H70.9300
C19—H19B0.9700C4—C51.360 (4)
C15—C141.386 (3)C4—H40.9300
C15—C161.395 (4)C5—C61.412 (4)
C14—C131.389 (3)C5—H50.9300
C14—H140.9300C6—C111.445 (4)
C13—C181.391 (4)
C15—O1—C19116.41 (19)C17—C16—C15119.4 (2)
C12—O2—C1118.01 (18)C17—C16—H16120.3
C25—C20—C21119.0 (3)C15—C16—H16120.3
C25—C20—C19120.4 (3)O3—C12—O2122.9 (2)
C21—C20—C19120.5 (3)O3—C12—O2122.9 (2)
C20—C25—C24120.5 (3)O3—C12—C13125.2 (2)
C20—C25—H25119.7O2—C12—C13111.91 (19)
C24—C25—H25119.7O2—C12—C13111.91 (19)
C23—C24—C25120.0 (3)C2—C1—O2116.9 (2)
C23—C24—H24120.0C2—C1—O2116.9 (2)
C25—C24—H24120.0C2—C1—C10122.7 (2)
C24—C23—C22119.5 (3)O2—C1—C10120.3 (2)
C24—C23—H23120.3O2—C1—C10120.3 (2)
C22—C23—H23120.3C9—C10—C1118.5 (2)
C23—C22—C21121.0 (3)C9—C10—H10120.7
C23—C22—H22119.5C1—C10—H10120.7
C21—C22—H22119.5C10—C9—C8121.1 (2)
C22—C21—C20120.1 (3)C10—C9—H9119.5
C22—C21—H21120.0C8—C9—H9119.5
C20—C21—H21120.0C7—C8—C9121.7 (2)
O1—C19—C20109.9 (2)C7—C8—C3119.1 (2)
O1—C19—H19A109.7C9—C8—C3119.2 (2)
C20—C19—H19A109.7C4—C3—C2122.5 (2)
O1—C19—H19B109.7C4—C3—C8118.8 (2)
C20—C19—H19B109.7C2—C3—C8118.6 (2)
H19A—C19—H19B108.2C1—C2—C3119.7 (2)
O1—C15—C14116.0 (2)C1—C2—H2120.1
O1—C15—C16124.1 (2)C3—C2—H2120.1
C14—C15—C16119.9 (2)C6—C7—C8119.9 (2)
C15—C14—C13119.9 (2)C6—C7—H7120.0
C15—C14—H14120.1C8—C7—H7120.0
C13—C14—H14120.1C5—C4—C3121.4 (2)
C14—C13—C18120.4 (2)C5—C4—H4119.3
C14—C13—C12122.0 (2)C3—C4—H4119.3
C18—C13—C12117.6 (2)C4—C5—C6119.5 (2)
C17—C18—C13119.2 (2)C4—C5—H5120.3
C17—C18—H18120.4C6—C5—H5120.3
C13—C18—H18120.4C7—C6—C5121.1 (2)
C18—C17—C16121.2 (2)C7—C6—C11118.8 (2)
C18—C17—H17119.4C5—C6—C11120.1 (2)
C16—C17—H17119.4N1—C11—C6178.3 (3)
C21—C20—C25—C241.5 (4)C14—C13—C12—O212.4 (3)
C19—C20—C25—C24174.2 (2)C18—C13—C12—O2169.2 (2)
C20—C25—C24—C231.3 (4)O2—O2—C1—C20.0 (4)
C25—C24—C23—C220.2 (4)C12—O2—C1—C2125.9 (2)
C24—C23—C22—C210.8 (4)C12—O2—C1—O20 (100)
C23—C22—C21—C200.6 (4)O2—O2—C1—C100.0 (4)
C25—C20—C21—C220.5 (4)C12—O2—C1—C1057.1 (3)
C19—C20—C21—C22175.1 (2)C2—C1—C10—C93.8 (4)
C15—O1—C19—C20174.8 (2)O2—C1—C10—C9179.5 (2)
C25—C20—C19—O1116.3 (3)O2—C1—C10—C9179.5 (2)
C21—C20—C19—O168.1 (3)C1—C10—C9—C80.6 (4)
C19—O1—C15—C14171.5 (2)C10—C9—C8—C7176.2 (2)
C19—O1—C15—C168.5 (4)C10—C9—C8—C32.9 (3)
O1—C15—C14—C13178.7 (2)C7—C8—C3—C42.8 (3)
C16—C15—C14—C131.2 (3)C9—C8—C3—C4178.1 (2)
C15—C14—C13—C180.1 (3)C7—C8—C3—C2175.6 (2)
C15—C14—C13—C12178.3 (2)C9—C8—C3—C23.4 (3)
C14—C13—C18—C171.3 (4)O2—C1—C2—C3179.9 (2)
C12—C13—C18—C17179.7 (2)O2—C1—C2—C3179.9 (2)
C13—C18—C17—C161.5 (4)C10—C1—C2—C33.2 (4)
C18—C17—C16—C150.4 (4)C4—C3—C2—C1178.9 (2)
O1—C15—C16—C17178.9 (2)C8—C3—C2—C10.5 (3)
C14—C15—C16—C171.0 (4)C9—C8—C7—C6178.8 (2)
O2—O2—C12—O30.00 (4)C3—C8—C7—C60.3 (3)
C1—O2—C12—O34.7 (4)C2—C3—C4—C5174.8 (2)
C1—O2—C12—O20 (100)C8—C3—C4—C53.6 (3)
O2—O2—C12—C130.00 (7)C3—C4—C5—C61.2 (4)
C1—O2—C12—C13173.7 (2)C8—C7—C6—C52.8 (4)
C14—C13—C12—O3166.0 (3)C8—C7—C6—C11175.6 (2)
C18—C13—C12—O312.5 (4)C4—C5—C6—C72.1 (4)
C14—C13—C12—O212.4 (3)C4—C5—C6—C11176.3 (2)
C18—C13—C12—O2169.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C3–C8 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.683.579 (3)164
C16—H16···Cg4ii0.932.973.711 (3)138
C23—H23···Cg4iii0.932.763.611 (3)153
C24—H24···Cg2iv0.932.983.858 (3)159
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x, y1, z; (iii) x+1, y+1/2, z; (iv) x+1, y+1/2, z+1.
The energy values (eV) of global reactivity descriptors top
E_HOMO-8.72
E_LUMO-5.55
Energy gap3.17
Ionisation energy8.72
Electron affinity5.55
Electronegativity7.135
Electrophilicity index16.059
Chemical hardness1.585
Chemical softness0.315 eV-1
Chemical potential-7.135
 

Acknowledgements

The authors acknowledge the SSCU, Indian Institute Science, Bangalore, for constant support in extending the SC-XRD facility. The authors are thankful to BSPMs lab for use of their computing facilities. MH is grateful to the Department of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur.

Funding information

Funding for this research was provided by: Vission Group of Science and Technology (award No. GRD319 to Palakshamurthy BS).

References

First citationAshraf, K., Yasrebi, K., Adeniyi, E. T., Hertlein, T., Ohlsen, K., Lalk, M., Erdmann, F. & Hilgeroth, A. (2019). Drug. Des. Dev. Ther. 13, 275–283.  CrossRef Google Scholar
First citationBaya, M., Belío, Ú., Forniés, J., Martín, A., Perálvarez, M. & Sicilia, V. (2015). Inorg. Chim. Acta, 424, 136–149.  CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiovia (2017). Discovery Studio Visualizer. Biovia, San Diego, CA, USA.  Google Scholar
First citationBoyle, E. A., Freemanm, P. C., Mangan, F. R. & Thomson, M. J. (1982). J. Pharm. Pharmacol. 34, 562–569.  CrossRef PubMed Google Scholar
First citationBruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCandia, M. de, Marini, E., Zaetta, G., Cellamare, S., Di Stilo, A. & Altomare, C. D. (2015). Eur. J. Pharm. Sci. 72, 69–80.  Web of Science PubMed Google Scholar
First citationClegg, W., Dale, S., Hevia, E., Hogg, L., Honeyman, G., Mulvey, R., O'Hara, C. & Russo, L. (2008). Angew. Chem. Int. Ed. 47, 731–734.  CSD CrossRef Google Scholar
First citationDas, S. K., Panda, G., Chaturvedi, V., Manju, Y. S., Gaikwad, A. K. & Sinha, S. (2007). Bioorg. Med. Chem. Lett. 17, 5586–5589.  CrossRef PubMed Google Scholar
First citationEl-Desoky, E.-S. I., Keshk, E. M., El-Sawi, A. A., Abozeid, M. A., Abouzeid, L. A. & Abdel-Rahman, A.-R. H. (2018). Saudi Pharm. J. 26, 852–859.  PubMed Google Scholar
First citationFriesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C. & Mainz, D. T. (2006). J. Med. Chem. 49, 6177–6196.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarish Kumar, M., Vinduvahini, M., Devarajegowda, H. C., Srinivasa, H. T. & Palakshamurthy, B. S. (2024). Acta Cryst. E80, 1010–1013.  CSD CrossRef IUCr Journals Google Scholar
First citationHekal, M., Abdalha, A. A., Farag, H. & Ali, A. T. (2024). Chem. Biodivers. pp. e202401023.  Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJin, F., Peng, F., Li, W. R., Chai, J. Q., Chen, M., Lu, A. M. & Zhou, M. G. (2024). J. Saudi Chem. Soc. 28, 101928.  CSD CrossRef Google Scholar
First citationKaushik, C. P., Pahwa, A., Kumar, D., Kumar, A., Singh, D., Kumar, K. & Luxmi, R. (2018). J. Heterocycl. Chem. 55, 1720–1728.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, T., García, J. J., Brennessel, W. W. & Jones, W. D. (2010). Organo­metallics, 29, 2430–2445.  CSD CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohebi, M., Fayazi, N., Esmaeili, S., Rostami, M., Bagheri, F., Aliabadi, A., Asadi, P. & Saghaie, L. (2022). Res. Pharma Sci. 17, 252–264.  CrossRef Google Scholar
First citationMorris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). J. Comput. Chem. 30, 27852791.  CrossRef Google Scholar
First citationÖzdemir, Z., Sari, S., Karakurt, A. & Dalkara, S. (2019). Drug Dev. Res. 80, 269–280.  PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPerrone, R., Doria, F., Butovskaya, E., Frasson, I., Botti, S., Scalabrin, M., Lago, S., Grande, V., Nadai, M., Freccero, M. & Richter, S. N. (2015). J. Med. Chem. 58, 9639–9652.  CrossRef PubMed Google Scholar
First citationPlanchais, C., Fernández, I., Bruel, T., de Melo, G. D., Prot, M., Beretta, M., Guardado-Calvo, P., Dufloo, J., Molinos-Albert, L. M., Backovic, M., Chiaravalli, J., Giraud, E., Vesin, B., Conquet, L., Grzelak, L., Planas, D., Staropoli, I., Guivel-Benhassine, F., Hieu, T., Boullé, M., Cervantes-Gonzalez, M., Ungeheuer, M., Charneau, P., van der Werf, S., Agou, F., Bartoli, M., Diallo, A., Le Mestre, S., Paul, C., Petrov-Sanchez, V., Yazdanpanah, Y., Ficko, C., Chirouze, C., Andrejak, C., Malvy, D., Goehringer, F., Rossignol, P., Gigante, T., Gilg, M., Rossignol, B., Etienne, M., Beluze, M., Bachelet, D., Bhavsar, K., Bouadma, L., Cervantes-Gonzalez, M., Chair, A., Charpentier, C., Chenard, L., Couffignal, C., Debray, M., Descamps, D., Duval, X., Eloy, P., Esposito-Farese, M., Florence, A., Ghosn, J., Hoffmann, I., Kafif, O., Khalil, A., Lafhej, N., Laouénan, C., Laribi, S., Le, M., Le Hingrat, Q., Letrou, S., Mentré, F., Peytavin, G., Piquard, V., Roy, C., Schneider, M., Su, R., Tardivon, C., Timsit, J., Tubiana, S., Visseaux, B., Deplanque, D., Hulot, J., Diehl, J., Picone, O., Angoulvant, F., Abrous, A., Couffin-Cadiergues, S., Da Silva, F. D., Esperou, H., Houas, I., Jaafoura, S., Papadopoulos, A., Gaymard, A., Lina, B., Rosa-Calatrava, M., Dorival, C., Guedj, J., Lingas, G., Neant, N., Abel, L., Manda, V., Behillil, S., Enouf, V., Levy, Y., Wiedemann, A., Arowas, L., Perlaza, B. L., Perrin de Facci, L., Chaouche, S., Sangari, L., Renaudat, C., Fernandes Pellerin, S., van Platen, C., Jolly, N., Kuhmel, L., Garaud, V., Rafanoson, H., Gardais, S., de Parseval, N., Dugast, C., Jannet, C., Ropars, S., Momboisse, F., Porteret, I., Cailleau, I., Hoen, B., Tondeur, L., Besombes, C., Fontanet, A., Dimitrov, J. D., Simon-Lorière, E., Bourhy, H., Montagutelli, X., Rey, F. A., Schwartz, O. & Mouquet, H. (2022). J. Exp. Med. 219, e20220638.  CrossRef PubMed Google Scholar
First citationPrakash, N., Elamaran, M. & Ingarsal, N. (2015). Chem. Sci. Trans. 4, 947–954.  Google Scholar
First citationRai, D., Chen, W., Tian, Y., Chen, X., Zhan, P., De Clercq, E., Pannecouque, C., Balzarini, J. & Liu, X. (2023). Bioorg. Med. Chem. 21, 7398–7405.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasa, H. T., Prutha, N. & Pratibha, R. (2020). J. Mol. Struct. 1199, 126971.  CrossRef Google Scholar
First citationValente, S., Trisciuoglio, D., De Luca, T., Nebbioso, A., Labella, D., Lenoci, A., Bigogno, C., Dondio, G., Miceli, M., Brosch, G., Del Bufalo, D., Altucci, L. & Mai, A. (2014). J. Med. Chem. 57, 6259–6265.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVoets, M., Antes, I., Scherer, C., Müller-Vieira, U., Biemel, K., Barassin, C., Marchais-Oberwinkler, S. & Hartmann, R. W. (2005). J. Med. Chem. 48, 6632–6642.  CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds