research communications
Synthesis, N-(4-methoxyphenyl)picolinamide
and Hirshfeld surface analysis ofaNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan, bPhysical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India, and cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek, St, 83, Tashkent, 100125, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru
The synthesis, N-(4-methoxyphenyl)picolinamide (MPPA), C13H12N2O2, are presented. MPPA crystallizes in the monoclinic P21/n, with a single molecule in the Structural analysis reveals that all non-hydrogen atoms are nearly coplanar, and the molecule exhibits two intramolecular hydrogen bonds that stabilize its conformation. Supramolecular features include significant intermolecular interactions, primarily C—H⋯π and various hydrogen bonds, contributing to the overall crystal cohesion, as confirmed by energy framework calculations yielding a total interaction energy of −138.3 kJ mol−1. Hirshfeld surface analysis indicates that H⋯H interactions dominate, followed by C⋯H and O⋯H interactions, highlighting the role of and hydrogen bonding in crystal packing.
and Hirshfeld surface analysis ofKeywords: crystal structure; molecular structure; picolinic acid; picolinamide; Hirshfeld surface analysis.
CCDC reference: 2401430
1. Chemical context
The synthesis of amide derivatives of carbonic acid is a vital area of organic chemistry, owing to the widespread presence and significance of amide bonds in various applications. These bonds are fundamental components in polymers such as nylon, proteins, and ). Notably, approximately 25% of pharmaceuticals contain at least one amide bond, highlighting their importance in drug development (Ghose et al., 1999; Kamanna et al., 2020; Goodreid et al., 2014).
as well as in natural products such as paclitaxel and penicillin (Valeur & Bradley, 2009Amide-linked compounds are typically synthesized through acylation methods, often involving acyl chlorides or coupling agents that facilitate the reaction between carboxylic acids and ; Pon et al., 1999; Han & Kim, 2004; Valeur & Bradley, 2009). Moreover, the use of orthoboric acid and organoboronic compounds has gained prominence for direct amide synthesis, demonstrating their effectiveness as catalysts in these reactions (Tang, 2005).
(Montalbetti & Falque, 2005Among the diverse array of organic substances, et al., 1996). Specifically, 2-pyridinecarboxylic acid are noteworthy for their versatility as reagents and catalysts in various organic syntheses. Their strong ligand properties in coordination chemistry have also been extensively studied (Sambiagio et al., 2016).
are particularly significant, especially heterocyclic aromatic compounds, which play crucial roles in biological systems. Pyridine and its derivatives are key representatives of this class (KaiserThe combination of a pyridine fragment with an amide bond not only enhances the reactivity of these compounds but also expands their applicability across multiple sectors of the chemical industry. The nitrogen atom in the pyridine ring possesses an unshared electron pair, which, along with the electron-rich carbonyl group of the amide, facilitates the formation of coordination bonds with various metals (Mishra et al., 2008; Almodares et al., 2014; Wang et al., 2019; Basri et al., 2017). This interaction paves the way for the development of complex compounds with tailored properties, making these derivatives integral to advancements in both synthetic and applied chemistry.
2. Structural commentary
N-(4-Methoxyphenyl)picolinamide (MPPA) crystallizes in the primitive centrosymmetric monoclinic P21/n. The consists of a single molecule of MPPA (Fig. 1). All atoms, except for the hydrogen atoms, lie nearly in a plane, with a maximum deviation of 0.195 Å for atom C11. The dihedral angle between the mean planes of the pyridine ring (C1–C5/N1) and the benzene ring (C7–C12) is 14.25 (5)°. The torsion angles for the groups N1—C5—C6—N2 and C6—N2—C7—C8 are 3.1 (4)° and 12.7 (6)°, respectively. The distance between C6 and O1 in the amide moiety is 1.233 (4) Å (Shen et al., 2019; Razzoqova et al., 2022). The conformation of the methoxy group is nearly planar with respect to the benzene ring, with a C9—C10—O2—C13 torsion angle of 7.5 (5)°. The nitrogen atom (N2) in the imino group is also planar, with the sum of the bond angles around it being equal to 360°. There are two intramolecular hydrogen bonds: one between the pyridine nitrogen (N1) and the amide nitrogen (N2) (N2—H2⋯N1 = 2.18 Å), and another between the amide oxygen (O1) and the benzene carbon (C8) (C8—H8⋯O1 = 2.37 Å). These interactions form S(5) and S(6) ring motifs, respectively (Bernstein et al., 1995), which contribute to the stabilization of the molecular conformation (Fig. 1, Table 1).
3. Supramolecular features and energy framework calculations
In the π interaction (C13—H13B⋯Cg1) involves the centroid of the C7–C12 benzene ring (see Table 1, Fig. 2). These interactions are crucial for the packing of molecules along the a-axis direction. Additionally, several weak hydrogen bonds further contribute to the structural integrity. These include C1—H1⋯O1, C3—H3⋯N1, C11—H11⋯O2 and C13—H13⋯O1 and help consolidate the molecules along the b- and c-axis directions (see Table 1, Fig. 3). Notably, the C11—H11⋯O2 interaction results in the formation of inversion dimers, creating closed eight-membered rings characterized by an R22(8) graph-set motif (Etter, 1990).
molecules are interconnected through weak interactions. Notably, an intermolecular C—H⋯To identify the intermolecular interactions of MPPA, energy framework calculations were carried out using CrystalExplorer (Spackman et al., 2021). The wavefunctions were derived from the SCXRD file using the Gaussian B3LYP-D2/6-31G(d,p) method. The total interaction energy (Etot) was calculated by combining the electrostatic (Eele), polarization (Epol), dispersion (Edis) and repulsion (Erep) contributions, giving a value of −138.3 kJ mol−1. Electrostatic and dispersion forces are the dominant contributors to the stability of the crystal, particularly along the a-axis direction (Fig. 4). Interaction energies were computed for molecules within a 3.8 Å radius of a reference molecule, omitting those below 5 kJ mol−1 for clarity. In the energy framework visualization, thick cylinders represented stronger interactions, allowing easy identification of significant intermolecular interactions (Fig. 4).
4. Hirshfeld surface analysis
The studies carried out on the Hirshfeld surface show that H⋯H interactions are the most abundant at 47% of the total intermolecular interactions, suggesting the importance of van der Waals interactions in the structural organization of the crystal due to the hydrogen atoms. The C⋯H interactions come second, accounting for 22% and signify the presence of weak dispersive forces or possible C—H⋯π interactions, which further help stabilize the crystal. The 15.4% contribution of O⋯H interactions indicate the presence of strong hydrogen-bonding interactions between oxygen atoms and hydrogen atoms, which play a key role in the crystal packing. The smallest contributions to the crystal packing are from N⋯H (5%), C⋯C (4.8%), C⋯N (3.4%) and C⋯O (1.9%) contacts (Fig. 5).
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.45, last updated March 2024; Groom et al., 2016) did not find any structures for the synthesized MPPA. However, two complex compounds were identified in which MPPA acts as a bidentate ligand, coordinating with Co and Rh metals (BAKQIR, Ghandhi et al., 2021; BEDSAG, Bhattacharya et al., 2012). The authors also reported structures of various picolinamides, including several benzene derivatives. Among these, mono-substituted derivatives such as o-, m-, and p-monochloro (KEHWED, KEHWAZ, GEPQIC; Gallagher et al., 2022;), p-fluoro (KAHRUI; Wilson & Munro 2010), p-bromo (WUVYIV; Qi et al., 2003) , p-hydroxy (LUGPOV; Ali et al., 2014), p-nitro (KAHSAP; Wilson et al., 2010), and o-, m-, and p-methyl (UXEYOM, UXEYIG, UXEYEC; Mocilac & Gallagher, 2011) picolinamides were documented. In these molecules, the mean planes of the pyridine and benzene rings are generally nearly coplanar, with slight twisting in some cases. Notably, the p-fluoro and p-methyl derivatives exhibit significant twisting, with dihedral angles of 36.26 and 33.63°, respectively.
6. Synthesis and crystallization
A mixture of 0.615 g (0.005 mol) of picolinic acid, 1.23 g (0.01 mol) of p-anisidine, and 0.31 g (0.005 mol) of orthoboric acid was thoroughly combined and placed in a reaction flask. The flask was then subjected to microwave irradiation for 40 minutes. Upon completion of the reaction, a 10% NaHCO3 solution was added to the mixture, and the resulting solid was filtered off. The filtrate was recrystallized using a 30% ethanol–water solution, yielding 0.798 g (70%) of the final product, m.p. 362–363 K.
1H NMR (600 MHz, CDCl3) (J, Hz): δ 9.92 (s, 1H), 8.60 (ddt, J = 4.8, 1.7, 0.8 Hz, 1H), 8.29 (dt, J = 7.8, 1.1 Hz, 1H), 7.92–7.86 (m, 1H), 7.73–7.67 (m, 2H), 7.49–7.44 (m, 1H), 6.95–6.90 (m, 2H), 3.81 (s, 3H). 13C NMR (151 MHz, CDCl3): δ 161.86, 156.52, 150.11, 148.07, 137.77, 131.16, 126.43, 122.44, 121.37, 114.38, 55.62. m/z (MS): [M]+ 228.00.
7. Refinement
Crystal data, data collection and structure . All the hydrogen atoms were located in difference-Fourier maps and refined using an isotropic approximation.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2401430
https://doi.org/10.1107/S2056989024010843/dx2062sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024010843/dx2062Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024010843/dx2062Isup3.cml
C13H12N2O2 | F(000) = 480 |
Mr = 228.25 | Dx = 1.319 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 5.0082 (9) Å | Cell parameters from 638 reflections |
b = 20.728 (4) Å | θ = 4.3–50.5° |
c = 11.1549 (14) Å | µ = 0.74 mm−1 |
β = 96.998 (15)° | T = 293 K |
V = 1149.3 (3) Å3 | Block, colourless |
Z = 4 | 0.10 × 0.08 × 0.07 mm |
Xcalibur, Ruby diffractometer | 2166 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 975 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.096 |
Detector resolution: 10.2576 pixels mm-1 | θmax = 70.0°, θmin = 4.5° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | k = −23→25 |
Tmin = 0.669, Tmax = 1.000 | l = −13→9 |
7362 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.061 | w = 1/[σ2(Fo2) + (0.0373P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.139 | (Δ/σ)max < 0.001 |
S = 1.00 | Δρmax = 0.15 e Å−3 |
2166 reflections | Δρmin = −0.16 e Å−3 |
156 parameters | Extinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0017 (4) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7804 (5) | 0.64248 (12) | 0.5355 (2) | 0.0708 (8) | |
O2 | −0.0904 (5) | 0.46914 (13) | 0.1774 (2) | 0.0732 (8) | |
N2 | 0.6732 (5) | 0.65548 (14) | 0.3324 (2) | 0.0598 (8) | |
H2 | 0.709512 | 0.679337 | 0.273443 | 0.072* | |
N1 | 1.0276 (6) | 0.74910 (15) | 0.3271 (2) | 0.0601 (8) | |
C10 | 0.0926 (7) | 0.51451 (18) | 0.2243 (3) | 0.0586 (10) | |
C6 | 0.8116 (7) | 0.66959 (18) | 0.4398 (3) | 0.0578 (10) | |
C7 | 0.4767 (6) | 0.60741 (18) | 0.3013 (3) | 0.0551 (10) | |
C5 | 1.0171 (7) | 0.72159 (18) | 0.4350 (3) | 0.0527 (9) | |
C4 | 1.1852 (7) | 0.73839 (18) | 0.5373 (3) | 0.0595 (10) | |
H4 | 1.171623 | 0.718024 | 0.610576 | 0.071* | |
C9 | 0.1619 (7) | 0.52633 (19) | 0.3453 (3) | 0.0648 (11) | |
H9 | 0.079459 | 0.503135 | 0.401950 | 0.078* | |
C1 | 1.2108 (7) | 0.79571 (19) | 0.3221 (3) | 0.0677 (11) | |
H1 | 1.220637 | 0.815677 | 0.248061 | 0.081* | |
C3 | 1.3734 (7) | 0.78589 (19) | 0.5287 (3) | 0.0661 (11) | |
H3 | 1.491329 | 0.797526 | 0.596193 | 0.079* | |
C8 | 0.3529 (7) | 0.5724 (2) | 0.3835 (3) | 0.0656 (11) | |
H8 | 0.398288 | 0.579727 | 0.465682 | 0.079* | |
C12 | 0.4052 (7) | 0.59542 (19) | 0.1794 (3) | 0.0690 (11) | |
H12 | 0.486200 | 0.618804 | 0.122515 | 0.083* | |
C2 | 1.3864 (7) | 0.81602 (19) | 0.4202 (3) | 0.0688 (11) | |
H2A | 1.509095 | 0.849017 | 0.412757 | 0.083* | |
C11 | 0.2162 (7) | 0.5494 (2) | 0.1416 (3) | 0.0730 (12) | |
H11 | 0.171226 | 0.541804 | 0.059426 | 0.088* | |
C13 | −0.2421 (7) | 0.43698 (19) | 0.2588 (3) | 0.0778 (12) | |
H13A | −0.372539 | 0.409360 | 0.214373 | 0.117* | |
H13B | −0.332549 | 0.468255 | 0.302912 | 0.117* | |
H13C | −0.123774 | 0.411569 | 0.314264 | 0.117* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0822 (19) | 0.079 (2) | 0.0492 (14) | −0.0123 (15) | 0.0019 (13) | 0.0042 (13) |
O2 | 0.0762 (18) | 0.077 (2) | 0.0654 (16) | −0.0158 (16) | 0.0045 (14) | −0.0085 (14) |
N2 | 0.071 (2) | 0.066 (2) | 0.0402 (15) | −0.0061 (17) | −0.0033 (15) | 0.0030 (14) |
N1 | 0.068 (2) | 0.065 (2) | 0.0453 (17) | 0.0046 (18) | 0.0012 (14) | 0.0028 (15) |
C10 | 0.055 (2) | 0.063 (3) | 0.056 (2) | −0.002 (2) | 0.0000 (18) | −0.0060 (19) |
C6 | 0.064 (2) | 0.060 (3) | 0.049 (2) | 0.007 (2) | 0.0013 (18) | −0.0038 (18) |
C7 | 0.056 (2) | 0.057 (3) | 0.050 (2) | 0.004 (2) | −0.0028 (18) | −0.0055 (18) |
C5 | 0.057 (2) | 0.055 (3) | 0.0440 (19) | 0.0066 (19) | 0.0002 (17) | −0.0019 (17) |
C4 | 0.064 (2) | 0.069 (3) | 0.0440 (19) | 0.000 (2) | 0.0012 (18) | 0.0016 (18) |
C9 | 0.064 (2) | 0.077 (3) | 0.055 (2) | −0.008 (2) | 0.0143 (19) | −0.003 (2) |
C1 | 0.075 (3) | 0.072 (3) | 0.057 (2) | 0.006 (2) | 0.012 (2) | 0.011 (2) |
C3 | 0.066 (2) | 0.078 (3) | 0.051 (2) | −0.008 (2) | −0.0039 (19) | −0.006 (2) |
C8 | 0.068 (3) | 0.083 (3) | 0.046 (2) | −0.002 (2) | 0.0065 (19) | −0.007 (2) |
C12 | 0.082 (3) | 0.072 (3) | 0.051 (2) | −0.014 (2) | −0.004 (2) | 0.0076 (19) |
C2 | 0.074 (3) | 0.071 (3) | 0.062 (2) | −0.012 (2) | 0.010 (2) | −0.005 (2) |
C11 | 0.085 (3) | 0.083 (3) | 0.047 (2) | −0.014 (2) | −0.008 (2) | 0.003 (2) |
C13 | 0.064 (3) | 0.078 (3) | 0.092 (3) | −0.009 (2) | 0.013 (2) | −0.001 (2) |
O1—C6 | 1.233 (4) | C4—C3 | 1.374 (5) |
O2—C10 | 1.371 (4) | C9—H9 | 0.9300 |
O2—C13 | 1.419 (4) | C9—C8 | 1.381 (5) |
N2—H2 | 0.8600 | C1—H1 | 0.9300 |
N2—C6 | 1.341 (4) | C1—C2 | 1.384 (4) |
N2—C7 | 1.413 (4) | C3—H3 | 0.9300 |
N1—C5 | 1.339 (4) | C3—C2 | 1.371 (4) |
N1—C1 | 1.338 (4) | C8—H8 | 0.9300 |
C10—C9 | 1.374 (4) | C12—H12 | 0.9300 |
C10—C11 | 1.378 (5) | C12—C11 | 1.373 (5) |
C6—C5 | 1.496 (5) | C2—H2A | 0.9300 |
C7—C8 | 1.376 (5) | C11—H11 | 0.9300 |
C7—C12 | 1.386 (4) | C13—H13A | 0.9600 |
C5—C4 | 1.378 (4) | C13—H13B | 0.9600 |
C4—H4 | 0.9300 | C13—H13C | 0.9600 |
C10—O2—C13 | 117.6 (3) | N1—C1—C2 | 124.0 (3) |
C6—N2—H2 | 115.0 | C2—C1—H1 | 118.0 |
C6—N2—C7 | 129.9 (3) | C4—C3—H3 | 120.2 |
C7—N2—H2 | 115.0 | C2—C3—C4 | 119.6 (3) |
C1—N1—C5 | 116.6 (3) | C2—C3—H3 | 120.2 |
O2—C10—C9 | 125.0 (3) | C7—C8—C9 | 120.7 (3) |
O2—C10—C11 | 116.0 (3) | C7—C8—H8 | 119.6 |
C9—C10—C11 | 118.9 (3) | C9—C8—H8 | 119.6 |
O1—C6—N2 | 124.6 (4) | C7—C12—H12 | 119.6 |
O1—C6—C5 | 121.3 (3) | C11—C12—C7 | 120.8 (4) |
N2—C6—C5 | 114.1 (3) | C11—C12—H12 | 119.6 |
C8—C7—N2 | 124.4 (3) | C1—C2—H2A | 121.1 |
C8—C7—C12 | 118.4 (3) | C3—C2—C1 | 117.8 (4) |
C12—C7—N2 | 117.2 (3) | C3—C2—H2A | 121.1 |
N1—C5—C6 | 116.2 (3) | C10—C11—H11 | 119.7 |
N1—C5—C4 | 123.4 (3) | C12—C11—C10 | 120.5 (3) |
C4—C5—C6 | 120.4 (3) | C12—C11—H11 | 119.7 |
C5—C4—H4 | 120.7 | O2—C13—H13A | 109.5 |
C3—C4—C5 | 118.6 (3) | O2—C13—H13B | 109.5 |
C3—C4—H4 | 120.7 | O2—C13—H13C | 109.5 |
C10—C9—H9 | 119.7 | H13A—C13—H13B | 109.5 |
C10—C9—C8 | 120.6 (3) | H13A—C13—H13C | 109.5 |
C8—C9—H9 | 119.7 | H13B—C13—H13C | 109.5 |
N1—C1—H1 | 118.0 | ||
O1—C6—C5—N1 | −177.9 (3) | C7—N2—C6—O1 | −2.8 (6) |
O1—C6—C5—C4 | 2.9 (5) | C7—N2—C6—C5 | 176.1 (3) |
O2—C10—C9—C8 | 178.7 (3) | C7—C12—C11—C10 | 0.4 (6) |
O2—C10—C11—C12 | −179.1 (3) | C5—N1—C1—C2 | 0.4 (5) |
N2—C6—C5—N1 | 3.1 (4) | C5—C4—C3—C2 | 1.2 (5) |
N2—C6—C5—C4 | −176.1 (3) | C4—C3—C2—C1 | −1.6 (6) |
N2—C7—C8—C9 | 179.8 (3) | C9—C10—C11—C12 | −0.1 (6) |
N2—C7—C12—C11 | 179.9 (3) | C1—N1—C5—C6 | 179.9 (3) |
N1—C5—C4—C3 | 0.1 (5) | C1—N1—C5—C4 | −0.9 (5) |
N1—C1—C2—C3 | 0.8 (6) | C8—C7—C12—C11 | −0.3 (6) |
C10—C9—C8—C7 | 0.2 (6) | C12—C7—C8—C9 | 0.0 (6) |
C6—N2—C7—C8 | 12.7 (6) | C11—C10—C9—C8 | −0.2 (6) |
C6—N2—C7—C12 | −167.5 (3) | C13—O2—C10—C9 | 7.5 (5) |
C6—C5—C4—C3 | 179.2 (3) | C13—O2—C10—C11 | −173.6 (3) |
Cg1 is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N1 | 0.86 | 2.18 | 2.635 (4) | 113 |
C1—H1···O1i | 0.93 | 2.58 | 3.500 (4) | 173 |
C3—H3···N1ii | 0.93 | 2.74 | 3.402 (4) | 129 |
C8—H8···O1 | 0.93 | 2.37 | 2.947 (4) | 120 |
C11—H11···O2iii | 0.93 | 2.63 | 3.558 (4) | 173 |
C13—H13C···O1iv | 0.96 | 2.51 | 3.468 (4) | 173 |
C13—H13B···Cg1v | 0.96 | 2.71 | 3.500 (4) | 140 |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z. |
References
Ali, A., Bansal, D., Kaushik, N. K., Kaushik, N., Choi, E. H. & Gupta, R. (2014). J. Chem. Sci. 126, 1091–1105. CrossRef CAS Google Scholar
Almodares, Z., Lucas, S. J., Crossley, B. D., Basri, A. M., Pask, C. M., Hebden, A. J., Phillips, R. M. & McGowan, P. C. (2014). Inorg. Chem. 53, 727–736. Web of Science CSD CrossRef CAS PubMed Google Scholar
Basri, A. M., Lord, R. M., Allison, S. J., Rodríguez–Bárzano, A., Lucas, S. J., Janeway, F. D., Shepherd, H. J., Pask, Ch. M., Phillips, R. M. & McGowan, P. C. (2017). Chem. A Eur. J. 23, 6341–6356. CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bhattacharya, I., Dasgupta, M., Drew, M. G. B. & Bhattacharya, S. (2012). J. Indian Chem. Soc. 89, 205–216. CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Gallagher, J. F., Hehir, N., Mocilac, P., Violin, C., O'Connor, B. F., Aubert, E., Espinosa, E., Guillot, B. & Jelsch, C. (2022). Cryst. Growth Des. 22, 3343–3358. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ghandhi, L. H., Bidula, S., Pask, C. M., Lord, R. M. & McGowan, P. C. (2021). ChemMedChem, 16, 3210–3221. CrossRef CAS PubMed Google Scholar
Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. (1999). J. Comb. Chem. 1, 55–68. Web of Science CrossRef PubMed CAS Google Scholar
Goodreid, J. D., Duspara, P. A., Bosch, C. & Batey, R. A. (2014). J. Org. Chem. 79, 943–954. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Han, S.-Y. & Kim, Y.-A. (2004). Tetrahedron, 60, 2447–2467. Web of Science CrossRef CAS Google Scholar
Kaiser, J. P., Feng, Y. & Bollag, J. M. (1996). Microbiol. Rev. 60, 483–498. CrossRef CAS PubMed Web of Science Google Scholar
Kamanna, K., Khatavi, S. Y. & Hiremath, P. B. (2020). Curr. Microw. Chem. 7, 50–59. CrossRef CAS Google Scholar
Mishra, A., Kaushik, N. K., Verma, A. K. & Gupta, R. (2008). Eur. J. Med. Chem. 43, 2189–2196. Web of Science CrossRef PubMed CAS Google Scholar
Mocilac, P. & Gallagher, J. F. (2011). CrystEngComm, 13, 5354–5366. Web of Science CSD CrossRef CAS Google Scholar
Montalbetti, C. A. & Falque, V. (2005). Tetrahedron, 61, 10827–10852. CrossRef CAS Google Scholar
Pon, R. T., Yu, S. & Sanghvi, Y. S. (1999). Bioconjugate Chem. 10, 1051–1057. CrossRef CAS Google Scholar
Qi, J. Y., Yang, Q. Y., Lam, K. H., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o374–o375. Web of Science CSD CrossRef IUCr Journals Google Scholar
Razzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277–1283. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sambiagio, C., Munday, R. H., John Blacker, A., Marsden, S. P. & McGowan, P. C. (2016). RSC Adv. 6, 70025–70032. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shen, J., Xu, J., Cai, H., Shen, C. & Zhang, P. (2019). Org. Biomol. Chem. 17, 490–497. CrossRef CAS PubMed Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tang, P. (2005). Org. Synth. 81, 262–272. CrossRef CAS Google Scholar
Valeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606–631. Web of Science CrossRef PubMed CAS Google Scholar
Wang, F.-Y., Feng, H.-W., Liu, R., Huang, K.-B., Liu, Y.-N. & Liang, H. (2019). Inorg. Chem. Commun. 105, 55–58. CrossRef CAS Google Scholar
Wilson, C. R. & Munro, O. Q. (2010). Acta Cryst. C66, o513–o516. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.