research communications
Comprehensive structural study of lanthanide(III) chloride hydrates: [RECl3·xH2O (RE = La–Nd, Sm–Lu; x = 6, 7)]
aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA, and bEpiscopal School of Baton Rouge, 3200 Woodland Ridge Blvd, Baton Rouge, LA 70816, USA
*Correspondence e-mail: sbaranets@lsu.edu
A comprehensive crystallographic study is presented of the complete series of rare-earth(III) chloride hydrates. Early lanthanides form dimeric [(H2O)7RE(μ-Cl)2RE(H2O)7]4+ binuclear complexes in which each RE atom (RE = La3+, Ce3+) is coordinated by seven H2O molecules and two bridging inner-sphere chloride ions. Di-μ-chlorido-bis[heptaaqualanthanide(III)] tetrachloride, [(H2O)7RE(μ-Cl)2RE(H2O)7]Cl4, crystallizes in the triclinic P1. Heavier lanthanides exhibit monomeric [RECl2(H2O)6]+ units where each RE atom (RE = Pr3+, Nd3+, Sm3+–Lu3+) is coordinated by six H2O molecules and two inner-sphere chloride ions. Hexaaquadichloridolanthanide(III) chlorides, [RECl2(H2O)6]Cl, adopt the monoclinic P2/c. In both structures, the cationic inner-sphere complex is counter-charged by the corresponding number of outer-sphere Cl− anions, in which the metal ion and outer-sphere chloride ion lie on crystallographic twofold axes. Crystal structures for all compounds were determined in high quality with refined H-atom positions and were collected at the same temperature (100 K), providing a uniform structural dataset and addressing discrepancies in previous reports. The of [HoCl2(H2O)6]Cl is reported for the first time.
Keywords: crystal structure; rare-earth metals; periodic trends; coordination; hydrates.
1. Chemical context and database survey
The rare-earth trivalent metal chloride hydrates [RECl3·xH2O (RE = La–Nd, Sm–Lu; x = 6, 7)] are commonly used as precursors in the synthesis of complex inorganic and organometallic compounds (Boyle & Steele, 2011). Most lanthanides are characterized by the presence of partially filled 4f orbitals, which significantly influence the chemical and physical properties of these elements and their compounds, offering a broad landscape for potential applications. For instance, lanthanide chloride salts possess catalytic (Narasimhulu et al., 2007), luminescent (Hsieh et al., 2013), scintillation (Boatner et al., 2013), and magnetic properties (Layfield & Murugesu, 2015), to name a few. The compositional and structural aspects of the lanthanide (III) chloride hydrate chemistry are well established, with nearly the entire series of RECl3·xH2O compositions identified (Boyle et al., 2010; Cotton & Harrowfield, 2011). However, our database survey indicates that while most of the compounds presented in this work are listed in the ICSD database (Release 2024.1; Zagorac et al., 2019), structural data for HoCl3·6H2O and TmCl3·6H2O are missing from the ICSD, and for HoCl3·6H2O, from the CSD (Release 2024.2; Groom et al., 2016) databases (Bakakin et al., 1975; Bel'skii & Struchkov, 1965; Boyle et al., 2010; Habenschuss & Spedding, 1979, 1980a,b,c,d, 1978; Hsieh et al., 2013; Kepert et al., 1983; Knopf et al., 2015; Levason & Webster, 2002; Louer et al., 1989; Marezio et al., 1961; Narasimhulu et al., 2007; Peterson et al., 1979; Reuter et al., 1994; Reuter & Frenzen, 1994; Rheingold & King, 1989; Tambornino et al., 2014; Wegner et al., 2018; Chen et al., 1991).
In addition, most of the reported datasets are of standard quality, lacking refined hydrogen atoms, which complicates the unambiguous interpretation of hydrogen bonding and the crystal packing. Another inconsistency involves data collection temperatures, which vary across the series in the previous reports. This study presents a comprehensive crystallographic analysis by providing a uniform structural dataset for the complete series of rare-earth metal(III) chloride hydrates except for radioactive promethium.
2. Structural commentary
The rare-earth metal(III) chloride hydrates [RECl3·xH2O (RE = La–Nd, Sm–Lu; x = 6, 7)] adopt two different structure types, with the rare-earth metal being coordinated by seven (for RE = La, Ce) or six (for RE = Pr, Nd, Sm–Lu) water molecules. The degree of hydration is likely influenced by steric effects and aligns well with the decreasing trend of the atomic radii within the lanthanide series (Fig. 5). Metal–ligand bond distances for the La and Ce phases are listed in Tables 1 and 2, respectively, and the metal–ligand distances for the hexahydrates are summarized in Table 3. The hydrogen-bond geometrical data for the complete series (La–Lu) are listed in Table 4 to 17.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The early rare-earth metal (RE = La–Pr) chloride hydrates adopt the [LaCl3(H2O)7] structure type and crystallize in the triclinic P, although there are a few reports on RECl3(H2O)3 trihydrates (RE = La, Ce) crystallizing in the hexagonal P2m or the orthorhombic Pnma (Reuter et al., 1994; Reuter & Frenzen, 1994). This structure type is characterized by the Wyckoff sequence i11 (excluding H atoms) and the aP50, with 11 atomic sites occupying general positions. The of [RECl3(H2O)7] (RE = La, Ce, Pr) is better described as a dimeric [(H2O)7RE(μ-Cl)2RE(H2O)7]Cl4 molecule in which each RE atom is coordinated by seven water molecules and the two lanthanide ions are linked by the two inner-sphere bridging chloride (μ-Cl) anions (Fig. 1). This complex [(H2O)7RE(μ-Cl)2RE(H2O)7]4+ inner-sphere cation is charge-balanced by four Cl− anions located in the outer-sphere. While we identified the La- and Ce-bearing analogs, we did not find a Pr-containing compound within this structure type.
Each 2O)7RE(μ-Cl)2RE(H2O)7]Cl4 (RE = La, Ce) formula unit with [(H2O)7RE(μ-Cl)2RE(H2O)7]4+ binuclear cations linked via O—H⋯Cl hydrogen bonds ranging in H⋯Cl length from ca. 2.25 Å to 2.51 Å. Two outer-sphere Cl atoms link neighboring cations via these hydrogen bonds (Fig. 2).
consists of a single [(HThe heavier lanthanides (RE = Pr, Nd, Sm–Lu) crystallize in the monoclinic with the P2/c (note that most of the datasets were previously reported in the unconventional P2/n). They adopt the GdCl3·6H2O structure type, characterized by the Wyckoff sequence g4fe (excluding H atoms) and mP44. Each RECl3·6H2O formula unit consists of an [RECl2(H2O)6]+ inner-sphere monomeric cation charge-balanced by a Cl− anion located in the outer-sphere (Fig. 3). The RE3+ cation is coordinated by six water molecules and two chloride anions in distorted square antiprism fashion and is positioned on a crystallographic twofold axis.
Each RECl2(H2O)6Cl (RE = Pr, Nd, Sm–Lu) structure type contains two formula units, with [RECl2(H2O)6]+ cations linked via O—H⋯Cl and O—H⋯O hydrogen bonds (Fig. 4). Each outer-sphere chloride ion accepts six O—H⋯Cl contacts (ca. 2.36–2.48 Å for the Ho-bearing structure), thus linking six neighboring cations. The inner sphere Cl atom forms three hydrogen O—H⋯Cl bonds (ca. 2.35–2.40 Å for the Ho-bearing structure), thus linking four [RECl2(H2O)6]+ cations.
of theAn analysis of unit-cell volumes across the La–Lu series indicates a gradual decrease (Fig. 5), which is expected due to the decreasing trend for atomic radii of the lanthanides. This reduction in atomic size for heavier RE leads to smaller volumes in their crystal structures. The notably larger unit-cell volumes of the La- and Ce-bearing compounds are explained by the higher number of coordinated water molecules and different structural arrangements. The variations of other parameters are shown in Fig. 6.
3. Synthesis and crystallization
Single-crystal X-ray diffraction (SCXRD) data collections were performed using commercially available chemicals supplied by Edgetech Industries LLC without further purification. However, large single crystals suitable for property measurements can also be obtained by recrystallization, as reported elsewhere (Chen et al., 1991, Peterson et al., 1979).
4. and Methodology
Crystal data are summarized in Table 18. SCXRD data were collected under a constant stream of cold nitrogen gas to protect the crystals from air and moisture and to control the measurement temperature. After the structures were solved, the STRUCTURE TIDY (Gelato & Parthé, 1987) program was used to standardize the atomic coordinates, and the was transformed to the conventional monoclinic P2/c for the RECl2(H2O)6Cl series.
|
Supporting information
[LaCl(H2O)7]Cl2 | Z = 2 |
Mr = 371.37 | F(000) = 356 |
Triclinic, P1 | Dx = 2.272 Mg m−3 |
a = 7.9432 (5) Å | Ag Kα radiation, λ = 0.56086 Å |
b = 8.2316 (4) Å | Cell parameters from 9869 reflections |
c = 9.2203 (5) Å | θ = 2.4–23.7° |
α = 70.507 (2)° | µ = 2.42 mm−1 |
β = 73.098 (2)° | T = 100 K |
γ = 81.522 (2)° | Plate, colorless |
V = 542.92 (5) Å3 | 0.28 × 0.12 × 0.06 mm |
Bruker D8 Venture Duo diffractometer | 3078 reflections with I > 2σ(I) |
ω scans | Rint = 0.069 |
Absorption correction: multi-scan SADABS-2016/2 (Bruker, 2016) | θmax = 23.7°, θmin = 2.1° |
Tmin = 0.044, Tmax = 0.064 | h = −11→11 |
43724 measured reflections | k = −11→11 |
3350 independent reflections | l = −13→13 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.016 | w = 1/[σ2(Fo2) + (0.0128P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.032 | (Δ/σ)max = 0.001 |
S = 1.01 | Δρmax = 0.40 e Å−3 |
3350 reflections | Δρmin = −0.44 e Å−3 |
157 parameters | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0070 (6) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.21799 (2) | 0.18615 (2) | 0.32361 (2) | 0.00928 (4) | |
Cl1 | −0.14698 (6) | 0.17974 (5) | 0.51434 (5) | 0.01189 (8) | |
Cl2 | 0.21093 (6) | 0.77753 (5) | 0.03491 (5) | 0.01465 (8) | |
Cl3 | 0.34270 (6) | 0.38778 (5) | 0.71161 (5) | 0.01506 (9) | |
O1 | 0.0304 (2) | 0.42402 (17) | 0.17472 (17) | 0.0149 (3) | |
O2 | 0.07092 (19) | 0.08113 (17) | 0.16194 (16) | 0.0148 (3) | |
O3 | 0.2234 (2) | 0.46276 (18) | 0.38494 (18) | 0.0188 (3) | |
O4 | 0.2311 (2) | 0.09299 (18) | 0.61748 (16) | 0.0153 (3) | |
O5 | 0.3868 (2) | 0.35162 (17) | 0.04773 (16) | 0.0145 (3) | |
O6 | 0.5212 (2) | 0.2280 (2) | 0.34138 (17) | 0.0173 (3) | |
O7 | 0.4532 (2) | −0.01065 (18) | 0.19716 (17) | 0.0164 (3) | |
H1A | −0.060 (4) | 0.447 (3) | 0.219 (3) | 0.030 (7)* | |
H1B | 0.077 (4) | 0.509 (3) | 0.119 (3) | 0.028 (7)* | |
H2A | 0.015 (4) | 0.143 (3) | 0.103 (3) | 0.033 (7)* | |
H2B | 0.116 (4) | 0.003 (4) | 0.131 (3) | 0.035 (7)* | |
H3A | 0.259 (4) | 0.470 (4) | 0.458 (3) | 0.042 (8)* | |
H3B | 0.199 (4) | 0.553 (4) | 0.330 (4) | 0.051 (9)* | |
H4A | 0.144 (4) | 0.052 (3) | 0.677 (3) | 0.027 (7)* | |
H4B | 0.261 (4) | 0.171 (3) | 0.644 (3) | 0.030 (7)* | |
H5A | 0.360 (4) | 0.367 (4) | −0.033 (3) | 0.038 (8)* | |
H5B | 0.485 (4) | 0.339 (4) | 0.031 (4) | 0.046 (9)* | |
H6A | 0.549 (5) | 0.312 (4) | 0.344 (4) | 0.059 (11)* | |
H6B | 0.596 (4) | 0.151 (4) | 0.352 (3) | 0.048 (9)* | |
H7A | 0.535 (4) | 0.031 (4) | 0.131 (3) | 0.036 (8)* | |
H7B | 0.464 (5) | −0.115 (4) | 0.228 (4) | 0.057 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.00924 (5) | 0.00899 (5) | 0.00984 (5) | −0.00066 (3) | −0.00284 (3) | −0.00281 (3) |
Cl1 | 0.0113 (2) | 0.01008 (16) | 0.01293 (17) | −0.00054 (14) | −0.00208 (15) | −0.00269 (14) |
Cl2 | 0.0132 (2) | 0.01316 (18) | 0.01800 (19) | −0.00013 (15) | −0.00398 (16) | −0.00561 (15) |
Cl3 | 0.0163 (2) | 0.01438 (18) | 0.01599 (19) | 0.00004 (16) | −0.00586 (17) | −0.00548 (15) |
O1 | 0.0113 (7) | 0.0128 (6) | 0.0165 (6) | −0.0003 (5) | −0.0020 (5) | −0.0007 (5) |
O2 | 0.0168 (7) | 0.0134 (6) | 0.0173 (6) | 0.0035 (5) | −0.0082 (6) | −0.0072 (5) |
O3 | 0.0242 (8) | 0.0134 (6) | 0.0228 (7) | 0.0012 (6) | −0.0101 (6) | −0.0083 (6) |
O4 | 0.0155 (7) | 0.0178 (6) | 0.0135 (6) | −0.0060 (5) | −0.0035 (6) | −0.0041 (5) |
O5 | 0.0128 (7) | 0.0175 (6) | 0.0122 (6) | −0.0009 (5) | −0.0036 (5) | −0.0028 (5) |
O6 | 0.0130 (7) | 0.0187 (7) | 0.0231 (7) | −0.0009 (6) | −0.0062 (6) | −0.0086 (6) |
O7 | 0.0157 (8) | 0.0126 (6) | 0.0187 (7) | −0.0007 (5) | −0.0016 (6) | −0.0044 (5) |
La1—Cl1i | 2.9376 (4) | O2—H2B | 0.79 (3) |
La1—Cl1 | 2.9187 (5) | O3—H3A | 0.82 (3) |
La1—O1 | 2.5443 (13) | O3—H3B | 0.78 (3) |
La1—O2 | 2.5504 (13) | O4—H4A | 0.78 (3) |
La1—O3 | 2.5315 (13) | O4—H4B | 0.84 (3) |
La1—O4 | 2.5873 (13) | O5—H5A | 0.80 (3) |
La1—O5 | 2.5233 (14) | O5—H5B | 0.75 (3) |
La1—O6 | 2.5413 (15) | O6—H6A | 0.77 (3) |
La1—O7 | 2.5643 (13) | O6—H6B | 0.80 (3) |
O1—H1A | 0.75 (3) | O7—H7A | 0.78 (3) |
O1—H1B | 0.79 (3) | O7—H7B | 0.81 (3) |
O2—H2A | 0.80 (3) | ||
Cl1—La1—Cl1i | 73.941 (12) | O6—La1—O1 | 123.86 (5) |
O1—La1—Cl1i | 128.72 (4) | O6—La1—O2 | 141.04 (4) |
O1—La1—Cl1 | 69.96 (4) | O6—La1—O4 | 69.20 (5) |
O1—La1—O2 | 67.52 (4) | O6—La1—O7 | 69.14 (5) |
O1—La1—O4 | 130.45 (4) | O7—La1—Cl1i | 68.54 (4) |
O1—La1—O7 | 124.76 (4) | O7—La1—Cl1 | 139.55 (4) |
O2—La1—Cl1 | 79.41 (3) | O7—La1—O4 | 104.74 (4) |
O2—La1—Cl1i | 71.07 (3) | La1—Cl1—La1i | 106.059 (12) |
O2—La1—O4 | 135.97 (5) | La1—O1—H1A | 119 (2) |
O2—La1—O7 | 74.71 (4) | La1—O1—H1B | 117 (2) |
O3—La1—Cl1i | 140.68 (4) | H1A—O1—H1B | 109 (3) |
O3—La1—Cl1 | 84.97 (4) | La1—O2—H2A | 124.0 (19) |
O3—La1—O1 | 70.08 (5) | La1—O2—H2B | 119 (2) |
O3—La1—O2 | 137.58 (4) | H2A—O2—H2B | 110 (2) |
O3—La1—O4 | 74.18 (5) | La1—O3—H3A | 125.3 (19) |
O3—La1—O6 | 68.30 (5) | La1—O3—H3B | 123 (2) |
O3—La1—O7 | 134.49 (5) | H3A—O3—H3B | 112 (3) |
O4—La1—Cl1i | 68.28 (3) | La1—O4—H4A | 112.1 (19) |
O4—La1—Cl1 | 73.83 (4) | La1—O4—H4B | 114.3 (17) |
O5—La1—Cl1 | 136.61 (3) | H4A—O4—H4B | 112 (2) |
O5—La1—Cl1i | 133.83 (3) | La1—O5—H5A | 126 (2) |
O5—La1—O1 | 66.80 (5) | La1—O5—H5B | 116 (2) |
O5—La1—O2 | 81.23 (5) | H5A—O5—H5B | 108 (3) |
O5—La1—O3 | 83.78 (5) | La1—O6—H6A | 124 (3) |
O5—La1—O4 | 140.90 (5) | La1—O6—H6B | 123 (2) |
O5—La1—O6 | 72.77 (5) | H6A—O6—H6B | 112 (3) |
O5—La1—O7 | 68.91 (5) | La1—O7—H7A | 119 (2) |
O6—La1—Cl1 | 138.86 (3) | La1—O7—H7B | 128 (2) |
O6—La1—Cl1i | 107.32 (4) | H7A—O7—H7B | 113 (3) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl3ii | 0.75 (3) | 2.48 (3) | 3.1947 (15) | 161 (3) |
O1—H1B···Cl2 | 0.79 (3) | 2.38 (3) | 3.1365 (16) | 161 (2) |
O2—H2A···Cl2iii | 0.80 (3) | 2.38 (3) | 3.1378 (14) | 157 (3) |
O2—H2B···Cl2iv | 0.79 (3) | 2.26 (3) | 3.0382 (13) | 172 (3) |
O3—H3A···Cl3 | 0.82 (3) | 2.47 (3) | 3.2552 (15) | 160 (3) |
O3—H3B···Cl1ii | 0.78 (3) | 2.92 (3) | 3.2954 (13) | 112 (2) |
O3—H3B···Cl2 | 0.78 (3) | 2.72 (3) | 3.4160 (16) | 150 (3) |
O4—H4A···O2i | 0.78 (3) | 2.08 (3) | 2.859 (2) | 174 (3) |
O4—H4B···Cl3 | 0.84 (3) | 2.31 (3) | 3.1488 (15) | 179 (2) |
O5—H5A···Cl3v | 0.80 (3) | 2.34 (3) | 3.1308 (14) | 167 (3) |
O5—H5B···Cl2vi | 0.75 (3) | 2.44 (3) | 3.1690 (15) | 163 (3) |
O5—H5B···O5vi | 0.75 (3) | 2.67 (3) | 2.986 (3) | 108 (2) |
O6—H6A···Cl3vii | 0.77 (3) | 2.57 (3) | 3.3288 (16) | 168 (3) |
O6—H6B···Cl1viii | 0.80 (3) | 2.93 (3) | 3.3705 (14) | 117 (2) |
O6—H6B···O4ix | 0.80 (3) | 2.24 (3) | 3.038 (2) | 169 (3) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) x, y−1, z; (v) x, y, z−1; (vi) −x+1, −y+1, −z; (vii) −x+1, −y+1, −z+1; (viii) x+1, y, z; (ix) −x+1, −y, −z+1. |
[CeCl(H2O)7]Cl2 | Z = 2 |
Mr = 372.58 | F(000) = 358 |
Triclinic, P1 | Dx = 2.303 Mg m−3 |
a = 7.8995 (3) Å | Ag Kα radiation, λ = 0.56086 Å |
b = 8.2129 (3) Å | Cell parameters from 9812 reflections |
c = 9.1961 (3) Å | θ = 2.5–23.7° |
α = 70.451 (1)° | µ = 2.60 mm−1 |
β = 73.172 (1)° | T = 100 K |
γ = 81.658 (1)° | Plate, colorless |
V = 537.39 (3) Å3 | 0.26 × 0.22 × 0.17 mm |
Bruker D8 Venture Duo diffractometer | 3239 reflections with I > 2σ(I) |
ω scans | Rint = 0.031 |
Absorption correction: multi-scan SADABS-2016/2 (Bruker, 2016) | θmax = 23.7°, θmin = 1.9° |
Tmin = 0.214, Tmax = 0.257 | h = −11→11 |
28063 measured reflections | k = −11→11 |
3304 independent reflections | l = −13→13 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.009 | w = 1/[σ2(Fo2) + (0.0036P)2 + 0.0733P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.019 | (Δ/σ)max = 0.001 |
S = 1.17 | Δρmax = 0.32 e Å−3 |
3304 reflections | Δρmin = −0.29 e Å−3 |
157 parameters | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0349 (8) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ce1 | 0.21779 (2) | 0.18632 (2) | 0.32382 (2) | 0.00590 (2) | |
Cl1 | −0.14612 (3) | 0.17948 (3) | 0.51435 (3) | 0.00867 (4) | |
Cl2 | 0.21050 (3) | 0.77796 (3) | 0.03514 (3) | 0.01125 (4) | |
Cl3 | 0.34287 (3) | 0.38691 (3) | 0.71200 (3) | 0.01174 (4) | |
O1 | 0.03034 (11) | 0.42224 (10) | 0.17488 (9) | 0.01184 (13) | |
O2 | 0.07253 (10) | 0.08169 (10) | 0.16291 (9) | 0.01131 (13) | |
O3 | 0.22060 (11) | 0.46047 (10) | 0.38631 (10) | 0.01504 (14) | |
O4 | 0.23110 (10) | 0.09321 (10) | 0.61518 (9) | 0.01193 (13) | |
O5 | 0.38549 (10) | 0.35125 (10) | 0.04929 (8) | 0.01117 (13) | |
O6 | 0.52006 (10) | 0.22922 (11) | 0.34141 (9) | 0.01312 (14) | |
O7 | 0.45125 (10) | −0.00898 (10) | 0.19850 (9) | 0.01262 (14) | |
H1A | −0.062 (3) | 0.449 (2) | 0.218 (2) | 0.034 (5)* | |
H1B | 0.074 (2) | 0.507 (2) | 0.120 (2) | 0.034 (5)* | |
H2A | 0.122 (2) | 0.003 (2) | 0.132 (2) | 0.034 (5)* | |
H2B | 0.020 (2) | 0.144 (2) | 0.103 (2) | 0.033 (4)* | |
H3A | 0.251 (3) | 0.468 (2) | 0.458 (2) | 0.042 (5)* | |
H3B | 0.191 (3) | 0.554 (3) | 0.333 (2) | 0.050 (6)* | |
H4A | 0.142 (2) | 0.055 (2) | 0.6783 (19) | 0.023 (4)* | |
H4B | 0.255 (2) | 0.162 (2) | 0.6465 (19) | 0.028 (4)* | |
H5A | 0.353 (2) | 0.362 (2) | −0.028 (2) | 0.026 (4)* | |
H5B | 0.487 (3) | 0.348 (2) | 0.027 (2) | 0.034 (5)* | |
H6A | 0.602 (3) | 0.156 (2) | 0.343 (2) | 0.035 (5)* | |
H6B | 0.553 (3) | 0.312 (3) | 0.347 (2) | 0.044 (5)* | |
H7A | 0.535 (2) | 0.030 (2) | 0.134 (2) | 0.028 (4)* | |
H7B | 0.472 (2) | −0.108 (3) | 0.232 (2) | 0.039 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ce1 | 0.00610 (3) | 0.00554 (3) | 0.00634 (3) | −0.00042 (2) | −0.00203 (2) | −0.00178 (2) |
Cl1 | 0.00832 (9) | 0.00669 (9) | 0.00983 (9) | −0.00012 (7) | −0.00148 (7) | −0.00192 (7) |
Cl2 | 0.01010 (10) | 0.00970 (10) | 0.01461 (10) | 0.00029 (8) | −0.00330 (8) | −0.00484 (8) |
Cl3 | 0.01327 (10) | 0.01078 (10) | 0.01287 (10) | 0.00063 (8) | −0.00533 (8) | −0.00471 (8) |
O1 | 0.0101 (3) | 0.0093 (3) | 0.0125 (3) | 0.0001 (3) | −0.0021 (3) | 0.0003 (3) |
O2 | 0.0137 (3) | 0.0101 (3) | 0.0124 (3) | 0.0033 (3) | −0.0068 (3) | −0.0051 (3) |
O3 | 0.0198 (4) | 0.0105 (3) | 0.0190 (4) | 0.0010 (3) | −0.0093 (3) | −0.0070 (3) |
O4 | 0.0126 (3) | 0.0141 (3) | 0.0105 (3) | −0.0051 (3) | −0.0029 (3) | −0.0040 (3) |
O5 | 0.0093 (3) | 0.0133 (3) | 0.0096 (3) | −0.0008 (3) | −0.0022 (3) | −0.0019 (3) |
O6 | 0.0090 (3) | 0.0151 (3) | 0.0178 (3) | −0.0006 (3) | −0.0049 (3) | −0.0071 (3) |
O7 | 0.0103 (3) | 0.0086 (3) | 0.0157 (3) | 0.0003 (3) | 0.0003 (3) | −0.0031 (3) |
Ce1—Cl1i | 2.9282 (2) | O2—H2B | 0.783 (19) |
Ce1—Cl1 | 2.8986 (2) | O3—H3A | 0.79 (2) |
Ce1—O1 | 2.5276 (7) | O3—H3B | 0.80 (2) |
Ce1—O2 | 2.5229 (7) | O4—H4A | 0.800 (17) |
Ce1—O3 | 2.5076 (8) | O4—H4B | 0.781 (18) |
Ce1—O4 | 2.5580 (7) | O5—H5A | 0.798 (17) |
Ce1—O5 | 2.5018 (7) | O5—H5B | 0.768 (19) |
Ce1—O6 | 2.5214 (7) | O6—H6A | 0.82 (2) |
Ce1—O7 | 2.5397 (8) | O6—H6B | 0.79 (2) |
O1—H1A | 0.762 (19) | O7—H7A | 0.775 (18) |
O1—H1B | 0.77 (2) | O7—H7B | 0.78 (2) |
O2—H2A | 0.797 (19) | ||
Cl1—Ce1—Cl1i | 73.953 (7) | O6—Ce1—O1 | 123.87 (3) |
O1—Ce1—Cl1i | 128.491 (19) | O6—Ce1—O2 | 140.89 (3) |
O1—Ce1—Cl1 | 70.026 (19) | O6—Ce1—O4 | 69.23 (2) |
O1—Ce1—O4 | 130.70 (2) | O6—Ce1—O7 | 69.36 (3) |
O1—Ce1—O7 | 124.61 (3) | O7—Ce1—Cl1i | 68.459 (19) |
O2—Ce1—Cl1 | 79.796 (18) | O7—Ce1—Cl1 | 139.540 (18) |
O2—Ce1—Cl1i | 70.981 (18) | O7—Ce1—O4 | 104.66 (3) |
O2—Ce1—O1 | 67.44 (2) | Ce1—Cl1—Ce1i | 106.047 (7) |
O2—Ce1—O4 | 135.98 (2) | Ce1—O1—H1A | 120.9 (13) |
O2—Ce1—O7 | 74.40 (3) | Ce1—O1—H1B | 117.9 (13) |
O3—Ce1—Cl1i | 140.40 (2) | H1A—O1—H1B | 105.8 (18) |
O3—Ce1—Cl1 | 84.317 (19) | Ce1—O2—H2A | 117.0 (13) |
O3—Ce1—O1 | 70.16 (3) | Ce1—O2—H2B | 123.0 (12) |
O3—Ce1—O2 | 137.56 (3) | H2A—O2—H2B | 111.1 (17) |
O3—Ce1—O4 | 74.09 (3) | Ce1—O3—H3A | 125.9 (14) |
O3—Ce1—O6 | 68.59 (3) | Ce1—O3—H3B | 122.9 (14) |
O3—Ce1—O7 | 135.12 (3) | H3A—O3—H3B | 111.1 (19) |
O4—Ce1—Cl1i | 68.263 (18) | Ce1—O4—H4A | 114.1 (11) |
O4—Ce1—Cl1 | 73.723 (18) | Ce1—O4—H4B | 117.9 (12) |
O5—Ce1—Cl1 | 136.599 (19) | H4A—O4—H4B | 104.8 (15) |
O5—Ce1—Cl1i | 133.776 (18) | Ce1—O5—H5A | 122.1 (12) |
O5—Ce1—O1 | 66.70 (3) | Ce1—O5—H5B | 120.1 (13) |
O5—Ce1—O2 | 81.00 (2) | H5A—O5—H5B | 108.9 (17) |
O5—Ce1—O3 | 84.25 (3) | Ce1—O6—H6A | 124.5 (12) |
O5—Ce1—O4 | 141.04 (3) | Ce1—O6—H6B | 127.8 (15) |
O5—Ce1—O6 | 72.84 (2) | H6A—O6—H6B | 107.7 (18) |
O5—Ce1—O7 | 69.00 (3) | Ce1—O7—H7A | 119.7 (12) |
O6—Ce1—Cl1 | 138.654 (18) | Ce1—O7—H7B | 129.6 (14) |
O6—Ce1—Cl1i | 107.53 (2) | H7A—O7—H7B | 107.2 (18) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl3ii | 0.762 (19) | 2.458 (19) | 3.1945 (8) | 162.9 (18) |
O1—H1B···Cl2 | 0.77 (2) | 2.405 (19) | 3.1380 (8) | 160.6 (17) |
O2—H2A···Cl2iii | 0.797 (19) | 2.251 (19) | 3.0368 (8) | 168.6 (17) |
O2—H2B···Cl2iv | 0.783 (19) | 2.411 (19) | 3.1383 (8) | 155.0 (16) |
O3—H3A···Cl3 | 0.79 (2) | 2.50 (2) | 3.2501 (9) | 160.9 (18) |
O3—H3B···Cl1ii | 0.80 (2) | 2.91 (2) | 3.3040 (8) | 112.9 (16) |
O3—H3B···Cl2 | 0.80 (2) | 2.71 (2) | 3.4188 (9) | 147.3 (18) |
O4—H4A···O2i | 0.800 (17) | 2.068 (17) | 2.8609 (11) | 171.2 (16) |
O4—H4B···Cl3 | 0.781 (18) | 2.369 (18) | 3.1466 (8) | 173.7 (16) |
O5—H5A···Cl3v | 0.798 (17) | 2.354 (17) | 3.1286 (8) | 164.0 (16) |
O5—H5B···Cl2vi | 0.768 (19) | 2.446 (19) | 3.1699 (8) | 157.6 (17) |
O5—H5B···O5vi | 0.768 (19) | 2.601 (17) | 2.9858 (15) | 112.9 (15) |
O6—H6A···Cl1vii | 0.82 (2) | 2.936 (18) | 3.3662 (8) | 115.2 (14) |
O6—H6A···O4viii | 0.82 (2) | 2.25 (2) | 3.0451 (11) | 164.9 (17) |
O6—H6B···Cl3ix | 0.79 (2) | 2.55 (2) | 3.3165 (8) | 164.4 (18) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) x, y−1, z; (iv) −x, −y+1, −z; (v) x, y, z−1; (vi) −x+1, −y+1, −z; (vii) x+1, y, z; (viii) −x+1, −y, −z+1; (ix) −x+1, −y+1, −z+1. |
[PrCl2(H2O)6]Cl | F(000) = 340 |
Mr = 355.36 | Dx = 2.323 Mg m−3 |
Monoclinic, P2/c | Ag Kα radiation, λ = 0.56086 Å |
a = 7.9997 (3) Å | Cell parameters from 6065 reflections |
b = 6.5647 (2) Å | θ = 2.5–23.7° |
c = 12.1734 (4) Å | µ = 2.90 mm−1 |
β = 127.388 (1)° | T = 100 K |
V = 507.95 (3) Å3 | Plate, green |
Z = 2 | 0.06 × 0.06 × 0.05 mm |
Bruker D8 Venture Duo diffractometer | 1486 reflections with I > 2σ(I) |
ω scans | Rint = 0.058 |
Absorption correction: multi-scan SADABS-2016/2 (Bruker, 2016) | θmax = 23.7°, θmin = 2.5° |
Tmin = 0.218, Tmax = 0.257 | h = −11→11 |
15235 measured reflections | k = −9→9 |
1567 independent reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.014 | All H-atom parameters refined |
wR(F2) = 0.027 | w = 1/[σ2(Fo2) + (0.0063P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1567 reflections | Δρmax = 0.38 e Å−3 |
71 parameters | Δρmin = −0.39 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pr1 | 0.500000 | 0.14679 (2) | 0.250000 | 0.00584 (3) | |
Cl1 | 0.29528 (6) | −0.17308 (5) | 0.05469 (4) | 0.01042 (7) | |
Cl2 | 0.000000 | 0.62270 (8) | 0.250000 | 0.01100 (10) | |
O1 | 0.1632 (2) | 0.29975 (19) | 0.05765 (13) | 0.0114 (2) | |
O2 | 0.2337 (2) | 0.0446 (2) | 0.28224 (14) | 0.0120 (2) | |
O3 | 0.4395 (2) | 0.42625 (18) | 0.35562 (13) | 0.0116 (2) | |
H1A | 0.063 (4) | 0.265 (4) | 0.044 (3) | 0.030 (7)* | |
H1B | 0.132 (4) | 0.327 (3) | −0.015 (3) | 0.027 (7)* | |
H2A | 0.251 (4) | 0.083 (4) | 0.348 (3) | 0.032 (7)* | |
H2B | 0.192 (4) | −0.065 (4) | 0.268 (2) | 0.025 (6)* | |
H3A | 0.508 (4) | 0.524 (4) | 0.384 (2) | 0.030 (7)* | |
H3B | 0.323 (4) | 0.454 (4) | 0.328 (3) | 0.027 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pr1 | 0.00553 (6) | 0.00602 (5) | 0.00598 (6) | 0.000 | 0.00349 (5) | 0.000 |
Cl1 | 0.00986 (19) | 0.00979 (16) | 0.01028 (17) | −0.00112 (13) | 0.00542 (15) | −0.00229 (13) |
Cl2 | 0.0102 (3) | 0.0119 (2) | 0.0114 (2) | 0.000 | 0.0068 (2) | 0.000 |
O1 | 0.0075 (6) | 0.0150 (6) | 0.0101 (6) | 0.0006 (5) | 0.0046 (5) | 0.0029 (4) |
O2 | 0.0139 (7) | 0.0124 (6) | 0.0140 (6) | −0.0029 (5) | 0.0107 (6) | −0.0020 (5) |
O3 | 0.0089 (6) | 0.0101 (5) | 0.0159 (6) | −0.0013 (5) | 0.0076 (5) | −0.0040 (5) |
Pr1—Cl1i | 2.8312 (4) | Pr1—O3i | 2.4513 (12) |
Pr1—Cl1 | 2.8312 (4) | O1—H1A | 0.75 (3) |
Pr1—O1i | 2.4677 (13) | O1—H1B | 0.78 (3) |
Pr1—O1 | 2.4677 (13) | O2—H2A | 0.76 (3) |
Pr1—O2 | 2.4818 (13) | O2—H2B | 0.77 (2) |
Pr1—O2i | 2.4817 (13) | O3—H3A | 0.78 (3) |
Pr1—O3 | 2.4513 (12) | O3—H3B | 0.80 (3) |
Cl1—Pr1—Cl1i | 84.250 (16) | O3i—Pr1—O1 | 69.35 (5) |
O1—Pr1—Cl1i | 147.16 (3) | O3—Pr1—O1 | 75.14 (4) |
O1i—Pr1—Cl1 | 147.16 (3) | O3i—Pr1—O1i | 75.14 (4) |
O1i—Pr1—Cl1i | 76.31 (3) | O3—Pr1—O1i | 69.35 (5) |
O1—Pr1—Cl1 | 76.31 (3) | O3—Pr1—O2i | 138.35 (4) |
O1i—Pr1—O1 | 131.98 (6) | O3i—Pr1—O2 | 138.35 (4) |
O1—Pr1—O2i | 120.50 (4) | O3i—Pr1—O2i | 69.97 (4) |
O1—Pr1—O2 | 73.29 (4) | O3—Pr1—O2 | 69.97 (4) |
O1i—Pr1—O2i | 73.29 (4) | O3i—Pr1—O3 | 83.09 (6) |
O1i—Pr1—O2 | 120.50 (4) | Pr1—O1—H1A | 119 (2) |
O2i—Pr1—Cl1 | 77.35 (3) | Pr1—O1—H1B | 125.5 (19) |
O2—Pr1—Cl1i | 77.35 (3) | H1A—O1—H1B | 105 (3) |
O2i—Pr1—Cl1i | 79.51 (3) | Pr1—O2—H2A | 117 (2) |
O2—Pr1—Cl1 | 79.51 (3) | Pr1—O2—H2B | 121.3 (18) |
O2i—Pr1—O2 | 148.63 (6) | H2A—O2—H2B | 108 (2) |
O3—Pr1—Cl1 | 142.92 (3) | Pr1—O3—H3A | 122.8 (18) |
O3—Pr1—Cl1i | 108.20 (3) | Pr1—O3—H3B | 120.2 (17) |
O3i—Pr1—Cl1 | 108.20 (3) | H3A—O3—H3B | 109 (2) |
O3i—Pr1—Cl1i | 142.92 (3) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1ii | 0.75 (3) | 2.42 (3) | 3.1498 (14) | 166 (3) |
O1—H1B···Cl2iii | 0.78 (3) | 2.40 (3) | 3.1706 (13) | 172 (2) |
O2—H2A···Cl1iv | 0.76 (3) | 2.40 (3) | 3.1575 (13) | 175 (2) |
O2—H2B···Cl2v | 0.77 (2) | 2.49 (2) | 3.2291 (14) | 163 (2) |
O3—H3A···Cl1vi | 0.78 (3) | 2.36 (3) | 3.1303 (14) | 174 (2) |
O3—H3B···Cl2 | 0.80 (3) | 2.41 (3) | 3.1919 (14) | 166 (2) |
Symmetry codes: (ii) −x, −y, −z; (iii) −x, −y+1, −z; (iv) x, −y, z+1/2; (v) x, y−1, z; (vi) −x+1, y+1, −z+1/2. |
[NdCl2(H2O)6]Cl | F(000) = 342 |
Mr = 358.69 | Dx = 2.368 Mg m−3 |
Monoclinic, P2/c | Ag Kα radiation, λ = 0.56086 Å |
a = 7.9710 (3) Å | Cell parameters from 9892 reflections |
b = 6.5460 (2) Å | θ = 2.5–23.7° |
c = 12.1246 (5) Å | µ = 3.11 mm−1 |
β = 127.324 (1)° | T = 100 K |
V = 503.09 (3) Å3 | Plate, purple |
Z = 2 | 0.16 × 0.12 × 0.11 mm |
Bruker D8 Venture Duo diffractometer | 1536 reflections with I > 2σ(I) |
ω scans | Rint = 0.036 |
Absorption correction: multi-scan SADABS-2016/2 (Bruker, 2016) | θmax = 23.7°, θmin = 2.5° |
Tmin = 0.201, Tmax = 0.257 | h = −11→11 |
23233 measured reflections | k = −9→9 |
1559 independent reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.007 | w = 1/[σ2(Fo2) + (0.0058P)2 + 0.0784P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.017 | (Δ/σ)max = 0.001 |
S = 1.11 | Δρmax = 0.25 e Å−3 |
1559 reflections | Δρmin = −0.30 e Å−3 |
72 parameters | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0145 (7) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Nd1 | 0.500000 | 0.14781 (2) | 0.250000 | 0.00585 (3) | |
Cl1 | 0.29595 (3) | −0.17132 (3) | 0.05545 (2) | 0.01031 (4) | |
Cl2 | 0.000000 | 0.62320 (5) | 0.250000 | 0.01090 (5) | |
O1 | 0.16396 (10) | 0.30014 (11) | 0.05851 (7) | 0.01173 (12) | |
O2 | 0.23447 (10) | 0.04554 (11) | 0.28178 (8) | 0.01176 (12) | |
O3 | 0.44019 (11) | 0.42581 (11) | 0.35561 (7) | 0.01172 (12) | |
H1A | 0.063 (2) | 0.268 (3) | 0.0458 (17) | 0.031 (4)* | |
H1B | 0.137 (2) | 0.327 (2) | −0.0083 (18) | 0.024 (4)* | |
H2A | 0.246 (3) | 0.083 (3) | 0.3463 (18) | 0.034 (4)* | |
H2B | 0.187 (2) | −0.061 (3) | 0.2652 (16) | 0.028 (4)* | |
H3A | 0.511 (2) | 0.526 (3) | 0.3820 (16) | 0.029 (4)* | |
H3B | 0.327 (3) | 0.463 (2) | 0.3272 (16) | 0.028 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Nd1 | 0.00556 (3) | 0.00614 (4) | 0.00597 (4) | 0.000 | 0.00356 (3) | 0.000 |
Cl1 | 0.01013 (8) | 0.00972 (9) | 0.00982 (9) | −0.00096 (6) | 0.00539 (7) | −0.00215 (7) |
Cl2 | 0.01039 (12) | 0.01175 (13) | 0.01133 (13) | 0.000 | 0.00699 (10) | 0.000 |
O1 | 0.0084 (3) | 0.0150 (3) | 0.0102 (3) | 0.0005 (2) | 0.0048 (2) | 0.0031 (2) |
O2 | 0.0136 (3) | 0.0115 (3) | 0.0142 (3) | −0.0033 (2) | 0.0105 (3) | −0.0026 (3) |
O3 | 0.0102 (3) | 0.0104 (3) | 0.0154 (3) | −0.0013 (2) | 0.0081 (2) | −0.0037 (2) |
Nd1—Cl1 | 2.8145 (2) | Nd1—O3i | 2.4328 (7) |
Nd1—Cl1i | 2.8145 (2) | O1—H1A | 0.749 (16) |
Nd1—O1i | 2.4532 (7) | O1—H1B | 0.722 (17) |
Nd1—O1 | 2.4532 (7) | O2—H2A | 0.770 (18) |
Nd1—O2i | 2.4629 (6) | O2—H2B | 0.760 (17) |
Nd1—O2 | 2.4629 (6) | O3—H3A | 0.793 (16) |
Nd1—O3 | 2.4328 (7) | O3—H3B | 0.782 (16) |
Cl1i—Nd1—Cl1 | 84.154 (9) | O3i—Nd1—O1 | 69.38 (2) |
O1—Nd1—Cl1 | 76.348 (18) | O3—Nd1—O1 | 75.17 (2) |
O1i—Nd1—Cl1i | 76.348 (18) | O3i—Nd1—O1i | 75.17 (2) |
O1i—Nd1—Cl1 | 147.078 (18) | O3—Nd1—O1i | 69.38 (2) |
O1—Nd1—Cl1i | 147.077 (18) | O3—Nd1—O2 | 70.11 (2) |
O1i—Nd1—O1 | 132.04 (3) | O3i—Nd1—O2i | 70.11 (2) |
O1—Nd1—O2 | 73.13 (2) | O3i—Nd1—O2 | 138.33 (2) |
O1—Nd1—O2i | 120.74 (2) | O3—Nd1—O2i | 138.33 (2) |
O1i—Nd1—O2 | 120.74 (2) | O3i—Nd1—O3 | 83.16 (3) |
O1i—Nd1—O2i | 73.13 (2) | Nd1—O1—H1A | 119.8 (13) |
O2—Nd1—Cl1i | 77.397 (17) | Nd1—O1—H1B | 125.2 (12) |
O2i—Nd1—Cl1 | 77.398 (17) | H1A—O1—H1B | 106.3 (16) |
O2—Nd1—Cl1 | 79.318 (18) | Nd1—O2—H2A | 119.3 (12) |
O2i—Nd1—Cl1i | 79.318 (18) | Nd1—O2—H2B | 123.0 (12) |
O2—Nd1—O2i | 148.45 (3) | H2A—O2—H2B | 107.0 (16) |
O3—Nd1—Cl1i | 108.189 (17) | Nd1—O3—H3A | 120.5 (11) |
O3—Nd1—Cl1 | 142.963 (17) | Nd1—O3—H3B | 122.7 (11) |
O3i—Nd1—Cl1i | 142.964 (17) | H3A—O3—H3B | 105.9 (15) |
O3i—Nd1—Cl1 | 108.190 (17) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1ii | 0.749 (16) | 2.418 (16) | 3.1491 (7) | 165.6 (16) |
O1—H1B···Cl2iii | 0.722 (17) | 2.451 (18) | 3.1661 (8) | 170.8 (15) |
O2—H2A···Cl1iv | 0.770 (18) | 2.387 (18) | 3.1552 (8) | 175.3 (17) |
O2—H2B···Cl2v | 0.760 (17) | 2.490 (17) | 3.2267 (8) | 164.0 (15) |
O3—H3A···Cl1vi | 0.793 (16) | 2.337 (17) | 3.1290 (7) | 176.1 (15) |
O3—H3B···Cl2 | 0.782 (16) | 2.413 (16) | 3.1894 (7) | 172.0 (15) |
Symmetry codes: (ii) −x, −y, −z; (iii) −x, −y+1, −z; (iv) x, −y, z+1/2; (v) x, y−1, z; (vi) −x+1, y+1, −z+1/2. |
[SmCl2(H2O)6]Cl | F(000) = 346 |
Mr = 364.80 | Dx = 2.430 Mg m−3 |
Monoclinic, P2/c | Ag Kα radiation, λ = 0.56086 Å |
a = 7.9375 (8) Å | Cell parameters from 9537 reflections |
b = 6.5351 (7) Å | θ = 3.0–23.7° |
c = 12.0713 (11) Å | µ = 3.51 mm−1 |
β = 127.217 (2)° | T = 100 K |
V = 498.65 (9) Å3 | Plate, yellow |
Z = 2 | 0.25 × 0.21 × 0.18 mm |
Bruker D8 Venture Duo diffractometer | 1533 reflections with I > 2σ(I) |
ω scans | Rint = 0.046 |
Absorption correction: multi-scan SADABS-2016/2 (Bruker, 2016) | θmax = 23.7°, θmin = 2.5° |
Tmin = 0.204, Tmax = 0.257 | h = −11→11 |
27415 measured reflections | k = −9→9 |
1553 independent reflections | l = −17→16 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.010 | w = 1/[σ2(Fo2) + (0.0104P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.023 | (Δ/σ)max = 0.001 |
S = 1.19 | Δρmax = 0.48 e Å−3 |
1553 reflections | Δρmin = −0.85 e Å−3 |
72 parameters | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0299 (11) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sm1 | 0.500000 | 0.14983 (2) | 0.250000 | 0.00823 (4) | |
Cl1 | 0.29725 (4) | −0.16793 (4) | 0.05721 (3) | 0.01414 (5) | |
Cl2 | 0.000000 | 0.62416 (6) | 0.250000 | 0.01522 (7) | |
O1 | 0.16623 (14) | 0.30030 (14) | 0.06034 (9) | 0.01545 (15) | |
O2 | 0.23649 (13) | 0.04788 (14) | 0.28158 (9) | 0.01546 (15) | |
O3 | 0.44104 (14) | 0.42539 (13) | 0.35504 (9) | 0.01546 (15) | |
H1A | 0.072 (3) | 0.272 (3) | 0.048 (2) | 0.030 (5)* | |
H1B | 0.135 (4) | 0.333 (3) | −0.013 (3) | 0.039 (6)* | |
H2A | 0.250 (3) | 0.085 (3) | 0.351 (2) | 0.028 (4)* | |
H2B | 0.187 (3) | −0.062 (3) | 0.2644 (18) | 0.024 (4)* | |
H3A | 0.510 (3) | 0.525 (3) | 0.381 (2) | 0.041 (5)* | |
H3B | 0.324 (3) | 0.457 (3) | 0.3251 (18) | 0.029 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sm1 | 0.00783 (5) | 0.00820 (5) | 0.00880 (4) | 0.000 | 0.00510 (3) | 0.000 |
Cl1 | 0.01386 (12) | 0.01289 (12) | 0.01390 (11) | −0.00140 (8) | 0.00746 (10) | −0.00317 (8) |
Cl2 | 0.01447 (16) | 0.01628 (16) | 0.01618 (16) | 0.000 | 0.00993 (14) | 0.000 |
O1 | 0.0105 (4) | 0.0191 (4) | 0.0140 (4) | 0.0011 (3) | 0.0059 (3) | 0.0040 (3) |
O2 | 0.0174 (4) | 0.0152 (4) | 0.0192 (4) | −0.0043 (3) | 0.0139 (3) | −0.0029 (3) |
O3 | 0.0141 (4) | 0.0131 (4) | 0.0204 (4) | −0.0018 (3) | 0.0111 (3) | −0.0052 (3) |
Sm1—Cl1 | 2.7906 (3) | Sm1—O3 | 2.4057 (8) |
Sm1—Cl1i | 2.7906 (3) | O1—H1A | 0.693 (19) |
Sm1—O1i | 2.4269 (8) | O1—H1B | 0.79 (3) |
Sm1—O1 | 2.4269 (8) | O2—H2A | 0.81 (2) |
Sm1—O2 | 2.4349 (8) | O2—H2B | 0.78 (2) |
Sm1—O2i | 2.4349 (8) | O3—H3A | 0.78 (2) |
Sm1—O3i | 2.4057 (8) | O3—H3B | 0.794 (19) |
Cl1i—Sm1—Cl1 | 83.829 (14) | O3—Sm1—O1 | 75.20 (3) |
O1—Sm1—Cl1 | 76.40 (2) | O3i—Sm1—O1 | 69.44 (3) |
O1i—Sm1—Cl1i | 76.40 (2) | O3—Sm1—O1i | 69.44 (3) |
O1i—Sm1—Cl1 | 146.94 (2) | O3i—Sm1—O1i | 75.20 (3) |
O1—Sm1—Cl1i | 146.94 (2) | O3i—Sm1—O2i | 70.30 (3) |
O1i—Sm1—O1 | 132.20 (4) | O3—Sm1—O2 | 70.30 (3) |
O1—Sm1—O2i | 120.94 (3) | O3—Sm1—O2i | 138.31 (3) |
O1—Sm1—O2 | 73.00 (3) | O3i—Sm1—O2 | 138.31 (3) |
O1i—Sm1—O2i | 73.00 (3) | O3—Sm1—O3i | 83.07 (4) |
O1i—Sm1—O2 | 120.94 (3) | Sm1—O1—H1A | 120.8 (17) |
O2i—Sm1—Cl1i | 79.06 (2) | Sm1—O1—H1B | 126.5 (17) |
O2—Sm1—Cl1 | 79.06 (2) | H1A—O1—H1B | 105 (2) |
O2i—Sm1—Cl1 | 77.44 (2) | Sm1—O2—H2A | 119.3 (13) |
O2—Sm1—Cl1i | 77.44 (2) | Sm1—O2—H2B | 123.1 (13) |
O2i—Sm1—O2 | 148.24 (4) | H2A—O2—H2B | 106.3 (18) |
O3i—Sm1—Cl1i | 143.00 (2) | Sm1—O3—H3A | 121.5 (16) |
O3i—Sm1—Cl1 | 108.38 (2) | Sm1—O3—H3B | 120.0 (13) |
O3—Sm1—Cl1i | 108.38 (2) | H3A—O3—H3B | 108 (2) |
O3—Sm1—Cl1 | 143.00 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1ii | 0.693 (19) | 2.484 (19) | 3.1594 (10) | 165 (2) |
O1—H1B···Cl2iii | 0.79 (3) | 2.39 (3) | 3.1685 (9) | 169.2 (19) |
O2—H2A···Cl1iv | 0.81 (2) | 2.35 (2) | 3.1586 (9) | 175.9 (18) |
O2—H2B···Cl2v | 0.78 (2) | 2.48 (2) | 3.2358 (10) | 163.6 (17) |
O3—H3A···Cl1vi | 0.78 (2) | 2.36 (2) | 3.1367 (10) | 176 (2) |
O3—H3B···Cl2 | 0.794 (19) | 2.41 (2) | 3.1908 (9) | 167.7 (18) |
Symmetry codes: (ii) −x, −y, −z; (iii) −x, −y+1, −z; (iv) x, −y, z+1/2; (v) x, y−1, z; (vi) −x+1, y+1, −z+1/2. |
[EuCl2(H2O)6]Cl | F(000) = 348 |
Mr = 366.41 | Dx = 2.466 Mg m−3 |
Monoclinic, P2/c | Ag Kα radiation, λ = 0.56086 Å |
a = 7.9062 (2) Å | Cell parameters from 9987 reflections |
b = 6.5092 (2) Å | θ = 2.5–23.7° |
c = 12.0410 (4) Å | µ = 3.75 mm−1 |
β = 127.231 (1)° | T = 100 K |
V = 493.38 (3) Å3 | Plate, colorless |
Z = 2 | 0.13 × 0.13 × 0.11 mm |
Bruker D8 Venture Duo diffractometer | 1504 reflections with I > 2σ(I) |
ω scans | Rint = 0.038 |
Absorption correction: multi-scan SADABS-2016/2 (Bruker, 2016) | θmax = 23.7°, θmin = 2.5° |
Tmin = 0.218, Tmax = 0.257 | h = −11→11 |
21905 measured reflections | k = −9→9 |
1529 independent reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.007 | w = 1/[σ2(Fo2) + (0.0058P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.016 | (Δ/σ)max = 0.001 |
S = 1.13 | Δρmax = 0.29 e Å−3 |
1529 reflections | Δρmin = −0.32 e Å−3 |
72 parameters | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0155 (6) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Eu1 | 0.500000 | 0.15065 (2) | 0.250000 | 0.00549 (3) | |
Cl1 | 0.29777 (3) | −0.16684 (3) | 0.05730 (2) | 0.00967 (4) | |
Cl2 | 0.000000 | 0.62348 (4) | 0.250000 | 0.01034 (6) | |
O1 | 0.16667 (11) | 0.30060 (11) | 0.06078 (8) | 0.01088 (13) | |
O2 | 0.23665 (11) | 0.04821 (11) | 0.28100 (8) | 0.01108 (13) | |
O3 | 0.44219 (11) | 0.42430 (10) | 0.35568 (8) | 0.01082 (13) | |
H1A | 0.062 (2) | 0.268 (2) | 0.0449 (17) | 0.029 (4)* | |
H1B | 0.134 (3) | 0.332 (2) | −0.011 (2) | 0.028 (4)* | |
H2A | 0.250 (2) | 0.085 (2) | 0.3479 (17) | 0.024 (4)* | |
H2B | 0.193 (2) | −0.060 (2) | 0.2653 (16) | 0.026 (4)* | |
H3A | 0.513 (2) | 0.523 (2) | 0.3791 (16) | 0.030 (4)* | |
H3B | 0.334 (2) | 0.458 (2) | 0.3268 (16) | 0.025 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu1 | 0.00511 (3) | 0.00572 (3) | 0.00569 (4) | 0.000 | 0.00329 (3) | 0.000 |
Cl1 | 0.00927 (9) | 0.00919 (9) | 0.00941 (10) | −0.00089 (7) | 0.00505 (8) | −0.00199 (7) |
Cl2 | 0.00946 (13) | 0.01139 (13) | 0.01076 (14) | 0.000 | 0.00643 (12) | 0.000 |
O1 | 0.0075 (3) | 0.0138 (3) | 0.0098 (3) | 0.0005 (2) | 0.0044 (3) | 0.0026 (3) |
O2 | 0.0130 (3) | 0.0106 (3) | 0.0135 (3) | −0.0026 (2) | 0.0101 (3) | −0.0020 (3) |
O3 | 0.0083 (3) | 0.0095 (3) | 0.0147 (4) | −0.0013 (2) | 0.0071 (3) | −0.0039 (3) |
Eu1—Cl1 | 2.7788 (2) | Eu1—O3 | 2.3884 (7) |
Eu1—Cl1i | 2.7788 (2) | O1—H1A | 0.760 (15) |
Eu1—O1i | 2.4131 (7) | O1—H1B | 0.766 (19) |
Eu1—O1 | 2.4131 (7) | O2—H2A | 0.784 (16) |
Eu1—O2 | 2.4206 (7) | O2—H2B | 0.759 (16) |
Eu1—O2i | 2.4206 (7) | O3—H3A | 0.783 (16) |
Eu1—O3i | 2.3884 (7) | O3—H3B | 0.737 (15) |
Cl1i—Eu1—Cl1 | 83.904 (10) | O3—Eu1—O1 | 75.50 (3) |
O1—Eu1—Cl1 | 76.376 (18) | O3i—Eu1—O1 | 69.33 (2) |
O1i—Eu1—Cl1i | 76.376 (18) | O3—Eu1—O1i | 69.33 (2) |
O1i—Eu1—Cl1 | 146.839 (18) | O3i—Eu1—O1i | 75.50 (3) |
O1—Eu1—Cl1i | 146.840 (18) | O3i—Eu1—O2i | 70.34 (2) |
O1i—Eu1—O1 | 132.29 (3) | O3—Eu1—O2 | 70.34 (2) |
O1—Eu1—O2i | 121.05 (3) | O3—Eu1—O2i | 138.36 (2) |
O1—Eu1—O2 | 72.97 (3) | O3i—Eu1—O2 | 138.36 (2) |
O1i—Eu1—O2i | 72.97 (3) | O3—Eu1—O3i | 83.55 (3) |
O1i—Eu1—O2 | 121.05 (3) | Eu1—O1—H1A | 121.7 (12) |
O2i—Eu1—Cl1i | 79.036 (19) | Eu1—O1—H1B | 127.1 (12) |
O2—Eu1—Cl1 | 79.037 (19) | H1A—O1—H1B | 102.6 (16) |
O2i—Eu1—Cl1 | 77.317 (17) | Eu1—O2—H2A | 118.7 (11) |
O2—Eu1—Cl1i | 77.317 (17) | Eu1—O2—H2B | 121.7 (11) |
O2i—Eu1—O2 | 148.02 (3) | H2A—O2—H2B | 107.3 (15) |
O3i—Eu1—Cl1i | 143.185 (18) | Eu1—O3—H3A | 118.5 (11) |
O3i—Eu1—Cl1 | 107.979 (18) | Eu1—O3—H3B | 120.7 (12) |
O3—Eu1—Cl1i | 107.980 (18) | H3A—O3—H3B | 107.7 (15) |
O3—Eu1—Cl1 | 143.185 (18) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1ii | 0.760 (15) | 2.407 (15) | 3.1537 (7) | 167.5 (16) |
O1—H1B···Cl2iii | 0.766 (19) | 2.407 (19) | 3.1649 (8) | 170.6 (14) |
O2—H2A···Cl1iv | 0.784 (16) | 2.373 (17) | 3.1549 (8) | 175.1 (14) |
O2—H2B···Cl2v | 0.759 (16) | 2.500 (15) | 3.2308 (7) | 162.1 (14) |
O3—H3A···Cl1vi | 0.783 (16) | 2.349 (16) | 3.1307 (7) | 175.7 (14) |
O3—H3B···Cl2 | 0.737 (15) | 2.455 (15) | 3.1842 (7) | 170.3 (15) |
Symmetry codes: (ii) −x, −y, −z; (iii) −x, −y+1, −z; (iv) x, −y, z+1/2; (v) x, y−1, z; (vi) −x+1, y+1, −z+1/2. |
[GdCl2(H2O)6]Cl | F(000) = 350 |
Mr = 371.70 | Dx = 2.518 Mg m−3 |
Monoclinic, P2/c | Ag Kα radiation, λ = 0.56086 Å |
a = 7.8835 (3) Å | Cell parameters from 9213 reflections |
b = 6.4964 (3) Å | θ = 2.5–23.8° |
c = 12.0176 (4) Å | µ = 3.99 mm−1 |
β = 127.186 (1)° | T = 100 K |
V = 490.33 (3) Å3 | Plate, colorless |
Z = 2 | 0.33 × 0.25 × 0.20 mm |
Bruker D8 Venture Duo diffractometer | 1520 reflections with I > 2σ(I) |
ω scans | Rint = 0.037 |
Absorption correction: multi-scan SADABS-2016/2 (Bruker, 2016) | θmax = 23.8°, θmin = 2.5° |
Tmin = 0.172, Tmax = 0.257 | h = −11→11 |
26021 measured reflections | k = −9→9 |
1532 independent reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.009 | w = 1/[σ2(Fo2) + (0.0082P)2 + 0.0734P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.021 | (Δ/σ)max = 0.001 |
S = 1.23 | Δρmax = 0.44 e Å−3 |
1532 reflections | Δρmin = −0.38 e Å−3 |
72 parameters | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0279 (9) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Gd1 | 0.500000 | 0.15160 (2) | 0.250000 | 0.00581 (3) | |
Cl1 | 0.29831 (4) | −0.16561 (4) | 0.05775 (3) | 0.01005 (5) | |
Cl2 | 0.000000 | 0.62367 (6) | 0.250000 | 0.01075 (7) | |
O1 | 0.16722 (14) | 0.30084 (14) | 0.06138 (9) | 0.01150 (15) | |
O2 | 0.23723 (13) | 0.04881 (14) | 0.28098 (9) | 0.01135 (15) | |
O3 | 0.44242 (14) | 0.42417 (13) | 0.35554 (9) | 0.01117 (15) | |
H1A | 0.060 (3) | 0.266 (3) | 0.047 (2) | 0.028 (5)* | |
H1B | 0.139 (3) | 0.329 (3) | −0.008 (2) | 0.023 (5)* | |
H2A | 0.254 (3) | 0.086 (3) | 0.350 (2) | 0.029 (5)* | |
H2B | 0.189 (3) | −0.068 (3) | 0.264 (2) | 0.030 (5)* | |
H3A | 0.513 (4) | 0.532 (3) | 0.381 (2) | 0.037 (5)* | |
H3B | 0.325 (3) | 0.458 (3) | 0.326 (2) | 0.027 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Gd1 | 0.00572 (4) | 0.00572 (4) | 0.00615 (4) | 0.000 | 0.00367 (3) | 0.000 |
Cl1 | 0.00989 (11) | 0.00916 (11) | 0.00986 (11) | −0.00088 (8) | 0.00532 (10) | −0.00202 (8) |
Cl2 | 0.01014 (16) | 0.01129 (16) | 0.01144 (16) | 0.000 | 0.00685 (14) | 0.000 |
O1 | 0.0083 (4) | 0.0145 (4) | 0.0100 (4) | 0.0004 (3) | 0.0046 (3) | 0.0025 (3) |
O2 | 0.0127 (4) | 0.0110 (4) | 0.0138 (4) | −0.0024 (3) | 0.0098 (3) | −0.0017 (3) |
O3 | 0.0100 (4) | 0.0088 (4) | 0.0151 (4) | −0.0010 (3) | 0.0078 (3) | −0.0032 (3) |
Gd1—Cl1i | 2.7699 (3) | Gd1—O3i | 2.3762 (8) |
Gd1—Cl1 | 2.7699 (3) | O1—H1A | 0.79 (2) |
Gd1—O1 | 2.4026 (9) | O1—H1B | 0.75 (2) |
Gd1—O1i | 2.4026 (9) | O2—H2A | 0.80 (2) |
Gd1—O2i | 2.4101 (8) | O2—H2B | 0.82 (2) |
Gd1—O2 | 2.4101 (8) | O3—H3A | 0.83 (2) |
Gd1—O3 | 2.3762 (8) | O3—H3B | 0.79 (2) |
Cl1—Gd1—Cl1i | 83.855 (12) | O3i—Gd1—O1i | 75.58 (3) |
O1i—Gd1—Cl1i | 76.37 (2) | O3—Gd1—O1i | 69.37 (3) |
O1—Gd1—Cl1 | 76.37 (2) | O3i—Gd1—O1 | 69.37 (3) |
O1—Gd1—Cl1i | 146.74 (2) | O3—Gd1—O1 | 75.58 (3) |
O1i—Gd1—Cl1 | 146.74 (2) | O3—Gd1—O2 | 70.41 (3) |
O1—Gd1—O1i | 132.40 (4) | O3i—Gd1—O2i | 70.41 (3) |
O1i—Gd1—O2 | 121.09 (3) | O3i—Gd1—O2 | 138.44 (3) |
O1i—Gd1—O2i | 72.98 (3) | O3—Gd1—O2i | 138.44 (3) |
O1—Gd1—O2 | 72.97 (3) | O3i—Gd1—O3 | 83.65 (4) |
O1—Gd1—O2i | 121.09 (3) | Gd1—O1—H1A | 120.3 (15) |
O2—Gd1—Cl1 | 78.99 (2) | Gd1—O1—H1B | 125.0 (15) |
O2i—Gd1—Cl1i | 78.99 (2) | H1A—O1—H1B | 106 (2) |
O2—Gd1—Cl1i | 77.21 (2) | Gd1—O2—H2A | 117.6 (15) |
O2i—Gd1—Cl1 | 77.21 (2) | Gd1—O2—H2B | 121.9 (14) |
O2—Gd1—O2i | 147.83 (4) | H2A—O2—H2B | 108 (2) |
O3—Gd1—Cl1 | 143.24 (2) | Gd1—O3—H3A | 121.6 (14) |
O3—Gd1—Cl1i | 107.92 (2) | Gd1—O3—H3B | 121.0 (14) |
O3i—Gd1—Cl1 | 107.92 (2) | H3A—O3—H3B | 106 (2) |
O3i—Gd1—Cl1i | 143.24 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1ii | 0.79 (2) | 2.39 (2) | 3.1527 (9) | 165 (2) |
O1—H1B···Cl2iii | 0.75 (2) | 2.43 (2) | 3.1651 (9) | 170.1 (19) |
O2—H2A···Cl1iv | 0.80 (2) | 2.36 (2) | 3.1519 (9) | 175 (2) |
O2—H2B···Cl2v | 0.82 (2) | 2.44 (2) | 3.2284 (9) | 161.7 (18) |
O3—H3A···Cl1vi | 0.83 (2) | 2.30 (2) | 3.1290 (9) | 178 (2) |
O3—H3B···Cl2 | 0.79 (2) | 2.40 (2) | 3.1790 (9) | 169.1 (19) |
Symmetry codes: (ii) −x, −y, −z; (iii) −x, −y+1, −z; (iv) x, −y, z+1/2; (v) x, y−1, z; (vi) −x+1, y+1, −z+1/2. |
[TbCl2(H2O)6]Cl | F(000) = 352 |
Mr = 373.37 | Dx = 2.542 Mg m−3 |
Monoclinic, P2/c | Ag Kα radiation, λ = 0.56086 Å |
a = 7.8646 (3) Å | Cell parameters from 9445 reflections |
b = 6.4903 (3) Å | θ = 2.5–23.7° |
c = 11.9871 (5) Å | µ = 4.24 mm−1 |
β = 127.134 (1)° | T = 100 K |
V = 487.79 (4) Å3 | Plate, colorless |
Z = 2 | 0.3 × 0.16 × 0.12 mm |
Bruker D8 Venture Duo diffractometer | 1481 reflections with I > 2σ(I) |
ω scans | Rint = 0.024 |
Absorption correction: multi-scan SADABS-2016/2 (Bruker, 2016) | θmax = 23.7°, θmin = 2.5° |
Tmin = 0.223, Tmax = 0.257 | h = −10→11 |
11117 measured reflections | k = −9→9 |
1503 independent reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.009 | w = 1/[σ2(Fo2) + (0.008P)2 + 0.0701P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.020 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.36 e Å−3 |
1503 reflections | Δρmin = −0.37 e Å−3 |
72 parameters | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0117 (6) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Tb1 | 0.500000 | 0.15305 (2) | 0.250000 | 0.00536 (3) | |
Cl1 | 0.29840 (4) | −0.16404 (4) | 0.05842 (3) | 0.00937 (5) | |
Cl2 | 0.000000 | 0.62554 (6) | 0.250000 | 0.01012 (7) | |
O1 | 0.16832 (14) | 0.30085 (14) | 0.06248 (10) | 0.01064 (16) | |
O2 | 0.23848 (14) | 0.05048 (15) | 0.28092 (10) | 0.01085 (16) | |
O3 | 0.44279 (14) | 0.42471 (14) | 0.35533 (9) | 0.01056 (16) | |
H1A | 0.065 (3) | 0.265 (3) | 0.049 (2) | 0.026 (5)* | |
H1B | 0.139 (3) | 0.325 (3) | −0.011 (2) | 0.028 (5)* | |
H2A | 0.257 (3) | 0.088 (3) | 0.353 (2) | 0.030 (5)* | |
H2B | 0.194 (3) | −0.058 (3) | 0.262 (2) | 0.026 (5)* | |
H3A | 0.519 (3) | 0.525 (3) | 0.383 (2) | 0.028 (5)* | |
H3B | 0.327 (3) | 0.453 (3) | 0.326 (2) | 0.033 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.00486 (4) | 0.00550 (4) | 0.00570 (4) | 0.000 | 0.00318 (3) | 0.000 |
Cl1 | 0.00902 (11) | 0.00878 (12) | 0.00908 (11) | −0.00078 (8) | 0.00481 (10) | −0.00186 (9) |
Cl2 | 0.00953 (16) | 0.01080 (17) | 0.01046 (17) | 0.000 | 0.00626 (14) | 0.000 |
O1 | 0.0076 (4) | 0.0132 (4) | 0.0094 (4) | 0.0004 (3) | 0.0043 (3) | 0.0024 (3) |
O2 | 0.0123 (4) | 0.0102 (4) | 0.0132 (4) | −0.0030 (3) | 0.0094 (3) | −0.0027 (3) |
O3 | 0.0089 (4) | 0.0088 (4) | 0.0145 (4) | −0.0011 (3) | 0.0073 (3) | −0.0035 (3) |
Tb1—Cl1i | 2.7617 (3) | Tb1—O3 | 2.3646 (9) |
Tb1—Cl1 | 2.7617 (3) | O1—H1A | 0.77 (2) |
Tb1—O1 | 2.3870 (9) | O1—H1B | 0.77 (2) |
Tb1—O1i | 2.3870 (9) | O2—H2A | 0.82 (2) |
Tb1—O2i | 2.3940 (9) | O2—H2B | 0.76 (2) |
Tb1—O2 | 2.3940 (9) | O3—H3A | 0.81 (2) |
Tb1—O3i | 2.3646 (9) | O3—H3B | 0.77 (2) |
Cl1—Tb1—Cl1i | 83.649 (12) | O3—Tb1—O1i | 69.48 (3) |
O1i—Tb1—Cl1i | 76.35 (2) | O3i—Tb1—O1i | 75.59 (3) |
O1—Tb1—Cl1 | 76.35 (2) | O3—Tb1—O1 | 75.59 (3) |
O1—Tb1—Cl1i | 146.61 (2) | O3i—Tb1—O1 | 69.49 (3) |
O1i—Tb1—Cl1 | 146.61 (2) | O3i—Tb1—O2 | 138.44 (3) |
O1—Tb1—O1i | 132.61 (4) | O3—Tb1—O2i | 138.44 (3) |
O1i—Tb1—O2 | 121.23 (3) | O3—Tb1—O2 | 70.52 (3) |
O1i—Tb1—O2i | 72.84 (3) | O3i—Tb1—O2i | 70.52 (3) |
O1—Tb1—O2 | 72.84 (3) | O3—Tb1—O3i | 83.57 (5) |
O1—Tb1—O2i | 121.24 (3) | Tb1—O1—H1A | 119.7 (16) |
O2—Tb1—Cl1 | 78.81 (2) | Tb1—O1—H1B | 124.1 (16) |
O2i—Tb1—Cl1i | 78.81 (2) | H1A—O1—H1B | 106 (2) |
O2—Tb1—Cl1i | 77.27 (2) | Tb1—O2—H2A | 117.3 (14) |
O2i—Tb1—Cl1 | 77.27 (2) | Tb1—O2—H2B | 119.8 (15) |
O2—Tb1—O2i | 147.71 (5) | H2A—O2—H2B | 110 (2) |
O3i—Tb1—Cl1 | 108.08 (2) | Tb1—O3—H3A | 119.5 (14) |
O3i—Tb1—Cl1i | 143.22 (2) | Tb1—O3—H3B | 118.8 (16) |
O3—Tb1—Cl1 | 143.22 (2) | H3A—O3—H3B | 112 (2) |
O3—Tb1—Cl1i | 108.08 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1ii | 0.77 (2) | 2.41 (2) | 3.1527 (9) | 164 (2) |
O1—H1B···Cl2iii | 0.77 (2) | 2.40 (2) | 3.1661 (10) | 172 (2) |
O2—H2A···Cl1iv | 0.82 (2) | 2.33 (2) | 3.1524 (10) | 175 (2) |
O2—H2B···Cl2v | 0.76 (2) | 2.51 (2) | 3.2283 (10) | 158.8 (19) |
O3—H3A···Cl1vi | 0.81 (2) | 2.33 (2) | 3.1297 (10) | 173.2 (19) |
O3—H3B···Cl2 | 0.77 (2) | 2.43 (2) | 3.1798 (9) | 166 (2) |
Symmetry codes: (ii) −x, −y, −z; (iii) −x, −y+1, −z; (iv) x, −y, z+1/2; (v) x, y−1, z; (vi) −x+1, y+1, −z+1/2. |
[DyCl2(H2O)6]Cl | F(000) = 354 |
Mr = 376.95 | Dx = 2.586 Mg m−3 |
Monoclinic, P2/c | Ag Kα radiation, λ = 0.56086 Å |
a = 7.8439 (3) Å | Cell parameters from 9894 reflections |
b = 6.4693 (3) Å | θ = 2.7–23.7° |
c = 11.9660 (5) Å | µ = 4.51 mm−1 |
β = 127.143 (1)° | T = 100 K |
V = 484.02 (4) Å3 | Plate, yellow |
Z = 2 | 0.23 × 0.19 × 0.14 mm |
Bruker D8 Venture Duo diffractometer | 1485 reflections with I > 2σ(I) |
ω scans | Rint = 0.037 |
Absorption correction: multi-scan SADABS-2016/2 (Bruker, 2016) | θmax = 23.8°, θmin = 2.5° |
Tmin = 0.184, Tmax = 0.257 | h = −11→11 |
21844 measured reflections | k = −9→9 |
1501 independent reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.008 | w = 1/[σ2(Fo2) + (0.006P)2 + 0.0553P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.018 | (Δ/σ)max < 0.001 |
S = 1.19 | Δρmax = 0.42 e Å−3 |
1501 reflections | Δρmin = −0.48 e Å−3 |
72 parameters | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0098 (6) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Dy1 | 0.500000 | 0.15396 (2) | 0.250000 | 0.00517 (3) | |
Cl1 | 0.29906 (4) | −0.16263 (3) | 0.05869 (3) | 0.00928 (5) | |
Cl2 | 0.000000 | 0.62489 (5) | 0.250000 | 0.00990 (6) | |
O1 | 0.16915 (13) | 0.30103 (12) | 0.06305 (8) | 0.01025 (14) | |
O2 | 0.23924 (13) | 0.05125 (12) | 0.28056 (9) | 0.01049 (14) | |
O3 | 0.44370 (14) | 0.42381 (12) | 0.35560 (8) | 0.01037 (14) | |
H1A | 0.065 (3) | 0.264 (3) | 0.046 (2) | 0.027 (4)* | |
H1B | 0.133 (3) | 0.330 (2) | −0.011 (2) | 0.030 (5)* | |
H2A | 0.253 (3) | 0.086 (3) | 0.349 (2) | 0.034 (5)* | |
H2B | 0.195 (3) | −0.050 (3) | 0.2644 (19) | 0.026 (5)* | |
H3A | 0.513 (3) | 0.525 (3) | 0.3771 (18) | 0.028 (4)* | |
H3B | 0.332 (3) | 0.453 (3) | 0.326 (2) | 0.033 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Dy1 | 0.00492 (4) | 0.00544 (4) | 0.00538 (4) | 0.000 | 0.00322 (3) | 0.000 |
Cl1 | 0.00897 (11) | 0.00907 (10) | 0.00889 (10) | −0.00078 (7) | 0.00491 (9) | −0.00194 (7) |
Cl2 | 0.00935 (15) | 0.01086 (13) | 0.01022 (15) | 0.000 | 0.00630 (13) | 0.000 |
O1 | 0.0068 (3) | 0.0132 (3) | 0.0090 (3) | 0.0003 (3) | 0.0038 (3) | 0.0022 (3) |
O2 | 0.0121 (4) | 0.0100 (3) | 0.0127 (4) | −0.0028 (3) | 0.0093 (3) | −0.0018 (3) |
O3 | 0.0084 (4) | 0.0097 (3) | 0.0137 (3) | −0.0014 (3) | 0.0070 (3) | −0.0033 (3) |
Dy1—Cl1i | 2.7500 (2) | Dy1—O3i | 2.3480 (8) |
Dy1—Cl1 | 2.7500 (2) | O1—H1A | 0.755 (19) |
Dy1—O1 | 2.3735 (8) | O1—H1B | 0.78 (2) |
Dy1—O1i | 2.3735 (8) | O2—H2A | 0.79 (2) |
Dy1—O2i | 2.3796 (8) | O2—H2B | 0.712 (19) |
Dy1—O2 | 2.3795 (8) | O3—H3A | 0.787 (19) |
Dy1—O3 | 2.3480 (8) | O3—H3B | 0.75 (2) |
Cl1—Dy1—Cl1i | 83.719 (11) | O3i—Dy1—O1i | 75.83 (3) |
O1i—Dy1—Cl1i | 76.29 (2) | O3—Dy1—O1i | 69.43 (3) |
O1—Dy1—Cl1 | 76.29 (2) | O3i—Dy1—O1 | 69.43 (3) |
O1—Dy1—Cl1i | 146.52 (2) | O3—Dy1—O1 | 75.83 (3) |
O1i—Dy1—Cl1 | 146.52 (2) | O3—Dy1—O2 | 70.52 (3) |
O1—Dy1—O1i | 132.73 (4) | O3i—Dy1—O2i | 70.52 (3) |
O1i—Dy1—O2 | 121.28 (3) | O3i—Dy1—O2 | 138.48 (3) |
O1i—Dy1—O2i | 72.82 (3) | O3—Dy1—O2i | 138.48 (3) |
O1—Dy1—O2 | 72.82 (3) | O3i—Dy1—O3 | 83.94 (4) |
O1—Dy1—O2i | 121.28 (3) | Dy1—O1—H1A | 121.1 (14) |
O2—Dy1—Cl1 | 78.83 (2) | Dy1—O1—H1B | 127.6 (15) |
O2i—Dy1—Cl1i | 78.82 (2) | H1A—O1—H1B | 101 (2) |
O2—Dy1—Cl1i | 77.17 (2) | Dy1—O2—H2A | 119.3 (15) |
O2i—Dy1—Cl1 | 77.17 (2) | Dy1—O2—H2B | 122.6 (15) |
O2—Dy1—O2i | 147.57 (4) | H2A—O2—H2B | 106 (2) |
O3—Dy1—Cl1 | 143.34 (2) | Dy1—O3—H3A | 118.6 (13) |
O3—Dy1—Cl1i | 107.77 (2) | Dy1—O3—H3B | 118.8 (15) |
O3i—Dy1—Cl1 | 107.77 (2) | H3A—O3—H3B | 109.0 (19) |
O3i—Dy1—Cl1i | 143.34 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1ii | 0.755 (19) | 2.413 (19) | 3.1545 (9) | 167.6 (19) |
O1—H1B···Cl2iii | 0.78 (2) | 2.39 (2) | 3.1655 (8) | 172.6 (16) |
O2—H2A···Cl1iv | 0.79 (2) | 2.37 (2) | 3.1511 (9) | 175.7 (19) |
O2—H2B···Cl2v | 0.712 (19) | 2.544 (19) | 3.2303 (8) | 162.7 (19) |
O3—H3A···Cl1vi | 0.787 (19) | 2.342 (19) | 3.1276 (8) | 176.2 (18) |
O3—H3B···Cl2 | 0.75 (2) | 2.44 (2) | 3.1766 (8) | 167.1 (19) |
Symmetry codes: (ii) −x, −y, −z; (iii) −x, −y+1, −z; (iv) x, −y, z+1/2; (v) x, y−1, z; (vi) −x+1, y+1, −z+1/2. |
[HoCl2(H2O)6]Cl | F(000) = 356 |
Mr = 379.38 | Dx = 2.611 Mg m−3 |
Monoclinic, P2/c | Ag Kα radiation, λ = 0.56086 Å |
a = 7.8303 (3) Å | Cell parameters from 7807 reflections |
b = 6.4651 (2) Å | θ = 2.5–23.7° |
c = 11.9509 (4) Å | µ = 4.77 mm−1 |
β = 127.086 (1)° | T = 100 K |
V = 482.63 (3) Å3 | Plate, yellow |
Z = 2 | 0.14 × 0.10 × 0.07 mm |
Bruker D8 Venture Duo diffractometer | 1454 reflections with I > 2σ(I) |
ω scans | Rint = 0.026 |
Absorption correction: multi-scan SADABS-2016/2 (Bruker, 2016) | θmax = 23.7°, θmin = 2.5° |
Tmin = 0.222, Tmax = 0.257 | h = −11→11 |
10309 measured reflections | k = −9→9 |
1480 independent reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.009 | w = 1/[σ2(Fo2) + (0.0056P)2 + 0.0614P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.020 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.31 e Å−3 |
1480 reflections | Δρmin = −0.36 e Å−3 |
72 parameters | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0063 (5) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ho1 | 0.500000 | 0.15471 (2) | 0.250000 | 0.00548 (3) | |
Cl1 | 0.29952 (5) | −0.16158 (4) | 0.05941 (3) | 0.00938 (5) | |
Cl2 | 0.000000 | 0.62505 (6) | 0.250000 | 0.01026 (8) | |
O1 | 0.17011 (16) | 0.30132 (14) | 0.06373 (10) | 0.01068 (17) | |
O2 | 0.24000 (16) | 0.05173 (14) | 0.28059 (10) | 0.01065 (17) | |
O3 | 0.44395 (16) | 0.42345 (14) | 0.35534 (10) | 0.01033 (17) | |
H1A | 0.063 (3) | 0.262 (3) | 0.047 (2) | 0.027 (5)* | |
H1B | 0.140 (4) | 0.330 (3) | −0.008 (3) | 0.030 (6)* | |
H2A | 0.253 (4) | 0.091 (3) | 0.348 (2) | 0.029 (6)* | |
H2B | 0.188 (3) | −0.059 (3) | 0.260 (2) | 0.026 (5)* | |
H3A | 0.518 (4) | 0.522 (3) | 0.384 (2) | 0.035 (6)* | |
H3B | 0.322 (4) | 0.459 (3) | 0.325 (2) | 0.029 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ho1 | 0.00520 (4) | 0.00572 (4) | 0.00561 (4) | 0.000 | 0.00329 (3) | 0.000 |
Cl1 | 0.00892 (13) | 0.00922 (11) | 0.00888 (12) | −0.00084 (9) | 0.00478 (11) | −0.00183 (9) |
Cl2 | 0.00948 (18) | 0.01124 (17) | 0.01035 (18) | 0.000 | 0.00613 (16) | 0.000 |
O1 | 0.0081 (4) | 0.0135 (4) | 0.0091 (4) | 0.0002 (3) | 0.0045 (4) | 0.0023 (3) |
O2 | 0.0122 (4) | 0.0098 (4) | 0.0130 (4) | −0.0027 (3) | 0.0092 (4) | −0.0023 (3) |
O3 | 0.0085 (4) | 0.0092 (4) | 0.0135 (4) | −0.0011 (3) | 0.0067 (4) | −0.0027 (3) |
Ho1—Cl1i | 2.7425 (3) | Ho1—O3i | 2.3372 (9) |
Ho1—Cl1 | 2.7425 (3) | O1—H1A | 0.78 (2) |
Ho1—O1 | 2.3646 (10) | O1—H1B | 0.76 (2) |
Ho1—O1i | 2.3646 (10) | O2—H2A | 0.79 (2) |
Ho1—O2i | 2.3706 (9) | O2—H2B | 0.79 (2) |
Ho1—O2 | 2.3705 (9) | O3—H3A | 0.79 (2) |
Ho1—O3 | 2.3372 (9) | O3—H3B | 0.82 (2) |
Cl1—Ho1—Cl1i | 83.578 (12) | O3i—Ho1—O1i | 75.86 (3) |
O1i—Ho1—Cl1i | 76.33 (2) | O3—Ho1—O1i | 69.40 (3) |
O1—Ho1—Cl1 | 76.33 (2) | O3i—Ho1—O1 | 69.41 (3) |
O1—Ho1—Cl1i | 146.51 (3) | O3—Ho1—O1 | 75.86 (3) |
O1i—Ho1—Cl1 | 146.51 (3) | O3—Ho1—O2 | 70.61 (3) |
O1—Ho1—O1i | 132.74 (5) | O3i—Ho1—O2i | 70.61 (3) |
O1i—Ho1—O2 | 121.30 (3) | O3i—Ho1—O2 | 138.55 (3) |
O1i—Ho1—O2i | 72.88 (3) | O3—Ho1—O2i | 138.55 (3) |
O1—Ho1—O2 | 72.88 (3) | O3i—Ho1—O3 | 83.96 (5) |
O1—Ho1—O2i | 121.31 (3) | Ho1—O1—H1A | 120.3 (16) |
O2—Ho1—Cl1 | 78.70 (2) | Ho1—O1—H1B | 125.2 (17) |
O2i—Ho1—Cl1i | 78.70 (2) | H1A—O1—H1B | 104 (2) |
O2—Ho1—Cl1i | 77.13 (2) | Ho1—O2—H2A | 118.2 (16) |
O2i—Ho1—Cl1 | 77.13 (2) | Ho1—O2—H2B | 122.9 (15) |
O2—Ho1—O2i | 147.38 (5) | H2A—O2—H2B | 109 (2) |
O3—Ho1—Cl1 | 143.35 (3) | Ho1—O3—H3A | 120.6 (16) |
O3—Ho1—Cl1i | 107.83 (2) | Ho1—O3—H3B | 121.1 (14) |
O3i—Ho1—Cl1 | 107.83 (2) | H3A—O3—H3B | 109 (2) |
O3i—Ho1—Cl1i | 143.35 (3) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1ii | 0.78 (2) | 2.40 (2) | 3.1589 (11) | 166 (2) |
O1—H1B···Cl2iii | 0.76 (2) | 2.41 (2) | 3.1678 (10) | 170 (2) |
O2—H2A···Cl1iv | 0.79 (2) | 2.37 (2) | 3.1546 (10) | 172 (2) |
O2—H2B···Cl2v | 0.79 (2) | 2.48 (2) | 3.2320 (10) | 161.6 (19) |
O3—H3A···Cl1vi | 0.79 (2) | 2.35 (2) | 3.1309 (10) | 172 (2) |
O3—H3B···Cl2 | 0.82 (2) | 2.36 (2) | 3.1765 (10) | 168.9 (19) |
Symmetry codes: (ii) −x, −y, −z; (iii) −x, −y+1, −z; (iv) x, −y, z+1/2; (v) x, y−1, z; (vi) −x+1, y+1, −z+1/2. |
[ErCl2(H2O)6]Cl | F(000) = 358 |
Mr = 381.71 | Dx = 2.648 Mg m−3 |
Monoclinic, P2/c | Ag Kα radiation, λ = 0.56086 Å |
a = 7.8035 (2) Å | Cell parameters from 9658 reflections |
b = 6.4488 (2) Å | θ = 2.5–23.7° |
c = 11.9182 (4) Å | µ = 5.07 mm−1 |
β = 127.044 (1)° | T = 100 K |
V = 478.71 (3) Å3 | Plate, pink |
Z = 2 | 0.23 × 0.22 × 0.17 mm |
Bruker D8 Venture Duo diffractometer | 1479 reflections with I > 2σ(I) |
ω scans | Rint = 0.034 |
Absorption correction: multi-scan SADABS-2016/2 (Bruker, 2016) | θmax = 23.7°, θmin = 2.5° |
Tmin = 0.175, Tmax = 0.257 | h = −11→10 |
24599 measured reflections | k = −9→9 |
1481 independent reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.009 | w = 1/[σ2(Fo2) + (0.0069P)2 + 0.1191P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.020 | (Δ/σ)max = 0.001 |
S = 1.30 | Δρmax = 0.47 e Å−3 |
1481 reflections | Δρmin = −0.88 e Å−3 |
72 parameters | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0321 (9) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Er1 | 0.500000 | 0.15555 (2) | 0.250000 | 0.00519 (3) | |
Cl1 | 0.29999 (4) | −0.16033 (4) | 0.05990 (3) | 0.00919 (5) | |
Cl2 | 0.000000 | 0.62527 (6) | 0.250000 | 0.00995 (7) | |
O1 | 0.17058 (14) | 0.30150 (14) | 0.06411 (10) | 0.01031 (15) | |
O2 | 0.24065 (14) | 0.05247 (15) | 0.28058 (10) | 0.01036 (15) | |
O3 | 0.44402 (15) | 0.42330 (14) | 0.35511 (10) | 0.01044 (15) | |
H1A | 0.062 (4) | 0.263 (4) | 0.048 (2) | 0.029 (5)* | |
H1B | 0.141 (4) | 0.332 (3) | −0.007 (3) | 0.029 (6)* | |
H2A | 0.259 (4) | 0.083 (4) | 0.348 (2) | 0.027 (5)* | |
H2B | 0.193 (3) | −0.061 (4) | 0.263 (2) | 0.024 (5)* | |
H3A | 0.518 (4) | 0.519 (4) | 0.380 (2) | 0.029 (5)* | |
H3B | 0.327 (4) | 0.455 (4) | 0.323 (2) | 0.030 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Er1 | 0.00491 (4) | 0.00568 (4) | 0.00476 (4) | 0.000 | 0.00279 (3) | 0.000 |
Cl1 | 0.00883 (11) | 0.00906 (12) | 0.00820 (12) | −0.00080 (8) | 0.00435 (10) | −0.00190 (8) |
Cl2 | 0.00931 (15) | 0.01105 (16) | 0.00951 (16) | 0.000 | 0.00568 (14) | 0.000 |
O1 | 0.0075 (4) | 0.0128 (4) | 0.0083 (4) | 0.0003 (3) | 0.0036 (3) | 0.0022 (3) |
O2 | 0.0119 (4) | 0.0105 (4) | 0.0110 (4) | −0.0024 (3) | 0.0081 (3) | −0.0017 (3) |
O3 | 0.0087 (4) | 0.0091 (4) | 0.0130 (4) | −0.0011 (3) | 0.0063 (3) | −0.0033 (3) |
Er1—Cl1 | 2.7309 (3) | Er1—O3i | 2.3239 (9) |
Er1—Cl1i | 2.7309 (3) | O1—H1A | 0.78 (2) |
Er1—O1 | 2.3538 (9) | O1—H1B | 0.76 (3) |
Er1—O1i | 2.3538 (9) | O2—H2A | 0.76 (2) |
Er1—O2i | 2.3579 (9) | O2—H2B | 0.79 (2) |
Er1—O2 | 2.3578 (9) | O3—H3A | 0.77 (2) |
Er1—O3 | 2.3239 (9) | O3—H3B | 0.78 (2) |
Cl1i—Er1—Cl1 | 83.525 (12) | O3i—Er1—O1i | 75.93 (3) |
O1i—Er1—Cl1 | 146.45 (2) | O3—Er1—O1i | 69.45 (3) |
O1—Er1—Cl1i | 146.45 (2) | O3i—Er1—O1 | 69.45 (3) |
O1—Er1—Cl1 | 76.30 (2) | O3—Er1—O1 | 75.93 (3) |
O1i—Er1—Cl1i | 76.30 (2) | O3—Er1—O2 | 70.65 (3) |
O1—Er1—O1i | 132.86 (5) | O3i—Er1—O2i | 70.65 (3) |
O1i—Er1—O2 | 121.31 (3) | O3i—Er1—O2 | 138.62 (3) |
O1i—Er1—O2i | 72.89 (3) | O3—Er1—O2i | 138.62 (3) |
O1—Er1—O2 | 72.89 (3) | O3i—Er1—O3 | 84.03 (5) |
O1—Er1—O2i | 121.31 (3) | Er1—O1—H1A | 120.7 (17) |
O2—Er1—Cl1i | 77.07 (2) | Er1—O1—H1B | 125.5 (19) |
O2i—Er1—Cl1 | 77.07 (2) | H1A—O1—H1B | 104 (2) |
O2—Er1—Cl1 | 78.64 (2) | Er1—O2—H2A | 117.7 (17) |
O2i—Er1—Cl1i | 78.64 (2) | Er1—O2—H2B | 122.2 (15) |
O2—Er1—O2i | 147.25 (5) | H2A—O2—H2B | 106 (2) |
O3—Er1—Cl1i | 107.82 (2) | Er1—O3—H3A | 117.0 (17) |
O3—Er1—Cl1 | 143.35 (2) | Er1—O3—H3B | 118.2 (17) |
O3i—Er1—Cl1i | 143.35 (2) | H3A—O3—H3B | 112 (2) |
O3i—Er1—Cl1 | 107.82 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1ii | 0.78 (2) | 2.39 (2) | 3.1557 (10) | 166 (2) |
O1—H1B···Cl2iii | 0.76 (3) | 2.41 (3) | 3.1632 (10) | 170 (2) |
O2—H2A···Cl1iv | 0.76 (2) | 2.39 (2) | 3.1502 (10) | 176 (2) |
O2—H2B···Cl2v | 0.79 (2) | 2.47 (2) | 3.2287 (10) | 161 (2) |
O3—H3A···Cl1vi | 0.77 (2) | 2.36 (2) | 3.1286 (10) | 172 (2) |
O3—H3B···Cl2 | 0.78 (2) | 2.41 (2) | 3.1689 (9) | 167 (2) |
Symmetry codes: (ii) −x, −y, −z; (iii) −x, −y+1, −z; (iv) x, −y, z+1/2; (v) x, y−1, z; (vi) −x+1, y+1, −z+1/2. |
[TmCl2(H2O)6]Cl | F(000) = 360 |
Mr = 383.38 | Dx = 2.671 Mg m−3 |
Monoclinic, P2/c | Ag Kα radiation, λ = 0.56086 Å |
a = 7.7889 (4) Å | Cell parameters from 9923 reflections |
b = 6.4490 (3) Å | θ = 2.6–23.7° |
c = 11.8760 (6) Å | µ = 5.37 mm−1 |
β = 126.961 (1)° | T = 100 K |
V = 476.66 (4) Å3 | Plate, colorless |
Z = 2 | 0.17 × 0.11 × 0.10 mm |
Bruker D8 Venture Duo diffractometer | 1464 reflections with I > 2σ(I) |
ω scans | Rint = 0.033 |
Absorption correction: multi-scan SADABS-2016/2 (Bruker, 2016) | θmax = 23.7°, θmin = 2.5° |
Tmin = 0.207, Tmax = 0.257 | h = −11→11 |
16364 measured reflections | k = −9→9 |
1481 independent reflections | l = −17→16 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.007 | w = 1/[σ2(Fo2) + 0.0685P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.016 | (Δ/σ)max = 0.001 |
S = 1.15 | Δρmax = 0.39 e Å−3 |
1481 reflections | Δρmin = −0.48 e Å−3 |
72 parameters | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0056 (5) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Tm1 | 0.500000 | 0.15657 (2) | 0.250000 | 0.00505 (3) | |
Cl1 | 0.30008 (4) | −0.15947 (3) | 0.06069 (2) | 0.00896 (4) | |
Cl2 | 0.000000 | 0.62678 (5) | 0.250000 | 0.00941 (6) | |
O1 | 0.17163 (12) | 0.30137 (11) | 0.06506 (8) | 0.00987 (13) | |
O2 | 0.24195 (12) | 0.05360 (12) | 0.28076 (8) | 0.00989 (13) | |
O3 | 0.44427 (13) | 0.42399 (11) | 0.35464 (8) | 0.01000 (13) | |
H1A | 0.072 (3) | 0.261 (3) | 0.050 (2) | 0.032 (5)* | |
H1B | 0.140 (3) | 0.331 (2) | −0.012 (2) | 0.020 (4)* | |
H2A | 0.252 (3) | 0.089 (3) | 0.347 (2) | 0.033 (5)* | |
H2B | 0.197 (3) | −0.052 (3) | 0.2624 (18) | 0.019 (4)* | |
H3A | 0.518 (3) | 0.523 (3) | 0.3800 (19) | 0.028 (4)* | |
H3B | 0.332 (3) | 0.458 (3) | 0.3247 (19) | 0.023 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tm1 | 0.00468 (3) | 0.00528 (3) | 0.00526 (3) | 0.000 | 0.00302 (2) | 0.000 |
Cl1 | 0.00875 (9) | 0.00886 (9) | 0.00844 (9) | −0.00085 (7) | 0.00472 (8) | −0.00185 (7) |
Cl2 | 0.00877 (13) | 0.01055 (13) | 0.00955 (13) | 0.000 | 0.00584 (12) | 0.000 |
O1 | 0.0068 (3) | 0.0126 (3) | 0.0084 (3) | 0.0002 (2) | 0.0037 (3) | 0.0021 (2) |
O2 | 0.0117 (3) | 0.0094 (3) | 0.0117 (3) | −0.0028 (3) | 0.0087 (3) | −0.0021 (3) |
O3 | 0.0085 (3) | 0.0087 (3) | 0.0134 (3) | −0.0013 (3) | 0.0069 (3) | −0.0033 (2) |
Tm1—Cl1 | 2.7246 (2) | Tm1—O3i | 2.3142 (7) |
Tm1—Cl1i | 2.7246 (2) | O1—H1A | 0.73 (2) |
Tm1—O1i | 2.3414 (7) | O1—H1B | 0.81 (2) |
Tm1—O1 | 2.3414 (7) | O2—H2A | 0.78 (2) |
Tm1—O2i | 2.3446 (8) | O2—H2B | 0.737 (18) |
Tm1—O2 | 2.3446 (8) | O3—H3A | 0.789 (19) |
Tm1—O3 | 2.3142 (7) | O3—H3B | 0.75 (2) |
Cl1i—Tm1—Cl1 | 83.158 (10) | O3i—Tm1—O1 | 69.57 (3) |
O1—Tm1—Cl1 | 76.368 (19) | O3—Tm1—O1 | 75.80 (3) |
O1i—Tm1—Cl1i | 76.368 (19) | O3i—Tm1—O1i | 75.80 (3) |
O1i—Tm1—Cl1 | 146.34 (2) | O3—Tm1—O1i | 69.57 (3) |
O1—Tm1—Cl1i | 146.34 (2) | O3—Tm1—O2 | 70.87 (3) |
O1i—Tm1—O1 | 132.99 (4) | O3i—Tm1—O2i | 70.87 (3) |
O1—Tm1—O2 | 72.77 (3) | O3i—Tm1—O2 | 138.58 (3) |
O1—Tm1—O2i | 121.47 (3) | O3—Tm1—O2i | 138.58 (3) |
O1i—Tm1—O2 | 121.47 (3) | O3i—Tm1—O3 | 83.65 (4) |
O1i—Tm1—O2i | 72.77 (3) | Tm1—O1—H1A | 118.9 (16) |
O2—Tm1—Cl1i | 77.157 (19) | Tm1—O1—H1B | 124.8 (13) |
O2i—Tm1—Cl1 | 77.156 (19) | H1A—O1—H1B | 105 (2) |
O2—Tm1—Cl1 | 78.38 (2) | Tm1—O2—H2A | 120.0 (15) |
O2i—Tm1—Cl1i | 78.38 (2) | Tm1—O2—H2B | 120.9 (14) |
O2—Tm1—O2i | 147.09 (4) | H2A—O2—H2B | 108 (2) |
O3—Tm1—Cl1i | 108.24 (2) | Tm1—O3—H3A | 118.8 (14) |
O3—Tm1—Cl1 | 143.31 (2) | Tm1—O3—H3B | 120.2 (13) |
O3i—Tm1—Cl1i | 143.31 (2) | H3A—O3—H3B | 108.5 (19) |
O3i—Tm1—Cl1 | 108.24 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1ii | 0.73 (2) | 2.44 (2) | 3.1573 (8) | 165 (2) |
O1—H1B···Cl2iii | 0.81 (2) | 2.36 (2) | 3.1602 (8) | 169.7 (16) |
O2—H2A···Cl1iv | 0.78 (2) | 2.38 (2) | 3.1485 (8) | 173.4 (19) |
O2—H2B···Cl2v | 0.737 (18) | 2.528 (18) | 3.2301 (8) | 159.7 (18) |
O3—H3A···Cl1vi | 0.789 (19) | 2.343 (19) | 3.1280 (8) | 173.4 (18) |
O3—H3B···Cl2 | 0.75 (2) | 2.43 (2) | 3.1714 (8) | 169.4 (17) |
Symmetry codes: (ii) −x, −y, −z; (iii) −x, −y+1, −z; (iv) x, −y, z+1/2; (v) x, y−1, z; (vi) −x+1, y+1, −z+1/2. |
[YbCl2(H2O)6]Cl | F(000) = 362 |
Mr = 387.49 | Dx = 2.717 Mg m−3 |
Monoclinic, P2/c | Ag Kα radiation, λ = 0.56086 Å |
a = 7.7666 (2) Å | Cell parameters from 9892 reflections |
b = 6.4305 (2) Å | θ = 3.0–23.7° |
c = 11.8745 (3) Å | µ = 5.69 mm−1 |
β = 126.991 (1)° | T = 100 K |
V = 473.69 (2) Å3 | Plate, colorless |
Z = 2 | 0.30 × 0.23 × 0.20 mm |
Bruker D8 Venture Duo diffractometer | 1439 reflections with I > 2σ(I) |
ω scans | Rint = 0.035 |
Absorption correction: multi-scan SADABS-2016/2 (Bruker, 2016) | θmax = 23.7°, θmin = 2.5° |
Tmin = 0.168, Tmax = 0.257 | h = −11→11 |
19224 measured reflections | k = −9→9 |
1464 independent reflections | l = −16→16 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.008 | w = 1/[σ2(Fo2) + (0.0064P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.017 | (Δ/σ)max = 0.001 |
S = 1.19 | Δρmax = 0.62 e Å−3 |
1464 reflections | Δρmin = −0.74 e Å−3 |
72 parameters | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0290 (7) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Yb1 | 0.500000 | 0.15772 (2) | 0.250000 | 0.00506 (3) | |
Cl1 | 0.30072 (4) | −0.15810 (3) | 0.06078 (3) | 0.00886 (5) | |
Cl2 | 0.000000 | 0.62670 (5) | 0.250000 | 0.00966 (7) | |
O1 | 0.17225 (14) | 0.30159 (13) | 0.06541 (9) | 0.01013 (15) | |
O2 | 0.24258 (13) | 0.05444 (13) | 0.28053 (9) | 0.00973 (15) | |
O3 | 0.44456 (14) | 0.42323 (12) | 0.35473 (9) | 0.01004 (15) | |
H1A | 0.069 (3) | 0.261 (3) | 0.047 (2) | 0.030 (5)* | |
H1B | 0.148 (3) | 0.330 (3) | −0.003 (2) | 0.025 (5)* | |
H2A | 0.257 (3) | 0.085 (3) | 0.344 (2) | 0.028 (5)* | |
H2B | 0.193 (3) | −0.059 (3) | 0.2600 (19) | 0.022 (4)* | |
H3A | 0.509 (3) | 0.516 (3) | 0.3768 (19) | 0.025 (5)* | |
H3B | 0.318 (3) | 0.461 (3) | 0.321 (2) | 0.026 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Yb1 | 0.00471 (4) | 0.00511 (4) | 0.00532 (4) | 0.000 | 0.00301 (3) | 0.000 |
Cl1 | 0.00835 (11) | 0.00860 (10) | 0.00832 (12) | −0.00077 (8) | 0.00433 (10) | −0.00180 (8) |
Cl2 | 0.00878 (15) | 0.01064 (14) | 0.00987 (17) | 0.000 | 0.00577 (14) | 0.000 |
O1 | 0.0073 (4) | 0.0127 (3) | 0.0087 (4) | 0.0002 (3) | 0.0040 (3) | 0.0025 (3) |
O2 | 0.0110 (4) | 0.0096 (3) | 0.0111 (4) | −0.0024 (3) | 0.0079 (3) | −0.0020 (3) |
O3 | 0.0084 (3) | 0.0081 (3) | 0.0137 (4) | −0.0015 (3) | 0.0066 (3) | −0.0030 (3) |
Yb1—Cl1 | 2.7173 (3) | Yb1—H2A | 2.74 (2) |
Yb1—Cl1i | 2.7173 (3) | Yb1—H3A | 2.729 (18) |
Yb1—O1 | 2.3293 (8) | O1—H1A | 0.74 (2) |
Yb1—O1i | 2.3293 (8) | O1—H1B | 0.74 (2) |
Yb1—O2i | 2.3329 (8) | O2—H2A | 0.72 (2) |
Yb1—O2 | 2.3328 (8) | O2—H2B | 0.795 (19) |
Yb1—O3i | 2.3003 (8) | O3—H3A | 0.720 (19) |
Yb1—O3 | 2.3003 (8) | O3—H3B | 0.84 (2) |
Cl1i—Yb1—Cl1 | 83.270 (11) | O3i—Yb1—Cl1 | 107.85 (2) |
Cl1i—Yb1—H2A | 74.1 (4) | O3i—Yb1—Cl1i | 143.42 (2) |
Cl1—Yb1—H2A | 91.1 (4) | O3—Yb1—Cl1i | 107.85 (2) |
Cl1—Yb1—H3A | 154.1 (4) | O3—Yb1—Cl1 | 143.42 (2) |
Cl1i—Yb1—H3A | 111.2 (4) | O3i—Yb1—O1i | 76.11 (3) |
O1i—Yb1—Cl1i | 76.26 (2) | O3—Yb1—O1i | 69.54 (3) |
O1—Yb1—Cl1i | 146.22 (2) | O3i—Yb1—O1 | 69.55 (3) |
O1i—Yb1—Cl1 | 146.22 (2) | O3—Yb1—O1 | 76.11 (3) |
O1—Yb1—Cl1 | 76.26 (2) | O3—Yb1—O2i | 138.77 (3) |
O1—Yb1—O1i | 133.20 (4) | O3—Yb1—O2 | 70.77 (3) |
O1—Yb1—O2i | 121.35 (3) | O3i—Yb1—O2i | 70.77 (3) |
O1—Yb1—O2 | 72.89 (3) | O3i—Yb1—O2 | 138.77 (3) |
O1i—Yb1—O2 | 121.35 (3) | O3—Yb1—O3i | 84.16 (4) |
O1i—Yb1—O2i | 72.89 (3) | O3—Yb1—H2A | 60.6 (4) |
O1i—Yb1—H2A | 108.3 (4) | O3i—Yb1—H2A | 138.0 (4) |
O1—Yb1—H2A | 79.7 (4) | O3—Yb1—H3A | 13.3 (4) |
O1—Yb1—H3A | 80.5 (4) | O3i—Yb1—H3A | 73.8 (4) |
O1i—Yb1—H3A | 59.6 (4) | H2A—Yb1—H3A | 73.5 (6) |
O2i—Yb1—Cl1i | 78.50 (2) | Yb1—O1—H1A | 120.9 (16) |
O2—Yb1—Cl1 | 78.50 (2) | Yb1—O1—H1B | 122.8 (16) |
O2—Yb1—Cl1i | 76.92 (2) | H1A—O1—H1B | 105 (2) |
O2i—Yb1—Cl1 | 76.92 (2) | Yb1—O2—H2A | 118.2 (16) |
O2—Yb1—O2i | 146.92 (4) | Yb1—O2—H2B | 121.4 (12) |
O2i—Yb1—H2A | 151.2 (4) | H2A—O2—H2B | 108 (2) |
O2—Yb1—H2A | 13.3 (4) | Yb1—O3—H3A | 119.6 (14) |
O2—Yb1—H3A | 84.0 (4) | Yb1—O3—H3B | 120.0 (13) |
O2i—Yb1—H3A | 125.8 (4) | H3A—O3—H3B | 107.0 (18) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1ii | 0.74 (2) | 2.43 (2) | 3.1570 (9) | 168 (2) |
O1—H1B···Cl2iii | 0.74 (2) | 2.44 (2) | 3.1623 (9) | 167 (2) |
O2—H2A···Cl1iv | 0.72 (2) | 2.44 (2) | 3.1486 (9) | 175 (2) |
O2—H2B···Cl2v | 0.795 (19) | 2.472 (19) | 3.2287 (9) | 159.5 (16) |
O3—H3A···Cl1vi | 0.720 (19) | 2.409 (19) | 3.1273 (9) | 175.4 (19) |
O3—H3B···Cl2 | 0.84 (2) | 2.33 (2) | 3.1643 (8) | 168.8 (17) |
Symmetry codes: (ii) −x, −y, −z; (iii) −x, −y+1, −z; (iv) x, −y, z+1/2; (v) x, y−1, z; (vi) −x+1, y+1, −z+1/2. |
[LuCl2(H2O)6]Cl | F(000) = 364 |
Mr = 389.42 | Dx = 2.737 Mg m−3 |
Monoclinic, P2/c | Ag Kα radiation, λ = 0.56086 Å |
a = 7.7621 (3) Å | Cell parameters from 9948 reflections |
b = 6.4241 (3) Å | θ = 2.5–23.7° |
c = 11.8671 (5) Å | µ = 6.00 mm−1 |
β = 127.008 (1)° | T = 100 K |
V = 472.54 (4) Å3 | Plate, colorless |
Z = 2 | 0.17 × 0.14 × 0.14 mm |
Bruker D8 Venture Duo diffractometer | 1436 reflections with I > 2σ(I) |
ω scans | Rint = 0.041 |
Absorption correction: multi-scan SADABS-2016/2 (Bruker, 2016) | θmax = 23.7°, θmin = 2.5° |
Tmin = 0.201, Tmax = 0.257 | h = −11→11 |
23799 measured reflections | k = −9→9 |
1464 independent reflections | l = −16→17 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.009 | w = 1/[σ2(Fo2) + 0.3367P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.020 | (Δ/σ)max < 0.001 |
S = 1.28 | Δρmax = 0.78 e Å−3 |
1464 reflections | Δρmin = −0.82 e Å−3 |
72 parameters | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0094 (5) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Lu1 | 0.500000 | 0.15824 (2) | 0.250000 | 0.00529 (4) | |
Cl1 | 0.30110 (5) | −0.15719 (6) | 0.06103 (4) | 0.00912 (6) | |
Cl2 | 0.000000 | 0.62590 (8) | 0.250000 | 0.00994 (9) | |
O1 | 0.17244 (18) | 0.30166 (18) | 0.06562 (12) | 0.0104 (2) | |
O2 | 0.24293 (19) | 0.05447 (19) | 0.28021 (12) | 0.0101 (2) | |
O3 | 0.4452 (2) | 0.42271 (19) | 0.35486 (12) | 0.0102 (2) | |
H1A | 0.070 (4) | 0.258 (4) | 0.052 (3) | 0.027 (7)* | |
H1B | 0.142 (4) | 0.328 (4) | −0.007 (3) | 0.022 (6)* | |
H2A | 0.255 (4) | 0.086 (4) | 0.344 (3) | 0.028 (7)* | |
H2B | 0.193 (4) | −0.064 (5) | 0.261 (3) | 0.033 (7)* | |
H3A | 0.517 (5) | 0.523 (5) | 0.378 (3) | 0.037 (8)* | |
H3B | 0.328 (4) | 0.454 (4) | 0.322 (3) | 0.026 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Lu1 | 0.00480 (5) | 0.00564 (5) | 0.00535 (4) | 0.000 | 0.00301 (3) | 0.000 |
Cl1 | 0.00841 (14) | 0.00916 (14) | 0.00864 (14) | −0.00059 (12) | 0.00451 (12) | −0.00171 (12) |
Cl2 | 0.0089 (2) | 0.0111 (2) | 0.0103 (2) | 0.000 | 0.00602 (18) | 0.000 |
O1 | 0.0070 (5) | 0.0131 (5) | 0.0093 (5) | −0.0002 (4) | 0.0039 (4) | 0.0021 (4) |
O2 | 0.0110 (5) | 0.0107 (5) | 0.0115 (5) | −0.0028 (4) | 0.0083 (4) | −0.0020 (4) |
O3 | 0.0076 (5) | 0.0097 (5) | 0.0130 (5) | −0.0010 (4) | 0.0061 (4) | −0.0028 (4) |
Lu1—Cl1i | 2.7113 (4) | Lu1—O3i | 2.2917 (12) |
Lu1—Cl1 | 2.7113 (4) | O1—H1A | 0.77 (3) |
Lu1—O1i | 2.3246 (11) | O1—H1B | 0.76 (3) |
Lu1—O1 | 2.3246 (11) | O2—H2A | 0.73 (3) |
Lu1—O2i | 2.3272 (12) | O2—H2B | 0.82 (3) |
Lu1—O2 | 2.3272 (12) | O3—H3A | 0.79 (3) |
Lu1—O3 | 2.2917 (12) | O3—H3B | 0.77 (3) |
Cl1—Lu1—Cl1i | 83.270 (15) | O3i—Lu1—O1 | 69.54 (4) |
O1—Lu1—Cl1i | 146.14 (3) | O3—Lu1—O1 | 76.23 (4) |
O1i—Lu1—Cl1 | 146.14 (3) | O3i—Lu1—O1i | 76.23 (4) |
O1i—Lu1—Cl1i | 76.23 (3) | O3—Lu1—O1i | 69.53 (4) |
O1—Lu1—Cl1 | 76.23 (3) | O3—Lu1—O2 | 70.87 (4) |
O1i—Lu1—O1 | 133.30 (6) | O3i—Lu1—O2i | 70.87 (4) |
O1—Lu1—O2 | 72.85 (4) | O3i—Lu1—O2 | 138.80 (4) |
O1—Lu1—O2i | 121.47 (4) | O3—Lu1—O2i | 138.80 (4) |
O1i—Lu1—O2 | 121.47 (4) | O3i—Lu1—O3 | 84.31 (6) |
O1i—Lu1—O2i | 72.85 (4) | Lu1—O1—H1A | 118 (2) |
O2—Lu1—Cl1 | 78.41 (3) | Lu1—O1—H1B | 125.0 (19) |
O2i—Lu1—Cl1i | 78.41 (3) | H1A—O1—H1B | 106 (3) |
O2—Lu1—Cl1i | 76.86 (3) | Lu1—O2—H2A | 119 (2) |
O2i—Lu1—Cl1 | 76.86 (3) | Lu1—O2—H2B | 121.7 (19) |
O2—Lu1—O2i | 146.71 (6) | H2A—O2—H2B | 107 (3) |
O3—Lu1—Cl1 | 143.49 (3) | Lu1—O3—H3A | 118 (2) |
O3—Lu1—Cl1i | 107.72 (3) | Lu1—O3—H3B | 117.7 (19) |
O3i—Lu1—Cl1 | 107.72 (3) | H3A—O3—H3B | 109 (3) |
O3i—Lu1—Cl1i | 143.49 (3) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1ii | 0.77 (3) | 2.42 (3) | 3.1591 (13) | 163 (3) |
O1—H1B···Cl2iii | 0.76 (3) | 2.40 (3) | 3.1625 (12) | 171 (2) |
O2—H2A···Cl1iv | 0.73 (3) | 2.42 (3) | 3.1517 (13) | 175 (3) |
O2—H2B···Cl2v | 0.82 (3) | 2.45 (3) | 3.2327 (13) | 160 (3) |
O3—H3A···Cl1vi | 0.79 (3) | 2.34 (3) | 3.1290 (13) | 174 (3) |
O3—H3B···Cl2 | 0.77 (3) | 2.41 (3) | 3.1653 (12) | 167 (3) |
Symmetry codes: (ii) −x, −y, −z; (iii) −x, −y+1, −z; (iv) x, −y, z+1/2; (v) x, y−1, z; (vi) −x+1, y+1, −z+1/2. |
RE | Cl1 | O1 | O2 | O3 |
Pr | 2.8314 (4) | 2.4677 (13) | 2.4818 (13) | 2.4513 (12) |
Nd | 2.8145 (2) | 2.4532 (7) | 2.4629 (6) | 2.4328 (7) |
Sm | 2.7906 (3) | 2.4269 (8) | 2.4349 (8) | 2.4057 (8) |
Eu | 2.7788 (2) | 2.4131 (7) | 2.4206 (7) | 2.3884 (7) |
Gd | 2.7699 (3) | 2.4026 (9) | 2.4101 (8) | 2.3762 (8) |
Tb | 2.7617 (3) | 2.3870 (9) | 2.3940 (9) | 2.3646 (9) |
Dy | 2.7500 (2) | 2.3735 (8) | 2.3795 (8) | 2.3480 (8) |
Ho | 2.7425 (3) | 2.3646 (10) | 2.3705 (9) | 2.3372 (9) |
Er | 2.7309 (3) | 2.3538 (9) | 2.3578 (9) | 2.3239 (9) |
Tm | 2.7246 (2) | 2.3414 (7) | 2.3446 (8) | 2.3142 (7) |
Yb | 2.7173 (3) | 2.3293 (8) | 2.3328 (8) | 2.3003 (8) |
Lu | 2.7113 (4) | 2.3246 (11) | 2.3272 (12) | 2.2917 (12) |
Acknowledgements
BL acknowledges the ESTAAR program at Episcopal School of Baton Rouge. X-ray crystallographic data were collected by the diffractometer funded by the NSF MRI award CHE-2215262.
Funding information
Funding for this research was provided by: College of Science and Department of Chemistry at Louisiana State University (start-up funding).
References
Bakakin, V., Klevstova, R. & Solov'eva, L. (1975). J. Struct. Chem. 15, 723–732. CrossRef Google Scholar
Bel'skii, N. & Struchkov, Y. T. (1965). Kristallografiya, 10, 21–28. CAS Google Scholar
Boatner, L. A., Neal, J. S., Ramey, J. O., Chakoumakos, B. C. & Custelcean, R. (2013). Appl. Phys. Lett. 103, 141909. CrossRef Google Scholar
Boyle, T. J., Ottley, L. A. M., Alam, T. M., Rodriguez, M. A., Yang, P. & Mcintyre, S. K. (2010). Polyhedron, 29, 1784–1795. Web of Science CSD CrossRef CAS PubMed Google Scholar
Boyle, T. J. & Steele, L. A. M. (2011). Encyclopedia of Inorganic and Bioinorgic Chemistry. Chichester: John Wiley & Sons, Ltd. Google Scholar
Bruker (2016). SAINT. Bruker AXS Inc., Madison Wisconsin, USA Google Scholar
Chen, J., Xu, D., Li, L., Wu, J. & Xu, G. (1991). Acta Cryst. C47, 1074–1075. CrossRef CAS IUCr Journals Google Scholar
Cotton, S. A. & Harrowfield, J. M. (2011). Encyclopedia of Inorganic and Bioinorgic Chemistry. Chichester: John Wiley & Sons, Ltd. Google Scholar
Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143. CrossRef Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Habenschuss, A. & Spedding, F. H. (1978). Cryst. Struct. Commun. 7, 535–541. CAS Google Scholar
Habenschuss, A. & Spedding, F. H. (1979). Cryst. Struct. Commun. 8, 511–516. CAS Google Scholar
Habenschuss, A. & Spedding, F. H. (1980a). Cryst. Struct. Commun. 9, 71–76. CAS Google Scholar
Habenschuss, A. & Spedding, F. H. (1980b). Cryst. Struct. Commun. 9, 157–160. CAS Google Scholar
Habenschuss, A. & Spedding, F. H. (1980c). Cryst. Struct. Commun. 9, 207–211. CAS Google Scholar
Habenschuss, A. & Spedding, F. H. (1980d). Cryst. Struct. Commun. 9, 213–218. CAS Google Scholar
Hsieh, K.-Y., Bendeif, E.-E., Pillet, S., Doudouh, A., Schaniel, D. & Woike, T. (2013). Acta Cryst. C69, 1002–1005. CrossRef IUCr Journals Google Scholar
Kepert, D. L., Patrick, J. & White, A. (1983). Aust. J. Chem. 36, 477–482. CrossRef CAS Google Scholar
Knopf, K. M., Crundwell, G. & Westcott, B. L. (2015). Acta Cryst. E71, i5. CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Layfield, R. A. & Murugesu, M. (2015). Lanthanides and actinides in molecular magnetism. New York: Wiley. Google Scholar
Levason, W. & Webster, M. (2002). Acta Cryst. E58, i76–i78. CrossRef IUCr Journals Google Scholar
Louer, M., Louer, D., Delgado, A. & Martinez, O. (1989). Eur. J. Solid State Inorg. Chem. 26, 241–253. CAS Google Scholar
Marezio, M., Plettinger, H. A. & Zachariasen, W. H. (1961). Acta Cryst. 14, 234–236. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Narasimhulu, M., Reddy, T. S., Mahesh, K. C., Reddy, S. M., Reddy, A. V. & Venkateswarlu, Y. (2007). J. Mol. Catal. A Chem. 264, 288–292. CrossRef CAS Google Scholar
Palmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England. Google Scholar
Peterson, E. J., Onstott, E. I. & Von Dreele, R. B. (1979). Acta Cryst. B35, 805–809. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Reuter, G., Fink, H. & Seifert, H. (1994). Z. Anorg. Allge Chem. 620, 665–671. CrossRef CAS Google Scholar
Reuter, G. & Frenzen, G. (1994). Acta Cryst. C50, 844–845. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Rheingold, A. L. & King, W. (1989). Inorg. Chem. 28, 1715–1719. CSD CrossRef ICSD CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tambornino, F., Bielec, P. & Hoch, C. (2014). Acta Cryst. E70, i27. CSD CrossRef IUCr Journals Google Scholar
Wegner, W., Jaroń, T. & Grochala, W. (2018). J. Alloys Compd. 744, 57–63. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.