research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of penta­kis­(2-aminopyridinium) nona­vanado(V)tellurate(VI)

crossmark logo

aLaboratory of Materials Chemistry (LR13ES08), Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Bizerte, Tunisia
*Correspondence e-mail: sameh.akriche@fsb.ucar.tn

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 24 September 2024; accepted 30 October 2024; online November 2024)

In the title compound, (C5H7N2)5[TeV9O28], the tellurium and vanadium atoms are statistically disordered over two of the ten metal-atom sites in the [TeV9O28]5– heteropolyanion. The anions stack along [100] and are extended into a three-dimensional supra­molecular network through N—H⋯O and weak C—H⋯O hydrogen bonds involving the self-assembled 2-amino­pyridinium penta­mers, which are linked by C—H⋯π and ππ stacking inter­actions. The most important contributions to the Hirshfeld surface arise from O⋯H/H⋯O (54.8%), H⋯H (17.8%) and C⋯H/H⋯C (13.4%) contacts.

1. Chemical context

Tellurium(VI) often occurs as a central octa­hedral heteroatom in polyoxometalates (POMs) but TeVI is rarely seen in deca­vanadate (V10) structures: just two vanadotellurates with a deca­vanadate structure have been reported, viz. the monosubstituted tellurium derivative [HxTeV9O28](5–x)– described by Konaka et al. (2011[Konaka, S., Ozawa, Y., Shonaka, T., Watanabe, S. & Yagasaki, A. (2011). Inorg. Chem. 50, 6183-6188.]) and the disubstituted species [Te2V9O28]4– reported by our group in the form of its quinolinium salt (Toumi et al., 2013[Toumi, S., Toumi, S. A. & Rzaigui, M. (2013). Acta Cryst. E69, m595-m596.]). Moreover, amino­pyridine derivatives are commonly used as counter-cations in POMs owing to the easy protonation of their N atoms and their high structural stability (Maalaoui et al., 2013[Maaloui, A., Toumi, S. A. & Rzaigui, M. (2013). Acta Cryst. E69, m661-m662.], 2024[Maalaoui, A., Guedidi, H., Rzaigui, M. & Akriche, S. (2024). Energy Fuels, 38, 1319-1329.]; Yuan et al., 2009[Yuan, C., Lu, L., Zhu, M., Ma, Q. & Wu, Y. (2009). Acta Cryst. E65, m267-m268.]). Here we report the synthesis, structure and Hirshfeld surface analyses of the first unprotonated nona­vanado(V)tellurate(VI) cluster, [TeV9O28]5–, crystallized as its anhydrous 2-amino­pyridinium salt, (C5H7N2)5[TeV9O28], (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] consists of one unprotonated [TeV9O28]5– heteropolyanion and five 2-amino­pyridinium counter-cations as depicted in Fig. 1[link]. The structure of the heteropolyanion in (I)[link] belongs to the deca­vanadate structure type (Lee, 2006[Lee, U. (2006). Acta Cryst. E62, i176-i178.]), but with tellurium replacing one of the vanadium atoms. The Te heteroatom is statistically distributed over the Te1/V9 and Te2/V10 sites in the title compound. This observation is consistent with the structures reported by Konaka et al. (2011[Konaka, S., Ozawa, Y., Shonaka, T., Watanabe, S. & Yagasaki, A. (2011). Inorg. Chem. 50, 6183-6188.]) in TBA3[H2TeV9O28] and TBA4[HTeV9O28]·2CH3CN (TBA = tetra­butyl ammonium). In the [TeV9O28]5– polyanion in (I)[link], the VO6 octa­hedra are significantly distorted [range of V—O bond lengths = 1.595 (4)– 2.429 (4) Å] whereas the TeO6 substituted octa­hedra [Te/V—O ranges 1.769 (4)–2.063 (4) Å] are less distorted in comparison with the VO6 octa­hedra. The bond-valence sums (BVS; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) for Te1 and Te2 are +6.33 and +6.39 v.u. (v.u. = valence units), whereas those for the V cations are in the range +5.17 v.u. to +5.26 v.u., which are consistent with the oxidation states of Te (+VI) and V (+V). An examination of the 2–amino­pyridinium cations show that the bond distances and angles are in accordance with those in analogous salts such as (C5H7N2)6[V10O28]·2H2O, (Yuan et al., 2009[Yuan, C., Lu, L., Zhu, M., Ma, Q. & Wu, Y. (2009). Acta Cryst. E65, m267-m268.]), (C5H7N2)2 [ReVW4O19]·7H2O (Maaloui et al., 2013[Maaloui, A., Toumi, S. A. & Rzaigui, M. (2013). Acta Cryst. E69, m661-m662.]) and (C5H7N2)5[PV2W10O40]·0.5(C5H5N)·2H2O (Maaloui et al., 2024[Maalaoui, A., Guedidi, H., Rzaigui, M. & Akriche, S. (2024). Energy Fuels, 38, 1319-1329.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Non-covalent inter­molecular inter­actions are shown as dotted lines.

3. Supra­molecular features

In the extended structure, all the hydrogen-bond donors are provided by the five 2-amino­pyridinium cations as the polyanion is unprotonated. Each cation donates hydrogen bonds to the terminal and bridging O atoms of the polyanions stacked along [100] at z = 1/4 and 3/4 by means of N—H⋯O and weak C—H⋯O inter­actions, giving rise to a three-dimensional supra­molecular network (Fig. 2[link] and Table 1[link]). Furthermore, the 2-amino­pyridinium moieties are themselves connected by weak C—H⋯π [C10—H10⋯Cg1 = 3.066 Å, C18—H18⋯Cg5iv = 2.659 Å; symmetry code: (iv) x, [{1\over 2}] − y, [{1\over 2}] + z; Table 1[link]] and ππ stacking inter­actions between the R2/R4 and R4/R3 pyridyl rings [R1 = N1/C1–C5 (centroid Cg1), R2 = N3/C6–C10 (centroid Cg2), R3 = N5/C11–C15 (centroid Cg3), R4 = N7/C16–C20 (centroid Cg4), R5 = N9/C21–C25 (centroid Cg5)] stacked in parallel displaced face-to-face arrangements with centroid–centroid distances of 3.724 (2) and 3.829 (2) Å, respectively (Fig. 3[link]), within the accepted rangesfor C—H⋯π and ππ stacking interactions (Janiak (2000[Janiak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.86 2.57 3.426 (8) 172
N2—H2A⋯O1i 0.86 2.26 3.105 (8) 167
N2—H2B⋯O3ii 0.86 2.50 3.006 (7) 118
N2—H2B⋯O10ii 0.86 2.28 3.121 (8) 165
C4—H4⋯O3E 0.93 2.44 2.995 (8) 119
C4—H4⋯O8Eiii 0.93 2.26 3.073 (8) 146
C5—H5⋯O9iii 0.93 2.24 3.136 (8) 161
N3—H3A⋯O12iv 0.86 2.54 3.397 (7) 175
N4—H4A⋯O7v 0.86 2.05 2.896 (7) 168
N4—H4B⋯O16iv 0.86 2.19 2.998 (7) 156
C7—H7⋯O18v 0.93 2.57 3.495 (8) 171
C9—H9⋯O5i 0.93 1.86 2.760 (7) 161
N5—H5A⋯O10ii 0.86 2.61 3.404 (8) 154
N6—H6A⋯O1Evi 0.86 2.14 2.922 (8) 151
N6—H6B⋯O7Eii 0.86 2.05 2.900 (8) 171
C12—H12⋯O1Evi 0.93 2.63 3.312 (9) 130
C14—H14⋯O8iv 0.93 1.78 2.703 (7) 174
C14—H14⋯O17iv 0.93 2.62 3.146 (8) 117
N7—H7A⋯O15vi 0.86 2.48 3.308 (8) 161
N8—H8A⋯O3Evii 0.86 2.12 2.966 (7) 169
N8—H8B⋯O14vi 0.86 2.18 2.963 (7) 152
C19—H19⋯O13ii 0.93 1.88 2.788 (7) 165
C20—H20⋯O18ii 0.93 2.43 3.202 (8) 140
N9—H9A⋯O5E 0.86 2.46 3.244 (7) 151
N10—H10A⋯O3 0.86 2.30 3.098 (8) 155
N10—H10B⋯O1viii 0.86 2.65 3.294 (8) 132
N10—H10B⋯O2viii 0.86 2.34 3.169 (8) 162
C22—H22⋯O2Eviii 0.93 2.29 3.189 (8) 164
C24—H24⋯O4Eix 0.93 2.35 2.929 (7) 120
C24—H24⋯O6Eix 0.93 2.61 3.153 (7) 118
C24—H24⋯O11x 0.93 2.48 3.003 (7) 116
C10—H10⋯Cg1 0.93 3.07 3.902 151
C18—H18⋯Cg5iv 0.93 2.66 3.450 143
Symmetry codes: (i) [-x, -y, -z+1]; (ii) [-x+1, -y, -z+1]; (iii) [x-1, y, z]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x, y, z+1]; (vi) [x+1, y, z+1]; (vii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) [x+1, y, z]; (ix) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (x) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of (I)[link] with N—H⋯O and weak C—H⋯O inter­actions forming a three-dimensional supra­molecular network. H atoms not involved in hydrogen bonding scheme are omitted
[Figure 3]
Figure 3
The self-assembled 2-amino­pyridinium penta­mer featuring weak C—H⋯π and ππ stacking inter­actions (depicted by dashed lines). Other H atoms omitted. Symmetry codes: (iv): x, [{1\over 2}] − y, [{1\over 2}] + z; (viii): 1 + x, y, z.

4. Hirshfeld surface analysis

Fig. 4[link](a) illustrates the Hirshfeld surface of (I)[link] mapped over dnorm with red spots corresponding to short inter-contacts. The red, triangular concave regions in the Hirshfeld surface mapped with shape index [Fig. 4[link](b)], confirm the existence of the ππ stacking inter­actions mentioned above. The fingerprint plots (Fig. 5[link]) indicate that the major contact contributions to the crystal structure are from O⋯H/H⋯O (54.8%), H⋯H (17.8%) and C⋯H/H⋯C (13.4%) whereas the contributions of the remaining contacts [N⋯H/H⋯N (4.7%), O⋯C/C⋯O (2.6%), C⋯C (2.3%), O⋯O (1.6%)] are very small. The characteristic spikes in the O⋯H/H⋯O plot [Fig. 5[link](a)] indicate the existence of the N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]).

[Figure 4]
Figure 4
The Hirshfeld surface mapped over (a) dnorm and (b) shape-index. N—H⋯O and C—H⋯O hydrogen bonds from neighbouring organic cations are represented by green dotted lines.
[Figure 5]
Figure 5
Fingerprint plots showing the major contacts contributions of (a) H⋯O/O⋯H, (b) H⋯H and (c) C⋯H/H⋯C.

5. Database survey

Related vanadotellurates with the deca­vanadate structure type include TBA4[HTeV9O28]·2CH3CN and TBA3[H2TeV9O28] (TBA = tetra-n-butyl­ammonium) (Konaka et al., 2011[Konaka, S., Ozawa, Y., Shonaka, T., Watanabe, S. & Yagasaki, A. (2011). Inorg. Chem. 50, 6183-6188.]) and (C9H8N)4[Te2V8O28]·8H2O (Toumi et al., 2013[Toumi, S., Toumi, S. A. & Rzaigui, M. (2013). Acta Cryst. E69, m595-m596.]). Related nona­vanadoplatinate(IV) clusters include Na9[H2PtV9O28][H3PtV9O28]·40H2O (Joo et al., 2015[Joo, H.-C., Park, K.-M. & Lee, U. (2015). Acta Cryst. E71, 786-790.]), Na5[H2PtV9O28]·21H2O (Lee et al., 2008[Lee, U., Joo, H.-J., Park, K.-M., Mal, S. S., Kortz, U., Keita, B. & Nadjo, L. (2008). Angew. Chem. Int. Ed. 47, 793-796.]), (CH6N3)5[H2PtV9O28] (Joo et al., 2011[Joo, H.-C., Park, K.-M. & Lee, U. (2011). Acta Cryst. E67, m1801-m1802.]) and K5[H2PtV9O28]·9H2O (Joo & Lee, 2015[Joo, H.-C. & Lee, U. (2015). Acta Cryst. E71, 647-649.]). For the related structures of amino­pyridinium containing polyoxometalates (C5H7N2)6[V10O28]·2H2O, see: Yuan et al. (2009[Yuan, C., Lu, L., Zhu, M., Ma, Q. & Wu, Y. (2009). Acta Cryst. E65, m267-m268.]); (C5H7N2)2[ReVW4O19]·7H2O, see: Maaloui et al. (2013[Maaloui, A., Toumi, S. A. & Rzaigui, M. (2013). Acta Cryst. E69, m661-m662.]) and (C5H7N2)5[PV2W10O40]·0.5(C5H5N)·2H2O, see: Maaloui et al. (2024[Maalaoui, A., Guedidi, H., Rzaigui, M. & Akriche, S. (2024). Energy Fuels, 38, 1319-1329.]).

6. Synthesis and crystallization

Vanadium(V) oxide (1.26 g, 6.93 mmol), 2-amino­pyridine (0.59 g, 6.16 mmol) and telluric acid, Te(OH)6 (0.36 g, 1.55 mmol) were suspended in 50 ml of distilled water. Then the pH value of the mixture was adjusted to 6 with 3 M hydro­chloric acid (HCl) and stirred for 3 h. After one week, yellow prismatic single crystals were grown by slow evaporation at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H-atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula (C5H7N2)5[TeV9O28]
Mr 1509.69
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.661 (2), 23.251 (2), 19.602 (3)
β (°) 122.53 (1)
V3) 4481.1 (12)
Z 4
Radiation type Ag Kα, λ = 0.56087 Å
μ (mm−1) 1.31
Crystal size (mm) 0.25 × 0.19 × 0.13
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.745, 0.807
No. of measured, independent and observed [I > 2σ(I)] reflections 25752, 21889, 10265
Rint 0.048
(sin θ/λ)max−1) 0.837
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.211, 1.03
No. of reflections 21889
No. of parameters 658
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.19, −1.74
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]).

Supporting information


Computing details top

Pentakis(2-aminopyridinium) nonavanado(V)tellurate(VI) top
Crystal data top
(C5H7N2)5[TeV9O28]F(000) = 2952
Mr = 1509.69Dx = 2.238 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56087 Å
a = 11.661 (2) ÅCell parameters from 25 reflections
b = 23.251 (2) Åθ = 9–11°
c = 19.602 (3) ŵ = 1.31 mm1
β = 122.53 (1)°T = 293 K
V = 4481.1 (12) Å3Prism, yellow
Z = 40.25 × 0.19 × 0.13 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
10265 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.048
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
non–profiled ω scansh = 1919
Absorption correction: multi-scan
(Blessing, 1995)
k = 381
Tmin = 0.745, Tmax = 0.807l = 2132
25752 measured reflections2 standard reflections every 120 min
21889 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: difference Fourier map
wR(F2) = 0.211H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0646P)2 + 23.768P]
where P = (Fo2 + 2Fc2)/3
21889 reflections(Δ/σ)max < 0.001
658 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 1.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.04965 (9)0.09075 (4)0.20903 (6)0.02450 (19)
V20.08300 (10)0.20810 (4)0.20870 (6)0.02400 (19)
V30.10819 (10)0.16241 (4)0.36755 (6)0.02479 (19)
V40.22827 (9)0.04297 (4)0.35456 (6)0.02207 (18)
V50.33925 (9)0.20776 (4)0.19507 (6)0.02098 (18)
V60.48299 (9)0.04162 (4)0.33892 (6)0.02189 (18)
V70.45911 (10)0.09044 (4)0.18122 (6)0.02306 (18)
V80.61987 (9)0.15934 (4)0.34255 (6)0.02428 (19)
Te10.20032 (5)0.08920 (2)0.19110 (3)0.02224 (11)0.5
V90.20032 (5)0.08920 (2)0.19110 (3)0.02224 (11)0.5
Te20.36502 (5)0.16117 (2)0.35539 (3)0.01968 (10)0.5
V100.36502 (5)0.16117 (2)0.35539 (3)0.01968 (10)0.5
O1C0.1777 (4)0.12502 (15)0.2795 (2)0.0194 (7)
O2C0.3881 (4)0.12507 (15)0.2679 (2)0.0184 (7)
O1E0.1978 (4)0.0632 (2)0.1558 (3)0.0345 (10)
O2E0.0345 (4)0.26655 (19)0.1575 (3)0.0334 (10)
O3E0.0777 (5)0.18882 (19)0.4322 (3)0.0349 (10)
O4E0.2796 (4)0.01547 (18)0.4051 (3)0.0291 (9)
O5E0.2880 (4)0.26650 (18)0.1446 (3)0.0303 (9)
O6E0.5314 (4)0.01715 (18)0.3887 (3)0.0323 (9)
O7E0.4904 (5)0.0649 (2)0.1165 (3)0.0331 (10)
O8E0.7705 (4)0.1847 (2)0.3991 (3)0.0351 (10)
O10.0473 (4)0.12517 (18)0.2928 (3)0.0279 (8)
O20.0658 (4)0.16167 (18)0.1600 (3)0.0281 (8)
O30.6150 (4)0.12598 (17)0.2562 (2)0.0253 (8)
O40.0704 (4)0.22175 (17)0.2957 (3)0.0274 (8)
O50.0520 (4)0.02864 (17)0.2764 (2)0.0252 (8)
O60.1898 (4)0.09013 (18)0.4131 (2)0.0254 (8)
O70.3775 (4)0.16162 (17)0.1356 (2)0.0238 (8)
O80.5151 (4)0.22191 (17)0.2729 (2)0.0241 (8)
O90.6298 (4)0.08877 (17)0.3882 (2)0.0250 (8)
O100.4971 (4)0.02920 (17)0.2523 (2)0.0242 (8)
O110.4076 (4)0.08450 (16)0.3978 (2)0.0201 (7)
O120.2858 (4)0.22228 (15)0.2773 (2)0.0207 (7)
O130.2804 (4)0.02707 (16)0.2701 (2)0.0196 (7)
O140.1581 (4)0.16667 (16)0.1492 (2)0.0218 (7)
O150.0311 (4)0.06384 (17)0.1429 (2)0.0250 (8)
O160.3056 (4)0.18699 (17)0.4170 (2)0.0258 (8)
O170.5353 (4)0.18601 (17)0.4046 (2)0.0244 (8)
O180.2607 (4)0.06431 (17)0.1304 (2)0.0259 (8)
N10.0124 (6)0.0239 (3)0.5776 (4)0.0454 (15)
H10.06430.00210.57830.055*
N20.1895 (7)0.0268 (3)0.6727 (4)0.0466 (16)
H2A0.14140.05440.67390.056*
H2B0.27680.02880.70190.056*
C10.1300 (6)0.0180 (3)0.6268 (4)0.0304 (12)
C20.2068 (7)0.0636 (3)0.6223 (4)0.0385 (15)
H20.30130.06230.65370.046*
C30.1435 (9)0.1084 (3)0.5729 (5)0.0475 (18)
H30.19520.13770.57010.057*
C40.0094 (7)0.1119 (3)0.5281 (4)0.0350 (14)
H40.03180.14380.49500.042*
C50.0669 (7)0.0704 (4)0.5297 (4)0.0445 (18)
H50.16110.07350.49680.053*
N30.2068 (7)0.1563 (3)0.8399 (4)0.0481 (16)
H3A0.23130.18620.82490.058*
N40.3077 (6)0.1934 (2)0.9747 (3)0.0378 (13)
H4A0.32770.18921.02360.045*
H4B0.33030.22430.96090.045*
C60.2417 (6)0.1519 (3)0.9207 (4)0.0293 (12)
C70.2030 (7)0.1005 (3)0.9413 (4)0.0332 (13)
H70.22550.09450.99400.040*
C80.1334 (7)0.0602 (3)0.8843 (5)0.0390 (15)
H80.10850.02660.89870.047*
C90.0989 (6)0.0666 (2)0.8084 (4)0.0284 (11)
H90.04950.03790.77080.034*
C100.1343 (8)0.1138 (3)0.7853 (5)0.0451 (17)
H100.10960.11770.73180.054*
N50.5217 (7)0.0852 (3)0.8616 (4)0.0536 (17)
H5A0.49450.05360.83480.064*
N60.6012 (8)0.0360 (3)0.9866 (4)0.057 (2)
H6A0.64050.03631.03840.068*
H6B0.57520.00400.96060.068*
C110.5809 (7)0.0847 (3)0.9469 (4)0.0351 (14)
C120.6208 (8)0.1373 (3)0.9858 (5)0.0483 (19)
H120.65870.13941.04130.058*
C130.6045 (9)0.1859 (3)0.9429 (5)0.054 (2)
H130.63260.22100.96970.065*
C140.5497 (7)0.1844 (3)0.8637 (4)0.0382 (15)
H140.53970.21830.83580.046*
C150.5084 (8)0.1344 (3)0.8233 (5)0.0474 (18)
H150.46990.13410.76770.057*
N70.9043 (7)0.1101 (3)0.9559 (4)0.0486 (16)
H7A0.92880.10591.00560.058*
N80.9909 (7)0.2065 (3)0.9791 (4)0.0481 (16)
H8A1.00410.23830.96200.058*
H8B1.01900.20251.02940.058*
C160.9275 (7)0.1637 (3)0.9281 (4)0.0342 (13)
C170.8790 (8)0.1676 (3)0.8452 (4)0.0428 (17)
H170.88760.20170.82360.051*
C180.8194 (8)0.1207 (3)0.7970 (4)0.0479 (19)
H180.79050.12290.74270.057*
C190.8012 (7)0.0718 (3)0.8253 (4)0.0350 (14)
H190.75820.04100.79020.042*
C200.8432 (7)0.0662 (3)0.9024 (5)0.0415 (16)
H200.83060.03130.92060.050*
N90.5489 (7)0.2953 (3)0.1326 (5)0.058 (2)
H9A0.50210.27960.14970.070*
N100.7082 (7)0.2180 (3)0.1817 (4)0.0533 (17)
H10A0.66390.20090.19950.064*
H10B0.78020.20240.18800.064*
C210.6657 (6)0.2680 (3)0.1446 (4)0.0305 (12)
C220.7364 (7)0.2980 (3)0.1143 (5)0.0393 (15)
H220.81480.28230.12030.047*
C230.6885 (8)0.3491 (3)0.0767 (4)0.0427 (17)
H230.73320.36730.05520.051*
C240.5814 (6)0.3742 (2)0.0694 (4)0.0313 (13)
H240.55640.41090.04740.038*
C250.5100 (7)0.3475 (3)0.0933 (5)0.0457 (18)
H250.43010.36450.08320.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0177 (4)0.0258 (5)0.0284 (5)0.0012 (4)0.0114 (4)0.0006 (4)
V20.0217 (4)0.0225 (4)0.0293 (5)0.0046 (3)0.0147 (4)0.0060 (4)
V30.0289 (5)0.0225 (4)0.0302 (5)0.0015 (4)0.0207 (4)0.0011 (4)
V40.0231 (4)0.0190 (4)0.0253 (4)0.0007 (3)0.0138 (4)0.0040 (3)
V50.0199 (4)0.0195 (4)0.0237 (4)0.0004 (3)0.0119 (4)0.0035 (3)
V60.0195 (4)0.0201 (4)0.0254 (4)0.0027 (3)0.0116 (4)0.0030 (3)
V70.0223 (4)0.0253 (4)0.0239 (4)0.0002 (4)0.0141 (4)0.0024 (4)
V80.0174 (4)0.0250 (5)0.0267 (5)0.0020 (3)0.0094 (4)0.0028 (4)
Te10.0202 (2)0.0230 (2)0.0224 (2)0.00086 (19)0.0107 (2)0.0001 (2)
V90.0202 (2)0.0230 (2)0.0224 (2)0.00086 (19)0.0107 (2)0.0001 (2)
Te20.0208 (2)0.0180 (2)0.0200 (2)0.00005 (18)0.01080 (18)0.00028 (18)
V100.0208 (2)0.0180 (2)0.0200 (2)0.00005 (18)0.01080 (18)0.00028 (18)
O1C0.0188 (16)0.0179 (16)0.0239 (17)0.0015 (13)0.0131 (14)0.0024 (14)
O2C0.0186 (16)0.0144 (15)0.0226 (17)0.0016 (13)0.0114 (14)0.0013 (13)
O1E0.0215 (19)0.042 (3)0.035 (2)0.0065 (18)0.0117 (18)0.002 (2)
O2E0.029 (2)0.029 (2)0.044 (3)0.0088 (17)0.021 (2)0.0153 (19)
O3E0.047 (3)0.032 (2)0.038 (2)0.001 (2)0.031 (2)0.0063 (19)
O4E0.032 (2)0.026 (2)0.030 (2)0.0061 (17)0.0166 (18)0.0089 (17)
O5E0.030 (2)0.029 (2)0.034 (2)0.0015 (17)0.0183 (18)0.0066 (18)
O6E0.032 (2)0.027 (2)0.038 (2)0.0079 (18)0.019 (2)0.0105 (18)
O7E0.033 (2)0.042 (3)0.031 (2)0.0019 (19)0.0212 (19)0.0062 (19)
O8E0.023 (2)0.037 (2)0.037 (2)0.0078 (18)0.0104 (18)0.008 (2)
O10.028 (2)0.029 (2)0.034 (2)0.0017 (17)0.0212 (18)0.0028 (17)
O20.0166 (17)0.028 (2)0.037 (2)0.0033 (15)0.0122 (16)0.0063 (18)
O30.0210 (18)0.0259 (19)0.030 (2)0.0014 (15)0.0147 (16)0.0015 (16)
O40.029 (2)0.0196 (18)0.037 (2)0.0035 (15)0.0198 (19)0.0025 (16)
O50.0261 (19)0.0220 (18)0.0282 (19)0.0037 (15)0.0150 (16)0.0015 (15)
O60.030 (2)0.0274 (19)0.0267 (19)0.0042 (16)0.0204 (17)0.0027 (16)
O70.0254 (18)0.0252 (19)0.0233 (18)0.0035 (15)0.0147 (16)0.0041 (15)
O80.0235 (18)0.0240 (18)0.0255 (19)0.0027 (15)0.0136 (16)0.0021 (15)
O90.0157 (16)0.0276 (19)0.0241 (18)0.0007 (15)0.0058 (14)0.0019 (16)
O100.0233 (18)0.0223 (18)0.0277 (19)0.0027 (14)0.0141 (16)0.0004 (15)
O110.0218 (17)0.0216 (17)0.0166 (15)0.0026 (14)0.0102 (14)0.0004 (13)
O120.0182 (16)0.0186 (16)0.0233 (17)0.0029 (13)0.0099 (14)0.0012 (14)
O130.0200 (16)0.0220 (17)0.0162 (15)0.0041 (14)0.0093 (14)0.0017 (13)
O140.0184 (17)0.0242 (18)0.0216 (17)0.0004 (14)0.0100 (15)0.0019 (14)
O150.0243 (19)0.0237 (19)0.0263 (19)0.0024 (15)0.0132 (16)0.0021 (15)
O160.031 (2)0.0213 (18)0.027 (2)0.0015 (16)0.0171 (17)0.0018 (15)
O170.0229 (18)0.0236 (19)0.0225 (18)0.0043 (15)0.0094 (15)0.0048 (15)
O180.0260 (19)0.0245 (19)0.027 (2)0.0025 (15)0.0145 (17)0.0060 (16)
N10.039 (3)0.058 (4)0.052 (4)0.007 (3)0.033 (3)0.003 (3)
N20.045 (3)0.047 (4)0.056 (4)0.017 (3)0.033 (3)0.026 (3)
C10.027 (3)0.038 (3)0.028 (3)0.005 (2)0.017 (2)0.003 (2)
C20.028 (3)0.047 (4)0.039 (4)0.002 (3)0.016 (3)0.000 (3)
C30.060 (5)0.034 (4)0.058 (5)0.010 (3)0.038 (4)0.002 (3)
C40.040 (3)0.022 (3)0.038 (3)0.007 (2)0.017 (3)0.011 (2)
C50.037 (4)0.066 (5)0.029 (3)0.021 (3)0.016 (3)0.001 (3)
N30.067 (4)0.032 (3)0.057 (4)0.005 (3)0.041 (4)0.008 (3)
N40.055 (4)0.025 (3)0.037 (3)0.011 (2)0.028 (3)0.000 (2)
C60.032 (3)0.024 (3)0.034 (3)0.001 (2)0.019 (3)0.001 (2)
C70.033 (3)0.034 (3)0.031 (3)0.000 (2)0.017 (3)0.006 (2)
C80.033 (3)0.027 (3)0.052 (4)0.001 (3)0.020 (3)0.006 (3)
C90.030 (3)0.023 (3)0.028 (3)0.002 (2)0.013 (2)0.007 (2)
C100.061 (5)0.037 (4)0.038 (4)0.001 (3)0.027 (4)0.009 (3)
N50.059 (4)0.046 (4)0.051 (4)0.000 (3)0.027 (4)0.005 (3)
N60.089 (5)0.022 (3)0.039 (3)0.005 (3)0.021 (4)0.006 (2)
C110.040 (3)0.022 (3)0.032 (3)0.001 (2)0.012 (3)0.000 (2)
C120.062 (5)0.028 (3)0.035 (4)0.008 (3)0.013 (3)0.001 (3)
C130.058 (5)0.024 (3)0.052 (5)0.003 (3)0.010 (4)0.001 (3)
C140.042 (4)0.023 (3)0.033 (3)0.001 (3)0.010 (3)0.013 (2)
C150.049 (4)0.046 (4)0.035 (4)0.004 (3)0.013 (3)0.012 (3)
N70.047 (4)0.054 (4)0.042 (3)0.007 (3)0.023 (3)0.000 (3)
N80.066 (4)0.031 (3)0.031 (3)0.014 (3)0.015 (3)0.002 (2)
C160.034 (3)0.029 (3)0.032 (3)0.000 (3)0.013 (3)0.001 (2)
C170.066 (5)0.028 (3)0.030 (3)0.000 (3)0.023 (3)0.009 (3)
C180.057 (5)0.040 (4)0.028 (3)0.006 (3)0.011 (3)0.003 (3)
C190.031 (3)0.025 (3)0.034 (3)0.001 (2)0.008 (3)0.011 (2)
C200.037 (4)0.023 (3)0.058 (5)0.006 (3)0.021 (3)0.004 (3)
N90.050 (4)0.053 (4)0.092 (6)0.011 (3)0.051 (4)0.005 (4)
N100.061 (4)0.036 (3)0.067 (5)0.008 (3)0.038 (4)0.018 (3)
C210.030 (3)0.033 (3)0.031 (3)0.001 (2)0.018 (2)0.007 (2)
C220.030 (3)0.044 (4)0.056 (4)0.005 (3)0.031 (3)0.004 (3)
C230.056 (4)0.040 (4)0.040 (4)0.021 (3)0.031 (4)0.004 (3)
C240.036 (3)0.016 (2)0.033 (3)0.004 (2)0.012 (3)0.005 (2)
C250.027 (3)0.046 (4)0.053 (4)0.011 (3)0.014 (3)0.001 (3)
Geometric parameters (Å, º) top
V1—O1E1.595 (4)Te1—O151.769 (4)
V1—O11.814 (4)Te1—O181.774 (4)
V1—O21.867 (4)Te1—O141.931 (4)
V1—O51.884 (4)Te1—O131.950 (4)
V1—O152.067 (4)Te1—O2C2.052 (4)
V1—O1C2.374 (4)Te1—O1C2.063 (4)
V2—O2E1.601 (4)Te2—O171.774 (4)
V2—O41.816 (4)Te2—O161.789 (4)
V2—O21.818 (4)Te2—O111.916 (4)
V2—O122.022 (4)Te2—O121.923 (4)
V2—O142.039 (4)Te2—O1C2.048 (4)
V2—O1C2.287 (4)Te2—O2C2.052 (4)
V3—O3E1.611 (4)N1—C51.347 (10)
V3—O11.824 (4)N1—C11.409 (8)
V3—O41.848 (4)N2—C11.307 (8)
V3—O61.901 (4)C1—C21.420 (9)
V3—O162.041 (4)C2—C31.343 (10)
V3—O1C2.429 (4)C3—C41.321 (10)
V4—O61.809 (4)C4—C51.325 (11)
V4—O51.816 (4)N3—C101.366 (10)
V4—O112.030 (4)N3—C61.411 (9)
V4—O132.080 (4)N4—C61.330 (8)
V4—O1C2.285 (4)C6—C71.410 (8)
V5—O5E1.601 (4)C7—C81.345 (10)
V5—O71.808 (4)C8—C91.324 (9)
V5—O81.810 (4)C9—C101.334 (10)
V5—O142.034 (4)N5—C151.330 (10)
V5—O122.045 (4)N5—C111.425 (9)
V5—O2C2.277 (4)N6—C111.322 (8)
V6—O6E1.596 (4)C11—C121.381 (9)
V6—O91.813 (4)C12—C131.361 (10)
V6—O101.815 (4)C13—C141.323 (11)
V6—O132.022 (4)C14—C151.341 (10)
V6—O112.046 (4)N7—C201.357 (9)
V6—O2C2.296 (4)N7—C161.444 (9)
V7—O7E1.610 (4)N8—C161.319 (8)
V7—O31.810 (4)C16—C171.408 (9)
V7—O101.871 (4)C17—C181.364 (10)
V7—O71.879 (4)C18—C191.331 (10)
V7—O182.058 (4)C19—C201.322 (10)
V7—O2C2.396 (4)N9—C251.379 (10)
V8—O8E1.603 (4)N9—C211.404 (9)
V8—O31.835 (4)N10—C211.320 (8)
V8—O91.843 (4)C21—C221.430 (9)
V8—O81.918 (4)C22—C231.351 (10)
V8—O172.031 (4)C23—C241.316 (10)
V8—O2C2.414 (4)C24—C251.309 (10)
O1E—V1—O1104.6 (2)O15—Te1—O1395.61 (17)
O1E—V1—O2104.1 (2)O18—Te1—O1395.62 (17)
O1—V1—O291.42 (19)O14—Te1—O13158.89 (16)
O1E—V1—O5101.7 (2)O15—Te1—O2C166.18 (16)
O1—V1—O590.34 (19)O18—Te1—O2C88.46 (16)
O2—V1—O5152.78 (17)O14—Te1—O2C81.97 (15)
O1E—V1—O1599.6 (2)O13—Te1—O2C81.48 (15)
O1—V1—O15155.70 (18)O15—Te1—O1C88.51 (16)
O2—V1—O1584.15 (18)O18—Te1—O1C166.14 (16)
O5—V1—O1583.16 (17)O14—Te1—O1C82.10 (15)
O1E—V1—O1C173.4 (2)O13—Te1—O1C81.65 (15)
O1—V1—O1C81.78 (16)O2C—Te1—O1C77.71 (14)
O2—V1—O1C76.99 (15)O17—Te2—O16104.49 (18)
O5—V1—O1C76.40 (15)O17—Te2—O1196.53 (17)
O15—V1—O1C73.94 (14)O16—Te2—O1197.11 (17)
O2E—V2—O4105.1 (2)O17—Te2—O1296.35 (17)
O2E—V2—O2105.0 (2)O16—Te2—O1295.45 (17)
O4—V2—O293.47 (19)O11—Te2—O12159.15 (16)
O2E—V2—O1299.83 (19)O17—Te2—O1C166.67 (16)
O4—V2—O1290.20 (17)O16—Te2—O1C88.83 (17)
O2—V2—O12152.94 (17)O11—Te2—O1C81.94 (15)
O2E—V2—O1499.1 (2)O12—Te2—O1C81.75 (15)
O4—V2—O14153.70 (17)O17—Te2—O2C88.63 (16)
O2—V2—O1490.08 (17)O16—Te2—O2C166.84 (17)
O12—V2—O1475.45 (15)O11—Te2—O2C82.04 (14)
O2E—V2—O1C171.85 (19)O12—Te2—O2C81.94 (15)
O4—V2—O1C80.48 (16)O1C—Te2—O2C78.04 (14)
O2—V2—O1C80.23 (16)Te2—O1C—Te1102.01 (15)
O12—V2—O1C73.96 (14)Te2—O1C—V494.00 (14)
O14—V2—O1C74.46 (14)Te1—O1C—V495.66 (14)
O3E—V3—O1105.6 (2)Te2—O1C—V294.16 (14)
O3E—V3—O4104.6 (2)Te1—O1C—V294.01 (15)
O1—V3—O490.89 (19)V4—O1C—V2165.78 (17)
O3E—V3—O6103.5 (2)Te2—O1C—V1168.96 (19)
O1—V3—O689.30 (19)Te1—O1C—V189.03 (13)
O4—V3—O6150.70 (17)V4—O1C—V185.12 (12)
O3E—V3—O16100.9 (2)V2—O1C—V184.64 (12)
O1—V3—O16153.48 (17)Te2—O1C—V388.27 (13)
O4—V3—O1684.20 (17)Te1—O1C—V3169.63 (18)
O6—V3—O1682.68 (17)V4—O1C—V384.84 (12)
O3E—V3—O1C174.3 (2)V2—O1C—V383.79 (12)
O1—V3—O1C80.04 (15)V1—O1C—V380.69 (11)
O4—V3—O1C76.06 (15)Te2—O2C—Te1102.24 (15)
O6—V3—O1C75.12 (15)Te2—O2C—V594.46 (14)
O16—V3—O1C73.48 (14)Te1—O2C—V594.28 (14)
O4E—V4—O6105.1 (2)Te2—O2C—V694.38 (14)
O4E—V4—O5104.1 (2)Te1—O2C—V694.46 (13)
O6—V4—O595.27 (19)V5—O2C—V6165.98 (17)
O4E—V4—O11100.81 (19)Te2—O2C—V7168.78 (18)
O6—V4—O1189.92 (17)Te1—O2C—V788.98 (13)
O5—V4—O11152.19 (17)V5—O2C—V784.49 (12)
O4E—V4—O1399.75 (19)V6—O2C—V784.73 (12)
O6—V4—O13152.93 (17)Te2—O2C—V888.04 (13)
O5—V4—O1388.79 (16)Te1—O2C—V8169.69 (18)
O11—V4—O1374.93 (15)V5—O2C—V885.54 (12)
O4E—V4—O1C172.39 (18)V6—O2C—V883.91 (12)
O6—V4—O1C80.60 (16)V7—O2C—V880.74 (11)
O5—V4—O1C80.03 (15)V1—O1—V3117.4 (2)
O11—V4—O1C73.89 (14)V2—O2—V1116.8 (2)
O13—V4—O1C73.76 (14)V7—O3—V8117.5 (2)
O5E—V5—O7104.3 (2)V2—O4—V3118.6 (2)
O5E—V5—O8104.1 (2)V4—O5—V1116.8 (2)
O7—V5—O895.22 (18)V4—O6—V3118.0 (2)
O5E—V5—O1499.98 (19)V5—O7—V7116.9 (2)
O7—V5—O1489.63 (17)V5—O8—V8117.5 (2)
O8—V5—O14153.42 (17)V6—O9—V8119.0 (2)
O5E—V5—O12100.09 (19)V6—O10—V7118.1 (2)
O7—V5—O12153.11 (17)Te2—O11—V4107.03 (17)
O8—V5—O1289.60 (16)Te2—O11—V6107.39 (17)
O14—V5—O1275.06 (15)V4—O11—V6101.05 (16)
O5E—V5—O2C172.62 (18)Te2—O12—V2107.36 (17)
O7—V5—O2C80.70 (15)Te2—O12—V5106.61 (17)
O8—V5—O2C80.62 (16)V2—O12—V5101.10 (17)
O14—V5—O2C74.39 (14)Te1—O13—V6107.13 (18)
O12—V5—O2C74.01 (14)Te1—O13—V4106.28 (16)
O6E—V6—O9105.6 (2)V6—O13—V4100.15 (15)
O6E—V6—O10104.8 (2)Te1—O14—V5106.48 (17)
O9—V6—O1093.46 (18)Te1—O14—V2106.64 (17)
O6E—V6—O1399.6 (2)V5—O14—V2100.86 (17)
O9—V6—O13152.42 (17)Te1—O15—V1108.51 (19)
O10—V6—O1390.62 (16)Te2—O16—V3109.4 (2)
O6E—V6—O11101.0 (2)Te2—O17—V8109.70 (19)
O9—V6—O1188.47 (17)Te1—O18—V7109.11 (19)
O10—V6—O11152.55 (17)C5—N1—C1119.7 (6)
O13—V6—O1175.85 (15)N2—C1—N1122.8 (6)
O6E—V6—O2C172.43 (19)N2—C1—C2121.3 (6)
O9—V6—O2C79.70 (16)N1—C1—C2115.9 (6)
O10—V6—O2C79.87 (16)C3—C2—C1120.3 (7)
O13—V6—O2C74.19 (14)C4—C3—C2121.4 (7)
O11—V6—O2C73.54 (14)C3—C4—C5120.7 (6)
O7E—V7—O3104.7 (2)C4—C5—N1122.1 (7)
O7E—V7—O10104.1 (2)C10—N3—C6120.7 (6)
O3—V7—O1090.59 (18)N4—C6—C7121.6 (6)
O7E—V7—O7102.8 (2)N4—C6—N3122.3 (6)
O3—V7—O790.85 (18)C7—C6—N3116.1 (6)
O10—V7—O7151.82 (17)C8—C7—C6119.6 (6)
O7E—V7—O18100.5 (2)C9—C8—C7122.6 (6)
O3—V7—O18154.80 (17)C8—C9—C10120.7 (6)
O10—V7—O1883.70 (17)C9—C10—N3120.2 (7)
O7—V7—O1883.10 (17)C15—N5—C11120.3 (7)
O7E—V7—O2C173.89 (19)N6—C11—C12122.2 (6)
O3—V7—O2C81.35 (15)N6—C11—N5121.1 (6)
O10—V7—O2C76.18 (15)C12—C11—N5116.6 (6)
O7—V7—O2C76.23 (15)C13—C12—C11120.0 (7)
O18—V7—O2C73.45 (14)C14—C13—C12121.4 (7)
O8E—V8—O3105.8 (2)C13—C14—C15120.6 (6)
O8E—V8—O9103.5 (2)N5—C15—C14121.1 (7)
O3—V8—O991.99 (18)C20—N7—C16119.0 (6)
O8E—V8—O8104.8 (2)N8—C16—C17122.6 (6)
O3—V8—O888.41 (18)N8—C16—N7120.6 (6)
O9—V8—O8150.53 (17)C17—C16—N7116.8 (6)
O8E—V8—O17100.3 (2)C18—C17—C16119.2 (6)
O3—V8—O17153.80 (17)C19—C18—C17122.1 (7)
O9—V8—O1784.52 (17)C20—C19—C18121.1 (6)
O8—V8—O1782.30 (16)C19—C20—N7121.9 (7)
O8E—V8—O2C173.9 (2)C25—N9—C21119.3 (6)
O3—V8—O2C80.36 (15)N10—C21—N9122.3 (6)
O9—V8—O2C75.98 (14)N10—C21—C22121.9 (6)
O8—V8—O2C75.05 (14)N9—C21—C22115.8 (6)
O17—V8—O2C73.59 (14)C23—C22—C21119.5 (6)
O15—Te1—O18105.31 (18)C24—C23—C22122.7 (6)
O15—Te1—O1497.35 (17)C25—C24—C23120.0 (6)
O18—Te1—O1496.93 (18)C24—C25—N9122.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.862.573.426 (8)172
N2—H2A···O1i0.862.263.105 (8)167
N2—H2B···O3ii0.862.503.006 (7)118
N2—H2B···O10ii0.862.283.121 (8)165
C4—H4···O3E0.932.442.995 (8)119
C4—H4···O8Eiii0.932.263.073 (8)146
C5—H5···O9iii0.932.243.136 (8)161
N3—H3A···O12iv0.862.543.397 (7)175
N4—H4A···O7v0.862.052.896 (7)168
N4—H4B···O16iv0.862.192.998 (7)156
C7—H7···O18v0.932.573.495 (8)171
C9—H9···O5i0.931.862.760 (7)161
N5—H5A···O10ii0.862.613.404 (8)154
N6—H6A···O1Evi0.862.142.922 (8)151
N6—H6B···O7Eii0.862.052.900 (8)171
C12—H12···O1Evi0.932.633.312 (9)130
C14—H14···O8iv0.931.782.703 (7)174
C14—H14···O17iv0.932.623.146 (8)117
N7—H7A···O15vi0.862.483.308 (8)161
N8—H8A···O3Evii0.862.122.966 (7)169
N8—H8B···O14vi0.862.182.963 (7)152
C19—H19···O13ii0.931.882.788 (7)165
C20—H20···O18ii0.932.433.202 (8)140
N9—H9A···O5E0.862.463.244 (7)151
N10—H10A···O30.862.303.098 (8)155
N10—H10B···O1viii0.862.653.294 (8)132
N10—H10B···O2viii0.862.343.169 (8)162
C22—H22···O2Eviii0.932.293.189 (8)164
C24—H24···O4Eix0.932.352.929 (7)120
C24—H24···O6Eix0.932.613.153 (7)118
C24—H24···O11x0.932.483.003 (7)116
C10—H10···Cg10.933.073.902151
C18—H18···Cg5iv0.932.663.450143
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x, y+1/2, z+1/2; (v) x, y, z+1; (vi) x+1, y, z+1; (vii) x+1, y+1/2, z+1/2; (viii) x+1, y, z; (ix) x+1, y+1/2, z+1/2; (x) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Tunisian Ministry of Higher Education Scientific Research.

Funding information

Funding for this research was provided by: Tunisian Ministry of Higher Education Scientific Research. .

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJaniak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJoo, H.-C. & Lee, U. (2015). Acta Cryst. E71, 647–649.  CrossRef ICSD IUCr Journals Google Scholar
First citationJoo, H.-C., Park, K.-M. & Lee, U. (2011). Acta Cryst. E67, m1801–m1802.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJoo, H.-C., Park, K.-M. & Lee, U. (2015). Acta Cryst. E71, 786–790.  CrossRef ICSD IUCr Journals Google Scholar
First citationKonaka, S., Ozawa, Y., Shonaka, T., Watanabe, S. & Yagasaki, A. (2011). Inorg. Chem. 50, 6183–6188.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLee, U. (2006). Acta Cryst. E62, i176–i178.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationLee, U., Joo, H.-J., Park, K.-M., Mal, S. S., Kortz, U., Keita, B. & Nadjo, L. (2008). Angew. Chem. Int. Ed. 47, 793–796.  Web of Science CrossRef ICSD CAS Google Scholar
First citationMaalaoui, A., Guedidi, H., Rzaigui, M. & Akriche, S. (2024). Energy Fuels, 38, 1319–1329.  Web of Science CrossRef CAS Google Scholar
First citationMaaloui, A., Toumi, S. A. & Rzaigui, M. (2013). Acta Cryst. E69, m661–m662.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationToumi, S., Toumi, S. A. & Rzaigui, M. (2013). Acta Cryst. E69, m595–m596.  CSD CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.  Google Scholar
First citationYuan, C., Lu, L., Zhu, M., Ma, Q. & Wu, Y. (2009). Acta Cryst. E65, m267–m268.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds