research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of N-(4-meth­­oxy­phen­yl)picolinamide

crossmark logo

aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan, bPhysical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India, and cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek, St, 83, Tashkent, 100125, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 23 October 2024; accepted 8 November 2024; online 14 November 2024)

The synthesis, crystal structure, and Hirshfeld surface analysis of N-(4-meth­oxy­phen­yl)picolinamide (MPPA), C13H12N2O2, are presented. MPPA crystallizes in the monoclinic space group P21/n, with a single mol­ecule in the asymmetric unit. Structural analysis reveals that all non-hydrogen atoms are nearly coplanar, and the mol­ecule exhibits two intra­molecular hydrogen bonds that stabilize its conformation. Supra­molecular features include significant inter­molecular inter­actions, primarily C—H⋯π and various hydrogen bonds, contributing to the overall crystal cohesion, as confirmed by energy framework calculations yielding a total inter­action energy of −138.3 kJ mol−1. Hirshfeld surface analysis indicates that H⋯H inter­actions dominate, followed by C⋯H and O⋯H inter­actions, highlighting the role of van der Waals forces and hydrogen bonding in crystal packing.

1. Chemical context

The synthesis of amide derivatives of carbonic acid is a vital area of organic chemistry, owing to the widespread presence and significance of amide bonds in various applications. These bonds are fundamental components in polymers such as nylon, proteins, and peptides, as well as in natural products such as paclitaxel and penicillin (Valeur & Bradley, 2009[Valeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606-631.]). Notably, approximately 25% of pharmaceuticals contain at least one amide bond, highlighting their importance in drug development (Ghose et al., 1999[Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. (1999). J. Comb. Chem. 1, 55-68.]; Kamanna et al., 2020[Kamanna, K., Khatavi, S. Y. & Hiremath, P. B. (2020). Curr. Microw. Chem. 7, 50-59.]; Goodreid et al., 2014[Goodreid, J. D., Duspara, P. A., Bosch, C. & Batey, R. A. (2014). J. Org. Chem. 79, 943-954.]).

Amide-linked compounds are typically synthesized through acyl­ation methods, often involving acyl chlorides or coupling agents that facilitate the reaction between carb­oxy­lic acids and amines (Montalbetti & Falque, 2005[Montalbetti, C. A. & Falque, V. (2005). Tetrahedron, 61, 10827-10852.]; Pon et al., 1999[Pon, R. T., Yu, S. & Sanghvi, Y. S. (1999). Bioconjugate Chem. 10, 1051-1057.]; Han & Kim, 2004[Han, S.-Y. & Kim, Y.-A. (2004). Tetrahedron, 60, 2447-2467.]; Valeur & Bradley, 2009[Valeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606-631.]). Moreover, the use of orthoboric acid and organoboronic compounds has gained prominence for direct amide synthesis, demonstrating their effectiveness as catalysts in these reactions (Tang, 2005[Tang, P. (2005). Org. Synth. 81, 262-272.]).

Among the diverse array of organic substances, heterocyclic compounds are particularly significant, especially heterocyclic aromatic compounds, which play crucial roles in biological systems. Pyridine and its derivatives are key representatives of this class (Kaiser et al., 1996[Kaiser, J. P., Feng, Y. & Bollag, J. M. (1996). Microbiol. Rev. 60, 483-498.]). Specifically, 2-pyridine­carb­oxy­lic acid amides are noteworthy for their versatility as reagents and catalysts in various organic syntheses. Their strong ligand properties in coordination chemistry have also been extensively studied (Sambiagio et al., 2016[Sambiagio, C., Munday, R. H., John Blacker, A., Marsden, S. P. & McGowan, P. C. (2016). RSC Adv. 6, 70025-70032.]).

The combination of a pyridine fragment with an amide bond not only enhances the reactivity of these compounds but also expands their applicability across multiple sectors of the chemical industry. The nitro­gen atom in the pyridine ring possesses an unshared electron pair, which, along with the electron-rich carbonyl group of the amide, facilitates the formation of coordination bonds with various metals (Mishra et al., 2008[Mishra, A., Kaushik, N. K., Verma, A. K. & Gupta, R. (2008). Eur. J. Med. Chem. 43, 2189-2196.]; Almodares et al., 2014[Almodares, Z., Lucas, S. J., Crossley, B. D., Basri, A. M., Pask, C. M., Hebden, A. J., Phillips, R. M. & McGowan, P. C. (2014). Inorg. Chem. 53, 727-736.]; Wang et al., 2019[Wang, F.-Y., Feng, H.-W., Liu, R., Huang, K.-B., Liu, Y.-N. & Liang, H. (2019). Inorg. Chem. Commun. 105, 55-58.]; Basri et al., 2017[Basri, A. M., Lord, R. M., Allison, S. J., Rodríguez-Bárzano, A., Lucas, S. J., Janeway, F. D., Shepherd, H. J., Pask, Ch. M., Phillips, R. M. & McGowan, P. C. (2017). Chem. A Eur. J. 23, 6341-6356.]). This inter­action paves the way for the development of complex compounds with tailored properties, making these derivatives integral to advancements in both synthetic and applied chemistry.

[Scheme 1]

2. Structural commentary

N-(4-Meth­oxy­phen­yl)picolinamide (MPPA) crystallizes in the primitive centrosymmetric monoclinic space group P21/n. The asymmetric unit consists of a single mol­ecule of MPPA (Fig. 1[link]). All atoms, except for the hydrogen atoms, lie nearly in a plane, with a maximum deviation of 0.195 Å for atom C11. The dihedral angle between the mean planes of the pyridine ring (C1–C5/N1) and the benzene ring (C7–C12) is 14.25 (5)°. The torsion angles for the groups N1—C5—C6—N2 and C6—N2—C7—C8 are 3.1 (4)° and 12.7 (6)°, respectively. The distance between C6 and O1 in the amide moiety is 1.233 (4) Å (Shen et al., 2019[Shen, J., Xu, J., Cai, H., Shen, C. & Zhang, P. (2019). Org. Biomol. Chem. 17, 490-497.]; Razzoqova et al., 2022[Razzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277-1283.]). The conformation of the meth­oxy group is nearly planar with respect to the benzene ring, with a C9—C10—O2—C13 torsion angle of 7.5 (5)°. The nitro­gen atom (N2) in the imino group is also planar, with the sum of the bond angles around it being equal to 360°. There are two intra­molecular hydrogen bonds: one between the pyridine nitro­gen (N1) and the amide nitro­gen (N2) (N2—H2⋯N1 = 2.18 Å), and another between the amide oxygen (O1) and the benzene carbon (C8) (C8—H8⋯O1 = 2.37 Å). These inter­actions form S(5) and S(6) ring motifs, respectively (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), which contribute to the stabilization of the mol­ecular conformation (Fig. 1[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.86 2.18 2.635 (4) 113
C1—H1⋯O1i 0.93 2.58 3.500 (4) 173
C3—H3⋯N1ii 0.93 2.74 3.402 (4) 129
C8—H8⋯O1 0.93 2.37 2.947 (4) 120
C11—H11⋯O2iii 0.93 2.63 3.558 (4) 173
C13—H13C⋯O1iv 0.96 2.51 3.468 (4) 173
C13—H13BCg1v 0.96 2.71 3.500 (4) 140
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, -y+1, -z]; (iv) [-x+1, -y+1, -z+1]; (v) [x-1, y, z].
[Figure 1]
Figure 1
A view of the mol­ecular structure of MPPA, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular hydrogen bonds are shown as dashed lines.

3. Supra­molecular features and energy framework calculations

In the crystal structure, mol­ecules are inter­connected through weak inter­actions. Notably, an inter­molecular C—H⋯π inter­action (C13—H13BCg1) involves the centroid of the C7–C12 benzene ring (see Table 1[link], Fig. 2[link]). These inter­actions are crucial for the packing of mol­ecules along the a-axis direction. Additionally, several weak hydrogen bonds further contribute to the structural integrity. These include C1—H1⋯O1, C3—H3⋯N1, C11—H11⋯O2 and C13—H13⋯O1 and help consolidate the mol­ecules along the b- and c-axis directions (see Table 1[link], Fig. 3[link]). Notably, the C11—H11⋯O2 inter­action results in the formation of inversion dimers, creating closed eight-membered rings characterized by an R22(8) graph-set motif (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Figure 2]
Figure 2
Crystal packing of MPPA along the [100] direction. C—H⋯Cg inter­actions are shown as cyan dashed lines.
[Figure 3]
Figure 3
Crystal packing of MPPA in a projection along the [100] direction. Hydrogen bonds are shown as cyan lines. The colour codes of the atoms participating in inter­actions and corresponding symmetry operations of neighbours are similar.

To identify the inter­molecular inter­actions of MPPA, energy framework calculations were carried out using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The wavefunctions were derived from the SCXRD CIF file using the Gaussian B3LYP-D2/6-31G(d,p) method. The total inter­action energy (Etot) was calculated by combining the electrostatic (Eele), polarization (Epol), dispersion (Edis) and repulsion (Erep) contributions, giving a value of −138.3 kJ mol−1. Electrostatic and dispersion forces are the dominant contributors to the stability of the crystal, particularly along the a-axis direction (Fig. 4[link]). Inter­action energies were computed for mol­ecules within a 3.8 Å radius of a reference mol­ecule, omitting those below 5 kJ mol−1 for clarity. In the energy framework visualization, thick cylinders represented stronger inter­actions, allowing easy identification of significant inter­molecular inter­actions (Fig. 4[link]).

[Figure 4]
Figure 4
Energy framework calculations of the MPPA crystal are observed along the a, b and c axes.

4. Hirshfeld surface analysis

The studies carried out on the Hirshfeld surface show that H⋯H inter­actions are the most abundant at 47% of the total inter­mol­ecular inter­actions, suggesting the importance of van der Waals inter­actions in the structural organization of the crystal due to the hydrogen atoms. The C⋯H inter­actions come second, accounting for 22% and signify the presence of weak dispersive forces or possible C—H⋯π inter­actions, which further help stabilize the crystal. The 15.4% contribution of O⋯H inter­actions indicate the presence of strong hydrogen-bonding inter­actions between oxygen atoms and hydrogen atoms, which play a key role in the crystal packing. The smallest contributions to the crystal packing are from N⋯H (5%), C⋯C (4.8%), C⋯N (3.4%) and C⋯O (1.9%) contacts (Fig. 5[link]).

[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surfaces plotted over dnorm and contributions of the various contacts to the two-dimensional fingerprint plots of the MPPA mol­ecule.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, last updated March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) did not find any structures for the synthesized MPPA. However, two complex compounds were identified in which MPPA acts as a bidentate ligand, coordinating with Co and Rh metals (BAKQIR, Ghandhi et al., 2021[Ghandhi, L. H., Bidula, S., Pask, C. M., Lord, R. M. & McGowan, P. C. (2021). ChemMedChem, 16, 3210-3221.]; BEDSAG, Bhattacharya et al., 2012[Bhattacharya, I., Dasgupta, M., Drew, M. G. B. & Bhattacharya, S. (2012). J. Indian Chem. Soc. 89, 205-216.]). The authors also reported structures of various picolinamides, including several benzene derivatives. Among these, mono-substituted derivatives such as o-, m-, and p-mono­chloro (KEHWED, KEHWAZ, GEPQIC; Gallagher et al., 2022[Gallagher, J. F., Hehir, N., Mocilac, P., Violin, C., O'Connor, B. F., Aubert, E., Espinosa, E., Guillot, B. & Jelsch, C. (2022). Cryst. Growth Des. 22, 3343-3358.];), p-fluoro (KAHRUI; Wilson & Munro 2010[Wilson, C. R. & Munro, O. Q. (2010). Acta Cryst. C66, o513-o516.]), p-bromo (WUVYIV; Qi et al., 2003[Qi, J. Y., Yang, Q. Y., Lam, K. H., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o374-o375.]) , p-hy­droxy (LUGPOV; Ali et al., 2014[Ali, A., Bansal, D., Kaushik, N. K., Kaushik, N., Choi, E. H. & Gupta, R. (2014). J. Chem. Sci. 126, 1091-1105.]), p-nitro (KAHSAP; Wilson et al., 2010[Wilson, C. R. & Munro, O. Q. (2010). Acta Cryst. C66, o513-o516.]), and o-, m-, and p-methyl (UXEYOM, UXEYIG, UXEYEC; Mocilac & Gallagher, 2011[Mocilac, P. & Gallagher, J. F. (2011). CrystEngComm, 13, 5354-5366.]) picolinamides were documented. In these mol­ecules, the mean planes of the pyridine and benzene rings are generally nearly coplanar, with slight twisting in some cases. Notably, the p-fluoro and p-methyl derivatives exhibit significant twisting, with dihedral angles of 36.26 and 33.63°, respectively.

6. Synthesis and crystallization

A mixture of 0.615 g (0.005 mol) of picolinic acid, 1.23 g (0.01 mol) of p-anisidine, and 0.31 g (0.005 mol) of orthoboric acid was thoroughly combined and placed in a reaction flask. The flask was then subjected to microwave irradiation for 40 minutes. Upon completion of the reaction, a 10% NaHCO3 solution was added to the mixture, and the resulting solid was filtered off. The filtrate was recrystallized using a 30% ethanol–water solution, yielding 0.798 g (70%) of the final product, m.p. 362–363 K.

1H NMR (600 MHz, CDCl3) (J, Hz): δ 9.92 (s, 1H), 8.60 (ddt, J = 4.8, 1.7, 0.8 Hz, 1H), 8.29 (dt, J = 7.8, 1.1 Hz, 1H), 7.92–7.86 (m, 1H), 7.73–7.67 (m, 2H), 7.49–7.44 (m, 1H), 6.95–6.90 (m, 2H), 3.81 (s, 3H). 13C NMR (151 MHz, CDCl3): δ 161.86, 156.52, 150.11, 148.07, 137.77, 131.16, 126.43, 122.44, 121.37, 114.38, 55.62. m/z (MS): [M]+ 228.00.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the hydrogen atoms were located in difference-Fourier maps and refined using an isotropic approximation.

Table 2
Experimental details

Crystal data
Chemical formula C13H12N2O2
Mr 228.25
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 5.0082 (9), 20.728 (4), 11.1549 (14)
β (°) 96.998 (15)
V3) 1149.3 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.74
Crystal size (mm) 0.10 × 0.08 × 0.07
 
Data collection
Diffractometer Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.669, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7362, 2166, 975
Rint 0.096
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.139, 1.00
No. of reflections 2166
No. of parameters 156
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.16
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

N-(4-Methoxyphenyl)pyridine-2-carboxamide top
Crystal data top
C13H12N2O2F(000) = 480
Mr = 228.25Dx = 1.319 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 5.0082 (9) ÅCell parameters from 638 reflections
b = 20.728 (4) Åθ = 4.3–50.5°
c = 11.1549 (14) ŵ = 0.74 mm1
β = 96.998 (15)°T = 293 K
V = 1149.3 (3) Å3Block, colourless
Z = 40.10 × 0.08 × 0.07 mm
Data collection top
Xcalibur, Ruby
diffractometer
2166 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
Detector resolution: 10.2576 pixels mm-1θmax = 70.0°, θmin = 4.5°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 2325
Tmin = 0.669, Tmax = 1.000l = 139
7362 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.061 w = 1/[σ2(Fo2) + (0.0373P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.139(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.15 e Å3
2166 reflectionsΔρmin = 0.16 e Å3
156 parametersExtinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0017 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7804 (5)0.64248 (12)0.5355 (2)0.0708 (8)
O20.0904 (5)0.46914 (13)0.1774 (2)0.0732 (8)
N20.6732 (5)0.65548 (14)0.3324 (2)0.0598 (8)
H20.7095120.6793370.2734430.072*
N11.0276 (6)0.74910 (15)0.3271 (2)0.0601 (8)
C100.0926 (7)0.51451 (18)0.2243 (3)0.0586 (10)
C60.8116 (7)0.66959 (18)0.4398 (3)0.0578 (10)
C70.4767 (6)0.60741 (18)0.3013 (3)0.0551 (10)
C51.0171 (7)0.72159 (18)0.4350 (3)0.0527 (9)
C41.1852 (7)0.73839 (18)0.5373 (3)0.0595 (10)
H41.1716230.7180240.6105760.071*
C90.1619 (7)0.52633 (19)0.3453 (3)0.0648 (11)
H90.0794590.5031350.4019500.078*
C11.2108 (7)0.79571 (19)0.3221 (3)0.0677 (11)
H11.2206370.8156770.2480610.081*
C31.3734 (7)0.78589 (19)0.5287 (3)0.0661 (11)
H31.4913290.7975260.5961930.079*
C80.3529 (7)0.5724 (2)0.3835 (3)0.0656 (11)
H80.3982880.5797270.4656820.079*
C120.4052 (7)0.59542 (19)0.1794 (3)0.0690 (11)
H120.4862000.6188040.1225150.083*
C21.3864 (7)0.81602 (19)0.4202 (3)0.0688 (11)
H2A1.5090950.8490170.4127570.083*
C110.2162 (7)0.5494 (2)0.1416 (3)0.0730 (12)
H110.1712260.5418040.0594260.088*
C130.2421 (7)0.43698 (19)0.2588 (3)0.0778 (12)
H13A0.3725390.4093600.2143730.117*
H13B0.3325490.4682550.3029120.117*
H13C0.1237740.4115690.3142640.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0822 (19)0.079 (2)0.0492 (14)0.0123 (15)0.0019 (13)0.0042 (13)
O20.0762 (18)0.077 (2)0.0654 (16)0.0158 (16)0.0045 (14)0.0085 (14)
N20.071 (2)0.066 (2)0.0402 (15)0.0061 (17)0.0033 (15)0.0030 (14)
N10.068 (2)0.065 (2)0.0453 (17)0.0046 (18)0.0012 (14)0.0028 (15)
C100.055 (2)0.063 (3)0.056 (2)0.002 (2)0.0000 (18)0.0060 (19)
C60.064 (2)0.060 (3)0.049 (2)0.007 (2)0.0013 (18)0.0038 (18)
C70.056 (2)0.057 (3)0.050 (2)0.004 (2)0.0028 (18)0.0055 (18)
C50.057 (2)0.055 (3)0.0440 (19)0.0066 (19)0.0002 (17)0.0019 (17)
C40.064 (2)0.069 (3)0.0440 (19)0.000 (2)0.0012 (18)0.0016 (18)
C90.064 (2)0.077 (3)0.055 (2)0.008 (2)0.0143 (19)0.003 (2)
C10.075 (3)0.072 (3)0.057 (2)0.006 (2)0.012 (2)0.011 (2)
C30.066 (2)0.078 (3)0.051 (2)0.008 (2)0.0039 (19)0.006 (2)
C80.068 (3)0.083 (3)0.046 (2)0.002 (2)0.0065 (19)0.007 (2)
C120.082 (3)0.072 (3)0.051 (2)0.014 (2)0.004 (2)0.0076 (19)
C20.074 (3)0.071 (3)0.062 (2)0.012 (2)0.010 (2)0.005 (2)
C110.085 (3)0.083 (3)0.047 (2)0.014 (2)0.008 (2)0.003 (2)
C130.064 (3)0.078 (3)0.092 (3)0.009 (2)0.013 (2)0.001 (2)
Geometric parameters (Å, º) top
O1—C61.233 (4)C4—C31.374 (5)
O2—C101.371 (4)C9—H90.9300
O2—C131.419 (4)C9—C81.381 (5)
N2—H20.8600C1—H10.9300
N2—C61.341 (4)C1—C21.384 (4)
N2—C71.413 (4)C3—H30.9300
N1—C51.339 (4)C3—C21.371 (4)
N1—C11.338 (4)C8—H80.9300
C10—C91.374 (4)C12—H120.9300
C10—C111.378 (5)C12—C111.373 (5)
C6—C51.496 (5)C2—H2A0.9300
C7—C81.376 (5)C11—H110.9300
C7—C121.386 (4)C13—H13A0.9600
C5—C41.378 (4)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C10—O2—C13117.6 (3)N1—C1—C2124.0 (3)
C6—N2—H2115.0C2—C1—H1118.0
C6—N2—C7129.9 (3)C4—C3—H3120.2
C7—N2—H2115.0C2—C3—C4119.6 (3)
C1—N1—C5116.6 (3)C2—C3—H3120.2
O2—C10—C9125.0 (3)C7—C8—C9120.7 (3)
O2—C10—C11116.0 (3)C7—C8—H8119.6
C9—C10—C11118.9 (3)C9—C8—H8119.6
O1—C6—N2124.6 (4)C7—C12—H12119.6
O1—C6—C5121.3 (3)C11—C12—C7120.8 (4)
N2—C6—C5114.1 (3)C11—C12—H12119.6
C8—C7—N2124.4 (3)C1—C2—H2A121.1
C8—C7—C12118.4 (3)C3—C2—C1117.8 (4)
C12—C7—N2117.2 (3)C3—C2—H2A121.1
N1—C5—C6116.2 (3)C10—C11—H11119.7
N1—C5—C4123.4 (3)C12—C11—C10120.5 (3)
C4—C5—C6120.4 (3)C12—C11—H11119.7
C5—C4—H4120.7O2—C13—H13A109.5
C3—C4—C5118.6 (3)O2—C13—H13B109.5
C3—C4—H4120.7O2—C13—H13C109.5
C10—C9—H9119.7H13A—C13—H13B109.5
C10—C9—C8120.6 (3)H13A—C13—H13C109.5
C8—C9—H9119.7H13B—C13—H13C109.5
N1—C1—H1118.0
O1—C6—C5—N1177.9 (3)C7—N2—C6—O12.8 (6)
O1—C6—C5—C42.9 (5)C7—N2—C6—C5176.1 (3)
O2—C10—C9—C8178.7 (3)C7—C12—C11—C100.4 (6)
O2—C10—C11—C12179.1 (3)C5—N1—C1—C20.4 (5)
N2—C6—C5—N13.1 (4)C5—C4—C3—C21.2 (5)
N2—C6—C5—C4176.1 (3)C4—C3—C2—C11.6 (6)
N2—C7—C8—C9179.8 (3)C9—C10—C11—C120.1 (6)
N2—C7—C12—C11179.9 (3)C1—N1—C5—C6179.9 (3)
N1—C5—C4—C30.1 (5)C1—N1—C5—C40.9 (5)
N1—C1—C2—C30.8 (6)C8—C7—C12—C110.3 (6)
C10—C9—C8—C70.2 (6)C12—C7—C8—C90.0 (6)
C6—N2—C7—C812.7 (6)C11—C10—C9—C80.2 (6)
C6—N2—C7—C12167.5 (3)C13—O2—C10—C97.5 (5)
C6—C5—C4—C3179.2 (3)C13—O2—C10—C11173.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.862.182.635 (4)113
C1—H1···O1i0.932.583.500 (4)173
C3—H3···N1ii0.932.743.402 (4)129
C8—H8···O10.932.372.947 (4)120
C11—H11···O2iii0.932.633.558 (4)173
C13—H13C···O1iv0.962.513.468 (4)173
C13—H13B···Cg1v0.962.713.500 (4)140
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x1, y, z.
 

References

First citationAli, A., Bansal, D., Kaushik, N. K., Kaushik, N., Choi, E. H. & Gupta, R. (2014). J. Chem. Sci. 126, 1091–1105.  Web of Science CSD CrossRef CAS Google Scholar
First citationAlmodares, Z., Lucas, S. J., Crossley, B. D., Basri, A. M., Pask, C. M., Hebden, A. J., Phillips, R. M. & McGowan, P. C. (2014). Inorg. Chem. 53, 727–736.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBasri, A. M., Lord, R. M., Allison, S. J., Rodríguez–Bárzano, A., Lucas, S. J., Janeway, F. D., Shepherd, H. J., Pask, Ch. M., Phillips, R. M. & McGowan, P. C. (2017). Chem. A Eur. J. 23, 6341–6356.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhattacharya, I., Dasgupta, M., Drew, M. G. B. & Bhattacharya, S. (2012). J. Indian Chem. Soc. 89, 205–216.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationGallagher, J. F., Hehir, N., Mocilac, P., Violin, C., O'Connor, B. F., Aubert, E., Espinosa, E., Guillot, B. & Jelsch, C. (2022). Cryst. Growth Des. 22, 3343–3358.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGhandhi, L. H., Bidula, S., Pask, C. M., Lord, R. M. & McGowan, P. C. (2021). ChemMedChem, 16, 3210–3221.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGhose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. (1999). J. Comb. Chem. 1, 55–68.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGoodreid, J. D., Duspara, P. A., Bosch, C. & Batey, R. A. (2014). J. Org. Chem. 79, 943–954.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, S.-Y. & Kim, Y.-A. (2004). Tetrahedron, 60, 2447–2467.  Web of Science CrossRef CAS Google Scholar
First citationKaiser, J. P., Feng, Y. & Bollag, J. M. (1996). Microbiol. Rev. 60, 483–498.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKamanna, K., Khatavi, S. Y. & Hiremath, P. B. (2020). Curr. Microw. Chem. 7, 50–59.  Web of Science CrossRef CAS Google Scholar
First citationMishra, A., Kaushik, N. K., Verma, A. K. & Gupta, R. (2008). Eur. J. Med. Chem. 43, 2189–2196.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMocilac, P. & Gallagher, J. F. (2011). CrystEngComm, 13, 5354–5366.  Web of Science CSD CrossRef CAS Google Scholar
First citationMontalbetti, C. A. & Falque, V. (2005). Tetrahedron, 61, 10827–10852.  Web of Science CrossRef CAS Google Scholar
First citationPon, R. T., Yu, S. & Sanghvi, Y. S. (1999). Bioconjugate Chem. 10, 1051–1057.  Web of Science CrossRef CAS Google Scholar
First citationQi, J. Y., Yang, Q. Y., Lam, K. H., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o374–o375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277–1283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSambiagio, C., Munday, R. H., John Blacker, A., Marsden, S. P. & McGowan, P. C. (2016). RSC Adv. 6, 70025–70032.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, J., Xu, J., Cai, H., Shen, C. & Zhang, P. (2019). Org. Biomol. Chem. 17, 490–497.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, P. (2005). Org. Synth. 81, 262–272.  CrossRef CAS Google Scholar
First citationValeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606–631.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, F.-Y., Feng, H.-W., Liu, R., Huang, K.-B., Liu, Y.-N. & Liang, H. (2019). Inorg. Chem. Commun. 105, 55–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationWilson, C. R. & Munro, O. Q. (2010). Acta Cryst. C66, o513–o516.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds