research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of the salt 2-iodo­ethyl­ammonium iodide – a possible side product upon synthesis of hybrid perovskites

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, and b"Coriolan Dragulescu" Institute of Chemistry, Mihai Viteazu Bvd. 24, Timisoara 300223, Romania
*Correspondence e-mail: anna.petrosova@knu.ua

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 October 2024; accepted 23 October 2024; online 31 October 2024)

The title organic–inorganic hybrid salt, C2H7IN+·I, is isotypic with its bromine analog, C2H7BrN+·Br [Semenikhin et al. (2024[Semenikhin, O. A., Shova, S., Golenya, I. A., Naumova, D. D. & Gural'skiy, I. A. (2024). Acta Cryst. E80, 738-741.]). Acta Cryst. E80, 738–741]. Its asymmetric unit consists of one 2-iodo­ethyl­ammonium cation and one iodide anion. The NH3+ group of the organic cation forms weak hydrogen bonds with four neighboring iodide anions, leading to the formation of supra­molecular layers propagating parallel to the bc plane. Hirshfeld surface analysis reveals that the most important contribution to the crystal packing is from N—H⋯I inter­actions (63.8%). The crystal under investigation was twinned by a 180° rotation around [001].

1. Chemical context

Hybrid organic–inorganic perovskites are known for their inter­esting semiconducting and optical properties, which allow their application in photovoltaic and optoelectronic devices (Younis et al., 2021[Younis, A., Lin, C., Guan, X., Shahrokhi, S., Huang, C., Wang, Y., He, T., Singh, S., Hu, L., Retamal, J. R. D., He, J. & Wu, T. (2021). Adv. Mater. 33, 2005000.]). At the same time, hybrid perovskites create an equally fascinating background for fundamental studies by forming numerous structural motifs of different periodicities.

Even though the structure type perovskite usually refers to inorganic compounds with composition ABX3 (Li et al., 2017[Li, W., Wang, Z., Deschler, F., Gao, S., Friend, R. H. & Cheetham, A. K. (2017). Nat. Rev. Mater. 2, 16099.]), recent developments in this field led to ‘hybrid organic-inorganic perovskites’, which contain discrete or fused [BX6]n octa­hedral building units of inorganic nature, the charge of which is compensated by organic cations. The corresponding octa­hedra can be connected to each other in various ways, resulting in frameworks with different periodicity (Han et al., 2021[Han, Y., Yue, S. & Cui, B. (2021). Adv. Sci. 8, 2004805.]).

However, an important issue that demands extra caution upon work with hybrid perovskites is their stability. These materials are very sensitive to water vapor, which can cause their immediate degradation to different products including inorganic salts such as BX2 and organic salts AX.

[Scheme 1]

Here we report on synthesis and crystal structure of the organic–inorganic hybrid salt 2-iodo­ethyl­ammonim iodide, C2H7IN+·I. The 2-iodo­ethyl­ammonim cation has previously been incorporated into some hybrid perovskites with layered arrangements (Xue et al., 2023[Xue, J., Huang, Y., Liu, Y., Chen, Z., Sung, H. H. Y., Williams, I. D., Zhu, Z., Mao, L., Chen, X. & Lu, H. (2023). Angew. Chem. Int. Ed. 62, e202304486.]; Skorokhod et al., 2023[Skorokhod, A., Quarti, C., Abhervé, A., Allain, M., Even, J., Katan, C. & Mercier, N. (2023). Chem. Mater. 35, 2873-2883.]). In addition, 2-iodo­ethyl­ammonim can be formed as a result of aziridine ring-opening reaction upon synthesis of aziridinium perovskites (Kucheriv et al., 2023[Kucheriv, O. I., Sirenko, V. Y., Petrosova, H. R., Pavlenko, V. A., Shova, S. & Gural'skiy, I. A. (2023). Inorg. Chem. Front. 10, 6953-6963.]; Petrosova et al., 2022[Petrosova, H. R., Kucheriv, O. I., Shova, S. & Gural'skiy, I. A. (2022). Chem. Commun. 58, 5745-5748.]). Therefore, the reported structural data of the title compound are valuable for phase analysis, since such a phase can be a side product in the synthesis of hybrid perovskites with 2-iodo­ethyl­ammonium or aziridinium cations.

2. Structural commentary

The asymmetric unit consists of one organic 2-iodo­ethyl­ammonium cation and an iodide counter-ion (Fig. 1[link]). The I1—C1 bond length is 2.170 (10) Å, that of C1—C2 is 1.497 (14) Å and of C2—N1 is 1.514 (12) Å. The torsion angle I1—C1—C2—N1 is −65.8 (9)°, indicating that the organic cation adopts a synclinal conformation. It is worth noting, that the organic cation IC2H4NH3+ has previously been reported in other crystal structures, but only as a part of hybrid organic–inorganic perovskites (see Database survey). The analysis of these structures reveals that this cation can adopt both synclinal and anti­periplanar conformations inside the inorganic frameworks depending on the strength and orientation of the hydrogen bonds formed (Xue et al., 2023[Xue, J., Huang, Y., Liu, Y., Chen, Z., Sung, H. H. Y., Williams, I. D., Zhu, Z., Mao, L., Chen, X. & Lu, H. (2023). Angew. Chem. Int. Ed. 62, e202304486.]).

[Figure 1]
Figure 1
The expanded asymmetric unit of the title compound showing hydrogen bonds between the organic cation and iodide anions (dotted lines). Displacement ellipsoids are drawn at the 50% probability level; symmetry codes refer to Table 1[link].

3. Supra­molecular features

Each 2-iodo­ethyl­ammonium cation is connected to four different iodide anions through weak inter­molecular N—H⋯I inter­actions (Fig. 1[link]). Simultaneously, each iodide anion forms hydrogen bonds with four neighboring –NH3+ groups of 2-iodo­ethyl­ammonium cations, forming infinite supra­molecular layers propagating parallel to the bc plane (Fig. 2[link]). A view along the a axis of a single supra­molecular layer is given in Fig. 3[link]. Numerical parameters of the hydrogen-bonding inter­actions are compiled in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯I2i 0.84 2.74 3.517 (7) 155
N1—H1B⋯I2 0.84 2.85 3.618 (8) 153
N1—H1C⋯I2ii 0.84 2.96 3.627 (8) 139
N1—H1C⋯I2iii 0.84 3.04 3.600 (8) 127
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound in a view approximately along [010] showing infinite supra­molecular layers propagating parallel to the bc plane.
[Figure 3]
Figure 3
A single supra­molecular layer viewed along [100].

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was used to visualize and qu­antify inter­molecular inter­actions in 2-iodo­ethyl­ammonium iodide using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface plotted over dnorm and the two-dimensional fingerprint plots are given in Fig. 4[link]. The surface shows the four N—H⋯I contacts described above as regions colored in red (Fig. 4[link]a), where the color code denotes contacts with distances equal to the sum of the van der Waals radii as white, while those with shorter and longer distances are represented in red and blue, respectively. The two-dimensional fingerprint plots show that the most important inter­action found in the structure is represented by N—H⋯I contacts, which account for 63.8% of all contacts observed in the crystal structure (Fig. 4[link]b). The residual contributions originate from H⋯H inter­actions.

[Figure 4]
Figure 4
(a) Hirshfeld surface of the 2-iodo­ethyl­ammonium cation plotted over dnorm, showing the strongest inter­actions with I anions (in red); (b) the two-dimensional fingerprint plots for 2-iodo­ethyl­ammonium iodide (left) and delineated into N—H⋯I contacts (right).

5. Database survey

A search in the Cambridge Crystallographic Database (CSD, version 5.45, update of September 2024; Groom et al.. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2-iodo­ethyl­ammonium cation revealed the following structures, which all are based on perovskite-type inorganic anions: JIGYEH, JIGYIL, JIGYUX (Skorokhod et al., 2023[Skorokhod, A., Quarti, C., Abhervé, A., Allain, M., Even, J., Katan, C. & Mercier, N. (2023). Chem. Mater. 35, 2873-2883.]); SIWHIQ, TEYMIU (Sourisseau et al., 2007[Sourisseau, S., Louvain, N., Bi, W., Mercier, N., Rondeau, D., Buzaré, J.-Y. & Legein, C. (2007). Inorg. Chem. 46, 6148-6154.]), TEGROQ (Song et al., 2022[Song, Z., Yu, B., Wei, J., Li, C., Liu, G. & Dang, Y. (2022). Inorg. Chem. 61, 6943-6952.]). The title compound is isotypic with 2-bromo­ethyl­ammonium bromide (ZOTHAV; Semenikhin et al., 2024[Semenikhin, O. A., Shova, S., Golenya, I. A., Naumova, D. D. & Gural'skiy, I. A. (2024). Acta Cryst. E80, 738-741.]).

6. Synthesis and crystallization

All reagents were purchased from UkrOrgSynthez Ltd. and used as received. Aziridine (50 µl) was added to aqueous HI (57% w/w, 300 µl) and was left to crystallize at room temperature. Colorless crystals were harvested after one day and protected under Paratone® oil.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal under investigation was twinned by a 180° rotation around [001] and the intensity data processed into a HKLF5-type file; the twin components refined to a ratio of 0.617 (2):0.383 (2). Hydrogen atoms were placed at calculated positions with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula C2H7IN+·I
Mr 298.89
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.3073 (7), 8.8800 (6), 9.3838 (7)
β (°) 102.004 (7)
V3) 677.10 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.16
Crystal size (mm) 0.31 × 0.15 × 0.07
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.157, 0.573
No. of measured, independent and observed [I > 2σ(I)] reflections 2744, 2744, 2535
(sin θ/λ)max−1) 0.712
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.159, 1.12
No. of reflections 2744
No. of parameters 49
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.07, −1.68
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

2-Iodoethylammonium iodide top
Crystal data top
C2H7IN+·IF(000) = 528
Mr = 298.89Dx = 2.932 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.3073 (7) ÅCell parameters from 3490 reflections
b = 8.8800 (6) Åθ = 3.2–30.3°
c = 9.3838 (7) ŵ = 9.16 mm1
β = 102.004 (7)°T = 100 K
V = 677.10 (9) Å3Plate, clear intense colourless
Z = 40.31 × 0.14 × 0.07 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2744 independent reflections
Detector resolution: 10.0000 pixels mm-12535 reflections with I > 2σ(I)
ω scansθmax = 30.4°, θmin = 2.5°
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2023)
h = 1110
Tmin = 0.157, Tmax = 0.573k = 1111
2744 measured reflectionsl = 1012
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.1098P)2 + 4.1089P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2744 reflectionsΔρmax = 2.07 e Å3
49 parametersΔρmin = 1.68 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.63381 (7)0.78334 (6)0.53313 (6)0.0165 (2)
I10.19546 (8)0.89307 (7)0.17832 (7)0.0224 (2)
N10.3819 (10)0.5459 (8)0.2618 (8)0.0176 (15)
H1A0.412 (3)0.471 (7)0.314 (7)0.026*
H1B0.417 (3)0.624 (7)0.307 (8)0.026*
H1C0.419 (3)0.540 (8)0.186 (6)0.026*
C20.1958 (12)0.5506 (11)0.2219 (10)0.0200 (18)
H2A0.1536390.4498030.1876310.024*
H2B0.1524550.5756730.3095730.024*
C10.1349 (13)0.6643 (12)0.1053 (10)0.024 (2)
H1D0.0139340.6547920.0739500.028*
H1E0.1839920.6428450.0199560.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0214 (4)0.0135 (4)0.0150 (4)0.00033 (17)0.0051 (3)0.00083 (17)
I10.0189 (4)0.0192 (4)0.0301 (4)0.0035 (2)0.0068 (3)0.0037 (2)
N10.022 (4)0.013 (3)0.019 (4)0.002 (3)0.006 (3)0.001 (3)
C20.020 (4)0.020 (5)0.020 (5)0.001 (3)0.003 (4)0.003 (3)
C10.024 (5)0.029 (5)0.017 (4)0.004 (4)0.001 (4)0.005 (4)
Geometric parameters (Å, º) top
I1—C12.170 (10)C2—H2A0.9900
N1—H1A0.84 (6)C2—H2B0.9900
N1—H1B0.84 (6)C2—C11.497 (14)
N1—H1C0.84 (6)C1—H1D0.9900
N1—C21.514 (12)C1—H1E0.9900
H1A—N1—H1B109.5C1—C2—N1111.9 (8)
H1A—N1—H1C109.5C1—C2—H2A109.2
H1B—N1—H1C109.5C1—C2—H2B109.2
C2—N1—H1A109.5I1—C1—H1D109.1
C2—N1—H1B109.5I1—C1—H1E109.1
C2—N1—H1C109.5C2—C1—I1112.3 (6)
N1—C2—H2A109.2C2—C1—H1D109.1
N1—C2—H2B109.2C2—C1—H1E109.1
H2A—C2—H2B107.9H1D—C1—H1E107.9
N1—C2—C1—I165.8 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I2i0.842.743.517 (7)155
N1—H1B···I20.842.853.618 (8)153
N1—H1C···I2ii0.842.963.627 (8)139
N1—H1C···I2iii0.843.043.600 (8)127
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x+1, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant Nos. 24BF037-02 and 24BF037-01M).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, Y., Yue, S. & Cui, B. (2021). Adv. Sci. 8, 2004805.  Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKucheriv, O. I., Sirenko, V. Y., Petrosova, H. R., Pavlenko, V. A., Shova, S. & Gural'skiy, I. A. (2023). Inorg. Chem. Front. 10, 6953–6963.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, W., Wang, Z., Deschler, F., Gao, S., Friend, R. H. & Cheetham, A. K. (2017). Nat. Rev. Mater. 2, 16099.  Web of Science CrossRef Google Scholar
First citationPetrosova, H. R., Kucheriv, O. I., Shova, S. & Gural'skiy, I. A. (2022). Chem. Commun. 58, 5745–5748.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSemenikhin, O. A., Shova, S., Golenya, I. A., Naumova, D. D. & Gural'skiy, I. A. (2024). Acta Cryst. E80, 738–741.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkorokhod, A., Quarti, C., Abhervé, A., Allain, M., Even, J., Katan, C. & Mercier, N. (2023). Chem. Mater. 35, 2873–2883.  Web of Science CSD CrossRef CAS Google Scholar
First citationSong, Z., Yu, B., Wei, J., Li, C., Liu, G. & Dang, Y. (2022). Inorg. Chem. 61, 6943–6952.  Web of Science CSD CrossRef ICSD CAS PubMed Google Scholar
First citationSourisseau, S., Louvain, N., Bi, W., Mercier, N., Rondeau, D., Buzaré, J.-Y. & Legein, C. (2007). Inorg. Chem. 46, 6148–6154.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, J., Huang, Y., Liu, Y., Chen, Z., Sung, H. H. Y., Williams, I. D., Zhu, Z., Mao, L., Chen, X. & Lu, H. (2023). Angew. Chem. Int. Ed. 62, e202304486.  Google Scholar
First citationYounis, A., Lin, C., Guan, X., Shahrokhi, S., Huang, C., Wang, Y., He, T., Singh, S., Hu, L., Retamal, J. R. D., He, J. & Wu, T. (2021). Adv. Mater. 33, 2005000.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds