research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface, DFT and mol­ecular docking studies of 2-{4-[(E)-(4-acetylphen­yl)diazen­yl]phen­yl}-1-(5-bromo­thio­phen-2-yl)ethanone; a compound with bromine⋯oxygen-type contacts

crossmark logo

aDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka-572103, India, bRaman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, Karnataka, India, and cDepartment of Physics, Yuvaraja's College, University of Mysore, Mysore 570005, Karnataka, India
*Correspondence e-mail: palaksha.bspm@gmail.com

Edited by F. F. Ferreira, Universidade Federal do ABC, Brazil (Received 25 September 2024; accepted 7 November 2024; online 22 November 2024)

The title compound, C19H13BrN2O3S, a non-liquid crystal mol­ecule, crystallizes in the ortho­rhom­bic system, space group Pna21. The torsion angles associated with ester and azo groups are −177.0 (4)°, -anti-periplanar, and 179.0 (4)°, +anti-periplanar, respectively. The packing is consolidated by a weak C—Br⋯O=C contact, forming infinite chains running along the [001] direction. A Hirshfeld surface analysis revealed that the major contributions to the crystal surface are from H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, Br⋯H/H⋯Br and S⋯H/H⋯S inter­actions. The computed three-dimensional energy inter­actions using the basis set B3LYP\631-G(d,p) show that Edis (217.6 kJ mol−1) is the major component in the structure. The DFT calculations performed at the B3LYP/6–311+ G(d,p) level indicate that the energy gap between HOMO and LUMO is 3.6725 (2) eV. The mol­ecular electrostatic potential (MEP) map generated supports the existence of the Br⋯O type contact, formed between the electrophilic site of the bromine atom and the nucleophilic site of the ketonic oxygen atom. The mol­ecular docking between the ligand and the Mycobacterium Tuberculosis (PDB ID:1HZP) receptor shows a good binding affinity value of −8.5 kcal mol−1.

1. Chemical context

Azo­benzenes are a class of mol­ecules having high structural similarity with stilbenes, which exhibit anti­bacterial and anti­fungal activity (Piotto et al., 2013[Piotto, S., Concilio, S., Sessa, L., Porta, A., Calabrese, E. C., Zanfardino, A., Varcamonti, M. & Iannelli, P. (2013). Eur. J. Med. Chem. 68, 178-184.]). They are capable of regulating the structure and function of various biological mol­ecules, including proteins, nucleic acids, lipids and peptides (Mulatihan et al., 2020[Mulatihan, D., Guo, T. & Zhao, Y. (2020). Photochem. & Photobiol. 96, 1163-1168.]). Azo­benzene derivatives exhibit biological activities such as anti­oxidant, anti­viral and anti­microbial properties (Ventura & Wiedman, 2021[Ventura, C. R. & Wiedman, G. R. (2021). Biochim. Biophys. Acta, 1863, 183759.]; Kaur & Narasimhan, 2018[Kaur, H. & Narasimhan, B. (2018). Curr. Top. Med. Chem. 18, 3-21.]; Peddie & Abell, 2019[Peddie, V. & Abell, A. D. J. (2019). J. Photochem. Photobiol. Photochem. Rev. 40, 1-20.]). Azo­benzene-based polymeric nanocarriers are biocompatible materials and they can accelerate drug-release systems in biological tissues (Londoño-Berrío et al., 2022[Londoño-Berrío, M., Pérez-Buitrago, S., Ortiz-Trujillo, I. C., Hoyos-Palacio, L. M., Orozco, L. Y., López, L., Zárate-Triviño, D. G., Capobianco, J. A. & Mena-Giraldo, P. (2022). Polymers, 14, 3119.]). Inter­estingly thio­phene-based derivatives exhibit significant anti-leishmanial activity (Félix et al., 2016[Félix, M. B., de Souza, E. R., de Lima, M. D. C., Frade, D. K. G., Serafim, V. L., Rodrigues, K. A. D. F., Néris, P. L. D. N., Ribeiro, F. F., Scotti, L., Scotti, M. T., de Aquino, T. M., Mendonça Junior, F. J. B. & de Oliveira, M. R. (2016). Bioorg. Med. Chem. 24, 3972-3977.]) and anti­malarial activity (Akolkar et al., 2022[Akolkar, H. N., Dengale, S. G., Deshmukh, K. K., Karale, B. K., Darekar, N. R., Khedkar, V. M. & Shaikh, M. H. (2022). Polycyclic Aromat. Compd. 42, 1959-1971.]). The thio­phene derivatives with anti­tubulin properties are potential materials for the treatment of cancer and Alzheimer's and Parkinson's diseases (Romagnoli et al., 2007[Romagnoli, R., Baraldi, P. G., Carrion, M. D., Lopez Cara, C., Preti, D., Fruttarolo, F., Pavani, M. G., Tabrizi, M. A., Tolomeo, M., Grimaudo, S., Di Cristina, A., Balzarini, J., Hadfield, J. A., Brancale, A. & Hamel, E. (2007). J. Med. Chem. 50, 2273-2277.]). The thio­phene-thia­zole derivatives are a class of materials having anti­tubulin properties and they can also be used as anti-breast cancer agents (Al-Said et al., 2011[Al-Said, M. S., Bashandy, M. S., Al-qasoumi, S. I. & Ghorab, M. M. (2011). Eur. J. Med. Chem. 46, 137-141.]). Azo­benzenes, and their derivatives in a trans confirmation, are medically important. They are also useful in industry because of their inter­esting photoswitch properties and have therefore been widely explored as photoresponsive compounds in materials science (Li et al., 2024[Li, Y., Xue, B., Yang, J., Jiang, J., Liu, J., Zhou, Y., Zhang, J., Wu, M., Yuan, Y., Zhu, Z., Wang, Z. J., Chen, Y., Harabuchi, Y., Nakajima, T., Wang, W., Maeda, S., Gong, J. P. & Cao, Y. (2024). Nat. Chem. 16, 446-455.]). Keeping photoswitching properties in mind, we have planed to use the tris­(azo­benzene) as a core group in the construction of liquid-crystal materials. Hence, we developed the title mol­ecule, (I)[link], to analyse the mol­ecular properties both experimentally and theoretically and present the results herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound (I)[link] is shown in Fig. 1[link]. In the mol­ecule, the dihedral angles between the five-membered thio­phene and the benzene and phenyl­ethanone rings are 1.6 (2) and 54.0 (2)°, respectively, while that between the aromatic rings is 52.5 (2)°. The torsion angles associated with the ester (C—C—O—C) and azo (C—N=N—C) groups in the mol­ecule are -anti-periplanar [−177.0 (4)°] and +anti-periplanar [179.0 (4)°], respectively. Intra­molecular C13—H13⋯N1, C10—H10⋯N2, and C16—H16⋯O3 inter­actions (Table 1[link]) stabilize the mol­ecular structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N1 0.95 2.47 2.722 (6) 95
C16—H16⋯O3 0.95 2.49 2.788 (6) 98
C10—H10⋯N2 0.95 2.45 2.705 (6) 95
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal packing is consolidated by C1—Br1⋯O3=C18 type inter­action with a Br1⋯O3 distance 3.014 (2) Å, forming infinite chains running in the [001] direction as shown in Fig. 2[link].

[Figure 2]
Figure 2
Mol­ecular packing of the title compound, Dashed lines indicate C—Br⋯O=C intra­molecular contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for mol­ecules containing the trans­(azo­benzene) fragment resulted in two matches with CSD refcodes APOPUR, APOQAY and APOQEC (Soegiarto et al., 2010[Soegiarto, A. C., Comotti, A. & Ward, M. D. (2010). J. Am. Chem. Soc. 132, 14603-14616.]). In APOPUR, 4,4′-azo­benzene­disulfonate is associated with two azo­benzene mol­ecules, one of which is disordered, with the another having a tris conformation. The torsion angles at the azo and azo­benzene groups are180.00 and −179.96°. In APOQAY, the 4,4′- di­benzyl­disulfonate moiety is associated with two azo­benzene fragments in which the torsion angles at the azo groups are 180.0 and178.39° and have a tris conformation. In APOQEC, the 4,4′-stilbenedi­sulfonate is associated with two azo­benzene moieties with torsion angles at the azo group of 180 and −177.93 (2)°. These are comparable with the torsion angle at the azo group of 179.0 (4)° in the tris­(azo­benzene) fragment of the title mol­ecule. In all these compounds, the torsion angles at the azo group are anti..

5. Hirshfeld surface analysis and inter­action energies

A Hirshfeld surface analysis was carried out to qu­antify the various inter­molecular inter­actions contributed to the crystal using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http:// hirshfeldsurface. net.]). Fig. 3[link] illustrates the Hirshfeld surface mapped over dnorm with red spots corresponding to short C—Br⋯O=C contacts. It is an additional confirmation of the presence of Br⋯O type contacts (i.e halogen–oxygen type). In Fig. 4[link], the sharp spikes in the Br⋯O/O⋯Br fingerprint plot indicate the existence of a weak halogen⋯oxygen inter­action in the mol­ecular structure. Although it is a weak inter­action, the packing of the title compound is consolidated by Br⋯O inter­actions and no other inter­actions are present. The fingerprint plots showing all inter­actions and those delineated into H⋯H, C⋯H/H⋯C, O⋯H/ H⋯O, Br⋯H/H⋯Br and S⋯H/H⋯S inter­actions as shown in Fig. 5[link].

[Figure 3]
Figure 3
Hirshfeld surface mapped over dnorm with red spots corresponding to short C—Br⋯O=C contacts.
[Figure 4]
Figure 4
The two-dimensional fingerprint plots (spikes) showing the halogen–oxygen inter­actions.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots showing all inter­actions and those delineated into H⋯H, C⋯H/H⋯C, O⋯H/ H⋯O, Br⋯H/H⋯Br and S⋯H/H⋯S inter­actions.

Three-dimensional energy inter­actions were computed for the title compound using the B3LYP\631-G(d,p) basis set, indicating that the Edis = 217.6 kJ mol−1 is the major component, the others being Eele = 55.3 kJ mol−1, Epol =11.6 kJ mol−1, Erep = 148.6 kJ mol−1 with a total inter­action energy Etot of 164.7 kJ mol−1. The energy frameworks for the inter­action energies are shown in Fig. 6[link].

[Figure 6]
Figure 6
The energy frameworks for the inter­action energies in the title compound (a) Coulombic energy, (b) dispersion energy, (c) total energy and (d) total energy annotated.

6. DFT Studies

The mol­ecular structure of the title compound in the gas phase was optimized using density functional theory with the standard B3LYP method with the basis set 6-311++G(d,p). The input files were prepared from the CIF file using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and Gauss View 6.0 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09W, Revision A. 02, Gaussian, Inc., Wallingford CT, USA.]). The electron density distribution in the frontier mol­ecular orbital are shown in Fig. 7[link]. The highest occupied mol­ecular orbital (HOMO) is −6.7179 eV) and the lowest unoccupied mol­ecular orbital (LUMO) is −3.0454 eV) with an energy gap of 3.6725 eV. The electrophilicity index (ω) is 6.489 eV, which indicates the mol­ecule is highly reactive.

[Figure 7]
Figure 7
The HOMO and LUMO orbitals of the title mol­ecule.

The mol­ecular electrostatic potential (MEP) map predicts the reactive sites for electrophilic and nucleophilic attack present in the mol­ecule. In the crystal, the mol­ecular charge distribution is between −5.108 × 10−2 and +5.108 × 10−2 and is governed by the MEP (Fig. 8[link]). The red colour around the oxygen atoms of the ester group and ketone group in the mol­ecule indicates nucleophilic sites and the pale-blue colour around the bromine atom indicate the active electrophilic site. In the crystal, the Br⋯O type contact formed between the electrophilic site of the bromine atom and the nucleophilic site of the ketonic oxygen atom connects the mol­ecule into infinite chains along the c-axis direction.

[Figure 8]
Figure 8
The mol­ecular electrostatic potential (MEP) surface of the title mol­ecule.

7. Mol­ecular docking

The mol­ecular docking studies using AutoDock tools (Huey et al., 2012[Huey, R., Morris, G. M. & Forli, S. (2012). AutoDock. The Scripps Research Institute Molecular Graphics Laboratory, La Jolla, California, USA.]) were carried out to calculate the degree of binding affinity between the synthesised ligand and the receptor protein of Mycobacterium Tuberculosis bacteria (PDB ID:1HZP). It is found that, among the several inter­actions with the target protein, four conventional hydrogen-bonding inter­actions are seen between four moieties, which are formed by the oxygen and nitro­gen atoms of the ketonic, ester and azo groups, as shown in Fig. 9[link]. The centroids of the ­benzene rings (Cg1, C6–C11 and Cg2, C12–C17) attack different amino acid groups (ILE A:156, VAL A:212, ALA A:246 and ARG A:36). PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) indicates very weak ππ stacking between these rings with Cg1⋯Cg2 separations of 5.609 (3) to 5.616 (2) Å; these stacking inter­actions were able to attack the aforementioned amino acids of the protein. In addition to these, the bromine atom in the mol­ecule has an affinity with another amino acid group (PRO A:210) through nucleophilic attacks. In total, the ligand shows a good binding affinity value of −8.5 kcal mol−1.

[Figure 9]
Figure 9
Three-dimensional and two-dimensional views of various inter­actions between the title compound (ligand) and Myobacterium Tuberculosis bacteria (PDB ID:1HZP; receptor protein).

8. Synthesis and crystallization

5-Bromo­thio­phene-2-carb­oxy­lic acid (1 eq, 0.207 g), (E)-1-{4-[(4-hy­droxy­phen­yl)diazen­yl]phen­yl}ethan-1-one (1 eq, 0.240 g), di­cyclo­hexyl­carbodi­imide (1.2 eq) and a catalytic amount of di­methyl­amino­pyrimidine were stirred in dry di­chloro­methane at room temperature overnight. Completion of the reaction was verified by thin layer chromatography on silica gel on an aluminium plate with di­chloro­methane as the mobile phase. After completion of the reaction, the whole reaction mass was subjected to column chromatography with silica gel and a 1:9 ratio of petroleum ether and di­chloro­methane as eluent. The solvent was evaporated under vacuum, and the crude product was recrystallized from pure chloro­form to obtain single crystals suitable for single-crystal X-ray studies. The compound is orange in colour, m.p. 469 K, mol­ecular weight is 429.29. Elemental analysis, calculated: C, 53.16; H, 3.05; Br, 18.61; N, 6.53; O, 11.18; S, 7.47; found: C, 53.19; H, 3.09; N, 6.60; S, 7.52%. 1H NMR: (500 MHz, CDCl3) δ/ppm, 8.13–7.97 (m, 6H, Ar-H), 7.76 (d, 1H, J = 6 Hz, Ar-H), 7.43 (m, 2H, Ar-H), 7.18 (m, 1H, Ar-H), 1.57 (s, 3H, COCH3) ppm. 13C NMR (CDCl3) δ/ppm: 197.5, 159.1, 154.9, 152.8, 138.5, 135.3, 131.4, 122.9, 26.9.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the H-atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The crystal studied was refined as an inversion twin.

Table 2
Experimental details

Crystal data
Chemical formula C19H13BrN2O3S
Mr 429.28
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 120
a, b, c (Å) 10.5425 (13), 3.8532 (5), 42.419 (4)
V3) 1723.1 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.53
Crystal size (mm) 0.41 × 0.28 × 0.18
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.431, 0.633
No. of measured, independent and observed [I > 2σ(I)] reflections 36482, 5305, 5216
Rint 0.029
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.23
No. of reflections 5305
No. of parameters 237
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.12, −1.54
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.021 (12)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

2-{4-[(E)-(4-Acetylphenyl)diazenyl]phenyl}-1-(5-bromothiophen-2-yl)ethanone top
Crystal data top
C19H13BrN2O3SDx = 1.655 Mg m3
Mr = 429.28Melting point: 469 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71074 Å
Hall symbol: P 2c -2nCell parameters from 5305 reflections
a = 10.5425 (13) Åθ = 2.8–30.1°
b = 3.8532 (5) ŵ = 2.53 mm1
c = 42.419 (4) ÅT = 120 K
V = 1723.1 (4) Å3Prism, orange
Z = 40.41 × 0.28 × 0.18 mm
F(000) = 864
Data collection top
Bruker SMART APEXII CCD
diffractometer
5305 independent reflections
Radiation source: fine-focus sealed tube5216 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 0.99 pixels mm-1θmax = 30.6°, θmin = 2.9°
φ and Ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 55
Tmin = 0.431, Tmax = 0.633l = 6060
36482 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0229P)2 + 3.5453P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max < 0.001
5305 reflectionsΔρmax = 1.12 e Å3
237 parametersΔρmin = 1.54 e Å3
1 restraintAbsolute structure: Refined as an inversion twin
0.132 constraintsAbsolute structure parameter: 0.021 (12)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.72359 (4)0.43138 (12)0.72407 (2)0.02567 (11)
S10.65138 (10)0.3319 (3)0.65409 (3)0.01799 (19)
O20.7849 (3)0.5368 (9)0.56998 (7)0.0209 (6)
O10.6053 (3)0.2541 (11)0.58516 (8)0.0261 (7)
O30.3469 (4)0.5729 (11)0.29358 (10)0.0296 (9)
C20.8653 (4)0.6201 (12)0.66779 (11)0.0213 (9)
H20.9342080.7143150.6794210.026*
N10.6770 (4)0.4543 (10)0.44152 (9)0.0180 (7)
N20.5674 (3)0.5376 (10)0.43322 (9)0.0181 (7)
C30.8591 (4)0.6110 (12)0.63421 (10)0.0173 (8)
H30.9243220.6946460.6207520.021*
C60.7507 (4)0.5120 (11)0.53813 (10)0.0167 (7)
C180.4512 (4)0.4762 (13)0.30191 (11)0.0213 (8)
C80.8114 (4)0.3473 (12)0.48602 (10)0.0177 (8)
H80.8707990.2465490.4718800.021*
C170.4310 (4)0.6460 (12)0.38941 (10)0.0186 (8)
H170.3724270.7445920.4038880.022*
C110.6381 (4)0.6597 (12)0.52722 (10)0.0184 (8)
H110.5807440.7685630.5413660.022*
C130.6316 (4)0.3619 (12)0.37891 (10)0.0177 (8)
H130.7092120.2673510.3863550.021*
C140.6021 (4)0.3488 (12)0.34710 (10)0.0178 (8)
H140.6599500.2457950.3327060.021*
C160.4025 (4)0.6309 (11)0.35762 (11)0.0169 (8)
H160.3238150.7204030.3503430.020*
C90.6980 (4)0.4834 (11)0.47477 (10)0.0161 (7)
C70.8372 (4)0.3598 (12)0.51804 (10)0.0181 (8)
H70.9137590.2644610.5260700.022*
C10.7600 (4)0.4768 (12)0.68108 (10)0.0199 (8)
C40.7478 (4)0.4672 (12)0.62360 (10)0.0158 (7)
C120.5465 (4)0.5149 (11)0.39993 (10)0.0159 (7)
C100.6122 (4)0.6435 (11)0.49528 (10)0.0169 (7)
H100.5359670.7412410.4872730.020*
C50.7016 (4)0.4050 (11)0.59146 (10)0.0182 (8)
C150.4873 (4)0.4867 (11)0.33604 (10)0.0175 (8)
C190.5478 (5)0.3457 (17)0.27848 (12)0.0320 (11)
H19A0.5789780.1177560.2851850.048*
H19B0.6189490.5091290.2773910.048*
H19C0.5083500.3256530.2576430.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0321 (2)0.02593 (19)0.01893 (16)0.00111 (18)0.0019 (2)0.0010 (2)
S10.0169 (4)0.0172 (4)0.0199 (4)0.0016 (4)0.0006 (4)0.0011 (4)
O20.0166 (14)0.0271 (16)0.0189 (14)0.0018 (13)0.0006 (11)0.0014 (12)
O10.0262 (17)0.0306 (19)0.0214 (15)0.0109 (15)0.0015 (13)0.0022 (15)
O30.0244 (17)0.038 (2)0.0266 (18)0.0038 (16)0.0022 (15)0.0007 (16)
C20.0172 (19)0.022 (2)0.025 (2)0.0016 (16)0.0047 (15)0.0030 (16)
N10.0166 (15)0.0185 (16)0.0189 (16)0.0009 (13)0.0018 (13)0.0005 (14)
N20.0151 (15)0.0209 (17)0.0183 (16)0.0007 (14)0.0023 (13)0.0016 (13)
C30.0128 (17)0.020 (2)0.0193 (18)0.0001 (15)0.0004 (14)0.0010 (15)
C60.0141 (17)0.0180 (18)0.0179 (17)0.0029 (14)0.0008 (14)0.0004 (15)
C180.024 (2)0.022 (2)0.0188 (19)0.0004 (17)0.0018 (16)0.0020 (16)
C80.0114 (16)0.0192 (19)0.0225 (19)0.0002 (15)0.0046 (14)0.0009 (15)
C170.0166 (18)0.0174 (18)0.0217 (19)0.0016 (16)0.0043 (15)0.0015 (15)
C110.0156 (18)0.0177 (18)0.0218 (18)0.0006 (15)0.0028 (14)0.0037 (15)
C130.0134 (16)0.0199 (19)0.0198 (18)0.0023 (15)0.0028 (14)0.0001 (15)
C140.0162 (17)0.0159 (18)0.0213 (18)0.0012 (15)0.0042 (15)0.0019 (15)
C160.0135 (17)0.0138 (18)0.0234 (19)0.0011 (14)0.0019 (15)0.0024 (16)
C90.0132 (16)0.0148 (18)0.0202 (17)0.0013 (14)0.0021 (13)0.0006 (14)
C70.0127 (17)0.0193 (18)0.0222 (19)0.0027 (15)0.0018 (15)0.0009 (15)
C10.023 (2)0.0185 (19)0.0181 (18)0.0058 (16)0.0019 (15)0.0024 (15)
C40.0105 (16)0.0177 (18)0.0193 (18)0.0005 (14)0.0010 (13)0.0002 (14)
C120.0141 (17)0.0149 (17)0.0186 (17)0.0022 (14)0.0029 (14)0.0008 (14)
C100.0142 (17)0.0151 (17)0.0214 (19)0.0015 (15)0.0026 (14)0.0018 (15)
C50.0205 (19)0.0163 (19)0.0179 (17)0.0006 (15)0.0033 (15)0.0023 (15)
C150.0183 (18)0.0163 (18)0.0179 (18)0.0032 (15)0.0034 (14)0.0009 (15)
C190.033 (3)0.041 (3)0.022 (2)0.009 (2)0.0062 (19)0.005 (2)
Geometric parameters (Å, º) top
Br1—C11.872 (4)C8—C71.386 (6)
S1—C11.713 (5)C8—C91.391 (6)
S1—C41.725 (4)C8—H80.9500
O2—C51.364 (5)C17—C161.383 (6)
O2—C61.402 (5)C17—C121.392 (6)
O1—C51.200 (6)C17—H170.9500
O3—O30.000 (15)C11—C101.384 (6)
O3—C181.214 (6)C11—H110.9500
C2—C11.362 (7)C13—C141.385 (6)
C2—C31.427 (6)C13—C121.396 (6)
C2—H20.9500C13—H130.9500
N1—N10.000 (13)C14—C151.403 (6)
N1—N21.250 (5)C14—H140.9500
N1—N21.250 (5)C16—C151.394 (6)
N1—C91.432 (6)C16—H160.9500
N2—N20.000 (13)C9—C101.398 (6)
N2—C121.432 (5)C7—H70.9500
C3—C41.374 (6)C4—C51.467 (6)
C3—H30.9500C10—H100.9500
C6—C71.379 (6)C19—H19A0.9800
C6—C111.395 (6)C19—H19B0.9800
C18—C151.497 (6)C19—H19C0.9800
C18—C191.510 (6)
C1—S1—C490.5 (2)C17—C16—H16119.4
C5—O2—C6116.9 (3)C15—C16—H16119.4
C1—C2—C3111.5 (4)C8—C9—C10120.6 (4)
C1—C2—H2124.3C8—C9—N1116.2 (4)
C3—C2—H2124.3C10—C9—N1123.2 (4)
N2—N1—C9113.6 (4)C8—C9—N1116.2 (4)
N2—N1—C9113.6 (4)C10—C9—N1123.2 (4)
N1—N2—C12113.9 (3)C6—C7—C8119.4 (4)
N1—N2—C12113.9 (3)C6—C7—H7120.3
C4—C3—C2112.1 (4)C8—C7—H7120.3
C4—C3—H3123.9C2—C1—S1113.6 (3)
C2—C3—H3123.9C2—C1—Br1127.5 (3)
C7—C6—C11122.1 (4)S1—C1—Br1118.9 (3)
C7—C6—O2117.0 (4)C3—C4—C5130.8 (4)
C11—C6—O2120.7 (4)C3—C4—S1112.3 (3)
O3—C18—C15120.2 (4)C5—C4—S1116.8 (3)
O3—C18—C15120.2 (4)C17—C12—C13120.7 (4)
O3—C18—C19121.5 (5)C17—C12—N2115.4 (4)
O3—C18—C19121.5 (5)C13—C12—N2123.8 (4)
C15—C18—C19118.3 (4)C17—C12—N2115.4 (4)
C7—C8—C9119.5 (4)C13—C12—N2123.8 (4)
C7—C8—H8120.3C11—C10—C9120.1 (4)
C9—C8—H8120.3C11—C10—H10120.0
C16—C17—C12119.2 (4)C9—C10—H10120.0
C16—C17—H17120.4O1—C5—O2125.2 (4)
C12—C17—H17120.4O1—C5—C4124.5 (4)
C10—C11—C6118.3 (4)O2—C5—C4110.2 (4)
C10—C11—H11120.8C16—C15—C14119.0 (4)
C6—C11—H11120.8C16—C15—C18118.9 (4)
C14—C13—C12119.6 (4)C14—C15—C18122.2 (4)
C14—C13—H13120.2C18—C19—H19A109.5
C12—C13—H13120.2C18—C19—H19B109.5
C13—C14—C15120.4 (4)H19A—C19—H19B109.5
C13—C14—H14119.8C18—C19—H19C109.5
C15—C14—H14119.8H19A—C19—H19C109.5
C17—C16—C15121.2 (4)H19B—C19—H19C109.5
C9—N1—N2—C12179.0 (4)C16—C17—C12—N2179.3 (4)
C1—C2—C3—C41.3 (6)C14—C13—C12—C171.7 (7)
C5—O2—C6—C7126.7 (4)C14—C13—C12—N2179.2 (4)
C5—O2—C6—C1158.0 (6)C14—C13—C12—N2179.2 (4)
C7—C6—C11—C101.6 (7)N1—N2—C12—C17172.4 (4)
O2—C6—C11—C10176.7 (4)N1—N2—C12—C17172.4 (4)
C12—C13—C14—C150.3 (7)N1—N2—C12—C1310.0 (6)
C12—C17—C16—C150.1 (7)N1—N2—C12—C1310.0 (6)
C7—C8—C9—C102.3 (7)C6—C11—C10—C90.3 (7)
C7—C8—C9—N1178.7 (4)C8—C9—C10—C111.7 (7)
C7—C8—C9—N1178.7 (4)N1—C9—C10—C11179.5 (4)
N2—N1—C9—C8171.0 (4)N1—C9—C10—C11179.5 (4)
N2—N1—C9—C8171.0 (4)C6—O2—C5—O14.3 (7)
N2—N1—C9—C1010.1 (6)C6—O2—C5—C4177.0 (4)
N2—N1—C9—C1010.1 (6)C3—C4—C5—O1174.6 (5)
C11—C6—C7—C81.0 (7)S1—C4—C5—O13.6 (6)
O2—C6—C7—C8176.2 (4)C3—C4—C5—O24.2 (7)
C9—C8—C7—C61.0 (7)S1—C4—C5—O2177.7 (3)
C3—C2—C1—S10.5 (5)C17—C16—C15—C141.3 (7)
C3—C2—C1—Br1179.5 (3)C17—C16—C15—C18179.8 (4)
C4—S1—C1—C20.3 (4)C13—C14—C15—C161.2 (6)
C4—S1—C1—Br1178.8 (3)C13—C14—C15—C18179.6 (4)
C2—C3—C4—C5179.7 (5)O3—C18—C15—C164.3 (7)
C2—C3—C4—S11.5 (5)O3—C18—C15—C164.3 (7)
C1—S1—C4—C31.0 (4)C19—C18—C15—C16175.2 (4)
C1—S1—C4—C5179.5 (4)O3—C18—C15—C14174.1 (5)
C16—C17—C12—C131.6 (7)O3—C18—C15—C14174.1 (5)
C16—C17—C12—N2179.3 (4)C19—C18—C15—C146.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N10.952.472.722 (6)95
C16—H16···O30.952.492.788 (6)98
C10—H10···N20.952.452.705 (6)95
 

Acknowledgements

The authors thank Kishore and Shivakumar, C., SSCU, IISc, for their help in collecting the SCXRD data and the BSPM lab, Albert Einstein Block, UCS, for the software and other facilities to complete this work.

Funding information

Funding for this research was provided by: Vision Group of Science and Technology (award No. GRD319 to B. S. Palakshamurthy).

References

First citationAkolkar, H. N., Dengale, S. G., Deshmukh, K. K., Karale, B. K., Darekar, N. R., Khedkar, V. M. & Shaikh, M. H. (2022). Polycyclic Aromat. Compd. 42, 1959–1971.  CrossRef CAS Google Scholar
First citationAl-Said, M. S., Bashandy, M. S., Al-qasoumi, S. I. & Ghorab, M. M. (2011). Eur. J. Med. Chem. 46, 137–141.  Web of Science CAS PubMed Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFélix, M. B., de Souza, E. R., de Lima, M. D. C., Frade, D. K. G., Serafim, V. L., Rodrigues, K. A. D. F., Néris, P. L. D. N., Ribeiro, F. F., Scotti, L., Scotti, M. T., de Aquino, T. M., Mendonça Junior, F. J. B. & de Oliveira, M. R. (2016). Bioorg. Med. Chem. 24, 3972–3977.  PubMed Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09W, Revision A. 02, Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuey, R., Morris, G. M. & Forli, S. (2012). AutoDock. The Scripps Research Institute Molecular Graphics Laboratory, La Jolla, California, USA.  Google Scholar
First citationKaur, H. & Narasimhan, B. (2018). Curr. Top. Med. Chem. 18, 3–21.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, Y., Xue, B., Yang, J., Jiang, J., Liu, J., Zhou, Y., Zhang, J., Wu, M., Yuan, Y., Zhu, Z., Wang, Z. J., Chen, Y., Harabuchi, Y., Nakajima, T., Wang, W., Maeda, S., Gong, J. P. & Cao, Y. (2024). Nat. Chem. 16, 446–455.  CrossRef CAS PubMed Google Scholar
First citationLondoño-Berrío, M., Pérez-Buitrago, S., Ortiz-Trujillo, I. C., Hoyos-Palacio, L. M., Orozco, L. Y., López, L., Zárate-Triviño, D. G., Capobianco, J. A. & Mena-Giraldo, P. (2022). Polymers, 14, 3119.  PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMulatihan, D., Guo, T. & Zhao, Y. (2020). Photochem. & Photobiol. 96, 1163–1168.  CrossRef CAS Google Scholar
First citationPeddie, V. & Abell, A. D. J. (2019). J. Photochem. Photobiol. Photochem. Rev. 40, 1–20.  CrossRef CAS Google Scholar
First citationPiotto, S., Concilio, S., Sessa, L., Porta, A., Calabrese, E. C., Zanfardino, A., Varcamonti, M. & Iannelli, P. (2013). Eur. J. Med. Chem. 68, 178–184.  CrossRef CAS PubMed Google Scholar
First citationRomagnoli, R., Baraldi, P. G., Carrion, M. D., Lopez Cara, C., Preti, D., Fruttarolo, F., Pavani, M. G., Tabrizi, M. A., Tolomeo, M., Grimaudo, S., Di Cristina, A., Balzarini, J., Hadfield, J. A., Brancale, A. & Hamel, E. (2007). J. Med. Chem. 50, 2273–2277.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoegiarto, A. C., Comotti, A. & Ward, M. D. (2010). J. Am. Chem. Soc. 132, 14603–14616.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http:// hirshfeldsurface. net.  Google Scholar
First citationVentura, C. R. & Wiedman, G. R. (2021). Biochim. Biophys. Acta, 1863, 183759.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds