research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Comprehensive structural study of lanthanide(III) chloride hydrates: [RECl3·xH2O (RE = La–Nd, Sm–Lu; x = 6, 7)]

crossmark logo

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA, and bEpiscopal School of Baton Rouge, 3200 Woodland Ridge Blvd, Baton Rouge, LA 70816, USA
*Correspondence e-mail: sbaranets@lsu.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 16 September 2024; accepted 20 November 2024; online 28 November 2024)

A comprehensive crystallographic study is presented of the complete series of rare-earth(III) chloride hydrates. Early lanthanides form dimeric [(H2O)7RE(μ-Cl)2RE(H2O)7]4+ binuclear complexes in which each RE atom (RE = La3+, Ce3+) is coordinated by seven H2O mol­ecules and two bridging inner-sphere chloride ions. Di-μ-chlorido-bis­[hepta­aqua­lanthanide(III)] tetra­chloride, [(H2O)7RE(μ-Cl)2RE(H2O)7]Cl4, crystallizes in the triclinic space group P1. Heavier lanthanides exhibit monomeric [RECl2(H2O)6]+ units where each RE atom (RE = Pr3+, Nd3+, Sm3+–Lu3+) is coordinated by six H2O mol­ecules and two inner-sphere chloride ions. Hexa­aqua­dichlorido­lanthanide(III) chlorides, [RECl2(H2O)6]Cl, adopt the monoclinic space group P2/c. In both structures, the cationic inner-sphere complex is counter-charged by the corresponding number of outer-sphere Cl anions, in which the metal ion and outer-sphere chloride ion lie on crystallographic twofold axes. Crystal structures for all compounds were determined in high quality with refined H-atom positions and were collected at the same temperature (100 K), providing a uniform structural dataset and addressing discrepancies in previous reports. The crystal structure of [HoCl2(H2O)6]Cl is reported for the first time.

1. Chemical context and database survey

The rare-earth trivalent metal chloride hydrates [RECl3·xH2O (RE = La–Nd, Sm–Lu; x = 6, 7)] are commonly used as precursors in the synthesis of complex inorganic and organometallic compounds (Boyle & Steele, 2011[Boyle, T. J. & Steele, L. A. M. (2011). Encyclopedia of Inorganic and Bioinorgic Chemistry. Chichester: John Wiley & Sons, Ltd.]). Most lanthanides are characterized by the presence of partially filled 4f orbitals, which significantly influence the chemical and physical properties of these elements and their compounds, offering a broad landscape for potential applications. For instance, lanthanide chloride salts possess catalytic (Narasimhulu et al., 2007[Narasimhulu, M., Reddy, T. S., Mahesh, K. C., Reddy, S. M., Reddy, A. V. & Venkateswarlu, Y. (2007). J. Mol. Catal. A Chem. 264, 288-292.]), luminescent (Hsieh et al., 2013[Hsieh, K.-Y., Bendeif, E.-E., Pillet, S., Doudouh, A., Schaniel, D. & Woike, T. (2013). Acta Cryst. C69, 1002-1005.]), scintillation (Boatner et al., 2013[Boatner, L. A., Neal, J. S., Ramey, J. O., Chakoumakos, B. C. & Custelcean, R. (2013). Appl. Phys. Lett. 103, 141909.]), and magnetic properties (Layfield & Murugesu, 2015[Layfield, R. A. & Murugesu, M. (2015). Lanthanides and actinides in molecular magnetism. New York: Wiley.]), to name a few. The compositional and structural aspects of the lanthanide (III) chloride hydrate chemistry are well established, with nearly the entire series of RECl3·xH2O compositions identified (Boyle et al., 2010[Boyle, T. J., Ottley, L. A. M., Alam, T. M., Rodriguez, M. A., Yang, P. & Mcintyre, S. K. (2010). Polyhedron, 29, 1784-1795.]; Cotton & Harrowfield, 2011[Cotton, S. A. & Harrowfield, J. M. (2011). Encyclopedia of Inorganic and Bioinorgic Chemistry. Chichester: John Wiley & Sons, Ltd.]). However, our database survey indicates that while most of the compounds presented in this work are listed in the ICSD database (Release 2024.1; Zagorac et al., 2019[Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.]), structural data for HoCl3·6H2O and TmCl3·6H2O are missing from the ICSD, and for HoCl3·6H2O, from the CSD (Release 2024.2; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) databases (Bakakin et al., 1975[Bakakin, V., Klevstova, R. & Solov'eva, L. (1975). J. Struct. Chem. 15, 723-732.]; Bel'skii & Struchkov, 1965[Bel'skii, N. & Struchkov, Y. T. (1965). Kristallografiya, 10, 21-28.]; Boyle et al., 2010[Boyle, T. J., Ottley, L. A. M., Alam, T. M., Rodriguez, M. A., Yang, P. & Mcintyre, S. K. (2010). Polyhedron, 29, 1784-1795.]; Habenschuss & Spedding, 1979[Habenschuss, A. & Spedding, F. H. (1979). Cryst. Struct. Commun. 8, 511-516.], 1980a[Habenschuss, A. & Spedding, F. H. (1980a). Cryst. Struct. Commun. 9, 71-76.],b[Habenschuss, A. & Spedding, F. H. (1980b). Cryst. Struct. Commun. 9, 157-160.],c[Habenschuss, A. & Spedding, F. H. (1980c). Cryst. Struct. Commun. 9, 207-211.],d[Habenschuss, A. & Spedding, F. H. (1980d). Cryst. Struct. Commun. 9, 213-218.], 1978[Habenschuss, A. & Spedding, F. H. (1978). Cryst. Struct. Commun. 7, 535-541.]; Hsieh et al., 2013[Hsieh, K.-Y., Bendeif, E.-E., Pillet, S., Doudouh, A., Schaniel, D. & Woike, T. (2013). Acta Cryst. C69, 1002-1005.]; Kepert et al., 1983[Kepert, D. L., Patrick, J. & White, A. (1983). Aust. J. Chem. 36, 477-482.]; Knopf et al., 2015[Knopf, K. M., Crundwell, G. & Westcott, B. L. (2015). Acta Cryst. E71, i5.]; Levason & Webster, 2002[Levason, W. & Webster, M. (2002). Acta Cryst. E58, i76-i78.]; Louer et al., 1989[Louer, M., Louer, D., Delgado, A. & Martinez, O. (1989). Eur. J. Solid State Inorg. Chem. 26, 241-253.]; Marezio et al., 1961[Marezio, M., Plettinger, H. A. & Zachariasen, W. H. (1961). Acta Cryst. 14, 234-236.]; Narasimhulu et al., 2007[Narasimhulu, M., Reddy, T. S., Mahesh, K. C., Reddy, S. M., Reddy, A. V. & Venkateswarlu, Y. (2007). J. Mol. Catal. A Chem. 264, 288-292.]; Peterson et al., 1979[Peterson, E. J., Onstott, E. I. & Von Dreele, R. B. (1979). Acta Cryst. B35, 805-809.]; Reuter et al., 1994[Reuter, G., Fink, H. & Seifert, H. (1994). Z. Anorg. Allge Chem. 620, 665-671.]; Reuter & Frenzen, 1994[Reuter, G. & Frenzen, G. (1994). Acta Cryst. C50, 844-845.]; Rheingold & King, 1989[Rheingold, A. L. & King, W. (1989). Inorg. Chem. 28, 1715-1719.]; Tambornino et al., 2014[Tambornino, F., Bielec, P. & Hoch, C. (2014). Acta Cryst. E70, i27.]; Wegner et al., 2018[Wegner, W., Jaroń, T. & Grochala, W. (2018). J. Alloys Compd. 744, 57-63.]; Chen et al., 1991[Chen, J., Xu, D., Li, L., Wu, J. & Xu, G. (1991). Acta Cryst. C47, 1074-1075.]).

[Scheme 1]

In addition, most of the reported datasets are of standard quality, lacking refined hydrogen atoms, which complicates the unambiguous inter­pretation of hydrogen bonding and the crystal packing. Another inconsistency involves data collection temperatures, which vary across the series in the previous reports. This study presents a comprehensive crystallographic analysis by providing a uniform structural dataset for the complete series of rare-earth metal(III) chloride hydrates except for radioactive promethium.

2. Structural commentary

The rare-earth metal(III) chloride hydrates [RECl3·xH2O (RE = La–Nd, Sm–Lu; x = 6, 7)] adopt two different structure types, with the rare-earth metal being coordinated by seven (for RE = La, Ce) or six (for RE = Pr, Nd, Sm–Lu) water mol­ecules. The degree of hydration is likely influenced by steric effects and aligns well with the decreasing trend of the atomic radii within the lanthanide series (Fig. 5). Metal–ligand bond distances for the La and Ce phases are listed in Tables 1[link] and 2[link], respectively, and the metal–ligand distances for the hexa­hydrates are summarized in Table 3[link]. The hydrogen-bond geometrical data for the complete series (La–Lu) are listed in Table 4[link][link][link][link][link][link][link][link][link][link][link][link][link] to 17[link].

Table 1
Selected bond lengths (Å) for La[link]

La1—Cl1 2.9187 (5) La1—O4 2.5873 (13)
La1—O1 2.5443 (13) La1—O5 2.5233 (14)
La1—O2 2.5504 (13) La1—O6 2.5413 (15)
La1—O3 2.5315 (13) La1—O7 2.5643 (13)

Table 2
Selected bond lengths (Å) for Ce[link]

Ce1—Cl1 2.8986 (2) Ce1—O4 2.5580 (7)
Ce1—O1 2.5276 (7) Ce1—O5 2.5018 (7)
Ce1—O2 2.5229 (7) Ce1—O6 2.5214 (7)
Ce1—O3 2.5076 (8) Ce1—O7 2.5397 (8)

Table 3
Bond distances (Å) for hexa­hydrates

RE Cl1 O1 O2 O3
Pr 2.8314 (4) 2.4677 (13) 2.4818 (13) 2.4513 (12)
Nd 2.8145 (2) 2.4532 (7) 2.4629 (6) 2.4328 (7)
Sm 2.7906 (3) 2.4269 (8) 2.4349 (8) 2.4057 (8)
Eu 2.7788 (2) 2.4131 (7) 2.4206 (7) 2.3884 (7)
Gd 2.7699 (3) 2.4026 (9) 2.4101 (8) 2.3762 (8)
Tb 2.7617 (3) 2.3870 (9) 2.3940 (9) 2.3646 (9)
Dy 2.7500 (2) 2.3735 (8) 2.3795 (8) 2.3480 (8)
Ho 2.7425 (3) 2.3646 (10) 2.3705 (9) 2.3372 (9)
Er 2.7309 (3) 2.3538 (9) 2.3578 (9) 2.3239 (9)
Tm 2.7246 (2) 2.3414 (7) 2.3446 (8) 2.3142 (7)
Yb 2.7173 (3) 2.3293 (8) 2.3328 (8) 2.3003 (8)
Lu 2.7113 (4) 2.3246 (11) 2.3272 (12) 2.2917 (12)

Table 4
Hydrogen-bond geometry (Å, °) for La[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl3i 0.75 (3) 2.48 (3) 3.1947 (15) 161 (3)
O1—H1B⋯Cl2 0.79 (3) 2.38 (3) 3.1365 (16) 161 (2)
O2—H2A⋯Cl2ii 0.80 (3) 2.38 (3) 3.1378 (14) 157 (3)
O2—H2B⋯Cl2iii 0.79 (3) 2.26 (3) 3.0382 (13) 172 (3)
O3—H3A⋯Cl3 0.82 (3) 2.47 (3) 3.2552 (15) 160 (3)
O3—H3B⋯Cl1i 0.78 (3) 2.92 (3) 3.2954 (13) 112 (2)
O3—H3B⋯Cl2 0.78 (3) 2.72 (3) 3.4160 (16) 150 (3)
O4—H4A⋯O2iv 0.78 (3) 2.08 (3) 2.859 (2) 174 (3)
O4—H4B⋯Cl3 0.84 (3) 2.31 (3) 3.1488 (15) 179 (2)
O5—H5A⋯Cl3v 0.80 (3) 2.34 (3) 3.1308 (14) 167 (3)
O5—H5B⋯Cl2vi 0.75 (3) 2.44 (3) 3.1690 (15) 163 (3)
O5—H5B⋯O5vi 0.75 (3) 2.67 (3) 2.986 (3) 108 (2)
O6—H6A⋯Cl3vii 0.77 (3) 2.57 (3) 3.3288 (16) 168 (3)
O6—H6B⋯Cl1viii 0.80 (3) 2.93 (3) 3.3705 (14) 117 (2)
O6—H6B⋯O4ix 0.80 (3) 2.24 (3) 3.038 (2) 169 (3)
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x, -y+1, -z]; (iii) [x, y-1, z]; (iv) [-x, -y, -z+1]; (v) [x, y, z-1]; (vi) [-x+1, -y+1, -z]; (vii) [-x+1, -y+1, -z+1]; (viii) [x+1, y, z]; (ix) [-x+1, -y, -z+1].

Table 5
Hydrogen-bond geometry (Å, °) for Ce[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl3i 0.762 (19) 2.458 (19) 3.1945 (8) 162.9 (18)
O1—H1B⋯Cl2 0.77 (2) 2.405 (19) 3.1380 (8) 160.6 (17)
O2—H2A⋯Cl2ii 0.797 (19) 2.251 (19) 3.0368 (8) 168.6 (17)
O2—H2B⋯Cl2iii 0.783 (19) 2.411 (19) 3.1383 (8) 155.0 (16)
O3—H3A⋯Cl3 0.79 (2) 2.50 (2) 3.2501 (9) 160.9 (18)
O3—H3B⋯Cl1i 0.80 (2) 2.91 (2) 3.3040 (8) 112.9 (16)
O3—H3B⋯Cl2 0.80 (2) 2.71 (2) 3.4188 (9) 147.3 (18)
O4—H4A⋯O2iv 0.800 (17) 2.068 (17) 2.8609 (11) 171.2 (16)
O4—H4B⋯Cl3 0.781 (18) 2.369 (18) 3.1466 (8) 173.7 (16)
O5—H5A⋯Cl3v 0.798 (17) 2.354 (17) 3.1286 (8) 164.0 (16)
O5—H5B⋯Cl2vi 0.768 (19) 2.446 (19) 3.1699 (8) 157.6 (17)
O5—H5B⋯O5vi 0.768 (19) 2.601 (17) 2.9858 (15) 112.9 (15)
O6—H6A⋯Cl1vii 0.82 (2) 2.936 (18) 3.3662 (8) 115.2 (14)
O6—H6A⋯O4viii 0.82 (2) 2.25 (2) 3.0451 (11) 164.9 (17)
O6—H6B⋯Cl3ix 0.79 (2) 2.55 (2) 3.3165 (8) 164.4 (18)
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [x, y-1, z]; (iii) [-x, -y+1, -z]; (iv) [-x, -y, -z+1]; (v) [x, y, z-1]; (vi) [-x+1, -y+1, -z]; (vii) [x+1, y, z]; (viii) [-x+1, -y, -z+1]; (ix) [-x+1, -y+1, -z+1].

Table 6
Hydrogen-bond geometry (Å, °) for Pr[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.75 (3) 2.42 (3) 3.1498 (14) 166 (3)
O1—H1B⋯Cl2ii 0.78 (3) 2.40 (3) 3.1706 (13) 172 (2)
O2—H2A⋯Cl1iii 0.76 (3) 2.40 (3) 3.1575 (13) 175 (2)
O2—H2B⋯Cl2iv 0.77 (2) 2.49 (2) 3.2291 (14) 163 (2)
O3—H3A⋯Cl1v 0.78 (3) 2.36 (3) 3.1303 (14) 174 (2)
O3—H3B⋯Cl2 0.80 (3) 2.41 (3) 3.1919 (14) 166 (2)
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x, -y+1, -z]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, y-1, z]; (v) [-x+1, y+1, -z+{\script{1\over 2}}].

Table 7
Hydrogen-bond geometry (Å, °) for Nd[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.749 (16) 2.418 (16) 3.1491 (7) 165.6 (16)
O1—H1B⋯Cl2ii 0.722 (17) 2.451 (18) 3.1661 (8) 170.8 (15)
O2—H2A⋯Cl1iii 0.770 (18) 2.387 (18) 3.1552 (8) 175.3 (17)
O2—H2B⋯Cl2iv 0.760 (17) 2.490 (17) 3.2267 (8) 164.0 (15)
O3—H3A⋯Cl1v 0.793 (16) 2.337 (17) 3.1290 (7) 176.1 (15)
O3—H3B⋯Cl2 0.782 (16) 2.413 (16) 3.1894 (7) 172.0 (15)
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x, -y+1, -z]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, y-1, z]; (v) [-x+1, y+1, -z+{\script{1\over 2}}].

Table 8
Hydrogen-bond geometry (Å, °) for Sm[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.693 (19) 2.484 (19) 3.1594 (10) 165 (2)
O1—H1B⋯Cl2ii 0.79 (3) 2.39 (3) 3.1685 (9) 169.2 (19)
O2—H2A⋯Cl1iii 0.81 (2) 2.35 (2) 3.1586 (9) 175.9 (18)
O2—H2B⋯Cl2iv 0.78 (2) 2.48 (2) 3.2358 (10) 163.6 (17)
O3—H3A⋯Cl1v 0.78 (2) 2.36 (2) 3.1367 (10) 176 (2)
O3—H3B⋯Cl2 0.794 (19) 2.41 (2) 3.1908 (9) 167.7 (18)
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x, -y+1, -z]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, y-1, z]; (v) [-x+1, y+1, -z+{\script{1\over 2}}].

Table 9
Hydrogen-bond geometry (Å, °) for Eu[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.760 (15) 2.407 (15) 3.1537 (7) 167.5 (16)
O1—H1B⋯Cl2ii 0.766 (19) 2.407 (19) 3.1649 (8) 170.6 (14)
O2—H2A⋯Cl1iii 0.784 (16) 2.373 (17) 3.1549 (8) 175.1 (14)
O2—H2B⋯Cl2iv 0.759 (16) 2.500 (15) 3.2308 (7) 162.1 (14)
O3—H3A⋯Cl1v 0.783 (16) 2.349 (16) 3.1307 (7) 175.7 (14)
O3—H3B⋯Cl2 0.737 (15) 2.455 (15) 3.1842 (7) 170.3 (15)
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x, -y+1, -z]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, y-1, z]; (v) [-x+1, y+1, -z+{\script{1\over 2}}].

Table 10
Hydrogen-bond geometry (Å, °) for Gd[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.79 (2) 2.39 (2) 3.1527 (9) 165 (2)
O1—H1B⋯Cl2ii 0.75 (2) 2.43 (2) 3.1651 (9) 170.1 (19)
O2—H2A⋯Cl1iii 0.80 (2) 2.36 (2) 3.1519 (9) 175 (2)
O2—H2B⋯Cl2iv 0.82 (2) 2.44 (2) 3.2284 (9) 161.7 (18)
O3—H3A⋯Cl1v 0.83 (2) 2.30 (2) 3.1290 (9) 178 (2)
O3—H3B⋯Cl2 0.79 (2) 2.40 (2) 3.1790 (9) 169.1 (19)
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x, -y+1, -z]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, y-1, z]; (v) [-x+1, y+1, -z+{\script{1\over 2}}].

Table 11
Hydrogen-bond geometry (Å, °) for Tb[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.77 (2) 2.41 (2) 3.1527 (9) 164 (2)
O1—H1B⋯Cl2ii 0.77 (2) 2.40 (2) 3.1661 (10) 172 (2)
O2—H2A⋯Cl1iii 0.82 (2) 2.33 (2) 3.1524 (10) 175 (2)
O2—H2B⋯Cl2iv 0.76 (2) 2.51 (2) 3.2283 (10) 158.8 (19)
O3—H3A⋯Cl1v 0.81 (2) 2.33 (2) 3.1297 (10) 173.2 (19)
O3—H3B⋯Cl2 0.77 (2) 2.43 (2) 3.1798 (9) 166 (2)
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x, -y+1, -z]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, y-1, z]; (v) [-x+1, y+1, -z+{\script{1\over 2}}].

Table 12
Hydrogen-bond geometry (Å, °) for Dy[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.755 (19) 2.413 (19) 3.1545 (9) 167.6 (19)
O1—H1B⋯Cl2ii 0.78 (2) 2.39 (2) 3.1655 (8) 172.6 (16)
O2—H2A⋯Cl1iii 0.79 (2) 2.37 (2) 3.1511 (9) 175.7 (19)
O2—H2B⋯Cl2iv 0.712 (19) 2.544 (19) 3.2303 (8) 162.7 (19)
O3—H3A⋯Cl1v 0.787 (19) 2.342 (19) 3.1276 (8) 176.2 (18)
O3—H3B⋯Cl2 0.75 (2) 2.44 (2) 3.1766 (8) 167.1 (19)
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x, -y+1, -z]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, y-1, z]; (v) [-x+1, y+1, -z+{\script{1\over 2}}].

Table 13
Hydrogen-bond geometry (Å, °) for Ho[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.78 (2) 2.40 (2) 3.1589 (11) 166 (2)
O1—H1B⋯Cl2ii 0.76 (2) 2.41 (2) 3.1678 (10) 170 (2)
O2—H2A⋯Cl1iii 0.79 (2) 2.37 (2) 3.1546 (10) 172 (2)
O2—H2B⋯Cl2iv 0.79 (2) 2.48 (2) 3.2320 (10) 161.6 (19)
O3—H3A⋯Cl1v 0.79 (2) 2.35 (2) 3.1309 (10) 172 (2)
O3—H3B⋯Cl2 0.82 (2) 2.36 (2) 3.1765 (10) 168.9 (19)
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x, -y+1, -z]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, y-1, z]; (v) [-x+1, y+1, -z+{\script{1\over 2}}].

Table 14
Hydrogen-bond geometry (Å, °) for Er[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.78 (2) 2.39 (2) 3.1557 (10) 166 (2)
O1—H1B⋯Cl2ii 0.76 (3) 2.41 (3) 3.1632 (10) 170 (2)
O2—H2A⋯Cl1iii 0.76 (2) 2.39 (2) 3.1502 (10) 176 (2)
O2—H2B⋯Cl2iv 0.79 (2) 2.47 (2) 3.2287 (10) 161 (2)
O3—H3A⋯Cl1v 0.77 (2) 2.36 (2) 3.1286 (10) 172 (2)
O3—H3B⋯Cl2 0.78 (2) 2.41 (2) 3.1689 (9) 167 (2)
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x, -y+1, -z]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, y-1, z]; (v) [-x+1, y+1, -z+{\script{1\over 2}}].

Table 15
Hydrogen-bond geometry (Å, °) for Tm[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.73 (2) 2.44 (2) 3.1573 (8) 165 (2)
O1—H1B⋯Cl2ii 0.81 (2) 2.36 (2) 3.1602 (8) 169.7 (16)
O2—H2A⋯Cl1iii 0.78 (2) 2.38 (2) 3.1485 (8) 173.4 (19)
O2—H2B⋯Cl2iv 0.737 (18) 2.528 (18) 3.2301 (8) 159.7 (18)
O3—H3A⋯Cl1v 0.789 (19) 2.343 (19) 3.1280 (8) 173.4 (18)
O3—H3B⋯Cl2 0.75 (2) 2.43 (2) 3.1714 (8) 169.4 (17)
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x, -y+1, -z]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, y-1, z]; (v) [-x+1, y+1, -z+{\script{1\over 2}}].

Table 16
Hydrogen-bond geometry (Å, °) for Yb[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.74 (2) 2.43 (2) 3.1570 (9) 168 (2)
O1—H1B⋯Cl2ii 0.74 (2) 2.44 (2) 3.1623 (9) 167 (2)
O2—H2A⋯Cl1iii 0.72 (2) 2.44 (2) 3.1486 (9) 175 (2)
O2—H2B⋯Cl2iv 0.795 (19) 2.472 (19) 3.2287 (9) 159.5 (16)
O3—H3A⋯Cl1v 0.720 (19) 2.409 (19) 3.1273 (9) 175.4 (19)
O3—H3B⋯Cl2 0.84 (2) 2.33 (2) 3.1643 (8) 168.8 (17)
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x, -y+1, -z]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, y-1, z]; (v) [-x+1, y+1, -z+{\script{1\over 2}}].

Table 17
Hydrogen-bond geometry (Å, °) for Lu[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.77 (3) 2.42 (3) 3.1591 (13) 163 (3)
O1—H1B⋯Cl2ii 0.76 (3) 2.40 (3) 3.1625 (12) 171 (2)
O2—H2A⋯Cl1iii 0.73 (3) 2.42 (3) 3.1517 (13) 175 (3)
O2—H2B⋯Cl2iv 0.82 (3) 2.45 (3) 3.2327 (13) 160 (3)
O3—H3A⋯Cl1v 0.79 (3) 2.34 (3) 3.1290 (13) 174 (3)
O3—H3B⋯Cl2 0.77 (3) 2.41 (3) 3.1653 (12) 167 (3)
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x, -y+1, -z]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, y-1, z]; (v) [-x+1, y+1, -z+{\script{1\over 2}}].

The early rare-earth metal (RE = La–Pr) chloride hydrates adopt the [LaCl3(H2O)7] structure type and crystallize in the triclinic space group P[\overline{1}], although there are a few reports on RECl3(H2O)3 trihydrates (RE = La, Ce) crystallizing in the hexa­gonal space group P[\overline{6}]2m or the ortho­rhom­bic space group Pnma (Reuter et al., 1994[Reuter, G., Fink, H. & Seifert, H. (1994). Z. Anorg. Allge Chem. 620, 665-671.]; Reuter & Frenzen, 1994[Reuter, G. & Frenzen, G. (1994). Acta Cryst. C50, 844-845.]). This structure type is characterized by the Wyckoff sequence i11 (excluding H atoms) and the Pearson Symbol aP50, with 11 atomic sites occupying general positions. The crystal structure of [RECl3(H2O)7] (RE = La, Ce, Pr) is better described as a dimeric [(H2O)7RE(μ-Cl)2RE(H2O)7]Cl4 mol­ecule in which each RE atom is coordinated by seven water mol­ecules and the two lanthanide ions are linked by the two inner-sphere bridging chloride (μ-Cl) anions (Fig. 1[link]). This complex [(H2O)7RE(μ-Cl)2RE(H2O)7]4+ inner-sphere cation is charge-balanced by four Cl anions located in the outer-sphere. While we identified the La- and Ce-bearing analogs, we did not find a Pr-containing compound within this structure type.

[Figure 1]
Figure 1
Mol­ecular structure of the dimeric [(H2O)7RE(μ-Cl)2RE(H2O)7]Cl4 compound (RE = La, Ce) with displacement ellipsoids drawn at 50% probability. Hydrogen bonds are shown as bold dashed lines. RE, Cl, O, and H atoms are represented in blue, green, red, and black, respectively. Symmetry code: (i) −x, −y, 1 − z.

Each unit cell consists of a single [(H2O)7RE(μ-Cl)2RE(H2O)7]Cl4 (RE = La, Ce) formula unit with [(H2O)7RE(μ-Cl)2RE(H2O)7]4+ binuclear cations linked via O—H⋯Cl hydrogen bonds ranging in H⋯Cl length from ca. 2.25 Å to 2.51 Å. Two outer-sphere Cl atoms link neighboring cations via these hydrogen bonds (Fig. 2[link]).

[Figure 2]
Figure 2
Schematic view of the packing diagram for the dimeric [(H2O)7RE(μ-Cl)2RE(H2O)7]Cl4 compound (RE = La, Ce). Hydrogen bonds are shown as bold dashed lines, and the unit cell is outlined. RE, Cl, O, and H atoms are represented in blue, green, red, and black, respectively.

The heavier lanthanides (RE = Pr, Nd, Sm–Lu) crystallize in the monoclinic crystal system with the space group P2/c (note that most of the datasets were previously reported in the unconventional space group P2/n). They adopt the GdCl3·6H2O structure type, characterized by the Wyckoff sequence g4fe (excluding H atoms) and Pearson Symbol mP44. Each RECl3·6H2O formula unit consists of an [RECl2(H2O)6]+ inner-sphere monomeric cation charge-balanced by a Cl anion located in the outer-sphere (Fig. 3[link]). The RE3+ cation is coordinated by six water mol­ecules and two chloride anions in distorted square anti­prism fashion and is positioned on a crystallographic twofold axis.

[Figure 3]
Figure 3
Mol­ecular structure of the RECl2(H2O)6Cl compound (RE = Pr, Nd, Sm–Lu) with displacement ellipsoids drawn at 50% probability. Hydrogen bonds are shown as bold dashed lines. RE, Cl, O, and H atoms are represented in blue, green, red, and black, respectively. Symmetry code: (i) 1 − x, y, 1/2 - z.

Each unit cell of the RECl2(H2O)6Cl (RE = Pr, Nd, Sm–Lu) structure type contains two formula units, with [RECl2(H2O)6]+ cations linked via O—H⋯Cl and O—H⋯O hydrogen bonds (Fig. 4[link]). Each outer-sphere chloride ion accepts six O—H⋯Cl contacts (ca. 2.36–2.48 Å for the Ho-bearing structure), thus linking six neighboring cations. The inner sphere Cl atom forms three hydrogen O—H⋯Cl bonds (ca. 2.35–2.40 Å for the Ho-bearing structure), thus linking four [RECl2(H2O)6]+ cations.

[Figure 4]
Figure 4
Schematic view of the packing diagram for the RECl2(H2O)6Cl compound (RE = Pr, Nd, Sm–Lu). Hydrogen bonds are shown as bold dashed lines, and the unit cell is outlined. RE, Cl, O, and H atoms are represented in blue, green, red, and black, respectively.

An analysis of unit-cell volumes across the La–Lu series indicates a gradual decrease (Fig. 5[link]), which is expected due to the decreasing trend for atomic radii of the lanthanides. This reduction in atomic size for heavier RE leads to smaller unit cell volumes in their crystal structures. The notably larger unit-cell volumes of the La- and Ce-bearing compounds are explained by the higher number of coordinated water mol­ecules and different structural arrangements. The variations of other parameters are shown in Fig. 6[link].

[Figure 5]
Figure 5
Variation of unit-cell volumes for RECl3·xH2O (RE = La–Nd, Sm–Lu; x = 6, 7) as determined from single-crystal X-ray diffraction experiments.
[Figure 6]
Figure 6
Variation of unit-cell parameters for RECl3·6H2O as determined from single-crystal X-ray diffraction experiments.

3. Synthesis and crystallization

Single-crystal X-ray diffraction (SCXRD) data collections were performed using commercially available chemicals supplied by Edgetech Industries LLC without further purification. However, large single crystals suitable for property measurements can also be obtained by recrystallization, as reported elsewhere (Chen et al., 1991[Chen, J., Xu, D., Li, L., Wu, J. & Xu, G. (1991). Acta Cryst. C47, 1074-1075.], Peterson et al., 1979[Peterson, E. J., Onstott, E. I. & Von Dreele, R. B. (1979). Acta Cryst. B35, 805-809.]).

4. Refinement and Methodology

Crystal data are summarized in Table 18[link]. SCXRD data were collected under a constant stream of cold nitro­gen gas to protect the crystals from air and moisture and to control the measurement temperature. After the structures were solved, the STRUCTURE TIDY (Gelato & Parthé, 1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]) program was used to standardize the atomic coordinates, and the unit cell was transformed to the conventional monoclinic space group P2/c for the RECl2(H2O)6Cl series.

Table 18
Experimental details

For all structures: Z = 2. Experiments were carried out at 100 K with Ag Kα radiation, λ = 0.56086 Å using a Bruker D8 Venture Duo. Absorption was corrected for by multi-scan methods (SADABS; Krause et al., 2016[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]). All H-atom parameters were refined.

  [LaCl(H2O)7]Cl2 [CeCl(H2O)7]Cl2 [PrCl2(H2O)6]Cl
Crystal data
Mr 371.37 372.58 355.36
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P2/c
a, b, c (Å) 7.9432 (5), 8.2316 (4), 9.2203 (5) 7.8995 (3), 8.2129 (3), 9.1961 (3) 7.9997 (3), 6.5647 (2), 12.1734 (4)
α, β, γ (°) 70.507 (2), 73.098 (2), 81.522 (2) 70.451 (1), 73.172 (1), 81.658 (1) 90, 127.388 (1), 90
V3) 542.92 (5) 537.39 (3) 507.95 (3)
μ (mm−1) 2.42 2.60 2.90
Crystal size (mm) 0.28 × 0.12 × 0.06 0.26 × 0.22 × 0.17 0.06 × 0.06 × 0.05
 
Data collection
Tmin, Tmax 0.044, 0.064 0.214, 0.257 0.218, 0.257
No. of measured, independent and observed [I > 2σ(I)] reflections 43724, 3350, 3078 28063, 3304, 3239 15235, 1567, 1486
Rint 0.069 0.031 0.058
(sin θ/λ)max−1) 0.717 0.718 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.032, 1.01 0.009, 0.019, 1.17 0.014, 0.027, 1.05
No. of reflections 3350 3304 1567
No. of parameters 157 157 71
Δρmax, Δρmin (e Å−3) 0.40, −0.44 0.32, −0.30 0.38, −0.39
  [NdCl2(H2O)6]Cl [SmCl2(H2O)6]Cl [EuCl2(H2O)6]Cl
Crystal data
Mr 358.69 364.80 366.41
Crystal system, space group Monoclinic, P2/c Monoclinic, P2/c Monoclinic, P2/c
a, b, c (Å) 7.9710 (3), 6.5460 (2), 12.1246 (5) 7.9375 (8), 6.5351 (7), 12.0713 (11) 7.9062 (2), 6.5092 (2), 12.0410 (4)
α, β, γ (°) 90, 127.324 (1), 90 90, 127.217 (2), 90 90, 127.231 (1), 90
V3) 503.09 (3) 498.65 (9) 493.38 (3)
μ (mm−1) 3.11 3.51 3.75
Crystal size (mm) 0.16 × 0.12 × 0.11 0.25 × 0.21 × 0.18 0.13 × 0.13 × 0.11
 
Data collection
Tmin, Tmax 0.201, 0.257 0.204, 0.257 0.218, 0.257
No. of measured, independent and observed [I > 2σ(I)] reflections 23233, 1559, 1536 27415, 1553, 1533 21905, 1529, 1504
Rint 0.036 0.046 0.038
(sin θ/λ)max−1) 0.716 0.717 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.007, 0.017, 1.11 0.010, 0.023, 1.19 0.007, 0.016, 1.13
No. of reflections 1559 1553 1529
No. of parameters 72 72 72
Δρmax, Δρmin (e Å−3) 0.25, −0.30 0.48, −0.85 0.29, −0.32
  [GdCl2(H2O)6]Cl [TbCl2(H2O)6]Cl [DyCl2(H2O)6]Cl
Crystal data
Mr 371.70 373.37 376.95
Crystal system, space group Monoclinic, P2/c Monoclinic, P2/c Monoclinic, P2/c
a, b, c (Å) 7.8835 (3), 6.4964 (3), 12.0176 (4) 7.8646 (3), 6.4903 (3), 11.9871 (5) 7.8439 (3), 6.4693 (3), 11.9660 (5)
α, β, γ (°) 90, 127.186 (1), 90 90, 127.134 (1), 90 90, 127.143 (1), 90
V3) 490.33 (3) 487.79 (4) 484.02 (4)
μ (mm−1) 3.99 4.24 4.51
Crystal size (mm) 0.33 × 0.25 × 0.20 0.3 × 0.16 × 0.12 0.23 × 0.19 × 0.14
 
Data collection
Tmin, Tmax 0.172, 0.257 0.223, 0.257 0.184, 0.257
No. of measured, independent and observed [I > 2σ(I)] reflections 26021, 1532, 1520 11117, 1503, 1481 21844, 1501, 1485
Rint 0.037 0.024 0.037
(sin θ/λ)max−1) 0.718 0.716 0.718
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.009, 0.021, 1.23 0.009, 0.020, 1.10 0.008, 0.018, 1.19
No. of reflections 1532 1503 1501
No. of parameters 72 72 72
Δρmax, Δρmin (e Å−3) 0.44, −0.38 0.36, −0.37 0.42, −0.48
  [HoCl2(H2O)6]Cl [ErCl2(H2O)6]Cl [TmCl2(H2O)6]Cl
Crystal data
Mr 379.38 381.71 383.38
Crystal system, space group Monoclinic, P2/c Monoclinic, P2/c Monoclinic, P2/c
a, b, c (Å) 7.8303 (3), 6.4651 (2), 11.9509 (4) 7.8035 (2), 6.4488 (2), 11.9182 (4) 7.7889 (4), 6.4490 (3), 11.8760 (6)
α, β, γ (°) 90, 127.086 (1), 90 90, 127.044 (1), 90 90, 126.961 (1), 90
V3) 482.63 (3) 478.71 (3) 476.66 (4)
μ (mm−1) 4.77 5.07 5.37
Crystal size (mm) 0.14 × 0.10 × 0.07 0.23 × 0.22 × 0.17 0.17 × 0.11 × 0.10
 
Data collection
Tmin, Tmax 0.222, 0.257 0.175, 0.257 0.207, 0.257
No. of measured, independent and observed [I > 2σ(I)] reflections 10309, 1480, 1454 24599, 1481, 1479 16364, 1481, 1464
Rint 0.026 0.034 0.033
(sin θ/λ)max−1) 0.715 0.717 0.717
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.009, 0.020, 1.07 0.009, 0.020, 1.30 0.007, 0.016, 1.15
No. of reflections 1480 1481 1481
No. of parameters 72 72 72
Δρmax, Δρmin (e Å−3) 0.31, −0.36 0.47, −0.88 0.39, −0.48
  [YbCl2(H2O)6]Cl [LuCl2(H2O)6]Cl
Crystal data
Mr 387.49 389.42
Crystal system, space group Monoclinic, P2/c Monoclinic, P2/c
a, b, c (Å) 7.7666 (2), 6.4305 (2), 11.8745 (3) 7.7621 (3), 6.4241 (3), 11.8671 (5)
α, β, γ (°) 90, 126.991 (1), 90 90, 127.008 (1), 90
V3) 473.69 (2) 472.54 (4)
μ (mm−1) 5.69 6.00
Crystal size (mm) 0.30 × 0.23 × 0.20 0.17 × 0.14 × 0.14
 
Data collection
Tmin, Tmax 0.168, 0.257 0.201, 0.257
No. of measured, independent and observed [I > 2σ(I)] reflections 19224, 1464, 1439 23799, 1464, 1436
Rint 0.035 0.041
(sin θ/λ)max−1) 0.717 0.718
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.008, 0.017, 1.19 0.009, 0.020, 1.28
No. of reflections 1464 1464
No. of parameters 72 72
Δρmax, Δρmin (e Å−3) 0.62, −0.74 0.78, −0.82
Computer programs: SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker AXS Inc., Madison Wisconsin, USA]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2014[Palmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Di-µ-chlorido-bis[heptaaqualanthanum(III)] tetrachloride (La) top
Crystal data top
[LaCl(H2O)7]Cl2Z = 2
Mr = 371.37F(000) = 356
Triclinic, P1Dx = 2.272 Mg m3
a = 7.9432 (5) ÅAg Kα radiation, λ = 0.56086 Å
b = 8.2316 (4) ÅCell parameters from 9869 reflections
c = 9.2203 (5) Åθ = 2.4–23.7°
α = 70.507 (2)°µ = 2.42 mm1
β = 73.098 (2)°T = 100 K
γ = 81.522 (2)°Plate, colorless
V = 542.92 (5) Å30.28 × 0.12 × 0.06 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
3078 reflections with I > 2σ(I)
ω scansRint = 0.069
Absorption correction: multi-scan
SADABS-2016/2 (Bruker, 2016)
θmax = 23.7°, θmin = 2.1°
Tmin = 0.044, Tmax = 0.064h = 1111
43724 measured reflectionsk = 1111
3350 independent reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0128P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.032(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.40 e Å3
3350 reflectionsΔρmin = 0.44 e Å3
157 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0070 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.21799 (2)0.18615 (2)0.32361 (2)0.00928 (4)
Cl10.14698 (6)0.17974 (5)0.51434 (5)0.01189 (8)
Cl20.21093 (6)0.77753 (5)0.03491 (5)0.01465 (8)
Cl30.34270 (6)0.38778 (5)0.71161 (5)0.01506 (9)
O10.0304 (2)0.42402 (17)0.17472 (17)0.0149 (3)
O20.07092 (19)0.08113 (17)0.16194 (16)0.0148 (3)
O30.2234 (2)0.46276 (18)0.38494 (18)0.0188 (3)
O40.2311 (2)0.09299 (18)0.61748 (16)0.0153 (3)
O50.3868 (2)0.35162 (17)0.04773 (16)0.0145 (3)
O60.5212 (2)0.2280 (2)0.34138 (17)0.0173 (3)
O70.4532 (2)0.01065 (18)0.19716 (17)0.0164 (3)
H1A0.060 (4)0.447 (3)0.219 (3)0.030 (7)*
H1B0.077 (4)0.509 (3)0.119 (3)0.028 (7)*
H2A0.015 (4)0.143 (3)0.103 (3)0.033 (7)*
H2B0.116 (4)0.003 (4)0.131 (3)0.035 (7)*
H3A0.259 (4)0.470 (4)0.458 (3)0.042 (8)*
H3B0.199 (4)0.553 (4)0.330 (4)0.051 (9)*
H4A0.144 (4)0.052 (3)0.677 (3)0.027 (7)*
H4B0.261 (4)0.171 (3)0.644 (3)0.030 (7)*
H5A0.360 (4)0.367 (4)0.033 (3)0.038 (8)*
H5B0.485 (4)0.339 (4)0.031 (4)0.046 (9)*
H6A0.549 (5)0.312 (4)0.344 (4)0.059 (11)*
H6B0.596 (4)0.151 (4)0.352 (3)0.048 (9)*
H7A0.535 (4)0.031 (4)0.131 (3)0.036 (8)*
H7B0.464 (5)0.115 (4)0.228 (4)0.057 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.00924 (5)0.00899 (5)0.00984 (5)0.00066 (3)0.00284 (3)0.00281 (3)
Cl10.0113 (2)0.01008 (16)0.01293 (17)0.00054 (14)0.00208 (15)0.00269 (14)
Cl20.0132 (2)0.01316 (18)0.01800 (19)0.00013 (15)0.00398 (16)0.00561 (15)
Cl30.0163 (2)0.01438 (18)0.01599 (19)0.00004 (16)0.00586 (17)0.00548 (15)
O10.0113 (7)0.0128 (6)0.0165 (6)0.0003 (5)0.0020 (5)0.0007 (5)
O20.0168 (7)0.0134 (6)0.0173 (6)0.0035 (5)0.0082 (6)0.0072 (5)
O30.0242 (8)0.0134 (6)0.0228 (7)0.0012 (6)0.0101 (6)0.0083 (6)
O40.0155 (7)0.0178 (6)0.0135 (6)0.0060 (5)0.0035 (6)0.0041 (5)
O50.0128 (7)0.0175 (6)0.0122 (6)0.0009 (5)0.0036 (5)0.0028 (5)
O60.0130 (7)0.0187 (7)0.0231 (7)0.0009 (6)0.0062 (6)0.0086 (6)
O70.0157 (8)0.0126 (6)0.0187 (7)0.0007 (5)0.0016 (6)0.0044 (5)
Geometric parameters (Å, º) top
La1—Cl1i2.9376 (4)O2—H2B0.79 (3)
La1—Cl12.9187 (5)O3—H3A0.82 (3)
La1—O12.5443 (13)O3—H3B0.78 (3)
La1—O22.5504 (13)O4—H4A0.78 (3)
La1—O32.5315 (13)O4—H4B0.84 (3)
La1—O42.5873 (13)O5—H5A0.80 (3)
La1—O52.5233 (14)O5—H5B0.75 (3)
La1—O62.5413 (15)O6—H6A0.77 (3)
La1—O72.5643 (13)O6—H6B0.80 (3)
O1—H1A0.75 (3)O7—H7A0.78 (3)
O1—H1B0.79 (3)O7—H7B0.81 (3)
O2—H2A0.80 (3)
Cl1—La1—Cl1i73.941 (12)O6—La1—O1123.86 (5)
O1—La1—Cl1i128.72 (4)O6—La1—O2141.04 (4)
O1—La1—Cl169.96 (4)O6—La1—O469.20 (5)
O1—La1—O267.52 (4)O6—La1—O769.14 (5)
O1—La1—O4130.45 (4)O7—La1—Cl1i68.54 (4)
O1—La1—O7124.76 (4)O7—La1—Cl1139.55 (4)
O2—La1—Cl179.41 (3)O7—La1—O4104.74 (4)
O2—La1—Cl1i71.07 (3)La1—Cl1—La1i106.059 (12)
O2—La1—O4135.97 (5)La1—O1—H1A119 (2)
O2—La1—O774.71 (4)La1—O1—H1B117 (2)
O3—La1—Cl1i140.68 (4)H1A—O1—H1B109 (3)
O3—La1—Cl184.97 (4)La1—O2—H2A124.0 (19)
O3—La1—O170.08 (5)La1—O2—H2B119 (2)
O3—La1—O2137.58 (4)H2A—O2—H2B110 (2)
O3—La1—O474.18 (5)La1—O3—H3A125.3 (19)
O3—La1—O668.30 (5)La1—O3—H3B123 (2)
O3—La1—O7134.49 (5)H3A—O3—H3B112 (3)
O4—La1—Cl1i68.28 (3)La1—O4—H4A112.1 (19)
O4—La1—Cl173.83 (4)La1—O4—H4B114.3 (17)
O5—La1—Cl1136.61 (3)H4A—O4—H4B112 (2)
O5—La1—Cl1i133.83 (3)La1—O5—H5A126 (2)
O5—La1—O166.80 (5)La1—O5—H5B116 (2)
O5—La1—O281.23 (5)H5A—O5—H5B108 (3)
O5—La1—O383.78 (5)La1—O6—H6A124 (3)
O5—La1—O4140.90 (5)La1—O6—H6B123 (2)
O5—La1—O672.77 (5)H6A—O6—H6B112 (3)
O5—La1—O768.91 (5)La1—O7—H7A119 (2)
O6—La1—Cl1138.86 (3)La1—O7—H7B128 (2)
O6—La1—Cl1i107.32 (4)H7A—O7—H7B113 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl3ii0.75 (3)2.48 (3)3.1947 (15)161 (3)
O1—H1B···Cl20.79 (3)2.38 (3)3.1365 (16)161 (2)
O2—H2A···Cl2iii0.80 (3)2.38 (3)3.1378 (14)157 (3)
O2—H2B···Cl2iv0.79 (3)2.26 (3)3.0382 (13)172 (3)
O3—H3A···Cl30.82 (3)2.47 (3)3.2552 (15)160 (3)
O3—H3B···Cl1ii0.78 (3)2.92 (3)3.2954 (13)112 (2)
O3—H3B···Cl20.78 (3)2.72 (3)3.4160 (16)150 (3)
O4—H4A···O2i0.78 (3)2.08 (3)2.859 (2)174 (3)
O4—H4B···Cl30.84 (3)2.31 (3)3.1488 (15)179 (2)
O5—H5A···Cl3v0.80 (3)2.34 (3)3.1308 (14)167 (3)
O5—H5B···Cl2vi0.75 (3)2.44 (3)3.1690 (15)163 (3)
O5—H5B···O5vi0.75 (3)2.67 (3)2.986 (3)108 (2)
O6—H6A···Cl3vii0.77 (3)2.57 (3)3.3288 (16)168 (3)
O6—H6B···Cl1viii0.80 (3)2.93 (3)3.3705 (14)117 (2)
O6—H6B···O4ix0.80 (3)2.24 (3)3.038 (2)169 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y1, z; (v) x, y, z1; (vi) x+1, y+1, z; (vii) x+1, y+1, z+1; (viii) x+1, y, z; (ix) x+1, y, z+1.
Di-µ-chlorido-bis[heptaaquacerium(III)] tetrachloride, (Ce) top
Crystal data top
[CeCl(H2O)7]Cl2Z = 2
Mr = 372.58F(000) = 358
Triclinic, P1Dx = 2.303 Mg m3
a = 7.8995 (3) ÅAg Kα radiation, λ = 0.56086 Å
b = 8.2129 (3) ÅCell parameters from 9812 reflections
c = 9.1961 (3) Åθ = 2.5–23.7°
α = 70.451 (1)°µ = 2.60 mm1
β = 73.172 (1)°T = 100 K
γ = 81.658 (1)°Plate, colorless
V = 537.39 (3) Å30.26 × 0.22 × 0.17 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
3239 reflections with I > 2σ(I)
ω scansRint = 0.031
Absorption correction: multi-scan
SADABS-2016/2 (Bruker, 2016)
θmax = 23.7°, θmin = 1.9°
Tmin = 0.214, Tmax = 0.257h = 1111
28063 measured reflectionsk = 1111
3304 independent reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.009 w = 1/[σ2(Fo2) + (0.0036P)2 + 0.0733P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.019(Δ/σ)max = 0.001
S = 1.17Δρmax = 0.32 e Å3
3304 reflectionsΔρmin = 0.29 e Å3
157 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0349 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.21779 (2)0.18632 (2)0.32382 (2)0.00590 (2)
Cl10.14612 (3)0.17948 (3)0.51435 (3)0.00867 (4)
Cl20.21050 (3)0.77796 (3)0.03514 (3)0.01125 (4)
Cl30.34287 (3)0.38691 (3)0.71200 (3)0.01174 (4)
O10.03034 (11)0.42224 (10)0.17488 (9)0.01184 (13)
O20.07253 (10)0.08169 (10)0.16291 (9)0.01131 (13)
O30.22060 (11)0.46047 (10)0.38631 (10)0.01504 (14)
O40.23110 (10)0.09321 (10)0.61518 (9)0.01193 (13)
O50.38549 (10)0.35125 (10)0.04929 (8)0.01117 (13)
O60.52006 (10)0.22922 (11)0.34141 (9)0.01312 (14)
O70.45125 (10)0.00898 (10)0.19850 (9)0.01262 (14)
H1A0.062 (3)0.449 (2)0.218 (2)0.034 (5)*
H1B0.074 (2)0.507 (2)0.120 (2)0.034 (5)*
H2A0.122 (2)0.003 (2)0.132 (2)0.034 (5)*
H2B0.020 (2)0.144 (2)0.103 (2)0.033 (4)*
H3A0.251 (3)0.468 (2)0.458 (2)0.042 (5)*
H3B0.191 (3)0.554 (3)0.333 (2)0.050 (6)*
H4A0.142 (2)0.055 (2)0.6783 (19)0.023 (4)*
H4B0.255 (2)0.162 (2)0.6465 (19)0.028 (4)*
H5A0.353 (2)0.362 (2)0.028 (2)0.026 (4)*
H5B0.487 (3)0.348 (2)0.027 (2)0.034 (5)*
H6A0.602 (3)0.156 (2)0.343 (2)0.035 (5)*
H6B0.553 (3)0.312 (3)0.347 (2)0.044 (5)*
H7A0.535 (2)0.030 (2)0.134 (2)0.028 (4)*
H7B0.472 (2)0.108 (3)0.232 (2)0.039 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.00610 (3)0.00554 (3)0.00634 (3)0.00042 (2)0.00203 (2)0.00178 (2)
Cl10.00832 (9)0.00669 (9)0.00983 (9)0.00012 (7)0.00148 (7)0.00192 (7)
Cl20.01010 (10)0.00970 (10)0.01461 (10)0.00029 (8)0.00330 (8)0.00484 (8)
Cl30.01327 (10)0.01078 (10)0.01287 (10)0.00063 (8)0.00533 (8)0.00471 (8)
O10.0101 (3)0.0093 (3)0.0125 (3)0.0001 (3)0.0021 (3)0.0003 (3)
O20.0137 (3)0.0101 (3)0.0124 (3)0.0033 (3)0.0068 (3)0.0051 (3)
O30.0198 (4)0.0105 (3)0.0190 (4)0.0010 (3)0.0093 (3)0.0070 (3)
O40.0126 (3)0.0141 (3)0.0105 (3)0.0051 (3)0.0029 (3)0.0040 (3)
O50.0093 (3)0.0133 (3)0.0096 (3)0.0008 (3)0.0022 (3)0.0019 (3)
O60.0090 (3)0.0151 (3)0.0178 (3)0.0006 (3)0.0049 (3)0.0071 (3)
O70.0103 (3)0.0086 (3)0.0157 (3)0.0003 (3)0.0003 (3)0.0031 (3)
Geometric parameters (Å, º) top
Ce1—Cl1i2.9282 (2)O2—H2B0.783 (19)
Ce1—Cl12.8986 (2)O3—H3A0.79 (2)
Ce1—O12.5276 (7)O3—H3B0.80 (2)
Ce1—O22.5229 (7)O4—H4A0.800 (17)
Ce1—O32.5076 (8)O4—H4B0.781 (18)
Ce1—O42.5580 (7)O5—H5A0.798 (17)
Ce1—O52.5018 (7)O5—H5B0.768 (19)
Ce1—O62.5214 (7)O6—H6A0.82 (2)
Ce1—O72.5397 (8)O6—H6B0.79 (2)
O1—H1A0.762 (19)O7—H7A0.775 (18)
O1—H1B0.77 (2)O7—H7B0.78 (2)
O2—H2A0.797 (19)
Cl1—Ce1—Cl1i73.953 (7)O6—Ce1—O1123.87 (3)
O1—Ce1—Cl1i128.491 (19)O6—Ce1—O2140.89 (3)
O1—Ce1—Cl170.026 (19)O6—Ce1—O469.23 (2)
O1—Ce1—O4130.70 (2)O6—Ce1—O769.36 (3)
O1—Ce1—O7124.61 (3)O7—Ce1—Cl1i68.459 (19)
O2—Ce1—Cl179.796 (18)O7—Ce1—Cl1139.540 (18)
O2—Ce1—Cl1i70.981 (18)O7—Ce1—O4104.66 (3)
O2—Ce1—O167.44 (2)Ce1—Cl1—Ce1i106.047 (7)
O2—Ce1—O4135.98 (2)Ce1—O1—H1A120.9 (13)
O2—Ce1—O774.40 (3)Ce1—O1—H1B117.9 (13)
O3—Ce1—Cl1i140.40 (2)H1A—O1—H1B105.8 (18)
O3—Ce1—Cl184.317 (19)Ce1—O2—H2A117.0 (13)
O3—Ce1—O170.16 (3)Ce1—O2—H2B123.0 (12)
O3—Ce1—O2137.56 (3)H2A—O2—H2B111.1 (17)
O3—Ce1—O474.09 (3)Ce1—O3—H3A125.9 (14)
O3—Ce1—O668.59 (3)Ce1—O3—H3B122.9 (14)
O3—Ce1—O7135.12 (3)H3A—O3—H3B111.1 (19)
O4—Ce1—Cl1i68.263 (18)Ce1—O4—H4A114.1 (11)
O4—Ce1—Cl173.723 (18)Ce1—O4—H4B117.9 (12)
O5—Ce1—Cl1136.599 (19)H4A—O4—H4B104.8 (15)
O5—Ce1—Cl1i133.776 (18)Ce1—O5—H5A122.1 (12)
O5—Ce1—O166.70 (3)Ce1—O5—H5B120.1 (13)
O5—Ce1—O281.00 (2)H5A—O5—H5B108.9 (17)
O5—Ce1—O384.25 (3)Ce1—O6—H6A124.5 (12)
O5—Ce1—O4141.04 (3)Ce1—O6—H6B127.8 (15)
O5—Ce1—O672.84 (2)H6A—O6—H6B107.7 (18)
O5—Ce1—O769.00 (3)Ce1—O7—H7A119.7 (12)
O6—Ce1—Cl1138.654 (18)Ce1—O7—H7B129.6 (14)
O6—Ce1—Cl1i107.53 (2)H7A—O7—H7B107.2 (18)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl3ii0.762 (19)2.458 (19)3.1945 (8)162.9 (18)
O1—H1B···Cl20.77 (2)2.405 (19)3.1380 (8)160.6 (17)
O2—H2A···Cl2iii0.797 (19)2.251 (19)3.0368 (8)168.6 (17)
O2—H2B···Cl2iv0.783 (19)2.411 (19)3.1383 (8)155.0 (16)
O3—H3A···Cl30.79 (2)2.50 (2)3.2501 (9)160.9 (18)
O3—H3B···Cl1ii0.80 (2)2.91 (2)3.3040 (8)112.9 (16)
O3—H3B···Cl20.80 (2)2.71 (2)3.4188 (9)147.3 (18)
O4—H4A···O2i0.800 (17)2.068 (17)2.8609 (11)171.2 (16)
O4—H4B···Cl30.781 (18)2.369 (18)3.1466 (8)173.7 (16)
O5—H5A···Cl3v0.798 (17)2.354 (17)3.1286 (8)164.0 (16)
O5—H5B···Cl2vi0.768 (19)2.446 (19)3.1699 (8)157.6 (17)
O5—H5B···O5vi0.768 (19)2.601 (17)2.9858 (15)112.9 (15)
O6—H6A···Cl1vii0.82 (2)2.936 (18)3.3662 (8)115.2 (14)
O6—H6A···O4viii0.82 (2)2.25 (2)3.0451 (11)164.9 (17)
O6—H6B···Cl3ix0.79 (2)2.55 (2)3.3165 (8)164.4 (18)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x, y, z1; (vi) x+1, y+1, z; (vii) x+1, y, z; (viii) x+1, y, z+1; (ix) x+1, y+1, z+1.
Hexaaquadichloridoprotactinium(III) chloride (Pr) top
Crystal data top
[PrCl2(H2O)6]ClF(000) = 340
Mr = 355.36Dx = 2.323 Mg m3
Monoclinic, P2/cAg Kα radiation, λ = 0.56086 Å
a = 7.9997 (3) ÅCell parameters from 6065 reflections
b = 6.5647 (2) Åθ = 2.5–23.7°
c = 12.1734 (4) ŵ = 2.90 mm1
β = 127.388 (1)°T = 100 K
V = 507.95 (3) Å3Plate, green
Z = 20.06 × 0.06 × 0.05 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
1486 reflections with I > 2σ(I)
ω scansRint = 0.058
Absorption correction: multi-scan
SADABS-2016/2 (Bruker, 2016)
θmax = 23.7°, θmin = 2.5°
Tmin = 0.218, Tmax = 0.257h = 1111
15235 measured reflectionsk = 99
1567 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014All H-atom parameters refined
wR(F2) = 0.027 w = 1/[σ2(Fo2) + (0.0063P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1567 reflectionsΔρmax = 0.38 e Å3
71 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.5000000.14679 (2)0.2500000.00584 (3)
Cl10.29528 (6)0.17308 (5)0.05469 (4)0.01042 (7)
Cl20.0000000.62270 (8)0.2500000.01100 (10)
O10.1632 (2)0.29975 (19)0.05765 (13)0.0114 (2)
O20.2337 (2)0.0446 (2)0.28224 (14)0.0120 (2)
O30.4395 (2)0.42625 (18)0.35562 (13)0.0116 (2)
H1A0.063 (4)0.265 (4)0.044 (3)0.030 (7)*
H1B0.132 (4)0.327 (3)0.015 (3)0.027 (7)*
H2A0.251 (4)0.083 (4)0.348 (3)0.032 (7)*
H2B0.192 (4)0.065 (4)0.268 (2)0.025 (6)*
H3A0.508 (4)0.524 (4)0.384 (2)0.030 (7)*
H3B0.323 (4)0.454 (4)0.328 (3)0.027 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.00553 (6)0.00602 (5)0.00598 (6)0.0000.00349 (5)0.000
Cl10.00986 (19)0.00979 (16)0.01028 (17)0.00112 (13)0.00542 (15)0.00229 (13)
Cl20.0102 (3)0.0119 (2)0.0114 (2)0.0000.0068 (2)0.000
O10.0075 (6)0.0150 (6)0.0101 (6)0.0006 (5)0.0046 (5)0.0029 (4)
O20.0139 (7)0.0124 (6)0.0140 (6)0.0029 (5)0.0107 (6)0.0020 (5)
O30.0089 (6)0.0101 (5)0.0159 (6)0.0013 (5)0.0076 (5)0.0040 (5)
Geometric parameters (Å, º) top
Pr1—Cl1i2.8312 (4)Pr1—O3i2.4513 (12)
Pr1—Cl12.8312 (4)O1—H1A0.75 (3)
Pr1—O1i2.4677 (13)O1—H1B0.78 (3)
Pr1—O12.4677 (13)O2—H2A0.76 (3)
Pr1—O22.4818 (13)O2—H2B0.77 (2)
Pr1—O2i2.4817 (13)O3—H3A0.78 (3)
Pr1—O32.4513 (12)O3—H3B0.80 (3)
Cl1—Pr1—Cl1i84.250 (16)O3i—Pr1—O169.35 (5)
O1—Pr1—Cl1i147.16 (3)O3—Pr1—O175.14 (4)
O1i—Pr1—Cl1147.16 (3)O3i—Pr1—O1i75.14 (4)
O1i—Pr1—Cl1i76.31 (3)O3—Pr1—O1i69.35 (5)
O1—Pr1—Cl176.31 (3)O3—Pr1—O2i138.35 (4)
O1i—Pr1—O1131.98 (6)O3i—Pr1—O2138.35 (4)
O1—Pr1—O2i120.50 (4)O3i—Pr1—O2i69.97 (4)
O1—Pr1—O273.29 (4)O3—Pr1—O269.97 (4)
O1i—Pr1—O2i73.29 (4)O3i—Pr1—O383.09 (6)
O1i—Pr1—O2120.50 (4)Pr1—O1—H1A119 (2)
O2i—Pr1—Cl177.35 (3)Pr1—O1—H1B125.5 (19)
O2—Pr1—Cl1i77.35 (3)H1A—O1—H1B105 (3)
O2i—Pr1—Cl1i79.51 (3)Pr1—O2—H2A117 (2)
O2—Pr1—Cl179.51 (3)Pr1—O2—H2B121.3 (18)
O2i—Pr1—O2148.63 (6)H2A—O2—H2B108 (2)
O3—Pr1—Cl1142.92 (3)Pr1—O3—H3A122.8 (18)
O3—Pr1—Cl1i108.20 (3)Pr1—O3—H3B120.2 (17)
O3i—Pr1—Cl1108.20 (3)H3A—O3—H3B109 (2)
O3i—Pr1—Cl1i142.92 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1ii0.75 (3)2.42 (3)3.1498 (14)166 (3)
O1—H1B···Cl2iii0.78 (3)2.40 (3)3.1706 (13)172 (2)
O2—H2A···Cl1iv0.76 (3)2.40 (3)3.1575 (13)175 (2)
O2—H2B···Cl2v0.77 (2)2.49 (2)3.2291 (14)163 (2)
O3—H3A···Cl1vi0.78 (3)2.36 (3)3.1303 (14)174 (2)
O3—H3B···Cl20.80 (3)2.41 (3)3.1919 (14)166 (2)
Symmetry codes: (ii) x, y, z; (iii) x, y+1, z; (iv) x, y, z+1/2; (v) x, y1, z; (vi) x+1, y+1, z+1/2.
Hexaaquadichloridoneodymium(III) chloride (Nd) top
Crystal data top
[NdCl2(H2O)6]ClF(000) = 342
Mr = 358.69Dx = 2.368 Mg m3
Monoclinic, P2/cAg Kα radiation, λ = 0.56086 Å
a = 7.9710 (3) ÅCell parameters from 9892 reflections
b = 6.5460 (2) Åθ = 2.5–23.7°
c = 12.1246 (5) ŵ = 3.11 mm1
β = 127.324 (1)°T = 100 K
V = 503.09 (3) Å3Plate, purple
Z = 20.16 × 0.12 × 0.11 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
1536 reflections with I > 2σ(I)
ω scansRint = 0.036
Absorption correction: multi-scan
SADABS-2016/2 (Bruker, 2016)
θmax = 23.7°, θmin = 2.5°
Tmin = 0.201, Tmax = 0.257h = 1111
23233 measured reflectionsk = 99
1559 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.007 w = 1/[σ2(Fo2) + (0.0058P)2 + 0.0784P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.017(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.25 e Å3
1559 reflectionsΔρmin = 0.30 e Å3
72 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0145 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.5000000.14781 (2)0.2500000.00585 (3)
Cl10.29595 (3)0.17132 (3)0.05545 (2)0.01031 (4)
Cl20.0000000.62320 (5)0.2500000.01090 (5)
O10.16396 (10)0.30014 (11)0.05851 (7)0.01173 (12)
O20.23447 (10)0.04554 (11)0.28178 (8)0.01176 (12)
O30.44019 (11)0.42581 (11)0.35561 (7)0.01172 (12)
H1A0.063 (2)0.268 (3)0.0458 (17)0.031 (4)*
H1B0.137 (2)0.327 (2)0.0083 (18)0.024 (4)*
H2A0.246 (3)0.083 (3)0.3463 (18)0.034 (4)*
H2B0.187 (2)0.061 (3)0.2652 (16)0.028 (4)*
H3A0.511 (2)0.526 (3)0.3820 (16)0.029 (4)*
H3B0.327 (3)0.463 (2)0.3272 (16)0.028 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.00556 (3)0.00614 (4)0.00597 (4)0.0000.00356 (3)0.000
Cl10.01013 (8)0.00972 (9)0.00982 (9)0.00096 (6)0.00539 (7)0.00215 (7)
Cl20.01039 (12)0.01175 (13)0.01133 (13)0.0000.00699 (10)0.000
O10.0084 (3)0.0150 (3)0.0102 (3)0.0005 (2)0.0048 (2)0.0031 (2)
O20.0136 (3)0.0115 (3)0.0142 (3)0.0033 (2)0.0105 (3)0.0026 (3)
O30.0102 (3)0.0104 (3)0.0154 (3)0.0013 (2)0.0081 (2)0.0037 (2)
Geometric parameters (Å, º) top
Nd1—Cl12.8145 (2)Nd1—O3i2.4328 (7)
Nd1—Cl1i2.8145 (2)O1—H1A0.749 (16)
Nd1—O1i2.4532 (7)O1—H1B0.722 (17)
Nd1—O12.4532 (7)O2—H2A0.770 (18)
Nd1—O2i2.4629 (6)O2—H2B0.760 (17)
Nd1—O22.4629 (6)O3—H3A0.793 (16)
Nd1—O32.4328 (7)O3—H3B0.782 (16)
Cl1i—Nd1—Cl184.154 (9)O3i—Nd1—O169.38 (2)
O1—Nd1—Cl176.348 (18)O3—Nd1—O175.17 (2)
O1i—Nd1—Cl1i76.348 (18)O3i—Nd1—O1i75.17 (2)
O1i—Nd1—Cl1147.078 (18)O3—Nd1—O1i69.38 (2)
O1—Nd1—Cl1i147.077 (18)O3—Nd1—O270.11 (2)
O1i—Nd1—O1132.04 (3)O3i—Nd1—O2i70.11 (2)
O1—Nd1—O273.13 (2)O3i—Nd1—O2138.33 (2)
O1—Nd1—O2i120.74 (2)O3—Nd1—O2i138.33 (2)
O1i—Nd1—O2120.74 (2)O3i—Nd1—O383.16 (3)
O1i—Nd1—O2i73.13 (2)Nd1—O1—H1A119.8 (13)
O2—Nd1—Cl1i77.397 (17)Nd1—O1—H1B125.2 (12)
O2i—Nd1—Cl177.398 (17)H1A—O1—H1B106.3 (16)
O2—Nd1—Cl179.318 (18)Nd1—O2—H2A119.3 (12)
O2i—Nd1—Cl1i79.318 (18)Nd1—O2—H2B123.0 (12)
O2—Nd1—O2i148.45 (3)H2A—O2—H2B107.0 (16)
O3—Nd1—Cl1i108.189 (17)Nd1—O3—H3A120.5 (11)
O3—Nd1—Cl1142.963 (17)Nd1—O3—H3B122.7 (11)
O3i—Nd1—Cl1i142.964 (17)H3A—O3—H3B105.9 (15)
O3i—Nd1—Cl1108.190 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1ii0.749 (16)2.418 (16)3.1491 (7)165.6 (16)
O1—H1B···Cl2iii0.722 (17)2.451 (18)3.1661 (8)170.8 (15)
O2—H2A···Cl1iv0.770 (18)2.387 (18)3.1552 (8)175.3 (17)
O2—H2B···Cl2v0.760 (17)2.490 (17)3.2267 (8)164.0 (15)
O3—H3A···Cl1vi0.793 (16)2.337 (17)3.1290 (7)176.1 (15)
O3—H3B···Cl20.782 (16)2.413 (16)3.1894 (7)172.0 (15)
Symmetry codes: (ii) x, y, z; (iii) x, y+1, z; (iv) x, y, z+1/2; (v) x, y1, z; (vi) x+1, y+1, z+1/2.
Hexaaquadichloridosamarium(III) chloride (Sm) top
Crystal data top
[SmCl2(H2O)6]ClF(000) = 346
Mr = 364.80Dx = 2.430 Mg m3
Monoclinic, P2/cAg Kα radiation, λ = 0.56086 Å
a = 7.9375 (8) ÅCell parameters from 9537 reflections
b = 6.5351 (7) Åθ = 3.0–23.7°
c = 12.0713 (11) ŵ = 3.51 mm1
β = 127.217 (2)°T = 100 K
V = 498.65 (9) Å3Plate, yellow
Z = 20.25 × 0.21 × 0.18 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
1533 reflections with I > 2σ(I)
ω scansRint = 0.046
Absorption correction: multi-scan
SADABS-2016/2 (Bruker, 2016)
θmax = 23.7°, θmin = 2.5°
Tmin = 0.204, Tmax = 0.257h = 1111
27415 measured reflectionsk = 99
1553 independent reflectionsl = 1716
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.010 w = 1/[σ2(Fo2) + (0.0104P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.023(Δ/σ)max = 0.001
S = 1.19Δρmax = 0.48 e Å3
1553 reflectionsΔρmin = 0.85 e Å3
72 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0299 (11)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.5000000.14983 (2)0.2500000.00823 (4)
Cl10.29725 (4)0.16793 (4)0.05721 (3)0.01414 (5)
Cl20.0000000.62416 (6)0.2500000.01522 (7)
O10.16623 (14)0.30030 (14)0.06034 (9)0.01545 (15)
O20.23649 (13)0.04788 (14)0.28158 (9)0.01546 (15)
O30.44104 (14)0.42539 (13)0.35504 (9)0.01546 (15)
H1A0.072 (3)0.272 (3)0.048 (2)0.030 (5)*
H1B0.135 (4)0.333 (3)0.013 (3)0.039 (6)*
H2A0.250 (3)0.085 (3)0.351 (2)0.028 (4)*
H2B0.187 (3)0.062 (3)0.2644 (18)0.024 (4)*
H3A0.510 (3)0.525 (3)0.381 (2)0.041 (5)*
H3B0.324 (3)0.457 (3)0.3251 (18)0.029 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.00783 (5)0.00820 (5)0.00880 (4)0.0000.00510 (3)0.000
Cl10.01386 (12)0.01289 (12)0.01390 (11)0.00140 (8)0.00746 (10)0.00317 (8)
Cl20.01447 (16)0.01628 (16)0.01618 (16)0.0000.00993 (14)0.000
O10.0105 (4)0.0191 (4)0.0140 (4)0.0011 (3)0.0059 (3)0.0040 (3)
O20.0174 (4)0.0152 (4)0.0192 (4)0.0043 (3)0.0139 (3)0.0029 (3)
O30.0141 (4)0.0131 (4)0.0204 (4)0.0018 (3)0.0111 (3)0.0052 (3)
Geometric parameters (Å, º) top
Sm1—Cl12.7906 (3)Sm1—O32.4057 (8)
Sm1—Cl1i2.7906 (3)O1—H1A0.693 (19)
Sm1—O1i2.4269 (8)O1—H1B0.79 (3)
Sm1—O12.4269 (8)O2—H2A0.81 (2)
Sm1—O22.4349 (8)O2—H2B0.78 (2)
Sm1—O2i2.4349 (8)O3—H3A0.78 (2)
Sm1—O3i2.4057 (8)O3—H3B0.794 (19)
Cl1i—Sm1—Cl183.829 (14)O3—Sm1—O175.20 (3)
O1—Sm1—Cl176.40 (2)O3i—Sm1—O169.44 (3)
O1i—Sm1—Cl1i76.40 (2)O3—Sm1—O1i69.44 (3)
O1i—Sm1—Cl1146.94 (2)O3i—Sm1—O1i75.20 (3)
O1—Sm1—Cl1i146.94 (2)O3i—Sm1—O2i70.30 (3)
O1i—Sm1—O1132.20 (4)O3—Sm1—O270.30 (3)
O1—Sm1—O2i120.94 (3)O3—Sm1—O2i138.31 (3)
O1—Sm1—O273.00 (3)O3i—Sm1—O2138.31 (3)
O1i—Sm1—O2i73.00 (3)O3—Sm1—O3i83.07 (4)
O1i—Sm1—O2120.94 (3)Sm1—O1—H1A120.8 (17)
O2i—Sm1—Cl1i79.06 (2)Sm1—O1—H1B126.5 (17)
O2—Sm1—Cl179.06 (2)H1A—O1—H1B105 (2)
O2i—Sm1—Cl177.44 (2)Sm1—O2—H2A119.3 (13)
O2—Sm1—Cl1i77.44 (2)Sm1—O2—H2B123.1 (13)
O2i—Sm1—O2148.24 (4)H2A—O2—H2B106.3 (18)
O3i—Sm1—Cl1i143.00 (2)Sm1—O3—H3A121.5 (16)
O3i—Sm1—Cl1108.38 (2)Sm1—O3—H3B120.0 (13)
O3—Sm1—Cl1i108.38 (2)H3A—O3—H3B108 (2)
O3—Sm1—Cl1143.00 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1ii0.693 (19)2.484 (19)3.1594 (10)165 (2)
O1—H1B···Cl2iii0.79 (3)2.39 (3)3.1685 (9)169.2 (19)
O2—H2A···Cl1iv0.81 (2)2.35 (2)3.1586 (9)175.9 (18)
O2—H2B···Cl2v0.78 (2)2.48 (2)3.2358 (10)163.6 (17)
O3—H3A···Cl1vi0.78 (2)2.36 (2)3.1367 (10)176 (2)
O3—H3B···Cl20.794 (19)2.41 (2)3.1908 (9)167.7 (18)
Symmetry codes: (ii) x, y, z; (iii) x, y+1, z; (iv) x, y, z+1/2; (v) x, y1, z; (vi) x+1, y+1, z+1/2.
Hexaaquadichloridoeuropium(III) chloride (Eu) top
Crystal data top
[EuCl2(H2O)6]ClF(000) = 348
Mr = 366.41Dx = 2.466 Mg m3
Monoclinic, P2/cAg Kα radiation, λ = 0.56086 Å
a = 7.9062 (2) ÅCell parameters from 9987 reflections
b = 6.5092 (2) Åθ = 2.5–23.7°
c = 12.0410 (4) ŵ = 3.75 mm1
β = 127.231 (1)°T = 100 K
V = 493.38 (3) Å3Plate, colorless
Z = 20.13 × 0.13 × 0.11 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
1504 reflections with I > 2σ(I)
ω scansRint = 0.038
Absorption correction: multi-scan
SADABS-2016/2 (Bruker, 2016)
θmax = 23.7°, θmin = 2.5°
Tmin = 0.218, Tmax = 0.257h = 1111
21905 measured reflectionsk = 99
1529 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.007 w = 1/[σ2(Fo2) + (0.0058P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.016(Δ/σ)max = 0.001
S = 1.13Δρmax = 0.29 e Å3
1529 reflectionsΔρmin = 0.32 e Å3
72 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0155 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.5000000.15065 (2)0.2500000.00549 (3)
Cl10.29777 (3)0.16684 (3)0.05730 (2)0.00967 (4)
Cl20.0000000.62348 (4)0.2500000.01034 (6)
O10.16667 (11)0.30060 (11)0.06078 (8)0.01088 (13)
O20.23665 (11)0.04821 (11)0.28100 (8)0.01108 (13)
O30.44219 (11)0.42430 (10)0.35568 (8)0.01082 (13)
H1A0.062 (2)0.268 (2)0.0449 (17)0.029 (4)*
H1B0.134 (3)0.332 (2)0.011 (2)0.028 (4)*
H2A0.250 (2)0.085 (2)0.3479 (17)0.024 (4)*
H2B0.193 (2)0.060 (2)0.2653 (16)0.026 (4)*
H3A0.513 (2)0.523 (2)0.3791 (16)0.030 (4)*
H3B0.334 (2)0.458 (2)0.3268 (16)0.025 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.00511 (3)0.00572 (3)0.00569 (4)0.0000.00329 (3)0.000
Cl10.00927 (9)0.00919 (9)0.00941 (10)0.00089 (7)0.00505 (8)0.00199 (7)
Cl20.00946 (13)0.01139 (13)0.01076 (14)0.0000.00643 (12)0.000
O10.0075 (3)0.0138 (3)0.0098 (3)0.0005 (2)0.0044 (3)0.0026 (3)
O20.0130 (3)0.0106 (3)0.0135 (3)0.0026 (2)0.0101 (3)0.0020 (3)
O30.0083 (3)0.0095 (3)0.0147 (4)0.0013 (2)0.0071 (3)0.0039 (3)
Geometric parameters (Å, º) top
Eu1—Cl12.7788 (2)Eu1—O32.3884 (7)
Eu1—Cl1i2.7788 (2)O1—H1A0.760 (15)
Eu1—O1i2.4131 (7)O1—H1B0.766 (19)
Eu1—O12.4131 (7)O2—H2A0.784 (16)
Eu1—O22.4206 (7)O2—H2B0.759 (16)
Eu1—O2i2.4206 (7)O3—H3A0.783 (16)
Eu1—O3i2.3884 (7)O3—H3B0.737 (15)
Cl1i—Eu1—Cl183.904 (10)O3—Eu1—O175.50 (3)
O1—Eu1—Cl176.376 (18)O3i—Eu1—O169.33 (2)
O1i—Eu1—Cl1i76.376 (18)O3—Eu1—O1i69.33 (2)
O1i—Eu1—Cl1146.839 (18)O3i—Eu1—O1i75.50 (3)
O1—Eu1—Cl1i146.840 (18)O3i—Eu1—O2i70.34 (2)
O1i—Eu1—O1132.29 (3)O3—Eu1—O270.34 (2)
O1—Eu1—O2i121.05 (3)O3—Eu1—O2i138.36 (2)
O1—Eu1—O272.97 (3)O3i—Eu1—O2138.36 (2)
O1i—Eu1—O2i72.97 (3)O3—Eu1—O3i83.55 (3)
O1i—Eu1—O2121.05 (3)Eu1—O1—H1A121.7 (12)
O2i—Eu1—Cl1i79.036 (19)Eu1—O1—H1B127.1 (12)
O2—Eu1—Cl179.037 (19)H1A—O1—H1B102.6 (16)
O2i—Eu1—Cl177.317 (17)Eu1—O2—H2A118.7 (11)
O2—Eu1—Cl1i77.317 (17)Eu1—O2—H2B121.7 (11)
O2i—Eu1—O2148.02 (3)H2A—O2—H2B107.3 (15)
O3i—Eu1—Cl1i143.185 (18)Eu1—O3—H3A118.5 (11)
O3i—Eu1—Cl1107.979 (18)Eu1—O3—H3B120.7 (12)
O3—Eu1—Cl1i107.980 (18)H3A—O3—H3B107.7 (15)
O3—Eu1—Cl1143.185 (18)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1ii0.760 (15)2.407 (15)3.1537 (7)167.5 (16)
O1—H1B···Cl2iii0.766 (19)2.407 (19)3.1649 (8)170.6 (14)
O2—H2A···Cl1iv0.784 (16)2.373 (17)3.1549 (8)175.1 (14)
O2—H2B···Cl2v0.759 (16)2.500 (15)3.2308 (7)162.1 (14)
O3—H3A···Cl1vi0.783 (16)2.349 (16)3.1307 (7)175.7 (14)
O3—H3B···Cl20.737 (15)2.455 (15)3.1842 (7)170.3 (15)
Symmetry codes: (ii) x, y, z; (iii) x, y+1, z; (iv) x, y, z+1/2; (v) x, y1, z; (vi) x+1, y+1, z+1/2.
Hexaaquadichloridogadolinium(III) chloride (Gd) top
Crystal data top
[GdCl2(H2O)6]ClF(000) = 350
Mr = 371.70Dx = 2.518 Mg m3
Monoclinic, P2/cAg Kα radiation, λ = 0.56086 Å
a = 7.8835 (3) ÅCell parameters from 9213 reflections
b = 6.4964 (3) Åθ = 2.5–23.8°
c = 12.0176 (4) ŵ = 3.99 mm1
β = 127.186 (1)°T = 100 K
V = 490.33 (3) Å3Plate, colorless
Z = 20.33 × 0.25 × 0.20 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
1520 reflections with I > 2σ(I)
ω scansRint = 0.037
Absorption correction: multi-scan
SADABS-2016/2 (Bruker, 2016)
θmax = 23.8°, θmin = 2.5°
Tmin = 0.172, Tmax = 0.257h = 1111
26021 measured reflectionsk = 99
1532 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.009 w = 1/[σ2(Fo2) + (0.0082P)2 + 0.0734P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.021(Δ/σ)max = 0.001
S = 1.23Δρmax = 0.44 e Å3
1532 reflectionsΔρmin = 0.38 e Å3
72 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0279 (9)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.5000000.15160 (2)0.2500000.00581 (3)
Cl10.29831 (4)0.16561 (4)0.05775 (3)0.01005 (5)
Cl20.0000000.62367 (6)0.2500000.01075 (7)
O10.16722 (14)0.30084 (14)0.06138 (9)0.01150 (15)
O20.23723 (13)0.04881 (14)0.28098 (9)0.01135 (15)
O30.44242 (14)0.42417 (13)0.35554 (9)0.01117 (15)
H1A0.060 (3)0.266 (3)0.047 (2)0.028 (5)*
H1B0.139 (3)0.329 (3)0.008 (2)0.023 (5)*
H2A0.254 (3)0.086 (3)0.350 (2)0.029 (5)*
H2B0.189 (3)0.068 (3)0.264 (2)0.030 (5)*
H3A0.513 (4)0.532 (3)0.381 (2)0.037 (5)*
H3B0.325 (3)0.458 (3)0.326 (2)0.027 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.00572 (4)0.00572 (4)0.00615 (4)0.0000.00367 (3)0.000
Cl10.00989 (11)0.00916 (11)0.00986 (11)0.00088 (8)0.00532 (10)0.00202 (8)
Cl20.01014 (16)0.01129 (16)0.01144 (16)0.0000.00685 (14)0.000
O10.0083 (4)0.0145 (4)0.0100 (4)0.0004 (3)0.0046 (3)0.0025 (3)
O20.0127 (4)0.0110 (4)0.0138 (4)0.0024 (3)0.0098 (3)0.0017 (3)
O30.0100 (4)0.0088 (4)0.0151 (4)0.0010 (3)0.0078 (3)0.0032 (3)
Geometric parameters (Å, º) top
Gd1—Cl1i2.7699 (3)Gd1—O3i2.3762 (8)
Gd1—Cl12.7699 (3)O1—H1A0.79 (2)
Gd1—O12.4026 (9)O1—H1B0.75 (2)
Gd1—O1i2.4026 (9)O2—H2A0.80 (2)
Gd1—O2i2.4101 (8)O2—H2B0.82 (2)
Gd1—O22.4101 (8)O3—H3A0.83 (2)
Gd1—O32.3762 (8)O3—H3B0.79 (2)
Cl1—Gd1—Cl1i83.855 (12)O3i—Gd1—O1i75.58 (3)
O1i—Gd1—Cl1i76.37 (2)O3—Gd1—O1i69.37 (3)
O1—Gd1—Cl176.37 (2)O3i—Gd1—O169.37 (3)
O1—Gd1—Cl1i146.74 (2)O3—Gd1—O175.58 (3)
O1i—Gd1—Cl1146.74 (2)O3—Gd1—O270.41 (3)
O1—Gd1—O1i132.40 (4)O3i—Gd1—O2i70.41 (3)
O1i—Gd1—O2121.09 (3)O3i—Gd1—O2138.44 (3)
O1i—Gd1—O2i72.98 (3)O3—Gd1—O2i138.44 (3)
O1—Gd1—O272.97 (3)O3i—Gd1—O383.65 (4)
O1—Gd1—O2i121.09 (3)Gd1—O1—H1A120.3 (15)
O2—Gd1—Cl178.99 (2)Gd1—O1—H1B125.0 (15)
O2i—Gd1—Cl1i78.99 (2)H1A—O1—H1B106 (2)
O2—Gd1—Cl1i77.21 (2)Gd1—O2—H2A117.6 (15)
O2i—Gd1—Cl177.21 (2)Gd1—O2—H2B121.9 (14)
O2—Gd1—O2i147.83 (4)H2A—O2—H2B108 (2)
O3—Gd1—Cl1143.24 (2)Gd1—O3—H3A121.6 (14)
O3—Gd1—Cl1i107.92 (2)Gd1—O3—H3B121.0 (14)
O3i—Gd1—Cl1107.92 (2)H3A—O3—H3B106 (2)
O3i—Gd1—Cl1i143.24 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1ii0.79 (2)2.39 (2)3.1527 (9)165 (2)
O1—H1B···Cl2iii0.75 (2)2.43 (2)3.1651 (9)170.1 (19)
O2—H2A···Cl1iv0.80 (2)2.36 (2)3.1519 (9)175 (2)
O2—H2B···Cl2v0.82 (2)2.44 (2)3.2284 (9)161.7 (18)
O3—H3A···Cl1vi0.83 (2)2.30 (2)3.1290 (9)178 (2)
O3—H3B···Cl20.79 (2)2.40 (2)3.1790 (9)169.1 (19)
Symmetry codes: (ii) x, y, z; (iii) x, y+1, z; (iv) x, y, z+1/2; (v) x, y1, z; (vi) x+1, y+1, z+1/2.
Hexaaquadichloridoterbium(III) chloride (Tb) top
Crystal data top
[TbCl2(H2O)6]ClF(000) = 352
Mr = 373.37Dx = 2.542 Mg m3
Monoclinic, P2/cAg Kα radiation, λ = 0.56086 Å
a = 7.8646 (3) ÅCell parameters from 9445 reflections
b = 6.4903 (3) Åθ = 2.5–23.7°
c = 11.9871 (5) ŵ = 4.24 mm1
β = 127.134 (1)°T = 100 K
V = 487.79 (4) Å3Plate, colorless
Z = 20.3 × 0.16 × 0.12 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
1481 reflections with I > 2σ(I)
ω scansRint = 0.024
Absorption correction: multi-scan
SADABS-2016/2 (Bruker, 2016)
θmax = 23.7°, θmin = 2.5°
Tmin = 0.223, Tmax = 0.257h = 1011
11117 measured reflectionsk = 99
1503 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.009 w = 1/[σ2(Fo2) + (0.008P)2 + 0.0701P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.020(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.36 e Å3
1503 reflectionsΔρmin = 0.37 e Å3
72 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0117 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.5000000.15305 (2)0.2500000.00536 (3)
Cl10.29840 (4)0.16404 (4)0.05842 (3)0.00937 (5)
Cl20.0000000.62554 (6)0.2500000.01012 (7)
O10.16832 (14)0.30085 (14)0.06248 (10)0.01064 (16)
O20.23848 (14)0.05048 (15)0.28092 (10)0.01085 (16)
O30.44279 (14)0.42471 (14)0.35533 (9)0.01056 (16)
H1A0.065 (3)0.265 (3)0.049 (2)0.026 (5)*
H1B0.139 (3)0.325 (3)0.011 (2)0.028 (5)*
H2A0.257 (3)0.088 (3)0.353 (2)0.030 (5)*
H2B0.194 (3)0.058 (3)0.262 (2)0.026 (5)*
H3A0.519 (3)0.525 (3)0.383 (2)0.028 (5)*
H3B0.327 (3)0.453 (3)0.326 (2)0.033 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.00486 (4)0.00550 (4)0.00570 (4)0.0000.00318 (3)0.000
Cl10.00902 (11)0.00878 (12)0.00908 (11)0.00078 (8)0.00481 (10)0.00186 (9)
Cl20.00953 (16)0.01080 (17)0.01046 (17)0.0000.00626 (14)0.000
O10.0076 (4)0.0132 (4)0.0094 (4)0.0004 (3)0.0043 (3)0.0024 (3)
O20.0123 (4)0.0102 (4)0.0132 (4)0.0030 (3)0.0094 (3)0.0027 (3)
O30.0089 (4)0.0088 (4)0.0145 (4)0.0011 (3)0.0073 (3)0.0035 (3)
Geometric parameters (Å, º) top
Tb1—Cl1i2.7617 (3)Tb1—O32.3646 (9)
Tb1—Cl12.7617 (3)O1—H1A0.77 (2)
Tb1—O12.3870 (9)O1—H1B0.77 (2)
Tb1—O1i2.3870 (9)O2—H2A0.82 (2)
Tb1—O2i2.3940 (9)O2—H2B0.76 (2)
Tb1—O22.3940 (9)O3—H3A0.81 (2)
Tb1—O3i2.3646 (9)O3—H3B0.77 (2)
Cl1—Tb1—Cl1i83.649 (12)O3—Tb1—O1i69.48 (3)
O1i—Tb1—Cl1i76.35 (2)O3i—Tb1—O1i75.59 (3)
O1—Tb1—Cl176.35 (2)O3—Tb1—O175.59 (3)
O1—Tb1—Cl1i146.61 (2)O3i—Tb1—O169.49 (3)
O1i—Tb1—Cl1146.61 (2)O3i—Tb1—O2138.44 (3)
O1—Tb1—O1i132.61 (4)O3—Tb1—O2i138.44 (3)
O1i—Tb1—O2121.23 (3)O3—Tb1—O270.52 (3)
O1i—Tb1—O2i72.84 (3)O3i—Tb1—O2i70.52 (3)
O1—Tb1—O272.84 (3)O3—Tb1—O3i83.57 (5)
O1—Tb1—O2i121.24 (3)Tb1—O1—H1A119.7 (16)
O2—Tb1—Cl178.81 (2)Tb1—O1—H1B124.1 (16)
O2i—Tb1—Cl1i78.81 (2)H1A—O1—H1B106 (2)
O2—Tb1—Cl1i77.27 (2)Tb1—O2—H2A117.3 (14)
O2i—Tb1—Cl177.27 (2)Tb1—O2—H2B119.8 (15)
O2—Tb1—O2i147.71 (5)H2A—O2—H2B110 (2)
O3i—Tb1—Cl1108.08 (2)Tb1—O3—H3A119.5 (14)
O3i—Tb1—Cl1i143.22 (2)Tb1—O3—H3B118.8 (16)
O3—Tb1—Cl1143.22 (2)H3A—O3—H3B112 (2)
O3—Tb1—Cl1i108.08 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1ii0.77 (2)2.41 (2)3.1527 (9)164 (2)
O1—H1B···Cl2iii0.77 (2)2.40 (2)3.1661 (10)172 (2)
O2—H2A···Cl1iv0.82 (2)2.33 (2)3.1524 (10)175 (2)
O2—H2B···Cl2v0.76 (2)2.51 (2)3.2283 (10)158.8 (19)
O3—H3A···Cl1vi0.81 (2)2.33 (2)3.1297 (10)173.2 (19)
O3—H3B···Cl20.77 (2)2.43 (2)3.1798 (9)166 (2)
Symmetry codes: (ii) x, y, z; (iii) x, y+1, z; (iv) x, y, z+1/2; (v) x, y1, z; (vi) x+1, y+1, z+1/2.
Hexaaquadichloridodysprosium(III) chloride (Dy) top
Crystal data top
[DyCl2(H2O)6]ClF(000) = 354
Mr = 376.95Dx = 2.586 Mg m3
Monoclinic, P2/cAg Kα radiation, λ = 0.56086 Å
a = 7.8439 (3) ÅCell parameters from 9894 reflections
b = 6.4693 (3) Åθ = 2.7–23.7°
c = 11.9660 (5) ŵ = 4.51 mm1
β = 127.143 (1)°T = 100 K
V = 484.02 (4) Å3Plate, yellow
Z = 20.23 × 0.19 × 0.14 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
1485 reflections with I > 2σ(I)
ω scansRint = 0.037
Absorption correction: multi-scan
SADABS-2016/2 (Bruker, 2016)
θmax = 23.8°, θmin = 2.5°
Tmin = 0.184, Tmax = 0.257h = 1111
21844 measured reflectionsk = 99
1501 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.008 w = 1/[σ2(Fo2) + (0.006P)2 + 0.0553P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.018(Δ/σ)max < 0.001
S = 1.19Δρmax = 0.42 e Å3
1501 reflectionsΔρmin = 0.48 e Å3
72 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0098 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.5000000.15396 (2)0.2500000.00517 (3)
Cl10.29906 (4)0.16263 (3)0.05869 (3)0.00928 (5)
Cl20.0000000.62489 (5)0.2500000.00990 (6)
O10.16915 (13)0.30103 (12)0.06305 (8)0.01025 (14)
O20.23924 (13)0.05125 (12)0.28056 (9)0.01049 (14)
O30.44370 (14)0.42381 (12)0.35560 (8)0.01037 (14)
H1A0.065 (3)0.264 (3)0.046 (2)0.027 (4)*
H1B0.133 (3)0.330 (2)0.011 (2)0.030 (5)*
H2A0.253 (3)0.086 (3)0.349 (2)0.034 (5)*
H2B0.195 (3)0.050 (3)0.2644 (19)0.026 (5)*
H3A0.513 (3)0.525 (3)0.3771 (18)0.028 (4)*
H3B0.332 (3)0.453 (3)0.326 (2)0.033 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.00492 (4)0.00544 (4)0.00538 (4)0.0000.00322 (3)0.000
Cl10.00897 (11)0.00907 (10)0.00889 (10)0.00078 (7)0.00491 (9)0.00194 (7)
Cl20.00935 (15)0.01086 (13)0.01022 (15)0.0000.00630 (13)0.000
O10.0068 (3)0.0132 (3)0.0090 (3)0.0003 (3)0.0038 (3)0.0022 (3)
O20.0121 (4)0.0100 (3)0.0127 (4)0.0028 (3)0.0093 (3)0.0018 (3)
O30.0084 (4)0.0097 (3)0.0137 (3)0.0014 (3)0.0070 (3)0.0033 (3)
Geometric parameters (Å, º) top
Dy1—Cl1i2.7500 (2)Dy1—O3i2.3480 (8)
Dy1—Cl12.7500 (2)O1—H1A0.755 (19)
Dy1—O12.3735 (8)O1—H1B0.78 (2)
Dy1—O1i2.3735 (8)O2—H2A0.79 (2)
Dy1—O2i2.3796 (8)O2—H2B0.712 (19)
Dy1—O22.3795 (8)O3—H3A0.787 (19)
Dy1—O32.3480 (8)O3—H3B0.75 (2)
Cl1—Dy1—Cl1i83.719 (11)O3i—Dy1—O1i75.83 (3)
O1i—Dy1—Cl1i76.29 (2)O3—Dy1—O1i69.43 (3)
O1—Dy1—Cl176.29 (2)O3i—Dy1—O169.43 (3)
O1—Dy1—Cl1i146.52 (2)O3—Dy1—O175.83 (3)
O1i—Dy1—Cl1146.52 (2)O3—Dy1—O270.52 (3)
O1—Dy1—O1i132.73 (4)O3i—Dy1—O2i70.52 (3)
O1i—Dy1—O2121.28 (3)O3i—Dy1—O2138.48 (3)
O1i—Dy1—O2i72.82 (3)O3—Dy1—O2i138.48 (3)
O1—Dy1—O272.82 (3)O3i—Dy1—O383.94 (4)
O1—Dy1—O2i121.28 (3)Dy1—O1—H1A121.1 (14)
O2—Dy1—Cl178.83 (2)Dy1—O1—H1B127.6 (15)
O2i—Dy1—Cl1i78.82 (2)H1A—O1—H1B101 (2)
O2—Dy1—Cl1i77.17 (2)Dy1—O2—H2A119.3 (15)
O2i—Dy1—Cl177.17 (2)Dy1—O2—H2B122.6 (15)
O2—Dy1—O2i147.57 (4)H2A—O2—H2B106 (2)
O3—Dy1—Cl1143.34 (2)Dy1—O3—H3A118.6 (13)
O3—Dy1—Cl1i107.77 (2)Dy1—O3—H3B118.8 (15)
O3i—Dy1—Cl1107.77 (2)H3A—O3—H3B109.0 (19)
O3i—Dy1—Cl1i143.34 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1ii0.755 (19)2.413 (19)3.1545 (9)167.6 (19)
O1—H1B···Cl2iii0.78 (2)2.39 (2)3.1655 (8)172.6 (16)
O2—H2A···Cl1iv0.79 (2)2.37 (2)3.1511 (9)175.7 (19)
O2—H2B···Cl2v0.712 (19)2.544 (19)3.2303 (8)162.7 (19)
O3—H3A···Cl1vi0.787 (19)2.342 (19)3.1276 (8)176.2 (18)
O3—H3B···Cl20.75 (2)2.44 (2)3.1766 (8)167.1 (19)
Symmetry codes: (ii) x, y, z; (iii) x, y+1, z; (iv) x, y, z+1/2; (v) x, y1, z; (vi) x+1, y+1, z+1/2.
Hexaaquadichloridoholmium(III) chloride (Ho) top
Crystal data top
[HoCl2(H2O)6]ClF(000) = 356
Mr = 379.38Dx = 2.611 Mg m3
Monoclinic, P2/cAg Kα radiation, λ = 0.56086 Å
a = 7.8303 (3) ÅCell parameters from 7807 reflections
b = 6.4651 (2) Åθ = 2.5–23.7°
c = 11.9509 (4) ŵ = 4.77 mm1
β = 127.086 (1)°T = 100 K
V = 482.63 (3) Å3Plate, yellow
Z = 20.14 × 0.10 × 0.07 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
1454 reflections with I > 2σ(I)
ω scansRint = 0.026
Absorption correction: multi-scan
SADABS-2016/2 (Bruker, 2016)
θmax = 23.7°, θmin = 2.5°
Tmin = 0.222, Tmax = 0.257h = 1111
10309 measured reflectionsk = 99
1480 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.009 w = 1/[σ2(Fo2) + (0.0056P)2 + 0.0614P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.020(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.31 e Å3
1480 reflectionsΔρmin = 0.36 e Å3
72 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0063 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ho10.5000000.15471 (2)0.2500000.00548 (3)
Cl10.29952 (5)0.16158 (4)0.05941 (3)0.00938 (5)
Cl20.0000000.62505 (6)0.2500000.01026 (8)
O10.17011 (16)0.30132 (14)0.06373 (10)0.01068 (17)
O20.24000 (16)0.05173 (14)0.28059 (10)0.01065 (17)
O30.44395 (16)0.42345 (14)0.35534 (10)0.01033 (17)
H1A0.063 (3)0.262 (3)0.047 (2)0.027 (5)*
H1B0.140 (4)0.330 (3)0.008 (3)0.030 (6)*
H2A0.253 (4)0.091 (3)0.348 (2)0.029 (6)*
H2B0.188 (3)0.059 (3)0.260 (2)0.026 (5)*
H3A0.518 (4)0.522 (3)0.384 (2)0.035 (6)*
H3B0.322 (4)0.459 (3)0.325 (2)0.029 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ho10.00520 (4)0.00572 (4)0.00561 (4)0.0000.00329 (3)0.000
Cl10.00892 (13)0.00922 (11)0.00888 (12)0.00084 (9)0.00478 (11)0.00183 (9)
Cl20.00948 (18)0.01124 (17)0.01035 (18)0.0000.00613 (16)0.000
O10.0081 (4)0.0135 (4)0.0091 (4)0.0002 (3)0.0045 (4)0.0023 (3)
O20.0122 (4)0.0098 (4)0.0130 (4)0.0027 (3)0.0092 (4)0.0023 (3)
O30.0085 (4)0.0092 (4)0.0135 (4)0.0011 (3)0.0067 (4)0.0027 (3)
Geometric parameters (Å, º) top
Ho1—Cl1i2.7425 (3)Ho1—O3i2.3372 (9)
Ho1—Cl12.7425 (3)O1—H1A0.78 (2)
Ho1—O12.3646 (10)O1—H1B0.76 (2)
Ho1—O1i2.3646 (10)O2—H2A0.79 (2)
Ho1—O2i2.3706 (9)O2—H2B0.79 (2)
Ho1—O22.3705 (9)O3—H3A0.79 (2)
Ho1—O32.3372 (9)O3—H3B0.82 (2)
Cl1—Ho1—Cl1i83.578 (12)O3i—Ho1—O1i75.86 (3)
O1i—Ho1—Cl1i76.33 (2)O3—Ho1—O1i69.40 (3)
O1—Ho1—Cl176.33 (2)O3i—Ho1—O169.41 (3)
O1—Ho1—Cl1i146.51 (3)O3—Ho1—O175.86 (3)
O1i—Ho1—Cl1146.51 (3)O3—Ho1—O270.61 (3)
O1—Ho1—O1i132.74 (5)O3i—Ho1—O2i70.61 (3)
O1i—Ho1—O2121.30 (3)O3i—Ho1—O2138.55 (3)
O1i—Ho1—O2i72.88 (3)O3—Ho1—O2i138.55 (3)
O1—Ho1—O272.88 (3)O3i—Ho1—O383.96 (5)
O1—Ho1—O2i121.31 (3)Ho1—O1—H1A120.3 (16)
O2—Ho1—Cl178.70 (2)Ho1—O1—H1B125.2 (17)
O2i—Ho1—Cl1i78.70 (2)H1A—O1—H1B104 (2)
O2—Ho1—Cl1i77.13 (2)Ho1—O2—H2A118.2 (16)
O2i—Ho1—Cl177.13 (2)Ho1—O2—H2B122.9 (15)
O2—Ho1—O2i147.38 (5)H2A—O2—H2B109 (2)
O3—Ho1—Cl1143.35 (3)Ho1—O3—H3A120.6 (16)
O3—Ho1—Cl1i107.83 (2)Ho1—O3—H3B121.1 (14)
O3i—Ho1—Cl1107.83 (2)H3A—O3—H3B109 (2)
O3i—Ho1—Cl1i143.35 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1ii0.78 (2)2.40 (2)3.1589 (11)166 (2)
O1—H1B···Cl2iii0.76 (2)2.41 (2)3.1678 (10)170 (2)
O2—H2A···Cl1iv0.79 (2)2.37 (2)3.1546 (10)172 (2)
O2—H2B···Cl2v0.79 (2)2.48 (2)3.2320 (10)161.6 (19)
O3—H3A···Cl1vi0.79 (2)2.35 (2)3.1309 (10)172 (2)
O3—H3B···Cl20.82 (2)2.36 (2)3.1765 (10)168.9 (19)
Symmetry codes: (ii) x, y, z; (iii) x, y+1, z; (iv) x, y, z+1/2; (v) x, y1, z; (vi) x+1, y+1, z+1/2.
Hexaaquadichloridoerbium(III) chloride (Er) top
Crystal data top
[ErCl2(H2O)6]ClF(000) = 358
Mr = 381.71Dx = 2.648 Mg m3
Monoclinic, P2/cAg Kα radiation, λ = 0.56086 Å
a = 7.8035 (2) ÅCell parameters from 9658 reflections
b = 6.4488 (2) Åθ = 2.5–23.7°
c = 11.9182 (4) ŵ = 5.07 mm1
β = 127.044 (1)°T = 100 K
V = 478.71 (3) Å3Plate, pink
Z = 20.23 × 0.22 × 0.17 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
1479 reflections with I > 2σ(I)
ω scansRint = 0.034
Absorption correction: multi-scan
SADABS-2016/2 (Bruker, 2016)
θmax = 23.7°, θmin = 2.5°
Tmin = 0.175, Tmax = 0.257h = 1110
24599 measured reflectionsk = 99
1481 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.009 w = 1/[σ2(Fo2) + (0.0069P)2 + 0.1191P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.020(Δ/σ)max = 0.001
S = 1.30Δρmax = 0.47 e Å3
1481 reflectionsΔρmin = 0.88 e Å3
72 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0321 (9)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.5000000.15555 (2)0.2500000.00519 (3)
Cl10.29999 (4)0.16033 (4)0.05990 (3)0.00919 (5)
Cl20.0000000.62527 (6)0.2500000.00995 (7)
O10.17058 (14)0.30150 (14)0.06411 (10)0.01031 (15)
O20.24065 (14)0.05247 (15)0.28058 (10)0.01036 (15)
O30.44402 (15)0.42330 (14)0.35511 (10)0.01044 (15)
H1A0.062 (4)0.263 (4)0.048 (2)0.029 (5)*
H1B0.141 (4)0.332 (3)0.007 (3)0.029 (6)*
H2A0.259 (4)0.083 (4)0.348 (2)0.027 (5)*
H2B0.193 (3)0.061 (4)0.263 (2)0.024 (5)*
H3A0.518 (4)0.519 (4)0.380 (2)0.029 (5)*
H3B0.327 (4)0.455 (4)0.323 (2)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.00491 (4)0.00568 (4)0.00476 (4)0.0000.00279 (3)0.000
Cl10.00883 (11)0.00906 (12)0.00820 (12)0.00080 (8)0.00435 (10)0.00190 (8)
Cl20.00931 (15)0.01105 (16)0.00951 (16)0.0000.00568 (14)0.000
O10.0075 (4)0.0128 (4)0.0083 (4)0.0003 (3)0.0036 (3)0.0022 (3)
O20.0119 (4)0.0105 (4)0.0110 (4)0.0024 (3)0.0081 (3)0.0017 (3)
O30.0087 (4)0.0091 (4)0.0130 (4)0.0011 (3)0.0063 (3)0.0033 (3)
Geometric parameters (Å, º) top
Er1—Cl12.7309 (3)Er1—O3i2.3239 (9)
Er1—Cl1i2.7309 (3)O1—H1A0.78 (2)
Er1—O12.3538 (9)O1—H1B0.76 (3)
Er1—O1i2.3538 (9)O2—H2A0.76 (2)
Er1—O2i2.3579 (9)O2—H2B0.79 (2)
Er1—O22.3578 (9)O3—H3A0.77 (2)
Er1—O32.3239 (9)O3—H3B0.78 (2)
Cl1i—Er1—Cl183.525 (12)O3i—Er1—O1i75.93 (3)
O1i—Er1—Cl1146.45 (2)O3—Er1—O1i69.45 (3)
O1—Er1—Cl1i146.45 (2)O3i—Er1—O169.45 (3)
O1—Er1—Cl176.30 (2)O3—Er1—O175.93 (3)
O1i—Er1—Cl1i76.30 (2)O3—Er1—O270.65 (3)
O1—Er1—O1i132.86 (5)O3i—Er1—O2i70.65 (3)
O1i—Er1—O2121.31 (3)O3i—Er1—O2138.62 (3)
O1i—Er1—O2i72.89 (3)O3—Er1—O2i138.62 (3)
O1—Er1—O272.89 (3)O3i—Er1—O384.03 (5)
O1—Er1—O2i121.31 (3)Er1—O1—H1A120.7 (17)
O2—Er1—Cl1i77.07 (2)Er1—O1—H1B125.5 (19)
O2i—Er1—Cl177.07 (2)H1A—O1—H1B104 (2)
O2—Er1—Cl178.64 (2)Er1—O2—H2A117.7 (17)
O2i—Er1—Cl1i78.64 (2)Er1—O2—H2B122.2 (15)
O2—Er1—O2i147.25 (5)H2A—O2—H2B106 (2)
O3—Er1—Cl1i107.82 (2)Er1—O3—H3A117.0 (17)
O3—Er1—Cl1143.35 (2)Er1—O3—H3B118.2 (17)
O3i—Er1—Cl1i143.35 (2)H3A—O3—H3B112 (2)
O3i—Er1—Cl1107.82 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1ii0.78 (2)2.39 (2)3.1557 (10)166 (2)
O1—H1B···Cl2iii0.76 (3)2.41 (3)3.1632 (10)170 (2)
O2—H2A···Cl1iv0.76 (2)2.39 (2)3.1502 (10)176 (2)
O2—H2B···Cl2v0.79 (2)2.47 (2)3.2287 (10)161 (2)
O3—H3A···Cl1vi0.77 (2)2.36 (2)3.1286 (10)172 (2)
O3—H3B···Cl20.78 (2)2.41 (2)3.1689 (9)167 (2)
Symmetry codes: (ii) x, y, z; (iii) x, y+1, z; (iv) x, y, z+1/2; (v) x, y1, z; (vi) x+1, y+1, z+1/2.
Hexaaquadichloridotantalum(III) chloride (Tm) top
Crystal data top
[TmCl2(H2O)6]ClF(000) = 360
Mr = 383.38Dx = 2.671 Mg m3
Monoclinic, P2/cAg Kα radiation, λ = 0.56086 Å
a = 7.7889 (4) ÅCell parameters from 9923 reflections
b = 6.4490 (3) Åθ = 2.6–23.7°
c = 11.8760 (6) ŵ = 5.37 mm1
β = 126.961 (1)°T = 100 K
V = 476.66 (4) Å3Plate, colorless
Z = 20.17 × 0.11 × 0.10 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
1464 reflections with I > 2σ(I)
ω scansRint = 0.033
Absorption correction: multi-scan
SADABS-2016/2 (Bruker, 2016)
θmax = 23.7°, θmin = 2.5°
Tmin = 0.207, Tmax = 0.257h = 1111
16364 measured reflectionsk = 99
1481 independent reflectionsl = 1716
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.007 w = 1/[σ2(Fo2) + 0.0685P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.016(Δ/σ)max = 0.001
S = 1.15Δρmax = 0.39 e Å3
1481 reflectionsΔρmin = 0.48 e Å3
72 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0056 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tm10.5000000.15657 (2)0.2500000.00505 (3)
Cl10.30008 (4)0.15947 (3)0.06069 (2)0.00896 (4)
Cl20.0000000.62678 (5)0.2500000.00941 (6)
O10.17163 (12)0.30137 (11)0.06506 (8)0.00987 (13)
O20.24195 (12)0.05360 (12)0.28076 (8)0.00989 (13)
O30.44427 (13)0.42399 (11)0.35464 (8)0.01000 (13)
H1A0.072 (3)0.261 (3)0.050 (2)0.032 (5)*
H1B0.140 (3)0.331 (2)0.012 (2)0.020 (4)*
H2A0.252 (3)0.089 (3)0.347 (2)0.033 (5)*
H2B0.197 (3)0.052 (3)0.2624 (18)0.019 (4)*
H3A0.518 (3)0.523 (3)0.3800 (19)0.028 (4)*
H3B0.332 (3)0.458 (3)0.3247 (19)0.023 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tm10.00468 (3)0.00528 (3)0.00526 (3)0.0000.00302 (2)0.000
Cl10.00875 (9)0.00886 (9)0.00844 (9)0.00085 (7)0.00472 (8)0.00185 (7)
Cl20.00877 (13)0.01055 (13)0.00955 (13)0.0000.00584 (12)0.000
O10.0068 (3)0.0126 (3)0.0084 (3)0.0002 (2)0.0037 (3)0.0021 (2)
O20.0117 (3)0.0094 (3)0.0117 (3)0.0028 (3)0.0087 (3)0.0021 (3)
O30.0085 (3)0.0087 (3)0.0134 (3)0.0013 (3)0.0069 (3)0.0033 (2)
Geometric parameters (Å, º) top
Tm1—Cl12.7246 (2)Tm1—O3i2.3142 (7)
Tm1—Cl1i2.7246 (2)O1—H1A0.73 (2)
Tm1—O1i2.3414 (7)O1—H1B0.81 (2)
Tm1—O12.3414 (7)O2—H2A0.78 (2)
Tm1—O2i2.3446 (8)O2—H2B0.737 (18)
Tm1—O22.3446 (8)O3—H3A0.789 (19)
Tm1—O32.3142 (7)O3—H3B0.75 (2)
Cl1i—Tm1—Cl183.158 (10)O3i—Tm1—O169.57 (3)
O1—Tm1—Cl176.368 (19)O3—Tm1—O175.80 (3)
O1i—Tm1—Cl1i76.368 (19)O3i—Tm1—O1i75.80 (3)
O1i—Tm1—Cl1146.34 (2)O3—Tm1—O1i69.57 (3)
O1—Tm1—Cl1i146.34 (2)O3—Tm1—O270.87 (3)
O1i—Tm1—O1132.99 (4)O3i—Tm1—O2i70.87 (3)
O1—Tm1—O272.77 (3)O3i—Tm1—O2138.58 (3)
O1—Tm1—O2i121.47 (3)O3—Tm1—O2i138.58 (3)
O1i—Tm1—O2121.47 (3)O3i—Tm1—O383.65 (4)
O1i—Tm1—O2i72.77 (3)Tm1—O1—H1A118.9 (16)
O2—Tm1—Cl1i77.157 (19)Tm1—O1—H1B124.8 (13)
O2i—Tm1—Cl177.156 (19)H1A—O1—H1B105 (2)
O2—Tm1—Cl178.38 (2)Tm1—O2—H2A120.0 (15)
O2i—Tm1—Cl1i78.38 (2)Tm1—O2—H2B120.9 (14)
O2—Tm1—O2i147.09 (4)H2A—O2—H2B108 (2)
O3—Tm1—Cl1i108.24 (2)Tm1—O3—H3A118.8 (14)
O3—Tm1—Cl1143.31 (2)Tm1—O3—H3B120.2 (13)
O3i—Tm1—Cl1i143.31 (2)H3A—O3—H3B108.5 (19)
O3i—Tm1—Cl1108.24 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1ii0.73 (2)2.44 (2)3.1573 (8)165 (2)
O1—H1B···Cl2iii0.81 (2)2.36 (2)3.1602 (8)169.7 (16)
O2—H2A···Cl1iv0.78 (2)2.38 (2)3.1485 (8)173.4 (19)
O2—H2B···Cl2v0.737 (18)2.528 (18)3.2301 (8)159.7 (18)
O3—H3A···Cl1vi0.789 (19)2.343 (19)3.1280 (8)173.4 (18)
O3—H3B···Cl20.75 (2)2.43 (2)3.1714 (8)169.4 (17)
Symmetry codes: (ii) x, y, z; (iii) x, y+1, z; (iv) x, y, z+1/2; (v) x, y1, z; (vi) x+1, y+1, z+1/2.
Hexaaquadichloridoytterbium(III) chloride (Yb) top
Crystal data top
[YbCl2(H2O)6]ClF(000) = 362
Mr = 387.49Dx = 2.717 Mg m3
Monoclinic, P2/cAg Kα radiation, λ = 0.56086 Å
a = 7.7666 (2) ÅCell parameters from 9892 reflections
b = 6.4305 (2) Åθ = 3.0–23.7°
c = 11.8745 (3) ŵ = 5.69 mm1
β = 126.991 (1)°T = 100 K
V = 473.69 (2) Å3Plate, colorless
Z = 20.30 × 0.23 × 0.20 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
1439 reflections with I > 2σ(I)
ω scansRint = 0.035
Absorption correction: multi-scan
SADABS-2016/2 (Bruker, 2016)
θmax = 23.7°, θmin = 2.5°
Tmin = 0.168, Tmax = 0.257h = 1111
19224 measured reflectionsk = 99
1464 independent reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.008 w = 1/[σ2(Fo2) + (0.0064P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.017(Δ/σ)max = 0.001
S = 1.19Δρmax = 0.62 e Å3
1464 reflectionsΔρmin = 0.74 e Å3
72 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0290 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.5000000.15772 (2)0.2500000.00506 (3)
Cl10.30072 (4)0.15810 (3)0.06078 (3)0.00886 (5)
Cl20.0000000.62670 (5)0.2500000.00966 (7)
O10.17225 (14)0.30159 (13)0.06541 (9)0.01013 (15)
O20.24258 (13)0.05444 (13)0.28053 (9)0.00973 (15)
O30.44456 (14)0.42323 (12)0.35473 (9)0.01004 (15)
H1A0.069 (3)0.261 (3)0.047 (2)0.030 (5)*
H1B0.148 (3)0.330 (3)0.003 (2)0.025 (5)*
H2A0.257 (3)0.085 (3)0.344 (2)0.028 (5)*
H2B0.193 (3)0.059 (3)0.2600 (19)0.022 (4)*
H3A0.509 (3)0.516 (3)0.3768 (19)0.025 (5)*
H3B0.318 (3)0.461 (3)0.321 (2)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00471 (4)0.00511 (4)0.00532 (4)0.0000.00301 (3)0.000
Cl10.00835 (11)0.00860 (10)0.00832 (12)0.00077 (8)0.00433 (10)0.00180 (8)
Cl20.00878 (15)0.01064 (14)0.00987 (17)0.0000.00577 (14)0.000
O10.0073 (4)0.0127 (3)0.0087 (4)0.0002 (3)0.0040 (3)0.0025 (3)
O20.0110 (4)0.0096 (3)0.0111 (4)0.0024 (3)0.0079 (3)0.0020 (3)
O30.0084 (3)0.0081 (3)0.0137 (4)0.0015 (3)0.0066 (3)0.0030 (3)
Geometric parameters (Å, º) top
Yb1—Cl12.7173 (3)Yb1—H2A2.74 (2)
Yb1—Cl1i2.7173 (3)Yb1—H3A2.729 (18)
Yb1—O12.3293 (8)O1—H1A0.74 (2)
Yb1—O1i2.3293 (8)O1—H1B0.74 (2)
Yb1—O2i2.3329 (8)O2—H2A0.72 (2)
Yb1—O22.3328 (8)O2—H2B0.795 (19)
Yb1—O3i2.3003 (8)O3—H3A0.720 (19)
Yb1—O32.3003 (8)O3—H3B0.84 (2)
Cl1i—Yb1—Cl183.270 (11)O3i—Yb1—Cl1107.85 (2)
Cl1i—Yb1—H2A74.1 (4)O3i—Yb1—Cl1i143.42 (2)
Cl1—Yb1—H2A91.1 (4)O3—Yb1—Cl1i107.85 (2)
Cl1—Yb1—H3A154.1 (4)O3—Yb1—Cl1143.42 (2)
Cl1i—Yb1—H3A111.2 (4)O3i—Yb1—O1i76.11 (3)
O1i—Yb1—Cl1i76.26 (2)O3—Yb1—O1i69.54 (3)
O1—Yb1—Cl1i146.22 (2)O3i—Yb1—O169.55 (3)
O1i—Yb1—Cl1146.22 (2)O3—Yb1—O176.11 (3)
O1—Yb1—Cl176.26 (2)O3—Yb1—O2i138.77 (3)
O1—Yb1—O1i133.20 (4)O3—Yb1—O270.77 (3)
O1—Yb1—O2i121.35 (3)O3i—Yb1—O2i70.77 (3)
O1—Yb1—O272.89 (3)O3i—Yb1—O2138.77 (3)
O1i—Yb1—O2121.35 (3)O3—Yb1—O3i84.16 (4)
O1i—Yb1—O2i72.89 (3)O3—Yb1—H2A60.6 (4)
O1i—Yb1—H2A108.3 (4)O3i—Yb1—H2A138.0 (4)
O1—Yb1—H2A79.7 (4)O3—Yb1—H3A13.3 (4)
O1—Yb1—H3A80.5 (4)O3i—Yb1—H3A73.8 (4)
O1i—Yb1—H3A59.6 (4)H2A—Yb1—H3A73.5 (6)
O2i—Yb1—Cl1i78.50 (2)Yb1—O1—H1A120.9 (16)
O2—Yb1—Cl178.50 (2)Yb1—O1—H1B122.8 (16)
O2—Yb1—Cl1i76.92 (2)H1A—O1—H1B105 (2)
O2i—Yb1—Cl176.92 (2)Yb1—O2—H2A118.2 (16)
O2—Yb1—O2i146.92 (4)Yb1—O2—H2B121.4 (12)
O2i—Yb1—H2A151.2 (4)H2A—O2—H2B108 (2)
O2—Yb1—H2A13.3 (4)Yb1—O3—H3A119.6 (14)
O2—Yb1—H3A84.0 (4)Yb1—O3—H3B120.0 (13)
O2i—Yb1—H3A125.8 (4)H3A—O3—H3B107.0 (18)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1ii0.74 (2)2.43 (2)3.1570 (9)168 (2)
O1—H1B···Cl2iii0.74 (2)2.44 (2)3.1623 (9)167 (2)
O2—H2A···Cl1iv0.72 (2)2.44 (2)3.1486 (9)175 (2)
O2—H2B···Cl2v0.795 (19)2.472 (19)3.2287 (9)159.5 (16)
O3—H3A···Cl1vi0.720 (19)2.409 (19)3.1273 (9)175.4 (19)
O3—H3B···Cl20.84 (2)2.33 (2)3.1643 (8)168.8 (17)
Symmetry codes: (ii) x, y, z; (iii) x, y+1, z; (iv) x, y, z+1/2; (v) x, y1, z; (vi) x+1, y+1, z+1/2.
Hexaaquadichloridolutetium(III) chloride (Lu) top
Crystal data top
[LuCl2(H2O)6]ClF(000) = 364
Mr = 389.42Dx = 2.737 Mg m3
Monoclinic, P2/cAg Kα radiation, λ = 0.56086 Å
a = 7.7621 (3) ÅCell parameters from 9948 reflections
b = 6.4241 (3) Åθ = 2.5–23.7°
c = 11.8671 (5) ŵ = 6.00 mm1
β = 127.008 (1)°T = 100 K
V = 472.54 (4) Å3Plate, colorless
Z = 20.17 × 0.14 × 0.14 mm
Data collection top
Bruker D8 Venture Duo
diffractometer
1436 reflections with I > 2σ(I)
ω scansRint = 0.041
Absorption correction: multi-scan
SADABS-2016/2 (Bruker, 2016)
θmax = 23.7°, θmin = 2.5°
Tmin = 0.201, Tmax = 0.257h = 1111
23799 measured reflectionsk = 99
1464 independent reflectionsl = 1617
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.009 w = 1/[σ2(Fo2) + 0.3367P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.020(Δ/σ)max < 0.001
S = 1.28Δρmax = 0.78 e Å3
1464 reflectionsΔρmin = 0.82 e Å3
72 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0094 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Lu10.5000000.15824 (2)0.2500000.00529 (4)
Cl10.30110 (5)0.15719 (6)0.06103 (4)0.00912 (6)
Cl20.0000000.62590 (8)0.2500000.00994 (9)
O10.17244 (18)0.30166 (18)0.06562 (12)0.0104 (2)
O20.24293 (19)0.05447 (19)0.28021 (12)0.0101 (2)
O30.4452 (2)0.42271 (19)0.35486 (12)0.0102 (2)
H1A0.070 (4)0.258 (4)0.052 (3)0.027 (7)*
H1B0.142 (4)0.328 (4)0.007 (3)0.022 (6)*
H2A0.255 (4)0.086 (4)0.344 (3)0.028 (7)*
H2B0.193 (4)0.064 (5)0.261 (3)0.033 (7)*
H3A0.517 (5)0.523 (5)0.378 (3)0.037 (8)*
H3B0.328 (4)0.454 (4)0.322 (3)0.026 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Lu10.00480 (5)0.00564 (5)0.00535 (4)0.0000.00301 (3)0.000
Cl10.00841 (14)0.00916 (14)0.00864 (14)0.00059 (12)0.00451 (12)0.00171 (12)
Cl20.0089 (2)0.0111 (2)0.0103 (2)0.0000.00602 (18)0.000
O10.0070 (5)0.0131 (5)0.0093 (5)0.0002 (4)0.0039 (4)0.0021 (4)
O20.0110 (5)0.0107 (5)0.0115 (5)0.0028 (4)0.0083 (4)0.0020 (4)
O30.0076 (5)0.0097 (5)0.0130 (5)0.0010 (4)0.0061 (4)0.0028 (4)
Geometric parameters (Å, º) top
Lu1—Cl1i2.7113 (4)Lu1—O3i2.2917 (12)
Lu1—Cl12.7113 (4)O1—H1A0.77 (3)
Lu1—O1i2.3246 (11)O1—H1B0.76 (3)
Lu1—O12.3246 (11)O2—H2A0.73 (3)
Lu1—O2i2.3272 (12)O2—H2B0.82 (3)
Lu1—O22.3272 (12)O3—H3A0.79 (3)
Lu1—O32.2917 (12)O3—H3B0.77 (3)
Cl1—Lu1—Cl1i83.270 (15)O3i—Lu1—O169.54 (4)
O1—Lu1—Cl1i146.14 (3)O3—Lu1—O176.23 (4)
O1i—Lu1—Cl1146.14 (3)O3i—Lu1—O1i76.23 (4)
O1i—Lu1—Cl1i76.23 (3)O3—Lu1—O1i69.53 (4)
O1—Lu1—Cl176.23 (3)O3—Lu1—O270.87 (4)
O1i—Lu1—O1133.30 (6)O3i—Lu1—O2i70.87 (4)
O1—Lu1—O272.85 (4)O3i—Lu1—O2138.80 (4)
O1—Lu1—O2i121.47 (4)O3—Lu1—O2i138.80 (4)
O1i—Lu1—O2121.47 (4)O3i—Lu1—O384.31 (6)
O1i—Lu1—O2i72.85 (4)Lu1—O1—H1A118 (2)
O2—Lu1—Cl178.41 (3)Lu1—O1—H1B125.0 (19)
O2i—Lu1—Cl1i78.41 (3)H1A—O1—H1B106 (3)
O2—Lu1—Cl1i76.86 (3)Lu1—O2—H2A119 (2)
O2i—Lu1—Cl176.86 (3)Lu1—O2—H2B121.7 (19)
O2—Lu1—O2i146.71 (6)H2A—O2—H2B107 (3)
O3—Lu1—Cl1143.49 (3)Lu1—O3—H3A118 (2)
O3—Lu1—Cl1i107.72 (3)Lu1—O3—H3B117.7 (19)
O3i—Lu1—Cl1107.72 (3)H3A—O3—H3B109 (3)
O3i—Lu1—Cl1i143.49 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1ii0.77 (3)2.42 (3)3.1591 (13)163 (3)
O1—H1B···Cl2iii0.76 (3)2.40 (3)3.1625 (12)171 (2)
O2—H2A···Cl1iv0.73 (3)2.42 (3)3.1517 (13)175 (3)
O2—H2B···Cl2v0.82 (3)2.45 (3)3.2327 (13)160 (3)
O3—H3A···Cl1vi0.79 (3)2.34 (3)3.1290 (13)174 (3)
O3—H3B···Cl20.77 (3)2.41 (3)3.1653 (12)167 (3)
Symmetry codes: (ii) x, y, z; (iii) x, y+1, z; (iv) x, y, z+1/2; (v) x, y1, z; (vi) x+1, y+1, z+1/2.
Bond distances (Å) for hexahydrates top
RECl1O1O2O3
Pr2.8314 (4)2.4677 (13)2.4818 (13)2.4513 (12)
Nd2.8145 (2)2.4532 (7)2.4629 (6)2.4328 (7)
Sm2.7906 (3)2.4269 (8)2.4349 (8)2.4057 (8)
Eu2.7788 (2)2.4131 (7)2.4206 (7)2.3884 (7)
Gd2.7699 (3)2.4026 (9)2.4101 (8)2.3762 (8)
Tb2.7617 (3)2.3870 (9)2.3940 (9)2.3646 (9)
Dy2.7500 (2)2.3735 (8)2.3795 (8)2.3480 (8)
Ho2.7425 (3)2.3646 (10)2.3705 (9)2.3372 (9)
Er2.7309 (3)2.3538 (9)2.3578 (9)2.3239 (9)
Tm2.7246 (2)2.3414 (7)2.3446 (8)2.3142 (7)
Yb2.7173 (3)2.3293 (8)2.3328 (8)2.3003 (8)
Lu2.7113 (4)2.3246 (11)2.3272 (12)2.2917 (12)
 

Acknowledgements

BL acknowledges the ESTAAR program at Episcopal School of Baton Rouge. X-ray crystallographic data were collected by the diffractometer funded by the NSF MRI award CHE-2215262.

Funding information

Funding for this research was provided by: College of Science and Department of Chemistry at Louisiana State University (start-up funding).

References

First citationBakakin, V., Klevstova, R. & Solov'eva, L. (1975). J. Struct. Chem. 15, 723–732.  CrossRef Google Scholar
First citationBel'skii, N. & Struchkov, Y. T. (1965). Kristallografiya, 10, 21–28.  CAS Google Scholar
First citationBoatner, L. A., Neal, J. S., Ramey, J. O., Chakoumakos, B. C. & Custelcean, R. (2013). Appl. Phys. Lett. 103, 141909.  CrossRef Google Scholar
First citationBoyle, T. J., Ottley, L. A. M., Alam, T. M., Rodriguez, M. A., Yang, P. & Mcintyre, S. K. (2010). Polyhedron, 29, 1784–1795.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoyle, T. J. & Steele, L. A. M. (2011). Encyclopedia of Inorganic and Bioinorgic Chemistry. Chichester: John Wiley & Sons, Ltd.  Google Scholar
First citationBruker (2016). SAINT. Bruker AXS Inc., Madison Wisconsin, USA  Google Scholar
First citationChen, J., Xu, D., Li, L., Wu, J. & Xu, G. (1991). Acta Cryst. C47, 1074–1075.  CrossRef CAS IUCr Journals Google Scholar
First citationCotton, S. A. & Harrowfield, J. M. (2011). Encyclopedia of Inorganic and Bioinorgic Chemistry. Chichester: John Wiley & Sons, Ltd.  Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHabenschuss, A. & Spedding, F. H. (1978). Cryst. Struct. Commun. 7, 535–541.  CAS Google Scholar
First citationHabenschuss, A. & Spedding, F. H. (1979). Cryst. Struct. Commun. 8, 511–516.  CAS Google Scholar
First citationHabenschuss, A. & Spedding, F. H. (1980a). Cryst. Struct. Commun. 9, 71–76.  CAS Google Scholar
First citationHabenschuss, A. & Spedding, F. H. (1980b). Cryst. Struct. Commun. 9, 157–160.  CAS Google Scholar
First citationHabenschuss, A. & Spedding, F. H. (1980c). Cryst. Struct. Commun. 9, 207–211.  CAS Google Scholar
First citationHabenschuss, A. & Spedding, F. H. (1980d). Cryst. Struct. Commun. 9, 213–218.  CAS Google Scholar
First citationHsieh, K.-Y., Bendeif, E.-E., Pillet, S., Doudouh, A., Schaniel, D. & Woike, T. (2013). Acta Cryst. C69, 1002–1005.  CrossRef IUCr Journals Google Scholar
First citationKepert, D. L., Patrick, J. & White, A. (1983). Aust. J. Chem. 36, 477–482.  CrossRef CAS Google Scholar
First citationKnopf, K. M., Crundwell, G. & Westcott, B. L. (2015). Acta Cryst. E71, i5.  CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLayfield, R. A. & Murugesu, M. (2015). Lanthanides and actinides in molecular magnetism. New York: Wiley.  Google Scholar
First citationLevason, W. & Webster, M. (2002). Acta Cryst. E58, i76–i78.  CrossRef IUCr Journals Google Scholar
First citationLouer, M., Louer, D., Delgado, A. & Martinez, O. (1989). Eur. J. Solid State Inorg. Chem. 26, 241–253.  CAS Google Scholar
First citationMarezio, M., Plettinger, H. A. & Zachariasen, W. H. (1961). Acta Cryst. 14, 234–236.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationNarasimhulu, M., Reddy, T. S., Mahesh, K. C., Reddy, S. M., Reddy, A. V. & Venkateswarlu, Y. (2007). J. Mol. Catal. A Chem. 264, 288–292.  CrossRef CAS Google Scholar
First citationPalmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England.  Google Scholar
First citationPeterson, E. J., Onstott, E. I. & Von Dreele, R. B. (1979). Acta Cryst. B35, 805–809.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationReuter, G., Fink, H. & Seifert, H. (1994). Z. Anorg. Allge Chem. 620, 665–671.  CrossRef CAS Google Scholar
First citationReuter, G. & Frenzen, G. (1994). Acta Cryst. C50, 844–845.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationRheingold, A. L. & King, W. (1989). Inorg. Chem. 28, 1715–1719.  CSD CrossRef ICSD CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTambornino, F., Bielec, P. & Hoch, C. (2014). Acta Cryst. E70, i27.  CSD CrossRef IUCr Journals Google Scholar
First citationWegner, W., Jaroń, T. & Grochala, W. (2018). J. Alloys Compd. 744, 57–63.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds