research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, structures and Hirshfeld surface analyses of 2-hy­dr­oxy-N′-methyl­acetohydrazide and 2-hy­dr­oxy-N-methyl­acetohydrazide

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bEnamine Ltd. (www.enamine.net), Winston Churchill str. 78, 02094 Kyiv, Ukraine, cSSI "Institute for Single Crystals" of the National Academy of Sciences of Ukraine, Nauki Ave 60, Kharkiv 61001, Ukraine, and dV. I. Vernadskii Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Prospect Palladina 32/34, 03680 Kyiv, Ukraine
*Correspondence e-mail: dyakvik@gmail.com

Edited by C. Schulzke, Universität Greifswald, Germany (Received 2 September 2024; accepted 26 September 2024; online 15 October 2024)

The structures of the title compounds 2-hy­droxy-N′-methyl­acetohydrazide, 1, and 2-hy­droxy-N-methyl­acetohydrazide, 2, both C3H8N2O2, as regioisomers differ in the position of the methyl group relative to the N atoms in 2-hy­droxy-acetohydrazide. In the structure of 1, the 2-hy­droxy-acetohydrazide core [OH—C—C(=O)—NH—NH] is almost planar and the methyl group is rotated relative to this plane. As opposed to 1, in the structure of 2 all non-hydrogen atoms lie in the same plane. The hydroxyl and carbonyl groups in structures 1 and 2 are in trans and cis positions, respectively. The methyl amino group and carbonyl group are in the cis position relative to the C—N bond in structure 1, while the amino group and carbonyl group are in the trans position relative to the C—N bond in stucture 2. In the crystal, mol­ecules of 1 are linked by N—H⋯O and O—H⋯N inter­molecular hydrogen bonds, forming layers parallel to the ab crystallographic plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 55.3%. The contribution of the H⋯O/O⋯H inter­action is somewhat smaller, amounting to 30.8%. In the crystal, as a result of the inter­molecular O—H⋯O hydrogen bonds, mol­ecules of 2 form dimers, which are linked by N—H⋯O hydrogen bonds and a three-dimensional supra­molecular network The major contributors to the Hirshfeld surface are H⋯H (58.5%) and H⋯O/O⋯H contacts (31.7%).

1. Chemical context

N-substituted hydrazides are widely used compounds in organic synthesis. Aza-peptides containing the N-alkyl hydrazide fragment have been investigated as wide-spectrum anti­biotics (Amabili et al., 2020[Amabili, P., Biavasco, F., Brenciani, A., Citterio, B., Corbisiero, D., Ferrazzano, L., Fioriti, S., Guerra, G., Orena, M. & Rinaldi, S. (2020). Eur. J. Med. Chem. 189, 112072.]), drugs for inflammatory acne treatment (Fournier et al., 2018[Fournier, J.-F., Clary, L., Chambon, S., Dumais, L., Harris, C. S., Millois, C., Pierre, R., Talano, S., Thoreau, É., Aubert, J., Aurelly, M., Bouix-Peter, C., Brethon, A., Chantalat, L., Christin, O., Comino, C., El-Bazbouz, G., Ghilini, A.-L., Isabet, T., Lardy, C., Luzy, A.-P., Mathieu, C., Mebrouk, K., Orfila, D., Pascau, J., Reverse, K., Roche, D., Rodeschini, V. & Hennequin, L. F. (2018). J. Med. Chem. 61, 4030-4051.]), anti­viral agents (Breidenbach et al., 2021[Breidenbach, J., Lemke, C., Pillaiyar, T., Schäkel, L., Al Hamwi, G., Diett, M., Gedschold, R., Geiger, N., Lopez, V., Mirza, S., Namasivayam, V., Schiedel, A. C., Sylvester, K., Thimm, D., Vielmuth, C., Phuong Vu, L., Zyulina, M., Bodem, J., Gütschow, M. & Müller, C. E. (2021). Angew. Chem. Int. Ed. 60, 10423-10429.]) and selective protease inhibitors (Corrigan et al., 2020[Corrigan, T. S., Lotti Diaz, L. M., Border, S. E., Ratigan, S. C., Kasper, K. Q., Sojka, D., Fajtova, P., Caffrey, C. R., Salvesen, G. S., McElroy, C. A., Hadad, C. M. & Doğan Ekici, Ö. (2020). J. Enzyme Inhib. Med. Chem. 35, 1387-1402.]). Additionally, N-alkyl hydrazides are very important starting reagents for the synthesis of 1,2-substituted 1,2,4-triazoles (Nguyen & Hong, 2021[Nguyen, S. C. & Hong, A. Y. (2021). Tetrahedron Lett. 82, 153397.]; Peese et al., 2020[Peese, K. M., Naidu, B. N., Patel, M., Li, C., Langley, D. R., Terry, B., Protack, T., Gali, V., Lin, Z., Samanta, H. K., Zheng, M., Jenkins, S., Dicker, I. B., Krystal, M. R., Meanwell, N. A. & Walker, M. A. (2020). Bioorg. Med. Chem. Lett. 30, 126784.]), 3-substituted 1,3,4-thia­diazol-2-ones and 1,3,4-oxo­diazol-2-ones (Kuzmina et al., 2019[Kuzmina, O. M., Weisel, M. & Narine, A. A. (2019). Eur. J. Org. Chem. pp. 5527-5531]; Bi et al., 2019[Bi, F., Song, D., Qin, Y., Liu, X., Teng, Y., Zhang, N., Zhang, P., Zhang, N. & Ma, S. (2019). Bioorg. Med. Chem. 27, 3179-3193.]), 2,3-di­hydro-1H-pyrazoles (Shaker Ardakani et al., 2021[Shaker Ardakani, L., Mosslemin, M. H., Hassanabadi, A. & Hashemian, S. (2021). Phosphorus Sulfur Silicon, 196, 1004-1009.]), and other heterocyclic or spyrocyclic compounds (Kobayashi & Ainai, 2018[Kobayashi, M. & Ainai, T. (2018). Heterocycles, 96, 733-747.]; Tian et al., 2022[Tian, H.-Z., Tang, Q.-G., Lin, G.-Q. & Sun, X.-W. (2022). RSC Adv. 12, 15713-15717.]).

Previously, we have obtained a series of N1- and N2-alkyl­ated 1,2,4-triazoles (Khomenko et al., 2022[Khomenko, D. M., Doroshchuk, R. O., Ohorodnik, Y. M., Ivanova, H. V., Zakharchenko, B. V., Raspertova, I. V., Vaschenko, O. V., Dobrydnev, A. V., Grygorenko, O. O. & Lampeka, R. D. (2022). Chem. Heterocycl. Compd, 58, 116-128.]; Ohorodnik et al., 2023[Ohorodnik, Y. M., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Shova, S., Babak, M. V., Milunovic, M. N. M. & Lampeka, R. D. (2023). Inorg. Chim. Acta, 556, 121646.]). The separation of the resulting regioisomers was achieved through flash column chromatography. The use of pure N-methyl regioisomers of hydrazides in the synthesis of 1,2,4-triazoles allows for the direct formation of the desired N1- and N2-methyl­ated compounds, thereby eliminating the need for an expensive flash chromatography step.

Usually, the inter­action of carb­oxy­lic acid derivatives with N-alkyl hydrazines leads to a mixture of regioisomers (Condon, 1972[Condon, F. E. (1972). J. Org. Chem. 37, 3608-3615.]), while the desired N- or N′- regioisomer can be obtained from BOC or CBZ-protected N-alkyl hydrazines (Amabili et al., 2020[Amabili, P., Biavasco, F., Brenciani, A., Citterio, B., Corbisiero, D., Ferrazzano, L., Fioriti, S., Guerra, G., Orena, M. & Rinaldi, S. (2020). Eur. J. Med. Chem. 189, 112072.]; Peese et al., 2020[Peese, K. M., Naidu, B. N., Patel, M., Li, C., Langley, D. R., Terry, B., Protack, T., Gali, V., Lin, Z., Samanta, H. K., Zheng, M., Jenkins, S., Dicker, I. B., Krystal, M. R., Meanwell, N. A. & Walker, M. A. (2020). Bioorg. Med. Chem. Lett. 30, 126784.]). This method, however, has several disadvantages: expensive reagents, more steps, and the need for protecting other functional groups.

[Scheme 1]

In this work, we report the one-step synthesis and purification procedure of 2-hy­droxy-N′-methyl­acetohydrazide (1) and 2-hy­droxy-N-methyl­acetohydrazide (2) using inexpensive reagents, their crystal structures and Hirshfeld surface analyses.

2. Structural commentary

Structures 1 and 2 are regioisomers and differ in the position of the methyl group relative to the N atoms in 2-hy­droxy-acetohydrazide (Fig. 1[link]). Compound 1 crystallizes in the ortho­rhom­bic space group Pbca, while 2 crystallizes in the monoclinic space group C2/c.

[Figure 1]
Figure 1
The mol­ecular structures of 1 and 2 with atom labeling and displacement ellipsoids drawn at the 50% probability level.

In the structure of 1, the 2-hy­droxy-acetohydrazide core [OH—C—C(=O)—NH—NH] is almost planar (r.m.s. deviation is 0.016 Å). The methyl group is rotated relative to this plane [the C2—N1—N2—C3 torsion angle is −124.1 (4)°]. The hydroxyl and carbonyl groups are in trans positions. The methyl amino group and carbonyl group are in the cis position relative to the C2—N1 bond. The O–C–N–N fragment shows features of conjugation, supported by the pronounced shortening of the C2—N1 [1.300 (6) Å] single bond compared to the average value of 1.355 Å (Orpen et al., 1994[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). Structure correlation, edited by H. Bürgi, H. & J. Dunitz, pp. 752-858. https://doi. org/10.1002/9783527616091.app1]). This may be enhanced by the formation of the N1—H1A⋯O2′ inter­molecular hydrogen bond (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.87 (5) 1.90 (5) 2.767 (5) 172 (4)
N1—H1A⋯O2ii 0.71 (4) 2.17 (4) 2.848 (5) 159 (4)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

As opposed to 1, in the structure of 2 all non-hydrogen atoms lie in the same plane (r.m.s. deviation is 0.028 Å). The hydroxyl and carbonyl groups are in cis positions. The amino group and carbonyl group are in the trans position relative to the C2—N1 bond. Both the C2—O2 [1.251 (3) Å] and the N1—N2 [1.434 (3) Å] bonds are elongated compared to the average values of 1.234 and 1.420 Å, respectively (Orpen et al., 1994[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). Structure correlation, edited by H. Bürgi, H. & J. Dunitz, pp. 752-858. https://doi. org/10.1002/9783527616091.app1]). The elongation of the N1—N2 bond, together with the absence of a shortening of the C1—N2 bond, may indicate a slight disruption of the conjugation within the O–C–N–N core. That is consistent with amino group rotation: C2—N1—N2—H torsion angles are +12° and −116°, indicating an in-plane position of the lone pair of the N2 atom, stabilized by the N2—H2A⋯O2 and N2—H2B⋯O1 inter­molecular hydrogen bonds (Table 2[link]), so this lone pair cannot participate in the π-conjugation of the O–C–N–N fragment. The minor elongation of the C2=O2 double bond is probably caused by the presence of the inter­molecular bi-directional hydrogen bond O1—H1⋯O2 with the O—H group of an adjacent mol­ecule and the N2—H2B⋯O2′′ hydrogen with another mol­ecule (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.78 (4) 2.39 (4) 3.078 (4) 148 (3)
N2—H2A⋯O2ii 1.00 (3) 2.08 (3) 3.062 (4) 169 (2)
N2—H2B⋯O1iii 0.92 (3) 2.21 (3) 3.129 (4) 173 (2)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

The N2 atom is pyramidal in both structures 1 and 2 (the sums of the valence angles is 225.93 and 317.93° in 1 and 2, respectively). The pyramidal configuration of the N2 atom is stabilized by inter­molecular hydrogen bonds O1—H1⋯N2 (in 1, Table 1[link]) and N2—H2B⋯O1, N2—H2A⋯O2 (in 2, Table 2[link]).

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules of 1 are linked by N—H⋯O and O—H⋯N hydrogen bonds (Table 1[link]), forming layers parallel to the ab crystallographic plane (Fig. 2[link]).

[Figure 2]
Figure 2
Crystal packing of 1 viewed along the b axis (left) and 2 viewed along c axis (right). The hydrogen bonds are shown as blue dotted lines.

The inter­molecular inter­actions in the crystal structure of 1 were further analyzed by means of the dnorm property (Fig. 3[link]) mapped over the Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), which was calculated using the CrystalExplorer21 program (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The strongest contacts, which are visualized on the Hirshfeld surface as the dark-red spots, correspond to the N—H⋯O and O—H⋯N hydrogen bonds between mol­ecules. The majority of the inter­molecular inter­actions of 1 are weak, and are represented in blue on the Hirshfeld surface.

[Figure 3]
Figure 3
The Hirshfeld surface mapped over dnorm for visualizing the inter­molecular contacts of compound 1.

For further exploration of the inter­molecular inter­actions, two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) were generated, as shown in Fig. 4[link]. The major contributions to the crystal structure are from the H⋯H (55.3%) and H⋯O/O⋯H (30.8%) inter­actions. The N⋯H/H⋯N (9.2%) and O⋯C/C⋯O (2.5%) inter­actions are less impactful in comparison.

[Figure 4]
Figure 4
Two-dimensional fingerprint plots for 1 showing (a) all inter­actions, and (b)–(d) delineated into contributions from other contacts (blue areas) [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

In the crystal of 2, as a result of the O—H⋯O inter­molecular hydrogen bonds (Table 2[link]) the mol­ecules form dimers, which are linked by N—H⋯O inter­molecular hydrogen bonds to form a 3D supra­molecular network (Fig. 2[link]).

Fig. 5[link] shows the Hirshfeld surface of 2 plotted over dnorm (normalized contact distance) and Fig. 6[link] the 2D fingerprint plots. The strongest contacts, which are visualized on the Hirshfeld surface as the dark-red spots, correspond to the O–H⋯O and N—H⋯O hydrogen bonds between mol­ecules. The major contributions to the crystal structure are from the H⋯H(58.5%) and H⋯O/O⋯H (31.7%) inter­action. The N⋯H/H⋯N (4.0%) and H⋯C/C⋯H (3.2%), O⋯N/N⋯O inter­actions are of lower relevance.

[Figure 5]
Figure 5
The Hirshfeld surface mapped over dnorm for visualizing the inter­molecular contacts of compound 2.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots for 1 showing (a) all inter­actions, and (b)–(c) delineated into contributions from other contacts (blue areas) [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, version 2024.2.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) confirmed that the title compounds have not been previously published. Since hydrazides are very popular compounds and there are numerous entries in the database, the search was carried out for the specific fragment [OH—C—C(=O)—N—N—H], which represents the title structures albeit without the methyl substituent and excludes structures in which the terminal nitro­gen atom is engaged in a double bond. As a result of the search, six structures were found in which the defined fragment bears different substituents: JESVIN (Beckmann & Brooker, 2006[Beckmann, U. & Brooker, S. (2006). Acta Cryst. C62, o653-o655.]); LACBOG (Andre et al., 1993[André, C., Luger, P., Fuhrhop, J.-H. & Rosengarten, B. (1993). Acta Cryst. B49, 375-382.]); RAVZIX and RAVZOD (Andre et al., 1997[André, C., Luger, P., Fuhrhop, J.-H. & Hahn, F. (1997). Acta Cryst. B53, 490-497.]); UVUTIQ (Noshiranzadeh et al., 2017[Noshiranzadeh, N., Heidari, A., Haghi, F., Bikas, R. & Lis, T. (2017). J. Mol. Struct. 1128, 391-399.]); VOJBUS (Abu-Safieh et al., 2008[Abu-Safieh, K. A., Khanfar, M. A., Eichele, K. & Ali, B. F. (2008). Acta Cryst. E64, o2305.]); WETGEL (Chen et al., 2021[Chen, K., Zou, G., Xiong, W., He, Z., Yan, S., Qin, S., Wang, Q., Cong, H., Wang, C. & Zhou, X. (2021). Sens. Actuators B Chem. 349, 130773.]). Four of these structures (LACBOG, RAVZIK, RAVZOD, WETGEL) have a pyramidal nitro­gen, which is involved in the formation of inter­molecular hydrogen bonds similar to what is observed in the crystals of the title compounds.

5. Synthesis and crystallization

To a solution of 12.14 ml (0.3 mol) of methyl­hydrazine in 50 ml of 2-propanole were added dropwise 9.5 ml (0.1 mol) of ethyl glycolate at room temperature and the obtained solution was heated under reflux for 6 h. After completion of the reaction, the reaction mixture was evaporated under reduced pressure to remove excess of methyl hydrazine and the residual oil was dissolved in 25 ml of 2-propanole for crystallization to obtain (1) as white crystals. The filtrate was evaporated under reduced pressure and compound (2) was extracted using boiling benzene (5 × 30 ml). The precipitated solid from the combined benzene fractions was filtered off and recrystallized from 25 ml of ethyl acetate to obtain hydrazide (2) as white crystals.

2-Hy­droxy-N'-methyl­acetohydrazide (1). Yield 3.9 g (37.5%), m.p. 350–3551 K (2-propanole). 1H NMR (400 MHz, DMSO-d6) δ 9.16 (1H, br.s, NHNCO), 5.34 (1H, br.s, OH), 4.81 [1H, br.s, NH(CH3)], 3.82 (2H, s, CH2), 2.42 (3H, s, CH3). 13C NMR (101 MHz, DMSO-d6) δ 170.2, 61.0, 38.6. IR data (in KBr, cm−1): 3410, 3296, 2924, 1664, 1444, 1348, 1076, 880, 656, 572. MS (m/z, CI) 87.0 [M − OH]+,105.0 [M + H]+. Analysis calculated for C3H8N2O2: C, 34.61; H, 7.75; N, 26.91. Found: C, 34.67; H, 7.88; N, 26.90.

2-Hy­droxy-N-methyl­acetohydrazide (2). Yield 0.43 g (4.1%), m.p. 352–353 K (EtOAc). 1H NMR (400 MHz, DMSO-d6) δ 4.62 (2H, s, NH2), 4.17 (2H, s, CH2), 3.00 (3H, s, CH3). 13C NMR (101 MHz, DMSO-d6) δ 173.3, 59.8, 37.6. IR data (in KBr, cm−1): 3424, 3330, 2930, 1670, 1438, 1398, 1250, 1074, 1074, 808, 620, 572. MS (m/z, CI) 87.0 [M − OH]+, 105.0 [M + H]+. Analysis calculated for C3H8N2O2: C, 34.61; H, 7.75; N, 26.91. Found: C, 34.66; H, 7.80; N, 26.87.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The low quality of the data is due to the fact that the quality of the crystals is not very good and we could not obtain bright distant reflections, which somewhat affects the final qu­anti­tative parameters·The O- and N-bound hydrogen atoms were identified in difference-Fourier maps and refined isotropically. The other H atoms were placed in calculated positions and refined using a riding model with Uiso(H) = nUeq of the parent atom (n = 1.5 for methyl groups and n = 1.2 for other hydrogen atoms).

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C3H8N2O2 C3H8N2O2
Mr 104.11 104.11
Crystal system, space group Orthorhombic, Pbca Monoclinic, C2/c
Temperature (K) 296 296
a, b, c (Å) 9.4484 (8), 7.0977 (7), 15.3781 (14) 11.646 (10), 9.304 (10), 10.514 (10)
α, β, γ (°) 90, 90, 90 90, 105.65 (4), 90
V3) 1031.28 (16) 1097.0 (18)
Z 8 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.11 0.11
Crystal size (mm) 0.3 × 0.2 × 0.1 0.2 × 0.15 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.602, 0.746 0.554, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10003, 909, 841 5355, 1259, 503
Rint 0.072 0.099
(sin θ/λ)max−1) 0.595 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.103, 0.199, 1.34 0.050, 0.126, 0.81
No. of reflections 909 1259
No. of parameters 77 77
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.35 0.14, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

2-Hydroxy-N'-methylacetohydrazide (1) top
Crystal data top
C3H8N2O2Dx = 1.341 Mg m3
Mr = 104.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3322 reflections
a = 9.4484 (8) Åθ = 2.7–29.8°
b = 7.0977 (7) ŵ = 0.11 mm1
c = 15.3781 (14) ÅT = 296 K
V = 1031.28 (16) Å3Block, colourless
Z = 80.3 × 0.2 × 0.1 mm
F(000) = 448
Data collection top
Bruker APEXII CCD
diffractometer
841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
φ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.602, Tmax = 0.746k = 88
10003 measured reflectionsl = 1718
909 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.103H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.199 w = 1/[σ2(Fo2) + (0.0435P)2 + 3.1357P]
where P = (Fo2 + 2Fc2)/3
S = 1.34(Δ/σ)max < 0.001
909 reflectionsΔρmax = 0.32 e Å3
77 parametersΔρmin = 0.35 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5603 (3)0.3926 (5)0.8883 (2)0.0278 (8)
H10.575 (4)0.275 (7)0.875 (3)0.022 (12)*
O20.2107 (3)0.4802 (6)0.8076 (2)0.0415 (10)
N10.4200 (4)0.4761 (5)0.7415 (2)0.0251 (9)
N20.3656 (4)0.5300 (5)0.6594 (2)0.0258 (9)
H20.283 (5)0.534 (7)0.670 (3)0.024 (13)*
H1A0.495 (5)0.467 (5)0.741 (3)0.000 (10)*
C10.4115 (4)0.4115 (7)0.8943 (3)0.0317 (12)
H1B0.3898950.5092000.9363690.038*
H1C0.3723610.2942980.9160870.038*
C20.3402 (4)0.4592 (6)0.8099 (3)0.0251 (10)
C30.3999 (5)0.3911 (7)0.5928 (3)0.0371 (13)
H3A0.3520880.4228890.5397040.056*
H3B0.3700590.2685310.6117780.056*
H3C0.5002960.3903500.5830030.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0221 (16)0.0291 (18)0.0321 (19)0.0036 (13)0.0061 (13)0.0040 (14)
O20.0129 (16)0.070 (3)0.042 (2)0.0013 (16)0.0002 (13)0.0016 (19)
N10.0095 (19)0.038 (2)0.028 (2)0.0033 (17)0.0011 (17)0.0077 (18)
N20.0155 (18)0.035 (2)0.027 (2)0.0017 (17)0.0006 (16)0.0096 (17)
C10.024 (2)0.046 (3)0.025 (3)0.000 (2)0.0034 (19)0.000 (2)
C20.022 (2)0.022 (2)0.031 (3)0.0022 (18)0.0041 (19)0.0043 (19)
C30.035 (3)0.048 (3)0.028 (3)0.007 (2)0.000 (2)0.001 (2)
Geometric parameters (Å, º) top
O1—H10.87 (5)N2—C31.458 (6)
O1—C11.415 (5)C1—H1B0.9700
O2—C21.233 (5)C1—H1C0.9700
N1—N21.416 (5)C1—C21.502 (6)
N1—H1A0.71 (4)C3—H3A0.9600
N1—C21.300 (6)C3—H3B0.9600
N2—H20.80 (5)C3—H3C0.9600
C1—O1—H1106 (3)C2—C1—H1B108.7
N2—N1—H1A112 (3)C2—C1—H1C108.7
C2—N1—N2122.4 (4)O2—C2—N1122.8 (4)
C2—N1—H1A126 (3)O2—C2—C1119.8 (4)
N1—N2—H2101 (3)N1—C2—C1117.4 (4)
N1—N2—C3111.3 (4)N2—C3—H3A109.5
C3—N2—H2112 (3)N2—C3—H3B109.5
O1—C1—H1B108.7N2—C3—H3C109.5
O1—C1—H1C108.7H3A—C3—H3B109.5
O1—C1—C2114.3 (4)H3A—C3—H3C109.5
H1B—C1—H1C107.6H3B—C3—H3C109.5
O1—C1—C2—O2179.6 (4)N2—N1—C2—C1176.7 (4)
O1—C1—C2—N10.7 (6)C2—N1—N2—C3124.1 (4)
N2—N1—C2—O23.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.87 (5)1.90 (5)2.767 (5)172 (4)
N1—H1A···O2ii0.71 (4)2.17 (4)2.848 (5)159 (4)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1/2, y, z+3/2.
2-Hydroxy-N-methylacetohydrazide (2) top
Crystal data top
C3H8N2O2F(000) = 448
Mr = 104.11Dx = 1.261 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.646 (10) ÅCell parameters from 1019 reflections
b = 9.304 (10) Åθ = 2.8–30.1°
c = 10.514 (10) ŵ = 0.11 mm1
β = 105.65 (4)°T = 296 K
V = 1097.0 (18) Å3Block, colourless
Z = 80.2 × 0.15 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
φ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1415
Tmin = 0.554, Tmax = 0.746k = 1212
5355 measured reflectionsl = 1313
1259 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max < 0.001
1259 reflectionsΔρmax = 0.14 e Å3
77 parametersΔρmin = 0.16 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42646 (16)0.2135 (2)0.3887 (2)0.0810 (7)
H10.446 (3)0.251 (4)0.331 (3)0.106 (14)*
O20.61250 (14)0.37066 (17)0.37712 (16)0.0690 (6)
N10.68310 (16)0.40430 (19)0.59936 (19)0.0505 (6)
N20.6679 (2)0.3683 (3)0.7264 (2)0.0644 (7)
H2A0.650 (2)0.461 (4)0.765 (3)0.112 (11)*
H2B0.742 (2)0.336 (3)0.773 (3)0.082 (9)*
C10.50426 (19)0.2560 (3)0.5132 (2)0.0603 (7)
H1A0.5366500.1712850.5640150.072*
H1B0.4596330.3101510.5627130.072*
C20.60573 (19)0.3481 (2)0.4921 (2)0.0480 (6)
C30.7826 (2)0.4983 (3)0.5913 (2)0.0684 (8)
H3A0.7685140.5937860.6182540.103*
H3B0.7885580.5002770.5020600.103*
H3C0.8555700.4620340.6484890.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0648 (12)0.1060 (18)0.0656 (14)0.0291 (11)0.0064 (11)0.0035 (12)
O20.0773 (13)0.0799 (13)0.0469 (11)0.0170 (9)0.0118 (9)0.0008 (9)
N10.0476 (11)0.0557 (12)0.0463 (12)0.0016 (10)0.0095 (9)0.0005 (10)
N20.0650 (16)0.0812 (18)0.0458 (14)0.0090 (12)0.0128 (12)0.0020 (12)
C10.0533 (14)0.0660 (17)0.0611 (17)0.0067 (13)0.0146 (12)0.0046 (14)
C20.0486 (14)0.0461 (15)0.0464 (15)0.0058 (11)0.0079 (12)0.0002 (12)
C30.0605 (16)0.0652 (18)0.0749 (19)0.0095 (13)0.0102 (13)0.0013 (14)
Geometric parameters (Å, º) top
O1—H10.78 (4)N2—H2B0.92 (3)
O1—C11.432 (3)C1—H1A0.9700
O2—C21.251 (3)C1—H1B0.9700
N1—N21.434 (3)C1—C21.523 (3)
N1—C21.345 (3)C3—H3A0.9600
N1—C31.472 (3)C3—H3B0.9600
N2—H2A1.00 (3)C3—H3C0.9600
C1—O1—H1110 (2)C2—C1—H1A109.6
N2—N1—C3119.29 (19)C2—C1—H1B109.6
C2—N1—N2117.8 (2)O2—C2—N1122.8 (2)
C2—N1—C3122.9 (2)O2—C2—C1119.3 (2)
N1—N2—H2A105.6 (16)N1—C2—C1117.9 (2)
N1—N2—H2B104.1 (16)N1—C3—H3A109.5
H2A—N2—H2B109 (2)N1—C3—H3B109.5
O1—C1—H1A109.6N1—C3—H3C109.5
O1—C1—H1B109.6H3A—C3—H3B109.5
O1—C1—C2110.3 (2)H3A—C3—H3C109.5
H1A—C1—H1B108.1H3B—C3—H3C109.5
O1—C1—C2—O22.5 (3)N2—N1—C2—C12.8 (3)
O1—C1—C2—N1176.05 (19)C3—N1—C2—O20.3 (3)
N2—N1—C2—O2178.7 (2)C3—N1—C2—C1178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.78 (4)2.39 (4)3.078 (4)148 (3)
N2—H2A···O2ii1.00 (3)2.08 (3)3.062 (4)169 (2)
N2—H2B···O1iii0.92 (3)2.21 (3)3.129 (4)173 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

References

First citationAbu-Safieh, K. A., Khanfar, M. A., Eichele, K. & Ali, B. F. (2008). Acta Cryst. E64, o2305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmabili, P., Biavasco, F., Brenciani, A., Citterio, B., Corbisiero, D., Ferrazzano, L., Fioriti, S., Guerra, G., Orena, M. & Rinaldi, S. (2020). Eur. J. Med. Chem. 189, 112072.  Web of Science CrossRef PubMed Google Scholar
First citationAndré, C., Luger, P., Fuhrhop, J.-H. & Hahn, F. (1997). Acta Cryst. B53, 490–497.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationAndré, C., Luger, P., Fuhrhop, J.-H. & Rosengarten, B. (1993). Acta Cryst. B49, 375–382.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationBeckmann, U. & Brooker, S. (2006). Acta Cryst. C62, o653–o655.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBi, F., Song, D., Qin, Y., Liu, X., Teng, Y., Zhang, N., Zhang, P., Zhang, N. & Ma, S. (2019). Bioorg. Med. Chem. 27, 3179–3193.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBreidenbach, J., Lemke, C., Pillaiyar, T., Schäkel, L., Al Hamwi, G., Diett, M., Gedschold, R., Geiger, N., Lopez, V., Mirza, S., Namasivayam, V., Schiedel, A. C., Sylvester, K., Thimm, D., Vielmuth, C., Phuong Vu, L., Zyulina, M., Bodem, J., Gütschow, M. & Müller, C. E. (2021). Angew. Chem. Int. Ed. 60, 10423–10429.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationChen, K., Zou, G., Xiong, W., He, Z., Yan, S., Qin, S., Wang, Q., Cong, H., Wang, C. & Zhou, X. (2021). Sens. Actuators B Chem. 349, 130773.  Web of Science CSD CrossRef Google Scholar
First citationCondon, F. E. (1972). J. Org. Chem. 37, 3608–3615.  CrossRef CAS Web of Science Google Scholar
First citationCorrigan, T. S., Lotti Diaz, L. M., Border, S. E., Ratigan, S. C., Kasper, K. Q., Sojka, D., Fajtova, P., Caffrey, C. R., Salvesen, G. S., McElroy, C. A., Hadad, C. M. & Doğan Ekici, Ö. (2020). J. Enzyme Inhib. Med. Chem. 35, 1387–1402.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFournier, J.-F., Clary, L., Chambon, S., Dumais, L., Harris, C. S., Millois, C., Pierre, R., Talano, S., Thoreau, É., Aubert, J., Aurelly, M., Bouix-Peter, C., Brethon, A., Chantalat, L., Christin, O., Comino, C., El-Bazbouz, G., Ghilini, A.-L., Isabet, T., Lardy, C., Luzy, A.-P., Mathieu, C., Mebrouk, K., Orfila, D., Pascau, J., Reverse, K., Roche, D., Rodeschini, V. & Hennequin, L. F. (2018). J. Med. Chem. 61, 4030–4051.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhomenko, D. M., Doroshchuk, R. O., Ohorodnik, Y. M., Ivanova, H. V., Zakharchenko, B. V., Raspertova, I. V., Vaschenko, O. V., Dobrydnev, A. V., Grygorenko, O. O. & Lampeka, R. D. (2022). Chem. Heterocycl. Compd, 58, 116–128.  Web of Science CrossRef CAS Google Scholar
First citationKobayashi, M. & Ainai, T. (2018). Heterocycles, 96, 733–747.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKuzmina, O. M., Weisel, M. & Narine, A. A. (2019). Eur. J. Org. Chem. pp. 5527–5531  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationNguyen, S. C. & Hong, A. Y. (2021). Tetrahedron Lett. 82, 153397.  Web of Science CrossRef Google Scholar
First citationNoshiranzadeh, N., Heidari, A., Haghi, F., Bikas, R. & Lis, T. (2017). J. Mol. Struct. 1128, 391–399.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhorodnik, Y. M., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Shova, S., Babak, M. V., Milunovic, M. N. M. & Lampeka, R. D. (2023). Inorg. Chim. Acta, 556, 121646.  Web of Science CSD CrossRef Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). Structure correlation, edited by H. Bürgi, H. & J. Dunitz, pp. 752–858. https://doi. org/10.1002/9783527616091.app1  Google Scholar
First citationPeese, K. M., Naidu, B. N., Patel, M., Li, C., Langley, D. R., Terry, B., Protack, T., Gali, V., Lin, Z., Samanta, H. K., Zheng, M., Jenkins, S., Dicker, I. B., Krystal, M. R., Meanwell, N. A. & Walker, M. A. (2020). Bioorg. Med. Chem. Lett. 30, 126784.  Web of Science CrossRef PubMed Google Scholar
First citationShaker Ardakani, L., Mosslemin, M. H., Hassanabadi, A. & Hashemian, S. (2021). Phosphorus Sulfur Silicon, 196, 1004–1009.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, H.-Z., Tang, Q.-G., Lin, G.-Q. & Sun, X.-W. (2022). RSC Adv. 12, 15713–15717.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds