research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Salts of 2-amino-5-iodo­pyridinium

crossmark logo

aCarlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA, and bDept. of Chemistry, University of Virginia, McCormack Rd., Charlottesville, VA 22904, USA
*Correspondence e-mail: mturnbull@clarku.edu

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 20 September 2024; accepted 21 October 2024; online 31 October 2024)

Reaction of 2-amino-5-iodo­pyridine (5IAP) with concentrated HBr at room temperature yielded 2-amino-5-iodo­pyridinium bromide, C5H6IN2+·Br or (5IAPH)Br. The complex formed pale-yellow crystals, which exhibit significant hydrogen bonding between the amino and pyridinium N—H donors and bromide ion acceptors. Halogen bonding is also observed. Similarly, reaction of 5IAP with cobalt(II) chloride in mixed HCl/HBr in 1-propanol yielded 2-amino-5-iodo­pyridinium (2-amino-5-iodo­pyridine-κN1)bromido/chlorido­(0.51/2.48)cobalt(II), (C5H6IN2)[CoBr0.51Cl2.48(C5H5IN2)] or (5-IAPH)[(5IAP)CoCl2.48Br0.51], as blue block-shaped crystals. Two of the three halide positions exhibit mixed occupancy [Cl/Br = 0.797 (5):0.203 (5) and 0.689 (6):0.311 (6)], while the third position is occupied solely by a chloride ion. Extensive hydrogen and halogen bonding is observed.

1. Chemical context

The effects of randomness have been of particular inter­est in physics and chemistry. In particular, they have been considered regarding quantum information (Khrennikov, 2016[Khrennikov, A. (2016). Int. J. Quantum Information, 14, 1640009.]), band theory (Coey et al., 2005[Coey, J. M. D., Venkatesan, M. & Fitzgerald, C. B. (2005). Nat. Mater. 4, 173-179.]) and perturbation of the crystal lattice (Mackenzie, 1964[Mackenzie, J. K. (1964). Acta Metall. 12, 223-225.]; Anderson, 1958[Anderson, P. W. (1958). Phys. Rev. 109, 1492-1505.]). With respect to magnetism, studies have looked at the relationship between randomness and spin glasses (Toulouse, 1986[Toulouse, G. (1986). In Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics, edited by M. Mezard, G. Parisi & M. Virasoro, Vol. 9, pp 99-103. Singapore: World Scientific.]), amorphous magnets (Coey, 1978[Coey, J. M. D. (1978). J. Appl. Phys. 49, 1646-1652.]) and valence-bond solids (Kimchi et al., 2018[Kimchi, I., Nahum, A. & Senthil, T. (2018). Phys. Rev. X, 8, 0310281.]).

Superexchange in magnetic systems can be studied through the production of families of closely related compounds where small changes in the structure can be correlated with their effects on the magnetic properties of the materials. We have looked at the production of such complexes, especially those based upon salts of subsituted 2-amino­pyridine for some time (Araujo-Martinez et al., 2023[Araujo-Martinez, A. P., Faber, K., Huynh, N., Dickie, D. A., Landee, C. P., Turnbull, M. M., Twamley, B. & Wikaira, J. L. (2023). J. Coord. Chem. 76, 632-647.]; Coffey et al., 2000[Coffey, T. J., Landee, C. P., Robinson, W. T., Turnbull, M. M., Winn, M. & Woodward, F. M. (2000). Inorg. Chim. Acta, 303, 54-60.]; Landee et al., 2001[Landee, C. P., Turnbull, M. M., Galeriu, C., Giantsidis, J. & Woodward, F. M. (2001). Phys. Rev. B, 63, 100402R.]; Woodward et al., 2002[Woodward, F. M., Albrecht, A. S., Wynn, C. M., Landee, C. P. & Turnbull, M. M. (2002). Phys. Rev. B, 65, 144412.]). One such compound, 2-amino-5-iodo­pyridine, has been involved in the production of a magnetic ladder (Landee et al., 2001[Landee, C. P., Turnbull, M. M., Galeriu, C., Giantsidis, J. & Woodward, F. M. (2001). Phys. Rev. B, 63, 100402R.]) and a family of CuII halides complexes (Huynh et al., 2023[Huynh, N. V., Li, L., Landee, C. P., Dawe, L. N., Dickie, D. A., Turnbull, M. M. & Wikaira, J. L. (2023). Polyhedron, 243, 116562.]).

One difficulty in the studies of randomness in such materials is the introduction of randomness into an otherwise ordered system. Crystallization is intrinsically a self-purifying process and attempts to introduce randomness through introduction of dopants into a system may be frustrated by exclusion of the `impurity' during crystallization (Fujiwara et al. 1995[Fujiwara, N., Jeitler, J. R., Navas, C., Turnbull, M. M., Goto, T. & Hosoito, N. (1995). J. Magn. Magn. Mater. 140-144, 1663-1664.]). We have recently discovered a system, based upon 2-amino-5-iodo­pyridine (5IAP), where randomness can be introduced to the system via introduction of a mixture of halide ions; (5IAPH)2[CoCl4–xBrx]·H2O (Mukda et al., 2024[Mukda, B. A., Giantsidis, J., Landee, C. P., Dickie, D. A., Wikaira, J. L. & Turnbull, M. M. (2024). J. Coord. Chem. Submitted.]) where 5IAPH is 2-amino-5-iodo­pyridinium. In the course of those investigations, we isolated the related compound (5IAPH)[(5IAP)CoCl3–xBrx] and here report its structure and the structure of the related salt (5IAPH)Br.

[Scheme 1]

2. Structural commentary

(5IAPH)Br (1) crystallized in the triclinic space group P[\overline{1}] and comprises one 5IAPH cation and one bromide anion in the asymmetric unit (Fig. 1[link]). The 5IAPH ring is planar (mean deviation of constituent atoms = 0.012 Å) with the amino substituent lying 0.070 (1) Å out of that plane. The iodine atom is displaced significantly further out of the plane, 0.199 (1) Å, toward the same face. The amino substituent deviates only slightly from sp2-hybridization [sum of ∠s = 360 (2)°]. The plane of the NH2 group is nearly co-planar with the 5IAPH ring [6.8 (15)°] as expected due to conjugation.

[Figure 1]
Figure 1
The asymmetric unit of 1 shown as 50% probability ellipsoids (hydrogen atoms are shown as spheres of arbitrary size). Only those hydrogen atoms whose positions were refined are labeled.

(5IAPH)[(5IAP)CoCl3–xBrx] (2) crystallized in the monoclinic space group P21/n. The asymmetric unit is shown in Fig. 2[link] and comprises one 5IAPH cation and one [(5IAP)CoCl3–xBrx] anion. The 5IAPH cation is nearly identical to that observed in 1, with a high degree of planarity in the ring (±0.007 Å), the sum of the angles about the amino nitro­gen atom being 359 (2)° and the amino group being nearly co-planar with the 5IAPH ring [deviation = 8.9 (16)°]. As with 1, the amino nitro­gen atom [0.013 (5) Å] and iodine atom [0.086 (1) Å] are displaced slightly from the plane of the ring, again both toward the same face. The anionic unit comprises one CoII ion with a 5IAP ring coordinated through the pyridine nitro­gen atom and three coordinated halide ions. The halide ions are mixed Cl/Br with refined occupancies of Cl1/Br1 [0.797 (5)/0.203 (5)] and Cl3/Br3 [0.689 (6)/0.311 (6)]. Attempts to refine the position of Cl2 as mixed Cl/Br resulted in an occupancy of Cl2 of 1.0 within error; no bromide ion was included in that position in the final refinement. The Co—X bond lengths are all similar (∼2.3 Å) regardless of halide ion (Table 1[link]). The CoII ion is only slightly distorted from tetra­hedral with bond angles ranging from 105.1 (3) to 116.9 (3)°. The 5IAP ring is comparable to the 5IAPH ring in terms of planarity (mean deviation = 0.006 Å) and displacement of N12 and I15 [0.09 (1) Å and 0.077 (1) Å, respectively]. The amino group is again planar, but inclined 17 (2)° relative to the 5IAP plane, likely to accommodate the intra­molecular N12—H12A⋯Cl2 hydrogen bond [DA = 3.282 (6) Å; Table 3].

Table 1
Selected geometric parameters (Å, °) for 2[link]

Co1—N11 2.034 (4) Co1—Br1 2.328 (11)
Co1—Cl2 2.2648 (15) Co1—Cl1 2.329 (6)
Co1—Cl3 2.306 (11) Co1—Br3 2.342 (8)
       
N11—Co1—Cl2 111.63 (13) N11—Co1—Cl1 105.87 (18)
N11—Co1—Cl3 105.1 (3) Cl2—Co1—Cl1 109.17 (16)
Cl2—Co1—Cl3 108.0 (2) Cl3—Co1—Cl1 116.9 (3)
[Figure 2]
Figure 2
The asymmetric unit of 2 shown as 50% probability ellipsoids (hydrogen atoms are shown as spheres of arbitrary size). Only those hydrogen atoms whose positions were refined are labeled.

3. Supra­molecular features

Compound 1. Extensive hydrogen (Table 2[link]) and halogen bonding with the bromide ion as acceptor are present in the structure (Fig. 3[link]). The hydrogen bonds are typical with DA distances ranging from 3.2136 (12) to 3.4924 (13) Å and D—H⋯A angles of 150.8 (18) to 165.5 (18)°. Each bromide ion serves as an acceptor of three hydrogen bonds from the pyridinium N—H and both protons on the amino group. The latter generates inversion-related pairs of 5IAPH ions bridged by the bromide ions (Fig. 3[link]). A Type II halogen bond is also present with parameters dI15C⋯Br1 = 3.88 (1) Å and ∠C15—I15C⋯Br1 = 154.6 (4)°. Further halogen bonding is observed in the packing structure (Fig. 4[link]). Sheets of 5IAPH and bromide ions are linked parallel to the a axis by Type I halogen bonds between inversion-related iodine atoms; dI15⋯I15A = 3.81 (1) Å and ∠C15—I15⋯I15A = 130.6 (3)° [symmetry code: (A) 1 − x, 1 − y, 1 − z].

Table 2
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯Br1 0.80 (2) 2.49 (2) 3.2136 (12) 150.8 (18)
N12—H12A⋯Br1i 0.86 (2) 2.55 (2) 3.3556 (12) 155.5 (17)
N12—H12B⋯Br1ii 0.85 (2) 2.67 (2) 3.4924 (13) 165.5 (18)
Symmetry codes: (i) [-x, -y+1, -z]; (ii) [x, y+1, z].
[Figure 3]
Figure 3
Halogen and hydrogen bonding in 1 (atoms are shown as spheres of arbitrary size). Dashed lines represent hydrogen and halogen bonds. Only those atoms involved in halogen or hydrogen bonding are labeled. Symmetry codes: Br1A = −x, 1 − y, −z; Br1B = x, y + 1 z; N12B = −x, 2 − y, −z; I15C = 1 − x, y, z − 1.
[Figure 4]
Figure 4
The structure of 1 viewed parallel to the b axis (atoms are shown as spheres of arbitrary size). Dashed lines represent hydrogen and halogen bonds.

Compound 2. As with 1, 2 exhibits multiple hydrogen (Table 3[link]) and halogen bonds (Fig. 5[link]). The hydrogen bonds are typical with dD⋯A = 3.282 (6)–3.341 (10) Å and ∠D—H⋯A = 151 (5)–176 (5)°. Type II halogen bonds are also observed between both the 5IAP ligand [dI15⋯Cl1 = 3.464 (3) Å, ∠C15—I15⋯Cl1 = 171.8 (3)°] and the 5IAPH cation [dI25⋯Cl1 = 3.511 (3) Å, ∠C15—I15⋯Cl1 = 175.5 (4)°. Unlike 1, no I⋯I halogen bonds are observed. Similar to 1, the structure forms layers of hydrogen and halogen bridged ions parallel to the ac face diagonal (Fig. 6[link]). Unlike 1, there are no direct linkages between those layers.

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12A⋯Cl2 0.85 (6) 2.47 (7) 3.282 (6) 160 (5)
N12—H12B⋯Br1i 0.86 (7) 2.44 (7) 3.291 (12) 170 (6)
N22—H22A⋯Br1ii 0.87 (7) 2.55 (7) 3.338 (12) 151 (5)
N22—H22B⋯Br3iii 0.97 (6) 2.37 (7) 3.341 (10) 176 (5)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, -y+2, -z-1].
[Figure 5]
Figure 5
Halogen and hydrogen bonding in 2 (atoms are shown as spheres of arbitrary size). Dashed lines represent hydrogen and halogen bonds. Only those atoms involved in halogen or hydrogen bonding are labeled. Symmetry codes: N12A = [{1\over 2}] − x, y + [{1\over 2}], −z − 0.5; N21E/N22E = 1 − x, 2 − y, −1 − z; N22C = x − [{1\over 2}], [{3\over 2}] − y, z + 0.5; I15B = −x, 2 − y, −z.
[Figure 6]
Figure 6
The structure of 2 viewed parallel to the b axis (atoms are shown as spheres of arbitrary size). Dashed lines represent hydrogen and halogen bonds.

4. Database survey

The structures of a few salts of 5-IAPH have been reported. Copper(II) complexes include (5IAPH)[CuCl3(H2O)2]Cl (Abdalrahman et al., 2013[Abdalrahman, M. A., Awwadi, F. F., Jameson, G. B., Landee, C. P., Saunders, C. G., Turnbull, M. M. & Wikaira, J. L. (2013). CrystEngComm, 15, 4309-4320.]), two polymorphs of (5IAPH)2[CuCl4] (Giantsidis et al., 2002[Giantsidis, J., Galeriu, C., Landee, C. P. & Turnbull, M. M. (2002). J. Coord. Chem. 55, 795-803.]) and (5IAPH)2[CuBr4]H2O (Landee et al., 2001[Landee, C. P., Turnbull, M. M., Galeriu, C., Giantsidis, J. & Woodward, F. M. (2001). Phys. Rev. B, 63, 100402R.]). Several Hg and Zn salts of 5IAPH have also been reported (Khavasi et al., 2020[Khavasi, H. R., Gholami, A., Hosseini, M., Nikpoor, L. & Eskandari, K. (2020). Cryst. Growth Des. 20, 2266-2274.]), along with an MnII salt (Carnevale et al., 2021[Carnevale, D. J., Dawe, L. N., Landee, C. P., Turnbull, M. M. & Wikaira, J. L. (2021). Polyhedron, 202, 115200.]). Copper complexes of 5IAP itself are also known including [(5IAP)2CuX2], X = Cl, Br, [(5IAP)2CuBr2]2, [(5IAP)3CuCl2], (Huynh et al., 2023[Huynh, N. V., Li, L., Landee, C. P., Dawe, L. N., Dickie, D. A., Turnbull, M. M. & Wikaira, J. L. (2023). Polyhedron, 243, 116562.]) and [(5IAP)2CuBr(OMe)]2 (Araujo-Martinez et al., 2023[Araujo-Martinez, A. P., Faber, K., Huynh, N., Dickie, D. A., Landee, C. P., Turnbull, M. M., Twamley, B. & Wikaira, J. L. (2023). J. Coord. Chem. 76, 632-647.]).

Compound 1 may be most conveniently compared to its corresponding hydrate and chloride analogue (Polson et al., 2013[Polson, M., Turnbull, M. M. & Wikaira, J. L. (2013). Acta Cryst. C69, 1152-1156.]). The C—N bond lengths in 1 are slightly shorter than observed in the hydrated salt (∼0.01–0.12 Å) and chloride analogue. Bond angles in 1 vary ±2° compared to the hydrated bromide salt, but not in any regular fashion, while they are comparable to those observed in the chloride complex within error.

With respect to compound 2, although there no related compounds of 5-IAP, there are a number of reported structures including the [LMX3] ion where L is a pyridine-based ligand. Several of these involve PtII (Adams et al., 2005[Adams, C. J., Crawford, P. C., Orpen, A. G., Podesta, T. J. & Salt, B. (2005). Chem. Commun. pp. 2457-2458.]; Bel'skii et al., 1990[Bel'skii, V. K., Kukushkin, V. Yu., Konovalov, V. E., Moiseev, A. I. & Yakovlev, V. N. (1990). Zh. Obshch. Khim. 60, 2180-2189.]; Rochon & Melanson, 1980[Rochon, F. D. & Melanson, R. (1980). Acta Cryst. B36, 691-693.]; Melanson & Rochon, 1976[Melanson, R. & Rochon, F. D. (1976). Can. J. Chem. 54, 1002-1006.]) or CoII (Bogdanovic et al., 2001[Bogdanović, G. A., Medaković, V. B., Vojinović, L. S., Češljević, V. I., Leovac, V. M., Spasojević-de Biré, A. & Zarić, S. D. (2001). Polyhedron, 20, 2231-2240.]; Crane et al., 2004[Crane, J. D., Emeleus, L. C., Harrison, D. & Nilsson, P. A. (2004). Inorg. Chim. Acta, 357, 3407-3412.]). The closest comparisons appear to be compounds of CuII (Healy et al., 1985[Healy, P. C., Pakawatchai, C. & White, A. H. (1985). Aust. J. Chem. 38, 669-675.]; Savariault et al., 1988[Savariault, J. M., Galy, J., Gutierrez-Zorrilla, J. M. & Roman, P. (1988). J. Mol. Struct. 176, 313-322.]) or CoII (Hahn et al., 1997[Hahn, F. E., Scharn, D. & Lügger, T. (1997). Z. Kristallogr. New Cryst. Struct. 212, 472-472.]) with the formulae (LH)[LMX3] (L = phenazine or quinoline for Cu, pyridine for Co). Similar hydrogen bonding is observed in all three compounds, but the absence of the iodine atom on the L group eliminates the halogen bonding observed in both 1 and 2. Only in the quinolinium tri­chlorido­cuprate compound (Savariault et al., 1988[Savariault, J. M., Galy, J., Gutierrez-Zorrilla, J. M. & Roman, P. (1988). J. Mol. Struct. 176, 313-322.]) are all of the aromatic rings approximately parallel, but even so the overall structure is that of dimers, rather than the extended sheet structure seen in 1 and 2. With respect to the geometry at the metal ion, only the cobalt complex is similar with its slightly distorted tetra­hedral geometry (as compared to the two strongly Jahn–Teller-distorted Cu complexes) and slightly shorter Co—Cl bond lengths (average = 2.24 Å).

5. Synthesis and crystallization

Compound 1: 2-Amino-5-iodo­pyridine (0.842g, 3.83 mmol) was dissolved in 10 mL of 9 M HBr and left to evaporate. After about one month, crystals of 1 were isolated by filtration (0.623g, 56%).

Compound 2: HCl (0.0415 g, 12 M) and HBr (0.242 g. 9 M) were added to 2-amino-5-iodo­pyridine (0.439 g) creating a yellow solid. The solid was dissolved in 15 ml of 1-propanol and then cobalt(II) chloride hexa­hydrate (0.245 g) was added creating a dark-blue solution. After ten days, blue crystals were recovered by filtration. The crystals were predominantly lighter blue plates of (5IAPH)2[CoCl4–xBrx]·H2O (Mukda et al., 2024[Mukda, B. A., Giantsidis, J., Landee, C. P., Dickie, D. A., Wikaira, J. L. & Turnbull, M. M. (2024). J. Coord. Chem. Submitted.]), with a few dark-blue rhombic prisms mixed in. The dark-blue prisms were separated by hand and identified as compound 2 by X-ray diffraction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms bonded to carbon atoms were placed geometrically and refined with a riding model and Uiso(H) = 1.2Ueq(C). Hydrogen atoms bonded to nitro­gen atoms were located in a Fourier map and their positions refined with Uiso(H) = 1.2Ueq(N). Occupancies of the mixed halogen sites (X1 and X3) in 2 were allowed to refine freely. Mixed occupancy at the X2 site in 2 was initially assumed, but the bromide occupancy refined to zero within experimental error and the potential bromide ion was removed in the final refinement. Pseudo-isotropic restraints (ISOR) were applied to the lower occupancy ion, Br1.

Table 4
Experimental details

  1 2
Crystal data
Chemical formula C5H6IN2+·Br (C5H6IN2)[CoBr0.51Cl2.48(C5H5IN2)]
Mr 300.93 629.20
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 5.2152 (2), 7.8039 (3), 10.1294 (4) 9.6998 (7), 13.5527 (8), 13.8518 (11)
α, β, γ (°) 93.3762 (12), 104.1108 (11), 96.4297 (12) 90, 107.336 (3), 90
V3) 395.71 (3) 1738.2 (2)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 9.01 6.10
Crystal size (mm) 0.24 × 0.21 × 0.08 0.11 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture dual wavelength Mo/Cu Bruker D8 Venture dual wavelength Mo/Cu
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.605, 0.746 0.413, 0.492
No. of measured, independent and observed [I > 2σ(I)] reflections 13418, 2412, 2346 15915, 4318, 3139
Rint 0.025 0.048
(sin θ/λ)max−1) 0.714 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.012, 0.029, 1.11 0.040, 0.090, 1.09
No. of reflections 2412 4318
No. of parameters 91 216
No. of restraints 0 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.48, −0.50 1.22, −0.78
Computer programs: APEX4 and SAINT (Bruker, 2022[Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

2-Amino-5-iodopyridinium bromide (1) top
Crystal data top
C5H6IN2+·BrZ = 2
Mr = 300.93F(000) = 276
Triclinic, P1Dx = 2.526 Mg m3
a = 5.2152 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8039 (3) ÅCell parameters from 9950 reflections
c = 10.1294 (4) Åθ = 2.6–30.5°
α = 93.3762 (12)°µ = 9.01 mm1
β = 104.1108 (11)°T = 100 K
γ = 96.4297 (12)°Block, yellow
V = 395.71 (3) Å30.24 × 0.21 × 0.08 mm
Data collection top
Bruker D8 VENTURE dual wavelength Mo/Cu
diffractometer
2412 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs 3.02346 reflections with I > 2σ(I)
HELIOS double bounce multilayer mirror monochromatorRint = 0.025
φ and ω scansθmax = 30.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
Tmin = 0.605, Tmax = 0.746k = 1111
13418 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.012Hydrogen site location: mixed
wR(F2) = 0.029H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + 0.2575P]
where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max = 0.002
91 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Experimental. Data collections for compounds 1 and 2 were carried out with a Bruker D8 Venture Photon III diffractometer employing Mo-Kα radiation (λ = 0.71073Å). The data were collected using Bruker Instrument Service v8.5.0.27 & APEX4 v2022.10-1 and reduced using Bruker SAINT v8.40b (Bruker, 2022). Absorption corrections were performed using SADABS (Krause, 2015). The structure was solved using SHELXS-2014 (Sheldrick, 2008) and refined using SHELXL-2019 (Sheldrick, 2015).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.5947 (2)0.68193 (15)0.18178 (12)0.0141 (2)
H110.482 (4)0.603 (3)0.145 (2)0.017*
C120.5464 (3)0.84605 (17)0.16387 (13)0.0128 (2)
N120.3196 (2)0.87844 (17)0.08228 (13)0.0164 (2)
H12A0.197 (4)0.801 (3)0.034 (2)0.020*
H12B0.292 (4)0.983 (3)0.081 (2)0.020*
C130.7459 (3)0.98060 (17)0.23485 (14)0.0141 (2)
H130.7229511.0979260.2214140.017*
C140.9711 (3)0.94205 (17)0.32251 (14)0.0146 (2)
H141.1035921.0326090.3710180.017*
I151.33221 (2)0.70519 (2)0.48691 (2)0.01678 (3)
C151.0075 (3)0.76766 (17)0.34127 (13)0.0140 (2)
C160.8176 (3)0.64035 (18)0.26754 (14)0.0149 (2)
H160.8415440.5222650.2762820.018*
Br10.23627 (3)0.31109 (2)0.14445 (2)0.01608 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0168 (5)0.0103 (5)0.0141 (5)0.0016 (4)0.0035 (4)0.0002 (4)
C120.0149 (6)0.0121 (5)0.0118 (5)0.0003 (4)0.0051 (4)0.0005 (4)
N120.0150 (5)0.0149 (5)0.0171 (5)0.0000 (4)0.0008 (4)0.0008 (4)
C130.0167 (6)0.0106 (5)0.0145 (6)0.0010 (4)0.0029 (5)0.0020 (4)
C140.0149 (6)0.0127 (6)0.0147 (6)0.0005 (4)0.0023 (5)0.0007 (5)
I150.01575 (5)0.01769 (5)0.01789 (5)0.00603 (3)0.00364 (3)0.00494 (3)
C150.0154 (6)0.0144 (6)0.0136 (6)0.0035 (5)0.0053 (5)0.0033 (5)
C160.0193 (6)0.0125 (6)0.0145 (6)0.0029 (5)0.0063 (5)0.0029 (5)
Br10.01538 (6)0.01065 (6)0.01964 (7)0.00109 (4)0.00095 (5)0.00055 (5)
Geometric parameters (Å, º) top
N11—C121.3469 (17)C13—C141.3638 (19)
N11—C161.3553 (18)C13—H130.9500
N11—H110.80 (2)C14—C151.4125 (18)
C12—N121.3271 (18)C14—H140.9500
C12—C131.4155 (18)I15—C152.0815 (14)
N12—H12A0.86 (2)C15—C161.3628 (19)
N12—H12B0.85 (2)C16—H160.9500
C12—N11—C16123.45 (12)C12—C13—H13120.0
C12—N11—H11119.3 (14)C13—C14—C15120.09 (12)
C16—N11—H11117.1 (14)C13—C14—H14120.0
N12—C12—N11120.62 (13)C15—C14—H14120.0
N12—C12—C13121.90 (12)C16—C15—C14118.68 (13)
N11—C12—C13117.49 (12)C16—C15—I15120.29 (10)
C12—N12—H12A124.8 (13)C14—C15—I15120.93 (10)
C12—N12—H12B116.8 (14)N11—C16—C15120.10 (12)
H12A—N12—H12B118.3 (19)N11—C16—H16119.9
C14—C13—C12120.10 (12)C15—C16—H16119.9
C14—C13—H13120.0
C16—N11—C12—N12177.42 (13)C13—C14—C15—C161.8 (2)
C16—N11—C12—C132.67 (19)C13—C14—C15—I15174.50 (10)
N12—C12—C13—C14177.04 (13)C12—N11—C16—C150.0 (2)
N11—C12—C13—C143.05 (19)C14—C15—C16—N112.25 (19)
C12—C13—C14—C150.9 (2)I15—C15—C16—N11174.05 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···Br10.80 (2)2.49 (2)3.2136 (12)150.8 (18)
N12—H12A···Br1i0.86 (2)2.55 (2)3.3556 (12)155.5 (17)
N12—H12B···Br1ii0.85 (2)2.67 (2)3.4924 (13)165.5 (18)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z.
2-Amino-5-iodopyridinium (2-amino-5-iodopyridine-κN1)bromido/chlorido(0.51/2.48)cobalt(II) (2) top
Crystal data top
(C5H6IN2)[CoBr0.51Cl2.48(C5H5IN2)]F(000) = 1169
Mr = 629.20Dx = 2.404 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.6998 (7) ÅCell parameters from 5517 reflections
b = 13.5527 (8) Åθ = 2.7–28.3°
c = 13.8518 (11) ŵ = 6.10 mm1
β = 107.336 (3)°T = 100 K
V = 1738.2 (2) Å3Block, blue
Z = 40.11 × 0.07 × 0.06 mm
Data collection top
Bruker D8 VENTURE dual wavelength Mo/Cu
diffractometer
4318 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs 3.03139 reflections with I > 2σ(I)
HELIOS double bounce multilayer mirror monochromatorRint = 0.048
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1210
Tmin = 0.413, Tmax = 0.492k = 1816
15915 measured reflectionsl = 1418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0334P)2 + 3.1822P]
where P = (Fo2 + 2Fc2)/3
4318 reflections(Δ/σ)max = 0.001
216 parametersΔρmax = 1.22 e Å3
6 restraintsΔρmin = 0.77 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.13812 (7)0.97174 (5)0.26955 (6)0.01941 (17)
Br10.3650 (11)1.0006 (8)0.1556 (9)0.034 (4)0.203 (5)
Cl10.3649 (7)0.9995 (3)0.1548 (5)0.0174 (19)0.797 (5)
Cl20.16479 (13)0.92952 (9)0.42118 (10)0.0202 (3)
Br30.0247 (7)1.1037 (7)0.2947 (4)0.0155 (17)0.311 (6)
Cl30.0261 (11)1.0994 (9)0.2955 (7)0.039 (4)0.689 (6)
N110.0486 (4)0.8604 (3)0.2101 (3)0.0177 (9)
N120.1448 (5)0.7359 (4)0.2837 (4)0.0255 (11)
H12A0.170 (6)0.779 (5)0.319 (5)0.031*
H12B0.146 (7)0.677 (5)0.305 (5)0.031*
C120.0668 (5)0.7640 (4)0.2239 (4)0.0205 (11)
C130.0025 (6)0.6924 (4)0.1763 (4)0.0250 (13)
H130.0127530.6241310.1881530.030*
C140.0742 (5)0.7219 (4)0.1134 (4)0.0245 (12)
H140.1162990.6743730.0803080.029*
I150.19969 (4)0.87761 (3)0.00022 (3)0.02480 (11)
C150.0903 (5)0.8235 (4)0.0978 (4)0.0221 (12)
C160.0286 (5)0.8888 (4)0.1475 (4)0.0218 (12)
H160.0400370.9573400.1378360.026*
N210.8337 (5)0.8524 (3)0.4898 (4)0.0220 (10)
H210.882 (6)0.896 (4)0.522 (4)0.026*
C220.8517 (5)0.7548 (4)0.5034 (4)0.0206 (11)
N220.9307 (5)0.7271 (4)0.5612 (4)0.0280 (11)
H22A0.946 (7)0.665 (5)0.571 (5)0.034*
H22B0.962 (6)0.775 (5)0.602 (5)0.034*
C230.7858 (5)0.6896 (4)0.4513 (4)0.0223 (12)
H230.7969750.6204610.4571590.027*
C240.7061 (5)0.7247 (4)0.3925 (4)0.0215 (12)
H240.6626760.6803580.3571080.026*
C250.6888 (5)0.8281 (4)0.3847 (4)0.0220 (12)
I250.56035 (4)0.88657 (3)0.30094 (3)0.02550 (11)
C260.7535 (5)0.8891 (4)0.4331 (4)0.0202 (11)
H260.7432680.9584290.4278570.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0173 (3)0.0176 (4)0.0231 (4)0.0007 (3)0.0057 (3)0.0006 (3)
Br10.011 (5)0.054 (6)0.042 (8)0.000 (4)0.014 (4)0.006 (5)
Cl10.026 (4)0.0045 (18)0.021 (3)0.0005 (17)0.006 (2)0.0007 (17)
Cl20.0173 (5)0.0213 (7)0.0214 (7)0.0003 (5)0.0050 (5)0.0009 (5)
Br30.017 (3)0.020 (3)0.009 (2)0.004 (2)0.0037 (19)0.002 (2)
Cl30.047 (6)0.019 (4)0.053 (6)0.000 (3)0.018 (4)0.001 (3)
N110.0156 (19)0.015 (2)0.021 (2)0.0005 (17)0.0038 (17)0.0003 (18)
N120.035 (3)0.019 (3)0.023 (3)0.002 (2)0.010 (2)0.002 (2)
C120.016 (2)0.018 (3)0.024 (3)0.002 (2)0.002 (2)0.005 (2)
C130.023 (3)0.021 (3)0.025 (3)0.001 (2)0.001 (2)0.003 (2)
C140.018 (2)0.026 (3)0.024 (3)0.008 (2)0.001 (2)0.005 (2)
I150.02164 (18)0.0306 (2)0.0235 (2)0.00515 (15)0.00868 (14)0.00071 (16)
C150.015 (2)0.024 (3)0.025 (3)0.003 (2)0.002 (2)0.003 (2)
C160.019 (2)0.020 (3)0.024 (3)0.001 (2)0.002 (2)0.002 (2)
N210.021 (2)0.020 (2)0.025 (3)0.0046 (19)0.0050 (19)0.0008 (19)
C220.015 (2)0.021 (3)0.024 (3)0.000 (2)0.002 (2)0.003 (2)
N220.025 (2)0.023 (3)0.038 (3)0.000 (2)0.014 (2)0.003 (2)
C230.020 (2)0.017 (3)0.028 (3)0.003 (2)0.003 (2)0.001 (2)
C240.016 (2)0.021 (3)0.025 (3)0.004 (2)0.003 (2)0.003 (2)
C250.013 (2)0.030 (3)0.018 (3)0.001 (2)0.002 (2)0.004 (2)
I250.01950 (17)0.0274 (2)0.0308 (2)0.00454 (15)0.00938 (15)0.00033 (16)
C260.018 (2)0.017 (3)0.025 (3)0.003 (2)0.005 (2)0.004 (2)
Geometric parameters (Å, º) top
Co1—N112.034 (4)C15—C161.364 (8)
Co1—Cl22.2648 (15)C16—H160.9500
Co1—Cl32.306 (11)N21—C261.354 (7)
Co1—Br12.328 (11)N21—C221.354 (7)
Co1—Cl12.329 (6)N21—H210.95 (6)
Co1—Br32.342 (8)C22—N221.318 (7)
N11—C121.339 (6)C22—C231.409 (8)
N11—C161.359 (7)N22—H22A0.87 (7)
N12—C121.333 (7)N22—H22B0.97 (6)
N12—H12A0.85 (6)C23—C241.364 (8)
N12—H12B0.86 (7)C23—H230.9500
C12—C131.418 (8)C24—C251.420 (8)
C13—C141.363 (8)C24—H240.9500
C13—H130.9500C25—C261.333 (8)
C14—C151.410 (8)C25—I252.095 (6)
C14—H140.9500C26—H260.9500
I15—C152.084 (6)
N11—Co1—Cl2111.63 (13)C16—C15—I15118.9 (4)
N11—Co1—Cl3105.1 (3)C14—C15—I15123.0 (4)
Cl2—Co1—Cl3108.0 (2)N11—C16—C15123.1 (5)
N11—Co1—Br1106.4 (3)N11—C16—H16118.4
Cl2—Co1—Br1109.0 (3)C15—C16—H16118.4
N11—Co1—Cl1105.87 (18)C26—N21—C22124.0 (5)
Cl2—Co1—Cl1109.17 (16)C26—N21—H21120 (4)
Cl3—Co1—Cl1116.9 (3)C22—N21—H21116 (4)
N11—Co1—Br3106.1 (2)N22—C22—N21119.1 (5)
Cl2—Co1—Br3108.25 (15)N22—C22—C23124.5 (5)
Br1—Co1—Br3115.6 (3)N21—C22—C23116.4 (5)
C12—N11—C16119.2 (5)C22—N22—H22A122 (4)
C12—N11—Co1125.2 (4)C22—N22—H22B121 (4)
C16—N11—Co1115.5 (3)H22A—N22—H22B117 (6)
C12—N12—H12A119 (4)C24—C23—C22120.8 (5)
C12—N12—H12B124 (4)C24—C23—H23119.6
H12A—N12—H12B114 (6)C22—C23—H23119.6
N12—C12—N11119.4 (5)C23—C24—C25119.4 (5)
N12—C12—C13120.2 (5)C23—C24—H24120.3
N11—C12—C13120.4 (5)C25—C24—H24120.3
C14—C13—C12119.7 (5)C26—C25—C24119.3 (5)
C14—C13—H13120.1C26—C25—I25119.4 (4)
C12—C13—H13120.1C24—C25—I25121.2 (4)
C13—C14—C15119.4 (5)C25—C26—N21120.1 (5)
C13—C14—H14120.3C25—C26—H26119.9
C15—C14—H14120.3N21—C26—H26119.9
C16—C15—C14118.1 (5)
C16—N11—C12—N12178.7 (5)I15—C15—C16—N11177.9 (4)
Co1—N11—C12—N122.5 (7)C26—N21—C22—N22179.2 (5)
C16—N11—C12—C131.9 (7)C26—N21—C22—C232.4 (7)
Co1—N11—C12—C13178.2 (4)N22—C22—C23—C24179.7 (5)
N12—C12—C13—C14178.4 (5)N21—C22—C23—C241.3 (7)
N11—C12—C13—C142.2 (8)C22—C23—C24—C250.5 (8)
C12—C13—C14—C151.0 (8)C23—C24—C25—C261.5 (8)
C13—C14—C15—C160.4 (8)C23—C24—C25—I25177.2 (4)
C13—C14—C15—I15178.1 (4)C24—C25—C26—N210.6 (8)
C12—N11—C16—C150.5 (8)I25—C25—C26—N21178.2 (4)
Co1—N11—C16—C15177.1 (4)C22—N21—C26—C251.5 (8)
C14—C15—C16—N110.7 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···Cl20.85 (6)2.47 (7)3.282 (6)160 (5)
N12—H12B···Br1i0.86 (7)2.44 (7)3.291 (12)170 (6)
N22—H22A···Br1ii0.87 (7)2.55 (7)3.338 (12)151 (5)
N22—H22A···I15iii0.87 (7)3.33 (6)3.711 (5)110 (5)
N22—H22B···Br3iv0.97 (6)2.37 (7)3.341 (10)176 (5)
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x+3/2, y+3/2, z1/2; (iv) x+1, y+2, z1.
 

Acknowledgements

Funding for Open Access publication by the Gustaf H. Carlson Fund and support for BAM from the Bernard and Vera Kopelman Fund are gratefully acknowledged.

Funding information

Funding for this research was provided by: Gustaf H. Carlson Fund (grant to Mark M. Turnbull); Bernard and Vera Kopelman Fund (bursary to Benjamin A. Mukda).

References

First citationAbdalrahman, M. A., Awwadi, F. F., Jameson, G. B., Landee, C. P., Saunders, C. G., Turnbull, M. M. & Wikaira, J. L. (2013). CrystEngComm, 15, 4309–4320.  Web of Science CSD CrossRef CAS Google Scholar
First citationAdams, C. J., Crawford, P. C., Orpen, A. G., Podesta, T. J. & Salt, B. (2005). Chem. Commun. pp. 2457–2458.  Web of Science CSD CrossRef Google Scholar
First citationAnderson, P. W. (1958). Phys. Rev. 109, 1492–1505.  CAS Google Scholar
First citationAraujo-Martinez, A. P., Faber, K., Huynh, N., Dickie, D. A., Landee, C. P., Turnbull, M. M., Twamley, B. & Wikaira, J. L. (2023). J. Coord. Chem. 76, 632–647.  CAS Google Scholar
First citationBel'skii, V. K., Kukushkin, V. Yu., Konovalov, V. E., Moiseev, A. I. & Yakovlev, V. N. (1990). Zh. Obshch. Khim. 60, 2180–2189.  CAS Google Scholar
First citationBogdanović, G. A., Medaković, V. B., Vojinović, L. S., Češljević, V. I., Leovac, V. M., Spasojević-de Biré, A. & Zarić, S. D. (2001). Polyhedron, 20, 2231–2240.  Google Scholar
First citationBruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarnevale, D. J., Dawe, L. N., Landee, C. P., Turnbull, M. M. & Wikaira, J. L. (2021). Polyhedron, 202, 115200.  Google Scholar
First citationCoey, J. M. D. (1978). J. Appl. Phys. 49, 1646–1652.  CrossRef CAS Web of Science Google Scholar
First citationCoey, J. M. D., Venkatesan, M. & Fitzgerald, C. B. (2005). Nat. Mater. 4, 173–179.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoffey, T. J., Landee, C. P., Robinson, W. T., Turnbull, M. M., Winn, M. & Woodward, F. M. (2000). Inorg. Chim. Acta, 303, 54–60.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrane, J. D., Emeleus, L. C., Harrison, D. & Nilsson, P. A. (2004). Inorg. Chim. Acta, 357, 3407–3412.  Web of Science CSD CrossRef CAS Google Scholar
First citationFujiwara, N., Jeitler, J. R., Navas, C., Turnbull, M. M., Goto, T. & Hosoito, N. (1995). J. Magn. Magn. Mater. 140–144, 1663–1664.  CAS Google Scholar
First citationGiantsidis, J., Galeriu, C., Landee, C. P. & Turnbull, M. M. (2002). J. Coord. Chem. 55, 795–803.  Web of Science CSD CrossRef CAS Google Scholar
First citationHahn, F. E., Scharn, D. & Lügger, T. (1997). Z. Kristallogr. New Cryst. Struct. 212, 472–472.  CAS Google Scholar
First citationHealy, P. C., Pakawatchai, C. & White, A. H. (1985). Aust. J. Chem. 38, 669–675.  CSD CrossRef CAS Web of Science Google Scholar
First citationHuynh, N. V., Li, L., Landee, C. P., Dawe, L. N., Dickie, D. A., Turnbull, M. M. & Wikaira, J. L. (2023). Polyhedron, 243, 116562.  Google Scholar
First citationKhavasi, H. R., Gholami, A., Hosseini, M., Nikpoor, L. & Eskandari, K. (2020). Cryst. Growth Des. 20, 2266–2274.  CAS Google Scholar
First citationKhrennikov, A. (2016). Int. J. Quantum Information, 14, 1640009.  Google Scholar
First citationKimchi, I., Nahum, A. & Senthil, T. (2018). Phys. Rev. X, 8, 0310281.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLandee, C. P., Turnbull, M. M., Galeriu, C., Giantsidis, J. & Woodward, F. M. (2001). Phys. Rev. B, 63, 100402R.  Google Scholar
First citationMackenzie, J. K. (1964). Acta Metall. 12, 223–225.  CrossRef CAS Web of Science Google Scholar
First citationMelanson, R. & Rochon, F. D. (1976). Can. J. Chem. 54, 1002–1006.  CAS Google Scholar
First citationMukda, B. A., Giantsidis, J., Landee, C. P., Dickie, D. A., Wikaira, J. L. & Turnbull, M. M. (2024). J. Coord. Chem. Submitted.  Google Scholar
First citationPolson, M., Turnbull, M. M. & Wikaira, J. L. (2013). Acta Cryst. C69, 1152–1156.  CSD CrossRef IUCr Journals Google Scholar
First citationRochon, F. D. & Melanson, R. (1980). Acta Cryst. B36, 691–693.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSavariault, J. M., Galy, J., Gutierrez-Zorrilla, J. M. & Roman, P. (1988). J. Mol. Struct. 176, 313–322.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationToulouse, G. (1986). In Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics, edited by M. Mezard, G. Parisi & M. Virasoro, Vol. 9, pp 99–103. Singapore: World Scientific.  Google Scholar
First citationWoodward, F. M., Albrecht, A. S., Wynn, C. M., Landee, C. P. & Turnbull, M. M. (2002). Phys. Rev. B, 65, 144412.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds