- 1. Chemical context
- 2. Structural commentary
- 3. Supramolecular features
- 4. Hirshfeld surface analysis
- 5. Density functional theory (DFT) studies
- 6. Molecular Electrostatic Potential (MESP).
- 7. Molecular docking studies
- 8. Database survey
- 9. Synthesis and crystallization
- 10. Refinement
- Supporting information
- References
- 1. Chemical context
- 2. Structural commentary
- 3. Supramolecular features
- 4. Hirshfeld surface analysis
- 5. Density functional theory (DFT) studies
- 6. Molecular Electrostatic Potential (MESP).
- 7. Molecular docking studies
- 8. Database survey
- 9. Synthesis and crystallization
- 10. Refinement
- Supporting information
- References
research communications
Hirshfeld surface analysis, and DFT and molecular of 6-cyanonaphthalen-2-yl 4-(benzyloxy)benzoate
aDepartment of Physics, Yuvaraja's College, University of Mysore, Mysore, 570005, Karnataka, India, bDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka-572103, India, and cRaman Research Institute, C. V. Raman, Avenue, Sadashivanagar, Bangalore, Karnataka, India
*Correspondence e-mail: palaksha.bspm@gmail.com
In the title compound, C25H17NO3, the torsion angle associated with the phenyl benzoate group is −173.7 (2)° and that for the benzyloxy group is −174.8 (2)° establishing an anti-type conformation. The dihedral angles between the ten-membered cyanonaphthalene ring and the aromatic ring of the phenyl benzoate and the benzyloxy fragments are 40.70 (10) and 87.51 (11)°, respectively, whereas the dihedral angle between the aromatic phenyl benzoate and the benzyloxy fragments is 72.30 (13)°. In the crystal, the molecules are linked by weak C—H⋯O interactions forming S(4) chains propagating parallel to [010]. The packing is consolidated by three C—H⋯π interactions and two π–π stacking interactions between the aromatic rings of naphthalene and phenyl benzoate with centroid-to-centroid distances of 3.9698 (15) and 3.8568 (15) Å, respectively. Intermolecular interactions were quantified using Hirshfeld surface analysis. The molecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–311+ G(d,p) level, revealing that the energy gap between HOMO and LUMO is 3.17 eV. Molecular were carried out for the title compound as a ligand and SARS-Covid-2(PDB ID:7QF0) protein as a receptor giving a binding affinity of −9.5 kcal mol−1.
Keywords: crystal structure; Hirshfeld surface; DFT; 4-(benzyloxy)benzoate; cyanonapthalene and molecular docking; intermolecular interactions.
CCDC reference: 2391127
1. Chemical context
Naphthalene derivatives play a vital role in drug design because they have shown to exhibit anti-microbial (El et al., 2018), anti-cancer (Valente et al., 2014), anti-viral (Perrone et al., 2015), anticonvulsant (Özdemir et al., 2019), anti-tubercular (Das et al., 2007), anti-inflammatory (Boyle et al., 1982) and anti-bacterial activities (Ashraf et al., 2019). These properties are attributed to the naphthalene moiety because it is able to disrupt cell membranes, interfere with cell wall synthesis and inhibit In this context, cyanonaphthalene derivatives have been explored for their possible anti-cancer properties (Hekal et al., 2024). These compounds can cause programmed cell death in cancer cells, which can help slow down tumour growth. They have also been shown to have antifungal activity (Prakash et al., 2015) and to operate as potential inhibitors for the treatment of congestive heart failure and cardiac fibrosis (Voets et al., 2005), or against plant pathogenic fungi (Jin et al., 2024). Biological activities usually vary depending on the molecular structure of the compound, its substitution pattern, and strains used. In this regard, benzyloxy derivatives demonstrate anti-malarial, anti-platelet, and anti-bacterial activities (Mohebi et al., 2022; de Candia et al., 2015; Kaushik et al., 2018), while pyrimidinylphenylamine-substituted benzoyloxy derivatives are most potent in inhibiting HIV-1 (Rai et al., 2023).
In order to explore cyanonaphthalene and (benzyloxy)benzoate groups, we have adopted these moieties for the formation of organic liquid-crystal materials (Srinivasa et al., 2020). However, the toxicity of naphthalene and its potential carcinogenic properties may limit its use, and more research is needed to fully understand the mechanisms of potential action for therapeutic applications.
In the context given above, we present here the synthesis and structure elucidation of the cyanonaphthalene derivative, C25H17NO3, (I).
2. Structural commentary
The molecular structure of (I) is shown in Fig. 1. The cyanonaphthalene moiety (C1–C10, C11≡N1) is nearly planar with an r.m.s. deviation of 0.0762 Å, with a maximum deviation of −0.138 (2) for N1. The aromatic rings of the naphthalene system are inclined towards each other with a dihedral angle of 3.82 (12)o. The torsion angles at the phenyl benzoate group (C1–O2–C12–C13) and the benzyloxy fragment (C15–O1–C19–C20) are −173.7 (2) and −174.8 (2)°, respectively, establishing an anti-type conformation. Otherwise, bond lengths and angles can be regarded as normal. The dihedral angle between the ten membered cyanonaphthalene ring (C1–C10) and the aromatic ring of the phenyl benzoate moiety (C13–C18) is 40.70 (10)° and between that of the benzyloxy fragments (C20–C25) is 87.51 (11)°. The dihedral angle between the phenyl rings of the phenyl benzoate and the benzyloxy systems is 72.30 (13)°.
3. Supramolecular features
The crystal packing of (I) includes C—H⋯π interactions between aromatic H atoms and phenyl rings, as detailed for the interactions C16—H16⋯π, C23—H23⋯π and C24—H24⋯π in Table 1 and shown in Fig. 2. There are also slipped π–π interactions in the crystal between the two aromatic rings of the naphthalene ring system [Cg1 and Cg2 are the centroids of the C1–C3/C8–C10 and = C3–C8 rings, respectively] and phenyl benzoate ring [Cg3 is the centroid of the C13–C18 ring], with centroid-to-centroid distances for Cg1⋯Cg3 and Cg2⋯Cg3 of 3.9699 (15) Å (slippage 1.893 Å) and 3.8569 (10) Å (slippage 1.731 Å), respectively, as shown in Fig. 3. In addition, a weak C10—H10⋯O2 interaction (Table 1) forming a chain parallel to [010] with an S(4) motif (Bernstein et al., 1995) is an integral part of the crystal packing (Fig. 4).
4. Hirshfeld surface analysis
Hirshfeld surface analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was used to visualize and quantify intermolecular interactions using CrystalExplorer (Spackman et al., 2021). Fig. 5 illustrates the Hirshfeld surface mapped over dnorm, where the colour code denotes intermolecular interactions on the Hirshfeld surface: the contacts with distances equal to the sum of the van der Waals radii are indicated in white, while those with shorter and longer distances are represented in red and blue, respectively. For (I), the C10—H10⋯O2 interaction is responsible for the red regions. The two-dimensional fingerprint plots indicate that the major contributions to the crystal packing of (I) are from H⋯H (34.5% contribution), C⋯H/H⋯C (34.1%), O⋯H/H⋯O (11.8%), N⋯H/H⋯N (10.4%) and C⋯C (5.5%) contacts, as shown in Fig. 6.
5. Density functional theory (DFT) studies
Energies were computed using the basis set B3LYP\631-G(d,p). The net interaction energies are Eele = 55.2 kJ mol−1, Epol = 17.1 kJ mol−1, Edis = 218.8 kJ mol−1, Erep = 105.8 kJ mol−1 and the total interaction energy Etot = 189.9 kJ mol−1. The topology of energy frameworks for interaction energies are shown in Fig. 7.
The energy absorbed between bonding (HOMO) and anti-bonding (LUMO) orbitals determines the band gap of the material. The HOMO and LUMO were generated and their energies evaluated from the optimized structure, as shown in Fig. 8. The electron density in the HOMO of the molecule (I) mainly resides on the ester (O—C=O) group, and at the phenyl benzoate fragment to a lesser extent. In the LUMO, the electronic charge densities are delocalized to reside on the naphthalene ring and the ester group. The energies of HOMO and LUMO are −8.72 eV and −5.55 eV, respectively, resulting in an energy gap (Eg) of 3.17 eV. Other parameters calculated in the DFT study are compiled in Table 2.
|
6. Molecular Electrostatic Potential (MESP).
The molecular electrostatic potential surface (MEPS) can be used to visualize the electrostatic potential of a molecule. For (I), the MEPS is illustrated in Fig. 9, which provides possible information about the reactive sites. The electron-rich part with a partial negative charge is shown by the combination of red and pale-yellow regions on the MEPS over the nitrogen atom of the cyanonaphthalene moiety and the oxygen atom of the ester group, which is expected to undergo weak electrophilic attack. The faint blue colour spread all over the molecule implies less electron deficient parts. The absence of a bright-blue region on the MEPS reveals that there are no possible sites on the molecule for attack (Friesner et al., 2006).
7. Molecular docking studies
AutoDock Vina (Morris et al., 2009) was used to carry out the The SARS-Covid-2(PDB ID:7QF0; Planchais et al., 2022) protein was selected as a receptor and the title compound as a ligand. A good binding affinity score of −9.5 kcal mol−1 was obtained. The interaction as generated by Discovery Studio Visualizer (Biovia, 2017) is shown in Fig. 10. It clearly illustrates that there are eleven hydrogen bonds and twelve van der Waals interactions between the ligand and the amino acid residues of the protein. Hence, the title molecule can be considered as a potential candidate for pharmaceutical applications.
8. Database survey
A search in the Cambridge Crystallographic Database (CSD version 2.0.4 of December 2019; Groom et al.. 2016) for the molecule containing a (benzyloxy)benzoate fragment resulted in fourteen matches: in all these compounds, the torsion angles of the C—O—C—C unit indicate an anti-periplanar conformation. Among them, the compound with CCDC code VUCFEI (Harish Kumar et al., 2024) is very similar to the title compound in which the cyano-biphenyl fragment is replaced by a cyano-naphthalene fragment. The search for molecules containing cyanonapthalene moieties resulted in twelve matches. In three of them, CIVZIR (Clegg et al., 2008), IKUMOR (Li et al., 2010) and KOPTIU (Baya et al., 2015), a bulky group is attached to the cyanonaphthalene fragment, which widens the dihedral angle between the two aromatic rings of the naphthalene moiety to more than 2.57 (2)°. Otherwise the cyanonaphthalene fragment is nearly planar.
9. Synthesis and crystallization
6-Cyanonaphthalen-2-yl 4-(benzyloxy)benzoate was synthesised by the Steglich esterification reaction method between 3-benzyloxybenzoic acid and 6-hydroxy-2-naphthonitrile.
To a solution of 3-benzyloxybenzoic acid (0.228 g, 1.0 mol), 6-hydroxy-2-naphthonitrile (0.169 g, 1.0 mol) and a catalytic amount of DMAP (0.05 g) in dry dichloromethane (25 ml), DCC (0.220 g, 1. 2 mol) was added in one portion and the reaction mixture was stirred in argon medium for 12 h. The precipitate was filtered off and the filtrate was evaporated. The crude product was purified by recrystallization from chloroform, yield 65%; m.p. 396–398 K; IR: 3331, 2239, 1730, 1315, 1450, 1286, 1197, 1076, 1916, 740 cm−1; 1H NMR: 7.83 (m, 6H, Ar-H), 7.50 (m, 6H, Ar-H), 7.34 (m, 3H, Ar-4), 5.20 (s, 2H, –CH2O) ppm; 13C NMR: 169.2, 149.2, 135.7, 128.7, 123.8, 119.8, 115.6, 105.6, 71.2, 33.6, 26.124.4 ppm; elemental analysis: calculated C, 79.14; H, 4.52; N, 3.69%; found C, 79.19; H, 4.60; N, 3.75.
10. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 2391127
https://doi.org/10.1107/S2056989024009964/wm5736sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024009964/wm5736Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024009964/wm5736Isup3.cml
C25H17NO3 | F(000) = 396 |
Mr = 379.39 | Dx = 1.350 Mg m−3 |
Monoclinic, P21 | Melting point: 386 K |
Hall symbol: P 2yb | Mo Kα radiation, λ = 0.71073 Å |
a = 9.3141 (3) Å | Cell parameters from 2709 reflections |
b = 6.7593 (2) Å | θ = 2.9–29.0° |
c = 15.3574 (5) Å | µ = 0.09 mm−1 |
β = 105.163 (1)° | T = 285 K |
V = 933.19 (5) Å3 | Prism, colourless |
Z = 2 | 0.42 × 0.31 × 0.27 mm |
Bruker SMART APEXII CCD diffractometer | 4790 independent reflections |
Radiation source: fine-focus sealed tube | 4314 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 0.012 pixels mm-1 | θmax = 29.1°, θmin = 2.9° |
φ and Ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −8→9 |
Tmin = 0.966, Tmax = 0.975 | l = −20→21 |
26288 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.0503P)2 + 0.1406P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
4790 reflections | Δρmax = 0.18 e Å−3 |
262 parameters | Δρmin = −0.26 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1567 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0.012 constraints | Absolute structure parameter: 0.0 (3) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6200 (2) | 0.4858 (3) | 0.73167 (12) | 0.0472 (5) | |
O2 | 0.8441 (2) | 0.3738 (3) | 0.48087 (11) | 0.0429 (4) | |
O3 | 0.7449 (2) | 0.0904 (3) | 0.41447 (13) | 0.0562 (5) | |
N1 | 1.0966 (4) | 0.8151 (5) | −0.00409 (19) | 0.0720 (8) | |
C20 | 0.5314 (3) | 0.6692 (4) | 0.84087 (16) | 0.0404 (5) | |
C25 | 0.4012 (3) | 0.7744 (5) | 0.82984 (18) | 0.0484 (6) | |
H25 | 0.314701 | 0.729814 | 0.789327 | 0.058* | |
C24 | 0.3981 (3) | 0.9466 (5) | 0.8788 (2) | 0.0545 (7) | |
H24 | 0.309367 | 1.015313 | 0.871917 | 0.065* | |
C23 | 0.5259 (4) | 1.0150 (5) | 0.93713 (17) | 0.0519 (7) | |
H23 | 0.524380 | 1.130395 | 0.969887 | 0.062* | |
C22 | 0.6562 (3) | 0.9121 (5) | 0.94689 (19) | 0.0559 (7) | |
H22 | 0.743250 | 0.959386 | 0.985945 | 0.067* | |
C21 | 0.6599 (3) | 0.7402 (5) | 0.8998 (2) | 0.0510 (7) | |
H21 | 0.748828 | 0.671363 | 0.907589 | 0.061* | |
C19 | 0.5315 (3) | 0.4734 (4) | 0.7946 (2) | 0.0522 (7) | |
H19A | 0.571340 | 0.372032 | 0.839136 | 0.063* | |
H19B | 0.430467 | 0.436973 | 0.763393 | 0.063* | |
C15 | 0.6204 (3) | 0.3220 (4) | 0.67884 (16) | 0.0369 (5) | |
C14 | 0.6894 (3) | 0.3444 (4) | 0.60972 (16) | 0.0362 (5) | |
H14 | 0.733653 | 0.464269 | 0.602097 | 0.043* | |
C13 | 0.6925 (2) | 0.1874 (4) | 0.55184 (15) | 0.0348 (5) | |
C18 | 0.6267 (3) | 0.0076 (4) | 0.56294 (16) | 0.0413 (5) | |
H18 | 0.627027 | −0.096681 | 0.523488 | 0.050* | |
C17 | 0.5613 (3) | −0.0141 (4) | 0.63296 (18) | 0.0473 (6) | |
H17 | 0.519366 | −0.135115 | 0.641378 | 0.057* | |
C16 | 0.5568 (3) | 0.1408 (4) | 0.69109 (18) | 0.0441 (6) | |
H16 | 0.511664 | 0.124155 | 0.737942 | 0.053* | |
C12 | 0.7611 (3) | 0.2051 (4) | 0.47543 (16) | 0.0387 (5) | |
C1 | 0.9033 (3) | 0.4198 (4) | 0.40816 (15) | 0.0369 (5) | |
C10 | 0.9968 (3) | 0.2840 (4) | 0.37968 (16) | 0.0400 (5) | |
H10 | 1.020892 | 0.163273 | 0.408940 | 0.048* | |
C9 | 1.0511 (3) | 0.3335 (4) | 0.30832 (16) | 0.0377 (5) | |
H9 | 1.112080 | 0.244941 | 0.288451 | 0.045* | |
C8 | 1.0162 (2) | 0.5176 (4) | 0.26402 (14) | 0.0338 (5) | |
C3 | 0.9284 (2) | 0.6563 (3) | 0.29738 (15) | 0.0342 (5) | |
C2 | 0.8722 (3) | 0.6006 (4) | 0.37101 (16) | 0.0386 (5) | |
H2 | 0.814018 | 0.688432 | 0.393638 | 0.046* | |
C7 | 1.0641 (3) | 0.5664 (4) | 0.18674 (16) | 0.0391 (5) | |
H7 | 1.121836 | 0.477536 | 0.164345 | 0.047* | |
C4 | 0.8978 (3) | 0.8423 (4) | 0.25446 (17) | 0.0419 (5) | |
H4 | 0.845363 | 0.936274 | 0.277969 | 0.050* | |
C5 | 0.9433 (3) | 0.8867 (4) | 0.17954 (17) | 0.0435 (6) | |
H5 | 0.920636 | 1.008990 | 0.151554 | 0.052* | |
C6 | 1.0253 (3) | 0.7458 (4) | 0.14457 (16) | 0.0403 (5) | |
C11 | 1.0668 (3) | 0.7861 (4) | 0.06199 (19) | 0.0496 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0643 (11) | 0.0366 (10) | 0.0515 (10) | −0.0114 (8) | 0.0341 (9) | −0.0087 (8) |
O2 | 0.0574 (10) | 0.0396 (10) | 0.0374 (9) | −0.0067 (8) | 0.0224 (8) | −0.0056 (7) |
O3 | 0.0713 (13) | 0.0535 (12) | 0.0519 (11) | −0.0164 (10) | 0.0305 (10) | −0.0191 (10) |
N1 | 0.097 (2) | 0.070 (2) | 0.0591 (15) | 0.0155 (17) | 0.0381 (15) | 0.0228 (14) |
C20 | 0.0513 (14) | 0.0390 (13) | 0.0384 (12) | −0.0067 (11) | 0.0251 (10) | −0.0015 (10) |
C25 | 0.0464 (14) | 0.0527 (17) | 0.0452 (14) | −0.0026 (12) | 0.0104 (11) | −0.0016 (12) |
C24 | 0.0602 (17) | 0.0483 (17) | 0.0603 (17) | 0.0132 (13) | 0.0250 (14) | 0.0054 (13) |
C23 | 0.082 (2) | 0.0397 (14) | 0.0416 (13) | −0.0051 (14) | 0.0290 (13) | −0.0055 (11) |
C22 | 0.0584 (17) | 0.0583 (18) | 0.0483 (15) | −0.0152 (15) | 0.0093 (13) | −0.0055 (13) |
C21 | 0.0429 (13) | 0.0525 (17) | 0.0608 (16) | −0.0015 (12) | 0.0193 (12) | −0.0012 (13) |
C19 | 0.0694 (18) | 0.0414 (16) | 0.0587 (16) | −0.0104 (13) | 0.0396 (14) | −0.0078 (12) |
C15 | 0.0416 (12) | 0.0332 (12) | 0.0376 (11) | −0.0022 (9) | 0.0135 (10) | −0.0029 (9) |
C14 | 0.0411 (12) | 0.0320 (12) | 0.0370 (11) | −0.0026 (9) | 0.0130 (9) | 0.0010 (9) |
C13 | 0.0360 (11) | 0.0375 (13) | 0.0310 (10) | 0.0004 (9) | 0.0086 (8) | 0.0000 (9) |
C18 | 0.0466 (13) | 0.0359 (13) | 0.0413 (12) | −0.0042 (11) | 0.0113 (10) | −0.0070 (10) |
C17 | 0.0545 (14) | 0.0364 (14) | 0.0532 (14) | −0.0126 (12) | 0.0181 (12) | −0.0017 (11) |
C16 | 0.0517 (14) | 0.0433 (15) | 0.0422 (13) | −0.0091 (11) | 0.0210 (11) | −0.0009 (10) |
C12 | 0.0416 (12) | 0.0394 (13) | 0.0355 (11) | −0.0010 (10) | 0.0110 (9) | −0.0025 (10) |
C1 | 0.0422 (12) | 0.0380 (13) | 0.0329 (11) | −0.0050 (10) | 0.0138 (9) | −0.0054 (9) |
C10 | 0.0470 (13) | 0.0340 (12) | 0.0395 (12) | 0.0020 (10) | 0.0123 (10) | 0.0035 (10) |
C9 | 0.0425 (12) | 0.0342 (12) | 0.0386 (11) | 0.0037 (10) | 0.0145 (10) | −0.0037 (9) |
C8 | 0.0338 (10) | 0.0347 (12) | 0.0322 (10) | −0.0009 (9) | 0.0076 (8) | −0.0033 (9) |
C3 | 0.0372 (11) | 0.0304 (11) | 0.0339 (11) | 0.0000 (9) | 0.0072 (9) | −0.0063 (9) |
C2 | 0.0436 (13) | 0.0362 (13) | 0.0379 (11) | 0.0007 (10) | 0.0140 (10) | −0.0079 (10) |
C7 | 0.0423 (12) | 0.0385 (13) | 0.0382 (11) | 0.0017 (10) | 0.0132 (10) | −0.0032 (10) |
C4 | 0.0504 (13) | 0.0319 (13) | 0.0446 (13) | 0.0043 (10) | 0.0143 (11) | −0.0043 (10) |
C5 | 0.0542 (14) | 0.0316 (13) | 0.0423 (12) | 0.0022 (11) | 0.0082 (11) | 0.0040 (10) |
C6 | 0.0450 (13) | 0.0411 (14) | 0.0344 (11) | −0.0049 (11) | 0.0096 (10) | 0.0012 (10) |
C11 | 0.0583 (16) | 0.0443 (15) | 0.0469 (14) | 0.0027 (12) | 0.0149 (12) | 0.0083 (12) |
O1—C15 | 1.373 (3) | C13—C12 | 1.481 (3) |
O1—C19 | 1.427 (3) | C18—C17 | 1.375 (3) |
O2—C12 | 1.368 (3) | C18—H18 | 0.9300 |
O2—C1 | 1.404 (3) | C17—C16 | 1.384 (4) |
O3—C12 | 1.194 (3) | C17—H17 | 0.9300 |
N1—C11 | 1.137 (4) | C16—H16 | 0.9300 |
C20—C25 | 1.378 (4) | C1—C2 | 1.348 (4) |
C20—C21 | 1.384 (4) | C1—C10 | 1.412 (3) |
C20—C19 | 1.502 (4) | C10—C9 | 1.363 (3) |
C25—C24 | 1.390 (4) | C10—H10 | 0.9300 |
C25—H25 | 0.9300 | C9—C8 | 1.415 (3) |
C24—C23 | 1.369 (4) | C9—H9 | 0.9300 |
C24—H24 | 0.9300 | C8—C7 | 1.412 (3) |
C23—C22 | 1.373 (4) | C8—C3 | 1.424 (3) |
C23—H23 | 0.9300 | C3—C4 | 1.413 (3) |
C22—C21 | 1.374 (4) | C3—C2 | 1.416 (3) |
C22—H22 | 0.9300 | C2—H2 | 0.9300 |
C21—H21 | 0.9300 | C7—C6 | 1.378 (4) |
C19—H19A | 0.9700 | C7—H7 | 0.9300 |
C19—H19B | 0.9700 | C4—C5 | 1.360 (4) |
C15—C14 | 1.386 (3) | C4—H4 | 0.9300 |
C15—C16 | 1.395 (4) | C5—C6 | 1.412 (4) |
C14—C13 | 1.389 (3) | C5—H5 | 0.9300 |
C14—H14 | 0.9300 | C6—C11 | 1.445 (4) |
C13—C18 | 1.391 (4) | ||
C15—O1—C19 | 116.41 (19) | C17—C16—C15 | 119.4 (2) |
C12—O2—C1 | 118.01 (18) | C17—C16—H16 | 120.3 |
C25—C20—C21 | 119.0 (3) | C15—C16—H16 | 120.3 |
C25—C20—C19 | 120.4 (3) | O3—C12—O2 | 122.9 (2) |
C21—C20—C19 | 120.5 (3) | O3—C12—O2 | 122.9 (2) |
C20—C25—C24 | 120.5 (3) | O3—C12—C13 | 125.2 (2) |
C20—C25—H25 | 119.7 | O2—C12—C13 | 111.91 (19) |
C24—C25—H25 | 119.7 | O2—C12—C13 | 111.91 (19) |
C23—C24—C25 | 120.0 (3) | C2—C1—O2 | 116.9 (2) |
C23—C24—H24 | 120.0 | C2—C1—O2 | 116.9 (2) |
C25—C24—H24 | 120.0 | C2—C1—C10 | 122.7 (2) |
C24—C23—C22 | 119.5 (3) | O2—C1—C10 | 120.3 (2) |
C24—C23—H23 | 120.3 | O2—C1—C10 | 120.3 (2) |
C22—C23—H23 | 120.3 | C9—C10—C1 | 118.5 (2) |
C23—C22—C21 | 121.0 (3) | C9—C10—H10 | 120.7 |
C23—C22—H22 | 119.5 | C1—C10—H10 | 120.7 |
C21—C22—H22 | 119.5 | C10—C9—C8 | 121.1 (2) |
C22—C21—C20 | 120.1 (3) | C10—C9—H9 | 119.5 |
C22—C21—H21 | 120.0 | C8—C9—H9 | 119.5 |
C20—C21—H21 | 120.0 | C7—C8—C9 | 121.7 (2) |
O1—C19—C20 | 109.9 (2) | C7—C8—C3 | 119.1 (2) |
O1—C19—H19A | 109.7 | C9—C8—C3 | 119.2 (2) |
C20—C19—H19A | 109.7 | C4—C3—C2 | 122.5 (2) |
O1—C19—H19B | 109.7 | C4—C3—C8 | 118.8 (2) |
C20—C19—H19B | 109.7 | C2—C3—C8 | 118.6 (2) |
H19A—C19—H19B | 108.2 | C1—C2—C3 | 119.7 (2) |
O1—C15—C14 | 116.0 (2) | C1—C2—H2 | 120.1 |
O1—C15—C16 | 124.1 (2) | C3—C2—H2 | 120.1 |
C14—C15—C16 | 119.9 (2) | C6—C7—C8 | 119.9 (2) |
C15—C14—C13 | 119.9 (2) | C6—C7—H7 | 120.0 |
C15—C14—H14 | 120.1 | C8—C7—H7 | 120.0 |
C13—C14—H14 | 120.1 | C5—C4—C3 | 121.4 (2) |
C14—C13—C18 | 120.4 (2) | C5—C4—H4 | 119.3 |
C14—C13—C12 | 122.0 (2) | C3—C4—H4 | 119.3 |
C18—C13—C12 | 117.6 (2) | C4—C5—C6 | 119.5 (2) |
C17—C18—C13 | 119.2 (2) | C4—C5—H5 | 120.3 |
C17—C18—H18 | 120.4 | C6—C5—H5 | 120.3 |
C13—C18—H18 | 120.4 | C7—C6—C5 | 121.1 (2) |
C18—C17—C16 | 121.2 (2) | C7—C6—C11 | 118.8 (2) |
C18—C17—H17 | 119.4 | C5—C6—C11 | 120.1 (2) |
C16—C17—H17 | 119.4 | N1—C11—C6 | 178.3 (3) |
C21—C20—C25—C24 | −1.5 (4) | C14—C13—C12—O2 | 12.4 (3) |
C19—C20—C25—C24 | 174.2 (2) | C18—C13—C12—O2 | −169.2 (2) |
C20—C25—C24—C23 | 1.3 (4) | O2—O2—C1—C2 | 0.0 (4) |
C25—C24—C23—C22 | −0.2 (4) | C12—O2—C1—C2 | 125.9 (2) |
C24—C23—C22—C21 | −0.8 (4) | C12—O2—C1—O2 | 0 (100) |
C23—C22—C21—C20 | 0.6 (4) | O2—O2—C1—C10 | 0.0 (4) |
C25—C20—C21—C22 | 0.5 (4) | C12—O2—C1—C10 | −57.1 (3) |
C19—C20—C21—C22 | −175.1 (2) | C2—C1—C10—C9 | −3.8 (4) |
C15—O1—C19—C20 | −174.8 (2) | O2—C1—C10—C9 | 179.5 (2) |
C25—C20—C19—O1 | 116.3 (3) | O2—C1—C10—C9 | 179.5 (2) |
C21—C20—C19—O1 | −68.1 (3) | C1—C10—C9—C8 | 0.6 (4) |
C19—O1—C15—C14 | 171.5 (2) | C10—C9—C8—C7 | −176.2 (2) |
C19—O1—C15—C16 | −8.5 (4) | C10—C9—C8—C3 | 2.9 (3) |
O1—C15—C14—C13 | −178.7 (2) | C7—C8—C3—C4 | −2.8 (3) |
C16—C15—C14—C13 | 1.2 (3) | C9—C8—C3—C4 | 178.1 (2) |
C15—C14—C13—C18 | −0.1 (3) | C7—C8—C3—C2 | 175.6 (2) |
C15—C14—C13—C12 | 178.3 (2) | C9—C8—C3—C2 | −3.4 (3) |
C14—C13—C18—C17 | −1.3 (4) | O2—C1—C2—C3 | −179.9 (2) |
C12—C13—C18—C17 | −179.7 (2) | O2—C1—C2—C3 | −179.9 (2) |
C13—C18—C17—C16 | 1.5 (4) | C10—C1—C2—C3 | 3.2 (4) |
C18—C17—C16—C15 | −0.4 (4) | C4—C3—C2—C1 | 178.9 (2) |
O1—C15—C16—C17 | 178.9 (2) | C8—C3—C2—C1 | 0.5 (3) |
C14—C15—C16—C17 | −1.0 (4) | C9—C8—C7—C6 | 178.8 (2) |
O2—O2—C12—O3 | 0.00 (4) | C3—C8—C7—C6 | −0.3 (3) |
C1—O2—C12—O3 | 4.7 (4) | C2—C3—C4—C5 | −174.8 (2) |
C1—O2—C12—O2 | 0 (100) | C8—C3—C4—C5 | 3.6 (3) |
O2—O2—C12—C13 | 0.00 (7) | C3—C4—C5—C6 | −1.2 (4) |
C1—O2—C12—C13 | −173.7 (2) | C8—C7—C6—C5 | 2.8 (4) |
C14—C13—C12—O3 | −166.0 (3) | C8—C7—C6—C11 | −175.6 (2) |
C18—C13—C12—O3 | 12.5 (4) | C4—C5—C6—C7 | −2.1 (4) |
C14—C13—C12—O2 | 12.4 (3) | C4—C5—C6—C11 | 176.3 (2) |
C18—C13—C12—O2 | −169.2 (2) |
Cg2 and Cg4 are the centroids of the C3–C8 and C20–C25 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O2i | 0.93 | 2.68 | 3.579 (3) | 164 |
C16—H16···Cg4ii | 0.93 | 2.97 | 3.711 (3) | 138 |
C23—H23···Cg4iii | 0.93 | 2.76 | 3.611 (3) | 153 |
C24—H24···Cg2iv | 0.93 | 2.98 | 3.858 (3) | 159 |
Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) x, y−1, z; (iii) −x+1, y+1/2, −z; (iv) −x+1, y+1/2, −z+1. |
E_HOMO | -8.72 |
E_LUMO | -5.55 |
Energy gap | 3.17 |
Ionisation energy | 8.72 |
Electron affinity | 5.55 |
Electronegativity | 7.135 |
Electrophilicity index | 16.059 |
Chemical hardness | 1.585 |
Chemical softness | 0.315 eV-1 |
Chemical potential | -7.135 |
Acknowledgements
The authors acknowledge the SSCU, Indian Institute Science, Bangalore, for constant support in extending the SC-XRD facility. The authors are thankful to BSPMs lab for use of their computing facilities. MH is grateful to the Department of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur.
Funding information
Funding for this research was provided by: Vission Group of Science and Technology (award No. GRD319 to Palakshamurthy BS).
References
Ashraf, K., Yasrebi, K., Adeniyi, E. T., Hertlein, T., Ohlsen, K., Lalk, M., Erdmann, F. & Hilgeroth, A. (2019). Drug. Des. Dev. Ther. 13, 275–283. CrossRef Google Scholar
Baya, M., Belío, Ú., Forniés, J., Martín, A., Perálvarez, M. & Sicilia, V. (2015). Inorg. Chim. Acta, 424, 136–149. CSD CrossRef Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Biovia (2017). Discovery Studio Visualizer. Biovia, San Diego, CA, USA. Google Scholar
Boyle, E. A., Freemanm, P. C., Mangan, F. R. & Thomson, M. J. (1982). J. Pharm. Pharmacol. 34, 562–569. CrossRef PubMed Google Scholar
Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Candia, M. de, Marini, E., Zaetta, G., Cellamare, S., Di Stilo, A. & Altomare, C. D. (2015). Eur. J. Pharm. Sci. 72, 69–80. Web of Science PubMed Google Scholar
Clegg, W., Dale, S., Hevia, E., Hogg, L., Honeyman, G., Mulvey, R., O'Hara, C. & Russo, L. (2008). Angew. Chem. Int. Ed. 47, 731–734. CSD CrossRef Google Scholar
Das, S. K., Panda, G., Chaturvedi, V., Manju, Y. S., Gaikwad, A. K. & Sinha, S. (2007). Bioorg. Med. Chem. Lett. 17, 5586–5589. CrossRef PubMed Google Scholar
El-Desoky, E.-S. I., Keshk, E. M., El-Sawi, A. A., Abozeid, M. A., Abouzeid, L. A. & Abdel-Rahman, A.-R. H. (2018). Saudi Pharm. J. 26, 852–859. PubMed Google Scholar
Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C. & Mainz, D. T. (2006). J. Med. Chem. 49, 6177–6196. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Harish Kumar, M., Vinduvahini, M., Devarajegowda, H. C., Srinivasa, H. T. & Palakshamurthy, B. S. (2024). Acta Cryst. E80, 1010–1013. CSD CrossRef IUCr Journals Google Scholar
Hekal, M., Abdalha, A. A., Farag, H. & Ali, A. T. (2024). Chem. Biodivers. pp. e202401023. Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jin, F., Peng, F., Li, W. R., Chai, J. Q., Chen, M., Lu, A. M. & Zhou, M. G. (2024). J. Saudi Chem. Soc. 28, 101928. CSD CrossRef Google Scholar
Kaushik, C. P., Pahwa, A., Kumar, D., Kumar, A., Singh, D., Kumar, K. & Luxmi, R. (2018). J. Heterocycl. Chem. 55, 1720–1728. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, T., García, J. J., Brennessel, W. W. & Jones, W. D. (2010). Organometallics, 29, 2430–2445. CSD CrossRef Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mohebi, M., Fayazi, N., Esmaeili, S., Rostami, M., Bagheri, F., Aliabadi, A., Asadi, P. & Saghaie, L. (2022). Res. Pharma Sci. 17, 252–264. CrossRef Google Scholar
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). J. Comput. Chem. 30, 27852791. CrossRef Google Scholar
Özdemir, Z., Sari, S., Karakurt, A. & Dalkara, S. (2019). Drug Dev. Res. 80, 269–280. PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Perrone, R., Doria, F., Butovskaya, E., Frasson, I., Botti, S., Scalabrin, M., Lago, S., Grande, V., Nadai, M., Freccero, M. & Richter, S. N. (2015). J. Med. Chem. 58, 9639–9652. CrossRef PubMed Google Scholar
Planchais, C., Fernández, I., Bruel, T., de Melo, G. D., Prot, M., Beretta, M., Guardado-Calvo, P., Dufloo, J., Molinos-Albert, L. M., Backovic, M., Chiaravalli, J., Giraud, E., Vesin, B., Conquet, L., Grzelak, L., Planas, D., Staropoli, I., Guivel-Benhassine, F., Hieu, T., Boullé, M., Cervantes-Gonzalez, M., Ungeheuer, M., Charneau, P., van der Werf, S., Agou, F., Bartoli, M., Diallo, A., Le Mestre, S., Paul, C., Petrov-Sanchez, V., Yazdanpanah, Y., Ficko, C., Chirouze, C., Andrejak, C., Malvy, D., Goehringer, F., Rossignol, P., Gigante, T., Gilg, M., Rossignol, B., Etienne, M., Beluze, M., Bachelet, D., Bhavsar, K., Bouadma, L., Cervantes-Gonzalez, M., Chair, A., Charpentier, C., Chenard, L., Couffignal, C., Debray, M., Descamps, D., Duval, X., Eloy, P., Esposito-Farese, M., Florence, A., Ghosn, J., Hoffmann, I., Kafif, O., Khalil, A., Lafhej, N., Laouénan, C., Laribi, S., Le, M., Le Hingrat, Q., Letrou, S., Mentré, F., Peytavin, G., Piquard, V., Roy, C., Schneider, M., Su, R., Tardivon, C., Timsit, J., Tubiana, S., Visseaux, B., Deplanque, D., Hulot, J., Diehl, J., Picone, O., Angoulvant, F., Abrous, A., Couffin-Cadiergues, S., Da Silva, F. D., Esperou, H., Houas, I., Jaafoura, S., Papadopoulos, A., Gaymard, A., Lina, B., Rosa-Calatrava, M., Dorival, C., Guedj, J., Lingas, G., Neant, N., Abel, L., Manda, V., Behillil, S., Enouf, V., Levy, Y., Wiedemann, A., Arowas, L., Perlaza, B. L., Perrin de Facci, L., Chaouche, S., Sangari, L., Renaudat, C., Fernandes Pellerin, S., van Platen, C., Jolly, N., Kuhmel, L., Garaud, V., Rafanoson, H., Gardais, S., de Parseval, N., Dugast, C., Jannet, C., Ropars, S., Momboisse, F., Porteret, I., Cailleau, I., Hoen, B., Tondeur, L., Besombes, C., Fontanet, A., Dimitrov, J. D., Simon-Lorière, E., Bourhy, H., Montagutelli, X., Rey, F. A., Schwartz, O. & Mouquet, H. (2022). J. Exp. Med. 219, e20220638. CrossRef PubMed Google Scholar
Prakash, N., Elamaran, M. & Ingarsal, N. (2015). Chem. Sci. Trans. 4, 947–954. Google Scholar
Rai, D., Chen, W., Tian, Y., Chen, X., Zhan, P., De Clercq, E., Pannecouque, C., Balzarini, J. & Liu, X. (2023). Bioorg. Med. Chem. 21, 7398–7405. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srinivasa, H. T., Prutha, N. & Pratibha, R. (2020). J. Mol. Struct. 1199, 126971. CrossRef Google Scholar
Valente, S., Trisciuoglio, D., De Luca, T., Nebbioso, A., Labella, D., Lenoci, A., Bigogno, C., Dondio, G., Miceli, M., Brosch, G., Del Bufalo, D., Altucci, L. & Mai, A. (2014). J. Med. Chem. 57, 6259–6265. Web of Science CrossRef CAS PubMed Google Scholar
Voets, M., Antes, I., Scherer, C., Müller-Vieira, U., Biemel, K., Barassin, C., Marchais-Oberwinkler, S. & Hartmann, R. W. (2005). J. Med. Chem. 48, 6632–6642. CrossRef PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.