research communications
E)-(4-acetylphenyl)diazenyl]phenyl}-1-(5-bromothiophen-2-yl)ethanone; a compound with bromine⋯oxygen-type contacts
Hirshfeld surface, DFT and molecular of 2-{4-[(aDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka-572103, India, bRaman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, Karnataka, India, and cDepartment of Physics, Yuvaraja's College, University of Mysore, Mysore 570005, Karnataka, India
*Correspondence e-mail: palaksha.bspm@gmail.com
The title compound, C19H13BrN2O3S, a non-liquid crystal molecule, crystallizes in the orthorhombic system, Pna21. The torsion angles associated with ester and azo groups are −177.0 (4)°, -anti-periplanar, and 179.0 (4)°, +anti-periplanar, respectively. The packing is consolidated by a weak C—Br⋯O=C contact, forming infinite chains running along the [001] direction. A Hirshfeld surface analysis revealed that the major contributions to the crystal surface are from H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, Br⋯H/H⋯Br and S⋯H/H⋯S interactions. The computed three-dimensional energy interactions using the basis set B3LYP\631-G(d,p) show that Edis (217.6 kJ mol−1) is the major component in the structure. The DFT calculations performed at the B3LYP/6–311+ G(d,p) level indicate that the energy gap between HOMO and LUMO is 3.6725 (2) eV. The molecular electrostatic potential (MEP) map generated supports the existence of the Br⋯O type contact, formed between the electrophilic site of the bromine atom and the nucleophilic site of the ketonic oxygen atom. The molecular docking between the ligand and the Mycobacterium Tuberculosis (PDB ID:1HZP) receptor shows a good binding affinity value of −8.5 kcal mol−1.
Keywords: crystal structure; azobenzene; molecular docking; C—Br⋯O=C contact; DFT and Hirshfeld surface.
CCDC reference: 2401081
1. Chemical context
Azobenzenes are a class of molecules having high structural similarity with stilbenes, which exhibit antibacterial and antifungal activity (Piotto et al., 2013). They are capable of regulating the structure and function of various biological molecules, including proteins, and (Mulatihan et al., 2020). Azobenzene derivatives exhibit biological activities such as antioxidant, antiviral and antimicrobial properties (Ventura & Wiedman, 2021; Kaur & Narasimhan, 2018; Peddie & Abell, 2019). Azobenzene-based polymeric nanocarriers are biocompatible materials and they can accelerate drug-release systems in biological tissues (Londoño-Berrío et al., 2022). Interestingly thiophene-based derivatives exhibit significant anti-leishmanial activity (Félix et al., 2016) and antimalarial activity (Akolkar et al., 2022). The thiophene derivatives with antitubulin properties are potential materials for the treatment of cancer and Alzheimer's and Parkinson's diseases (Romagnoli et al., 2007). The thiophene-thiazole derivatives are a class of materials having antitubulin properties and they can also be used as anti-breast cancer agents (Al-Said et al., 2011). Azobenzenes, and their derivatives in a trans confirmation, are medically important. They are also useful in industry because of their interesting photoswitch properties and have therefore been widely explored as photoresponsive compounds in materials science (Li et al., 2024). Keeping photoswitching properties in mind, we have planed to use the tris(azobenzene) as a core group in the construction of liquid-crystal materials. Hence, we developed the title molecule, (I), to analyse the molecular properties both experimentally and theoretically and present the results herein.
2. Structural commentary
The molecular structure of compound (I) is shown in Fig. 1. In the molecule, the dihedral angles between the five-membered thiophene and the benzene and phenylethanone rings are 1.6 (2) and 54.0 (2)°, respectively, while that between the aromatic rings is 52.5 (2)°. The torsion angles associated with the ester (C—C—O—C) and azo (C—N=N—C) groups in the molecule are -anti-periplanar [−177.0 (4)°] and +anti-periplanar [179.0 (4)°], respectively. Intramolecular C13—H13⋯N1, C10—H10⋯N2, and C16—H16⋯O3 interactions (Table 1) stabilize the molecular structure.
|
3. Supramolecular features
The crystal packing is consolidated by C1—Br1⋯O3=C18 type interaction with a Br1⋯O3 distance 3.014 (2) Å, forming infinite chains running in the [001] direction as shown in Fig. 2.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016) for molecules containing the trans(azobenzene) fragment resulted in two matches with CSD refcodes APOPUR, APOQAY and APOQEC (Soegiarto et al., 2010). In APOPUR, 4,4′-azobenzenedisulfonate is associated with two azobenzene molecules, one of which is disordered, with the another having a tris conformation. The torsion angles at the azo and azobenzene groups are180.00 and −179.96°. In APOQAY, the 4,4′- dibenzyldisulfonate moiety is associated with two azobenzene fragments in which the torsion angles at the azo groups are 180.0 and178.39° and have a tris conformation. In APOQEC, the 4,4′-stilbenedisulfonate is associated with two azobenzene moieties with torsion angles at the azo group of 180 and −177.93 (2)°. These are comparable with the torsion angle at the azo group of 179.0 (4)° in the tris(azobenzene) fragment of the title molecule. In all these compounds, the torsion angles at the azo group are anti..
5. Hirshfeld surface analysis and interaction energies
A Hirshfeld surface analysis was carried out to quantify the various intermolecular interactions contributed to the crystal using CrystalExplorer17.5 (Turner et al., 2017). Fig. 3 illustrates the Hirshfeld surface mapped over dnorm with red spots corresponding to short C—Br⋯O=C contacts. It is an additional confirmation of the presence of Br⋯O type contacts (i.e halogen–oxygen type). In Fig. 4, the sharp spikes in the Br⋯O/O⋯Br fingerprint plot indicate the existence of a weak halogen⋯oxygen interaction in the molecular structure. Although it is a weak interaction, the packing of the title compound is consolidated by Br⋯O interactions and no other interactions are present. The fingerprint plots showing all interactions and those delineated into H⋯H, C⋯H/H⋯C, O⋯H/ H⋯O, Br⋯H/H⋯Br and S⋯H/H⋯S interactions as shown in Fig. 5.
Three-dimensional energy interactions were computed for the title compound using the B3LYP\631-G(d,p) basis set, indicating that the Edis = 217.6 kJ mol−1 is the major component, the others being Eele = 55.3 kJ mol−1, Epol =11.6 kJ mol−1, Erep = 148.6 kJ mol−1 with a total interaction energy Etot of 164.7 kJ mol−1. The energy frameworks for the interaction energies are shown in Fig. 6.
6. DFT Studies
The molecular structure of the title compound in the gas phase was optimized using density functional theory with the standard B3LYP method with the basis set 6-311++G(d,p). The input files were prepared from the Mercury (Macrae et al., 2020) and Gauss View 6.0 (Frisch et al., 2009). The electron density distribution in the frontier molecular orbital are shown in Fig. 7. The highest occupied molecular orbital (HOMO) is −6.7179 eV) and the lowest unoccupied molecular orbital (LUMO) is −3.0454 eV) with an energy gap of 3.6725 eV. The index (ω) is 6.489 eV, which indicates the molecule is highly reactive.
file usingThe molecular electrostatic potential (MEP) map predicts the reactive sites for electrophilic and nucleophilic attack present in the molecule. In the crystal, the molecular charge distribution is between −5.108 × 10−2 and +5.108 × 10−2 and is governed by the MEP (Fig. 8). The red colour around the oxygen atoms of the ester group and ketone group in the molecule indicates nucleophilic sites and the pale-blue colour around the bromine atom indicate the active electrophilic site. In the crystal, the Br⋯O type contact formed between the electrophilic site of the bromine atom and the nucleophilic site of the ketonic oxygen atom connects the molecule into infinite chains along the c-axis direction.
7. Molecular docking
The molecular AutoDock tools (Huey et al., 2012) were carried out to calculate the degree of binding affinity between the synthesised ligand and the receptor protein of Mycobacterium Tuberculosis bacteria (PDB ID:1HZP). It is found that, among the several interactions with the target protein, four conventional hydrogen-bonding interactions are seen between four moieties, which are formed by the oxygen and nitrogen atoms of the ketonic, ester and azo groups, as shown in Fig. 9. The centroids of the benzene rings (Cg1, C6–C11 and Cg2, C12–C17) attack different amino acid groups (ILE A:156, VAL A:212, ALA A:246 and ARG A:36). PLATON (Spek, 2020) indicates very weak π–π stacking between these rings with Cg1⋯Cg2 separations of 5.609 (3) to 5.616 (2) Å; these stacking interactions were able to attack the aforementioned amino acids of the protein. In addition to these, the bromine atom in the molecule has an affinity with another amino acid group (PRO A:210) through nucleophilic attacks. In total, the ligand shows a good binding affinity value of −8.5 kcal mol−1.
using8. Synthesis and crystallization
5-Bromothiophene-2-carboxylic acid (1 eq, 0.207 g), (E)-1-{4-[(4-hydroxyphenyl)diazenyl]phenyl}ethan-1-one (1 eq, 0.240 g), dicyclohexylcarbodiimide (1.2 eq) and a catalytic amount of dimethylaminopyrimidine were stirred in dry dichloromethane at room temperature overnight. Completion of the reaction was verified by thin layer on silica gel on an aluminium plate with dichloromethane as the mobile phase. After completion of the reaction, the whole reaction mass was subjected to with silica gel and a 1:9 ratio of petroleum ether and dichloromethane as The solvent was evaporated under vacuum, and the crude product was recrystallized from pure chloroform to obtain single crystals suitable for single-crystal X-ray studies. The compound is orange in colour, m.p. 469 K, molecular weight is 429.29. Elemental analysis, calculated: C, 53.16; H, 3.05; Br, 18.61; N, 6.53; O, 11.18; S, 7.47; found: C, 53.19; H, 3.09; N, 6.60; S, 7.52%. 1H NMR: (500 MHz, CDCl3) δ/ppm, 8.13–7.97 (m, 6H, Ar-H), 7.76 (d, 1H, J = 6 Hz, Ar-H), 7.43 (m, 2H, Ar-H), 7.18 (m, 1H, Ar-H), 1.57 (s, 3H, COCH3) ppm. 13C NMR (CDCl3) δ/ppm: 197.5, 159.1, 154.9, 152.8, 138.5, 135.3, 131.4, 122.9, 26.9.
9. Refinement
Crystal data, data collection and structure . All the H-atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The crystal studied was refined as an inversion twin.
details are summarized in Table 2Supporting information
CCDC reference: 2401081
https://doi.org/10.1107/S2056989024010776/ee2010sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024010776/ee2010Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024010776/ee2010Isup3.cml
C19H13BrN2O3S | Dx = 1.655 Mg m−3 |
Mr = 429.28 | Melting point: 469 K |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71074 Å |
Hall symbol: P 2c -2n | Cell parameters from 5305 reflections |
a = 10.5425 (13) Å | θ = 2.8–30.1° |
b = 3.8532 (5) Å | µ = 2.53 mm−1 |
c = 42.419 (4) Å | T = 120 K |
V = 1723.1 (4) Å3 | Prism, orange |
Z = 4 | 0.41 × 0.28 × 0.18 mm |
F(000) = 864 |
Bruker SMART APEXII CCD diffractometer | 5305 independent reflections |
Radiation source: fine-focus sealed tube | 5216 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 0.99 pixels mm-1 | θmax = 30.6°, θmin = 2.9° |
φ and Ω scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −5→5 |
Tmin = 0.431, Tmax = 0.633 | l = −60→60 |
36482 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0229P)2 + 3.5453P] where P = (Fo2 + 2Fc2)/3 |
S = 1.23 | (Δ/σ)max < 0.001 |
5305 reflections | Δρmax = 1.12 e Å−3 |
237 parameters | Δρmin = −1.54 e Å−3 |
1 restraint | Absolute structure: Refined as an inversion twin |
0.132 constraints | Absolute structure parameter: 0.021 (12) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.72359 (4) | 0.43138 (12) | 0.72407 (2) | 0.02567 (11) | |
S1 | 0.65138 (10) | 0.3319 (3) | 0.65409 (3) | 0.01799 (19) | |
O2 | 0.7849 (3) | 0.5368 (9) | 0.56998 (7) | 0.0209 (6) | |
O1 | 0.6053 (3) | 0.2541 (11) | 0.58516 (8) | 0.0261 (7) | |
O3 | 0.3469 (4) | 0.5729 (11) | 0.29358 (10) | 0.0296 (9) | |
C2 | 0.8653 (4) | 0.6201 (12) | 0.66779 (11) | 0.0213 (9) | |
H2 | 0.934208 | 0.714315 | 0.679421 | 0.026* | |
N1 | 0.6770 (4) | 0.4543 (10) | 0.44152 (9) | 0.0180 (7) | |
N2 | 0.5674 (3) | 0.5376 (10) | 0.43322 (9) | 0.0181 (7) | |
C3 | 0.8591 (4) | 0.6110 (12) | 0.63421 (10) | 0.0173 (8) | |
H3 | 0.924322 | 0.694646 | 0.620752 | 0.021* | |
C6 | 0.7507 (4) | 0.5120 (11) | 0.53813 (10) | 0.0167 (7) | |
C18 | 0.4512 (4) | 0.4762 (13) | 0.30191 (11) | 0.0213 (8) | |
C8 | 0.8114 (4) | 0.3473 (12) | 0.48602 (10) | 0.0177 (8) | |
H8 | 0.870799 | 0.246549 | 0.471880 | 0.021* | |
C17 | 0.4310 (4) | 0.6460 (12) | 0.38941 (10) | 0.0186 (8) | |
H17 | 0.372427 | 0.744592 | 0.403888 | 0.022* | |
C11 | 0.6381 (4) | 0.6597 (12) | 0.52722 (10) | 0.0184 (8) | |
H11 | 0.580744 | 0.768563 | 0.541366 | 0.022* | |
C13 | 0.6316 (4) | 0.3619 (12) | 0.37891 (10) | 0.0177 (8) | |
H13 | 0.709212 | 0.267351 | 0.386355 | 0.021* | |
C14 | 0.6021 (4) | 0.3488 (12) | 0.34710 (10) | 0.0178 (8) | |
H14 | 0.659950 | 0.245795 | 0.332706 | 0.021* | |
C16 | 0.4025 (4) | 0.6309 (11) | 0.35762 (11) | 0.0169 (8) | |
H16 | 0.323815 | 0.720403 | 0.350343 | 0.020* | |
C9 | 0.6980 (4) | 0.4834 (11) | 0.47477 (10) | 0.0161 (7) | |
C7 | 0.8372 (4) | 0.3598 (12) | 0.51804 (10) | 0.0181 (8) | |
H7 | 0.913759 | 0.264461 | 0.526070 | 0.022* | |
C1 | 0.7600 (4) | 0.4768 (12) | 0.68108 (10) | 0.0199 (8) | |
C4 | 0.7478 (4) | 0.4672 (12) | 0.62360 (10) | 0.0158 (7) | |
C12 | 0.5465 (4) | 0.5149 (11) | 0.39993 (10) | 0.0159 (7) | |
C10 | 0.6122 (4) | 0.6435 (11) | 0.49528 (10) | 0.0169 (7) | |
H10 | 0.535967 | 0.741241 | 0.487273 | 0.020* | |
C5 | 0.7016 (4) | 0.4050 (11) | 0.59146 (10) | 0.0182 (8) | |
C15 | 0.4873 (4) | 0.4867 (11) | 0.33604 (10) | 0.0175 (8) | |
C19 | 0.5478 (5) | 0.3457 (17) | 0.27848 (12) | 0.0320 (11) | |
H19A | 0.578978 | 0.117756 | 0.285185 | 0.048* | |
H19B | 0.618949 | 0.509129 | 0.277391 | 0.048* | |
H19C | 0.508350 | 0.325653 | 0.257643 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0321 (2) | 0.02593 (19) | 0.01893 (16) | −0.00111 (18) | −0.0019 (2) | 0.0010 (2) |
S1 | 0.0169 (4) | 0.0172 (4) | 0.0199 (4) | −0.0016 (4) | 0.0006 (4) | −0.0011 (4) |
O2 | 0.0166 (14) | 0.0271 (16) | 0.0189 (14) | −0.0018 (13) | 0.0006 (11) | −0.0014 (12) |
O1 | 0.0262 (17) | 0.0306 (19) | 0.0214 (15) | −0.0109 (15) | 0.0015 (13) | −0.0022 (15) |
O3 | 0.0244 (17) | 0.038 (2) | 0.0266 (18) | 0.0038 (16) | −0.0022 (15) | −0.0007 (16) |
C2 | 0.0172 (19) | 0.022 (2) | 0.025 (2) | 0.0016 (16) | −0.0047 (15) | −0.0030 (16) |
N1 | 0.0166 (15) | 0.0185 (16) | 0.0189 (16) | 0.0009 (13) | 0.0018 (13) | 0.0005 (14) |
N2 | 0.0151 (15) | 0.0209 (17) | 0.0183 (16) | −0.0007 (14) | 0.0023 (13) | −0.0016 (13) |
C3 | 0.0128 (17) | 0.020 (2) | 0.0193 (18) | −0.0001 (15) | −0.0004 (14) | 0.0010 (15) |
C6 | 0.0141 (17) | 0.0180 (18) | 0.0179 (17) | −0.0029 (14) | 0.0008 (14) | −0.0004 (15) |
C18 | 0.024 (2) | 0.022 (2) | 0.0188 (19) | 0.0004 (17) | 0.0018 (16) | −0.0020 (16) |
C8 | 0.0114 (16) | 0.0192 (19) | 0.0225 (19) | −0.0002 (15) | 0.0046 (14) | −0.0009 (15) |
C17 | 0.0166 (18) | 0.0174 (18) | 0.0217 (19) | −0.0016 (16) | 0.0043 (15) | −0.0015 (15) |
C11 | 0.0156 (18) | 0.0177 (18) | 0.0218 (18) | 0.0006 (15) | 0.0028 (14) | −0.0037 (15) |
C13 | 0.0134 (16) | 0.0199 (19) | 0.0198 (18) | 0.0023 (15) | 0.0028 (14) | −0.0001 (15) |
C14 | 0.0162 (17) | 0.0159 (18) | 0.0213 (18) | −0.0012 (15) | 0.0042 (15) | −0.0019 (15) |
C16 | 0.0135 (17) | 0.0138 (18) | 0.0234 (19) | 0.0011 (14) | 0.0019 (15) | −0.0024 (16) |
C9 | 0.0132 (16) | 0.0148 (18) | 0.0202 (17) | −0.0013 (14) | 0.0021 (13) | 0.0006 (14) |
C7 | 0.0127 (17) | 0.0193 (18) | 0.0222 (19) | 0.0027 (15) | 0.0018 (15) | −0.0009 (15) |
C1 | 0.023 (2) | 0.0185 (19) | 0.0181 (18) | 0.0058 (16) | −0.0019 (15) | −0.0024 (15) |
C4 | 0.0105 (16) | 0.0177 (18) | 0.0193 (18) | −0.0005 (14) | 0.0010 (13) | −0.0002 (14) |
C12 | 0.0141 (17) | 0.0149 (17) | 0.0186 (17) | −0.0022 (14) | 0.0029 (14) | −0.0008 (14) |
C10 | 0.0142 (17) | 0.0151 (17) | 0.0214 (19) | −0.0015 (15) | 0.0026 (14) | −0.0018 (15) |
C5 | 0.0205 (19) | 0.0163 (19) | 0.0179 (17) | 0.0006 (15) | 0.0033 (15) | −0.0023 (15) |
C15 | 0.0183 (18) | 0.0163 (18) | 0.0179 (18) | −0.0032 (15) | 0.0034 (14) | 0.0009 (15) |
C19 | 0.033 (3) | 0.041 (3) | 0.022 (2) | 0.009 (2) | 0.0062 (19) | −0.005 (2) |
Br1—C1 | 1.872 (4) | C8—C7 | 1.386 (6) |
S1—C1 | 1.713 (5) | C8—C9 | 1.391 (6) |
S1—C4 | 1.725 (4) | C8—H8 | 0.9500 |
O2—C5 | 1.364 (5) | C17—C16 | 1.383 (6) |
O2—C6 | 1.402 (5) | C17—C12 | 1.392 (6) |
O1—C5 | 1.200 (6) | C17—H17 | 0.9500 |
O3—O3 | 0.000 (15) | C11—C10 | 1.384 (6) |
O3—C18 | 1.214 (6) | C11—H11 | 0.9500 |
C2—C1 | 1.362 (7) | C13—C14 | 1.385 (6) |
C2—C3 | 1.427 (6) | C13—C12 | 1.396 (6) |
C2—H2 | 0.9500 | C13—H13 | 0.9500 |
N1—N1 | 0.000 (13) | C14—C15 | 1.403 (6) |
N1—N2 | 1.250 (5) | C14—H14 | 0.9500 |
N1—N2 | 1.250 (5) | C16—C15 | 1.394 (6) |
N1—C9 | 1.432 (6) | C16—H16 | 0.9500 |
N2—N2 | 0.000 (13) | C9—C10 | 1.398 (6) |
N2—C12 | 1.432 (5) | C7—H7 | 0.9500 |
C3—C4 | 1.374 (6) | C4—C5 | 1.467 (6) |
C3—H3 | 0.9500 | C10—H10 | 0.9500 |
C6—C7 | 1.379 (6) | C19—H19A | 0.9800 |
C6—C11 | 1.395 (6) | C19—H19B | 0.9800 |
C18—C15 | 1.497 (6) | C19—H19C | 0.9800 |
C18—C19 | 1.510 (6) | ||
C1—S1—C4 | 90.5 (2) | C17—C16—H16 | 119.4 |
C5—O2—C6 | 116.9 (3) | C15—C16—H16 | 119.4 |
C1—C2—C3 | 111.5 (4) | C8—C9—C10 | 120.6 (4) |
C1—C2—H2 | 124.3 | C8—C9—N1 | 116.2 (4) |
C3—C2—H2 | 124.3 | C10—C9—N1 | 123.2 (4) |
N2—N1—C9 | 113.6 (4) | C8—C9—N1 | 116.2 (4) |
N2—N1—C9 | 113.6 (4) | C10—C9—N1 | 123.2 (4) |
N1—N2—C12 | 113.9 (3) | C6—C7—C8 | 119.4 (4) |
N1—N2—C12 | 113.9 (3) | C6—C7—H7 | 120.3 |
C4—C3—C2 | 112.1 (4) | C8—C7—H7 | 120.3 |
C4—C3—H3 | 123.9 | C2—C1—S1 | 113.6 (3) |
C2—C3—H3 | 123.9 | C2—C1—Br1 | 127.5 (3) |
C7—C6—C11 | 122.1 (4) | S1—C1—Br1 | 118.9 (3) |
C7—C6—O2 | 117.0 (4) | C3—C4—C5 | 130.8 (4) |
C11—C6—O2 | 120.7 (4) | C3—C4—S1 | 112.3 (3) |
O3—C18—C15 | 120.2 (4) | C5—C4—S1 | 116.8 (3) |
O3—C18—C15 | 120.2 (4) | C17—C12—C13 | 120.7 (4) |
O3—C18—C19 | 121.5 (5) | C17—C12—N2 | 115.4 (4) |
O3—C18—C19 | 121.5 (5) | C13—C12—N2 | 123.8 (4) |
C15—C18—C19 | 118.3 (4) | C17—C12—N2 | 115.4 (4) |
C7—C8—C9 | 119.5 (4) | C13—C12—N2 | 123.8 (4) |
C7—C8—H8 | 120.3 | C11—C10—C9 | 120.1 (4) |
C9—C8—H8 | 120.3 | C11—C10—H10 | 120.0 |
C16—C17—C12 | 119.2 (4) | C9—C10—H10 | 120.0 |
C16—C17—H17 | 120.4 | O1—C5—O2 | 125.2 (4) |
C12—C17—H17 | 120.4 | O1—C5—C4 | 124.5 (4) |
C10—C11—C6 | 118.3 (4) | O2—C5—C4 | 110.2 (4) |
C10—C11—H11 | 120.8 | C16—C15—C14 | 119.0 (4) |
C6—C11—H11 | 120.8 | C16—C15—C18 | 118.9 (4) |
C14—C13—C12 | 119.6 (4) | C14—C15—C18 | 122.2 (4) |
C14—C13—H13 | 120.2 | C18—C19—H19A | 109.5 |
C12—C13—H13 | 120.2 | C18—C19—H19B | 109.5 |
C13—C14—C15 | 120.4 (4) | H19A—C19—H19B | 109.5 |
C13—C14—H14 | 119.8 | C18—C19—H19C | 109.5 |
C15—C14—H14 | 119.8 | H19A—C19—H19C | 109.5 |
C17—C16—C15 | 121.2 (4) | H19B—C19—H19C | 109.5 |
C9—N1—N2—C12 | 179.0 (4) | C16—C17—C12—N2 | −179.3 (4) |
C1—C2—C3—C4 | 1.3 (6) | C14—C13—C12—C17 | 1.7 (7) |
C5—O2—C6—C7 | −126.7 (4) | C14—C13—C12—N2 | 179.2 (4) |
C5—O2—C6—C11 | 58.0 (6) | C14—C13—C12—N2 | 179.2 (4) |
C7—C6—C11—C10 | 1.6 (7) | N1—N2—C12—C17 | −172.4 (4) |
O2—C6—C11—C10 | 176.7 (4) | N1—N2—C12—C17 | −172.4 (4) |
C12—C13—C14—C15 | −0.3 (7) | N1—N2—C12—C13 | 10.0 (6) |
C12—C17—C16—C15 | 0.1 (7) | N1—N2—C12—C13 | 10.0 (6) |
C7—C8—C9—C10 | 2.3 (7) | C6—C11—C10—C9 | −0.3 (7) |
C7—C8—C9—N1 | −178.7 (4) | C8—C9—C10—C11 | −1.7 (7) |
C7—C8—C9—N1 | −178.7 (4) | N1—C9—C10—C11 | 179.5 (4) |
N2—N1—C9—C8 | 171.0 (4) | N1—C9—C10—C11 | 179.5 (4) |
N2—N1—C9—C8 | 171.0 (4) | C6—O2—C5—O1 | 4.3 (7) |
N2—N1—C9—C10 | −10.1 (6) | C6—O2—C5—C4 | −177.0 (4) |
N2—N1—C9—C10 | −10.1 (6) | C3—C4—C5—O1 | 174.6 (5) |
C11—C6—C7—C8 | −1.0 (7) | S1—C4—C5—O1 | −3.6 (6) |
O2—C6—C7—C8 | −176.2 (4) | C3—C4—C5—O2 | −4.2 (7) |
C9—C8—C7—C6 | −1.0 (7) | S1—C4—C5—O2 | 177.7 (3) |
C3—C2—C1—S1 | −0.5 (5) | C17—C16—C15—C14 | 1.3 (7) |
C3—C2—C1—Br1 | −179.5 (3) | C17—C16—C15—C18 | 179.8 (4) |
C4—S1—C1—C2 | −0.3 (4) | C13—C14—C15—C16 | −1.2 (6) |
C4—S1—C1—Br1 | 178.8 (3) | C13—C14—C15—C18 | −179.6 (4) |
C2—C3—C4—C5 | −179.7 (5) | O3—C18—C15—C16 | −4.3 (7) |
C2—C3—C4—S1 | −1.5 (5) | O3—C18—C15—C16 | −4.3 (7) |
C1—S1—C4—C3 | 1.0 (4) | C19—C18—C15—C16 | 175.2 (4) |
C1—S1—C4—C5 | 179.5 (4) | O3—C18—C15—C14 | 174.1 (5) |
C16—C17—C12—C13 | −1.6 (7) | O3—C18—C15—C14 | 174.1 (5) |
C16—C17—C12—N2 | −179.3 (4) | C19—C18—C15—C14 | −6.4 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···N1 | 0.95 | 2.47 | 2.722 (6) | 95 |
C16—H16···O3 | 0.95 | 2.49 | 2.788 (6) | 98 |
C10—H10···N2 | 0.95 | 2.45 | 2.705 (6) | 95 |
Acknowledgements
The authors thank Kishore and Shivakumar, C., SSCU, IISc, for their help in collecting the SCXRD data and the BSPM lab, Albert Einstein Block, UCS, for the software and other facilities to complete this work.
Funding information
Funding for this research was provided by: Vision Group of Science and Technology (award No. GRD319 to B. S. Palakshamurthy).
References
Akolkar, H. N., Dengale, S. G., Deshmukh, K. K., Karale, B. K., Darekar, N. R., Khedkar, V. M. & Shaikh, M. H. (2022). Polycyclic Aromat. Compd. 42, 1959–1971. CrossRef CAS Google Scholar
Al-Said, M. S., Bashandy, M. S., Al-qasoumi, S. I. & Ghorab, M. M. (2011). Eur. J. Med. Chem. 46, 137–141. Web of Science CAS PubMed Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Félix, M. B., de Souza, E. R., de Lima, M. D. C., Frade, D. K. G., Serafim, V. L., Rodrigues, K. A. D. F., Néris, P. L. D. N., Ribeiro, F. F., Scotti, L., Scotti, M. T., de Aquino, T. M., Mendonça Junior, F. J. B. & de Oliveira, M. R. (2016). Bioorg. Med. Chem. 24, 3972–3977. PubMed Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09W, Revision A. 02, Gaussian, Inc., Wallingford CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huey, R., Morris, G. M. & Forli, S. (2012). AutoDock. The Scripps Research Institute Molecular Graphics Laboratory, La Jolla, California, USA. Google Scholar
Kaur, H. & Narasimhan, B. (2018). Curr. Top. Med. Chem. 18, 3–21. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, Y., Xue, B., Yang, J., Jiang, J., Liu, J., Zhou, Y., Zhang, J., Wu, M., Yuan, Y., Zhu, Z., Wang, Z. J., Chen, Y., Harabuchi, Y., Nakajima, T., Wang, W., Maeda, S., Gong, J. P. & Cao, Y. (2024). Nat. Chem. 16, 446–455. CrossRef CAS PubMed Google Scholar
Londoño-Berrío, M., Pérez-Buitrago, S., Ortiz-Trujillo, I. C., Hoyos-Palacio, L. M., Orozco, L. Y., López, L., Zárate-Triviño, D. G., Capobianco, J. A. & Mena-Giraldo, P. (2022). Polymers, 14, 3119. PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mulatihan, D., Guo, T. & Zhao, Y. (2020). Photochem. & Photobiol. 96, 1163–1168. CrossRef CAS Google Scholar
Peddie, V. & Abell, A. D. J. (2019). J. Photochem. Photobiol. Photochem. Rev. 40, 1–20. CrossRef CAS Google Scholar
Piotto, S., Concilio, S., Sessa, L., Porta, A., Calabrese, E. C., Zanfardino, A., Varcamonti, M. & Iannelli, P. (2013). Eur. J. Med. Chem. 68, 178–184. CrossRef CAS PubMed Google Scholar
Romagnoli, R., Baraldi, P. G., Carrion, M. D., Lopez Cara, C., Preti, D., Fruttarolo, F., Pavani, M. G., Tabrizi, M. A., Tolomeo, M., Grimaudo, S., Di Cristina, A., Balzarini, J., Hadfield, J. A., Brancale, A. & Hamel, E. (2007). J. Med. Chem. 50, 2273–2277. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soegiarto, A. C., Comotti, A. & Ward, M. D. (2010). J. Am. Chem. Soc. 132, 14603–14616. Web of Science CSD CrossRef CAS PubMed Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http:// hirshfeldsurface. net. Google Scholar
Ventura, C. R. & Wiedman, G. R. (2021). Biochim. Biophys. Acta, 1863, 183759. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.