research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of (R,R)- and (S,S)-bis­­(aceto­nitrile-κN)[N,N′-di­methyl-N,N′-bis­(pyridin-2-ylmeth­yl)cyclo­hexane-1,2-di­amine-κ4N]iron(II) bis­­(hexa­fluoro­anti­monate)

crossmark logo

aDepartment of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska, st. 64, Kyiv, Ukraine, bEnamine Ltd. (www.enamine.net), Winston Churchill St.78, Kyiv 02094, Ukraine, cSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky ave. 60, 61001 Kharkiv, Ukraine, and dInstitute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02098 Kyiv, Ukraine
*Correspondence e-mail: yurii.bibik@knu.ua

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 7 November 2024; accepted 20 November 2024; online 28 November 2024)

Two enanti­omeric non-heme iron complexes [Fe(R,R-BPMCN)(CH3CN)2](SbF6)2 and [Fe(S,S-BPMCN)(CH3CN)2](SbF6)2 (BPMCM = N,N′-dimethyl-N,N′-bis­(pyridin-2-ylmeth­yl)-cyclo­hexane-1,2-di­amine, C22H28N4) were obtained in parallel syntheses starting from the enanti­omerically pure R,R and S,S BPMCN ligands. The FeII cations have a distorted octa­hedral FeN6 geometry formed by a chelating N,N,N,N-tetra­dentate BPMCN ligand and two mol­ecules of aceto­nitrile. The ligand adopts a cis-α topology with the two pyridine groups coordinated trans to each other. In the crystals, a system of C—H⋯F hydrogen bonds links the cations to the hexa­fluoro­anti­monate anions, resulting in a three-dimensional architecture.

1. Chemical context

Non-heme iron complexes show promising stereospecific hy­droxy­lation reactivity with unactivated sp3 C—H bonds in various hydro­carbon substrates (Gormisky & White, 2013[Gormisky, P. E. & White, M. C. (2013). J. Am. Chem. Soc. 135, 14052-14055.]; White et al., 2001[White, M. C., Doyle, A. G. & Jacobsen, E. N. (2001). J. Am. Chem. Soc. 123, 7194-7195.]; Zhang & Goldsmith, 2014[Zhang, Q. & Goldsmith, C. R. (2014). Inorg. Chem. 53, 5206-5211.]; Chen & White, 2007[Chen, M. S. & White, M. C. (2007). Science, 318, 783-787.]; Chen et al., 2018[Chen, L., Su, X. J. & Jurss, J. W. (2018). Organometallics, 37, 4535-4539.]; Esarey et al., 2016[Esarey, S. L., Holland, J. C. & Bartlett, B. M. (2016). Inorg. Chem. 55, 11040-11049.]; Gómez et al., 2009[Gómez, L., Garcia-Bosch, I., Company, A., Benet-Buchholz, J., Polo, A., Sala, X., Ribas, X. & Costas, M. (2009). Angew. Chem. Int. Ed. 48, 5720-5723.], 2013[Gómez, L., Canta, M., Font, D., Prat, I., Ribas, X. & Costas, M. (2013). J. Org. Chem. 78, 1421-1433.]; Font et al., 2016[Font, D., Canta, M., Milan, M., Cussó, O., Ribas, X., Klein Gebbink, R. J. M. & Costas, M. (2016). Angew. Chem. Int. Ed. 55, 5776-5779.]; Siedlecka, 2023[Siedlecka, R. (2023). Catalysts, 13, 121.]). However, their use in preparative C—H oxidation chemistry has been limited by the need for a large excess of substrate relative to the oxidant, low catalyst turnover numbers, and poor selectivity in product formation. Despite these challenges, iron complexes with N,N′-dimethyl-N,N′-bis­(pyridin-2-ylmeth­yl)-ethane-1,2-di­amine show potential for preparative C—H oxidations with complex substrates due to their operation via an electrophilic metal oxidant (Chen & Que, 1999[Chen, K. & Que, L. Jr (1999). Chem. Commun. pp. 1375-1376.]; Okuno et al., 1997[Okuno, T., Ito, S., Ohba, S. & Nishida, Y. (1997). J. Chem. Soc. Dalton Trans. pp. 3547-3551.]), their bulky, modifiable ligand framework, and their successful use in preparative epoxidations of functionalized olefins (White et al., 2001[White, M. C., Doyle, A. G. & Jacobsen, E. N. (2001). J. Am. Chem. Soc. 123, 7194-7195.]). Exchanging the ethyl­ene bridge with a cyclo­hexane ring is one of the ways of modifying the structure of the complex without losing the rigidity of the framework, which is important for catalytic activity (Zhang & Goldsmith, 2014[Zhang, Q. & Goldsmith, C. R. (2014). Inorg. Chem. 53, 5206-5211.]; Chen & White, 2007[Chen, M. S. & White, M. C. (2007). Science, 318, 783-787.]; Esarey et al., 2016[Esarey, S. L., Holland, J. C. & Bartlett, B. M. (2016). Inorg. Chem. 55, 11040-11049.]; Gómez et al., 2009[Gómez, L., Garcia-Bosch, I., Company, A., Benet-Buchholz, J., Polo, A., Sala, X., Ribas, X. & Costas, M. (2009). Angew. Chem. Int. Ed. 48, 5720-5723.], 2013[Gómez, L., Canta, M., Font, D., Prat, I., Ribas, X. & Costas, M. (2013). J. Org. Chem. 78, 1421-1433.]; Font et al., 2016[Font, D., Canta, M., Milan, M., Cussó, O., Ribas, X., Klein Gebbink, R. J. M. & Costas, M. (2016). Angew. Chem. Int. Ed. 55, 5776-5779.]; Costas, Tipton et al., 2001[Costas, M., Tipton, A. K., Chen, K., Jo, D. H. & Que, L. J. (2001). J. Am. Chem. Soc. 123, 6722-6723.]). Considering the above, we now report the synthesis and crystal structures of two enanti­omeric analogues Fe(R,R-BPMCN)(CH3CN)2(SbF6)2 (I)[link] and Fe(S,S-BPMCN)(CH3CN)2(SbF6)2 (II)[link] of the White–Chen catalyst based on N,N′-dimethyl-N,N′-bis­(pyridin-2-ylmeth­yl)-cyclo­hexane-1,2-di­amine (BPMCN; C22H28N4).

[Scheme 1]

2. Structural commentary

Single crystals of both enanti­omers were obtained via gas diffusion in an MTBE/aceto­nitrile solvent system. Both structures are built up from [Fe(BPMCN)(CH3CN)2]2+ complex cations and hexa­fluoro­anti­monate anions in a 1:2 ratio. They crystallize in the ortho­rhom­bic Sohncke space group P212121 with four formula units per unit cell (Fig. 1[link]). Each iron(II) ion has an N6 coordination environment in a distorted octa­hedral geometry provided by a chelating tetra­dentate BPMCN ligand and two mol­ecules of aceto­nitrile in adjacent (cis) positions. The structures reveal that the ligand adopts a cis-α topology in which the two pyridine groups coordinate trans to each other and the two N—Me groups are oriented anti to each other. In (I)[link], the stereogenic centres C8 and C13 have R configurations and in (II)[link], the equivalent atoms have S configurations. The values of bond distances are given in Tables 1[link] and 2[link]. The average Fe–N distances are 1.99 and 1.98 Å for (I)[link] and (II)[link], respectively, which is consistent with a low spin 3d6 state for Fe2+. The pyridine rings are rotated relative to each other by 62.8 (6)° for (I)[link] and 63.4 (5)° for (II)[link]. The structures of the complex ions in (I)[link] and (II)[link] are compared in Fig. 2[link], where the opposite orientations of the N—Me groups can clearly be seen.

Table 1
Selected bond lengths (Å) for (I)[link]

Fe1—N1 1.995 (9) Fe1—N4 1.985 (9)
Fe1—N2 2.042 (8) Fe1—N5 1.942 (9)
Fe1—N3 2.031 (9) Fe1—N6 1.950 (9)

Table 2
Selected bond lengths (Å) for (II)[link]

Fe1—N1 1.983 (7) Fe1—N4 1.985 (7)
Fe1—N2 2.024 (7) Fe1—N5 1.942 (7)
Fe1—N3 2.031 (7) Fe1—N6 1.936 (7)
[Figure 1]
Figure 1
The mol­ecular structures of the title compounds (a) (I)[link] and (b) (II)[link] with displacement ellipsoids shown at the 50% level.
[Figure 2]
Figure 2
Overlay of the mol­ecular structures of the cations of (I)[link] (blue) and (II)[link] (yellow) showing the difference in the absolute structures.

3. Supra­molecular features

In the crystals, the complex cations form chains propagating along the a-axis direction (Fig. 3[link]). Within and outside the chains, the cations are inter­connected via C—H⋯F hydrogen bond contacts with the hexa­fluoro­anti­monate anions that fill the space between the complex ions (Tables 3[link] and 4[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯F3i 0.99 2.45 3.141 (13) 127
C6—H6B⋯F12ii 0.99 2.38 3.302 (13) 154
C7—H7A⋯F1 0.98 2.39 3.307 (13) 157
C17—H17⋯F9iii 0.95 2.41 3.260 (15) 149
C19—H19⋯F3iv 0.95 2.52 3.372 (17) 150
C20—H20⋯F4iv 0.95 2.54 3.385 (15) 148
C22—H22A⋯F6v 0.98 2.51 3.113 (16) 120
C24—H24B⋯F1iv 0.98 2.44 3.232 (16) 138
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [x+1, y, z]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯F6i 0.95 2.54 3.385 (12) 148
C2—H2⋯F2ii 0.95 2.52 3.371 (15) 149
C4—H4⋯F8iii 0.95 2.40 3.246 (13) 148
C14—H14C⋯F5 0.98 2.41 3.317 (10) 155
C15—H15A⋯F11iv 0.99 2.40 3.322 (11) 154
C15—H15B⋯F2v 0.99 2.46 3.149 (11) 126
C22—H22B⋯F5i 0.98 2.50 3.241 (12) 133
C24—H24B⋯F3vi 0.98 2.47 3.098 (12) 122
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x-1, y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+1, y, z]; (iv) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (v) [x-1, y, z]; (vi) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The crystal structure of (I)[link] viewed along the a-axis direction.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, updated March 2022; (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.])) revealed 187 hits for transition metal complexes containing a ligand with an N,N′-dimethyl-cyclo­hexane-1,2-di­amine fragment; 30 of which include iron (II or III). Additionally, there are 28 hits for complexes with the title ligand and various co-ligands (e.g., chloride or triflate anions, amino acids, solvents, among others). Notably, complexes have been found with metals such as manganese(II) (CSD refcode BASGAE; Murphy et al., 2003[Murphy, A., Dubois, G. & Stack, T. D. P. (2003). J. Am. Chem. Soc. 125, 5250-5251.], HEWJOI; Glerup et al., 1994[Glerup, J., Goodson, P. A., Hazell, A., Hazell, R., Hodgson, D. J., McKenzie, C. J., Michelsen, K., Rychlewska, U. & Toftlund, H. (1994). Inorg. Chem. 33, 4105-4111.]), nickel(II) (MANYOS, (Wang et al., 2016[Wang, J. W., Zhang, X. Q., Huang, H. H. & Lu, T. B. (2016). ChemCatChem, 8, 3287-3293.]), cobalt(III) (LUXGIU; Kooistra et al., 2003[Kooistra, T. M., Hekking, K. F. W., Knijnenburg, Q., de Bruin, B., Budzelaar, P. H. M., de Gelder, R., Smits, J. M. M. & Gal, A. W. (2003). Eur. J. Inorg. Chem. pp. 648-655.]); IGEQOA; Leverett et al., 1999[Leverett, P., Petherick, J., Williams, P. A. & Vagg, R. S. (1999). J. Coord. Chem. 49, 83-90.]); NEFRAR; Leverett et al., 1996[Leverett, P., Petherick, J., Williams, P. A. & Vagg, R. S. (1996). J. Coord. Chem. 37, 195-204.]); VIVREX; Fenton et al., 1991[Fenton, R. R., Stephens, F. S., Vagg, R. S. & Williams, P. A. (1991). Inorg. Chim. Acta, 182, 67-75.]); ZOXGIC; Fenton et al., 1995[Fenton, R. R., Stephens, F. S., Vagg, R. S. & Williams, P. A. (1995). Inorg. Chim. Acta, 236, 109-115.]), zinc(II) (KEWHEA; Kim et al., 2006[Kim, W., So, S. M., Chagal, L., Lough, A. J., Kim, B. M. & Chin, J. (2006). J. Org. Chem. 71, 8966-8968.]), ruthenium(II, III) (CEVSII; Tse et al., 2018[Tse, C. W., Liu, Y., Wai-Shan Chow, T., Ma, C., Yip, W. P., Chang, X. Y., Low, K. H., Huang, J. S. & Che, C. M. (2018). Chem. Sci. 9, 2803-2816.]), XULVAB; Aldrich-Wright et al., 2002[Aldrich-Wright, J. R., Fenton, R. F., Greguric, I. D., Hambley, T. W. & Williams, P. A. (2002). J. Chem. Soc. Dalton Trans. pp. 4666-4671.]), rhenium(V, VI) (GESREE, GESRII, GESRUU; Ng et al., 2017[Ng, V. Y. M., Tse, C. W., Guan, X., Chang, X., Yang, C., Low, K. H., Lee, H. K., Huang, J. S. & Che, C. M. (2017). Inorg. Chem. 56, 15066-15080.]), osmium(III, V) (FOGNUN, FOGTAZ, FOGTED, FOGTIH, FOGTON, FOGTUT; Fujimoto et al., 2019[Fujimoto, T., Sugimoto, H., Kai, K., Maeda, K. & Itoh, S. (2019). Eur. J. Inorg. Chem. pp. 2891-2898.]).

Furthermore, the following closely related iron analogues are noteworthy: Fe(BPMCN)(OTf)2 and Fe(6-Me2-BPMCN)(OTf)2 (UBOWEN and UBOWIR; Costas, Tipton et al., 2001[Costas, M., Tipton, A. K., Chen, K., Jo, D. H. & Que, L. J. (2001). J. Am. Chem. Soc. 123, 6722-6723.]), and Fe(5-Me2-BPMCN)(OTf)2 (ODECIJ; Costas, Rohde et al., 2001[Costas, M., Rohde, J. U., Stubna, A., Ho, R. Y. N., Quaroni, L., Münck, E. & Que, L. J. (2001). J. Am. Chem. Soc. 123, 12931-12932.]). These structures crystallize in the monoclinic crystal system. Notably, in the latter two structures, which contain a methyl group as a substituent, the ligand adopts a cis-β topology where the two pyridine groups coordinate in a cis arrangement. Additionally, a dimeric compound was identified: Fe2(BPMCN)2(OH)2(OTf)2 (FAVPAU; Stubna et al., 2004[Stubna, A., Jo, D. H., Costas, M., Brenessel, W. W., Andres, H., Bominaar, E. L., Münck, E. & Que, L. (2004). Inorg. Chem. 43, 3067-3079.]), which crystallizes in a triclinic space group and exhibits a cis-α topology similar to that of the title compounds.

5. Synthesis and crystallization

The chiral R,R-BPMCN ligand (483 mg, 1.5 mmol, 1.0 equiv.) was dissolved in 5 ml of aceto­nitrile in a 10 ml round-bottom flask. The flask was then filled with argon, and FeCl2·4H2O (297 mg, 1.5 mmol, 1.0 equiv.) was added. The reaction mixture stirred for 4 h at room temperature. Immediately after adding the iron salt, the formation of an orange precipitate was observed. After stirring, a few drops of methyl tert-butyl ether (MTBE) were added to the mixture to fully precipitate the product, and the mixture was filtered. The precipitate was washed with aceto­nitrile (3 × 3 ml) and MTBE (3 ml). Yield: 342 mg (0.76 mmol, 51%) of Fe(R,R-BPMCN)Cl2 as a bright-orange power. The reaction was repeated for the S,S-BPMCN ligand to yield 270 mg (0.60 mmol, 40%) of Fe(S,S-BPMCN)Cl2 as a bright-orange powder.

Fe(R,R-BPMCN)Cl2 (226 mg, 0.5 mmol, 1.0 equiv.) was dispersed in 10 ml of aceto­nitrile in a 25 ml flask. The flask was then filled with argon, and AgSbF6 (344 mg, 1.0 mmol, 2.0 equiv.) was added, which immediately caused the precipitation of AgCl and a color change of the solution to dark red. The reaction flask was wrapped in foil to protect it from light and stirred vigorously for 4 h. The reaction mixture was filtered and concentrated almost to dryness, then redissolved in aceto­nitrile and filtered again. The filtration process was repeated three times to ensure complete removal of silver salts. The filtrate was then evaporated, yielding the product (I)[link] as a light red powder, yield 436 mg (0.467 mmol, 93%). The process was repeated starting from Fe(S,S-BPMCN)Cl2, resulting in 442 mg (0.473 mmol, 94%) of (II)[link].

Crystals of (I)[link] and (II)[link] suitable for X-ray structural analysis were obtained by dissolving 5 mg of the complex in a minimum of aceto­nitrile (0.1 m). The loosely sealed vial with the solution was placed in a larger vial containing 1 ml of MTBE for 24 h to grow fine single crystals via gas diffusion.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All hydrogen atoms were placed geometrically and refined as riding atoms, with C—H = 0.98 Å (CH2), 0.99 Å (CH3) or 0.95 Å (Carom), and with Uiso(H) = 1.2Ueq(Carom) or 1.5Ueq(Caliph).

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula [Fe(C22H28N4)(C2H3N)2](SbF6)2 [Fe(C22H28N4)(C2H3N)2](SbF6)2
Mr 933.92 933.92
Crystal system, space group Orthorhombic, P212121 Orthorhombic, P212121
Temperature (K) 173 173
a, b, c (Å) 11.4949 (5), 15.1609 (7), 18.5616 (9) 11.4986 (4), 15.1454 (4), 18.5733 (5)
V3) 3234.8 (3) 3234.56 (17)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.20 2.20
Crystal size (mm) 0.2 × 0.1 × 0.05 0.15 × 0.13 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.481, 0.746 0.582, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 52192, 7430, 5313 40783, 9446, 6490
Rint 0.145 0.095
(sin θ/λ)max−1) 0.650 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.120, 1.02 0.064, 0.110, 1.05
No. of reflections 7430 9446
No. of parameters 410 410
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.23, −0.57 1.36, −1.25
Absolute structure Flack x determined using 1767 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 2001 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (2) −0.021 (17)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

(S,S)-Bis(acetonitrile-κN)[N,N'-dimethyl-N,N'-bis(pyridin-2-ylmethyl)cyclohexane-1,2-diamine-κ4N]iron(II) bis(hexafluoroantimonate) (I) top
Crystal data top
[Fe(C22H28N4)(C2H3N)2](SbF6)2Dx = 1.918 Mg m3
Mr = 933.92Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3614 reflections
a = 11.4949 (5) Åθ = 2.2–17.6°
b = 15.1609 (7) ŵ = 2.20 mm1
c = 18.5616 (9) ÅT = 173 K
V = 3234.8 (3) Å3Plate, red
Z = 40.2 × 0.1 × 0.05 mm
F(000) = 1824
Data collection top
Bruker APEXII CCD
diffractometer
5313 reflections with I > 2σ(I)
φ and ω scansRint = 0.145
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.5°, θmin = 2.1°
Tmin = 0.481, Tmax = 0.746h = 1414
52192 measured reflectionsk = 1919
7430 independent reflectionsl = 2423
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.5546P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.01Δρmax = 1.23 e Å3
7430 reflectionsΔρmin = 0.56 e Å3
410 parametersAbsolute structure: Flack x determined using 1767 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.02 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb11.02115 (7)0.72812 (6)0.66575 (5)0.0433 (2)
F10.8598 (6)0.7251 (6)0.6632 (6)0.091 (3)
F21.0176 (6)0.8502 (4)0.6516 (4)0.0538 (19)
F31.1834 (6)0.7345 (7)0.6700 (7)0.110 (4)
F41.0271 (9)0.7172 (6)0.5668 (5)0.093 (3)
F51.0183 (8)0.6080 (6)0.6806 (7)0.118 (4)
F61.0155 (10)0.7467 (8)0.7625 (5)0.117 (4)
Sb20.16563 (6)0.38096 (6)0.43454 (5)0.0411 (2)
F70.2382 (6)0.2908 (5)0.4880 (4)0.059 (2)
F80.3088 (5)0.4370 (5)0.4185 (4)0.053 (2)
F90.1472 (7)0.4470 (7)0.5181 (5)0.082 (3)
F100.0909 (6)0.4696 (5)0.3815 (4)0.053 (2)
F110.0226 (7)0.3246 (6)0.4465 (5)0.089 (3)
F120.1896 (8)0.3167 (5)0.3508 (4)0.063 (2)
Fe10.53506 (12)0.50721 (9)0.59732 (8)0.0255 (3)
N10.3957 (7)0.4683 (5)0.6529 (5)0.028 (2)
N20.5315 (6)0.6063 (5)0.6717 (4)0.0230 (17)
N30.6562 (8)0.4500 (5)0.6618 (5)0.031 (2)
N40.6763 (7)0.5451 (6)0.5442 (5)0.031 (2)
N50.5283 (8)0.4080 (6)0.5313 (5)0.034 (2)
N60.4278 (7)0.5706 (6)0.5345 (5)0.028 (2)
C10.3416 (8)0.3894 (7)0.6490 (6)0.032 (2)
H10.3743340.3446050.6194480.038*
C20.2409 (10)0.3717 (8)0.6862 (6)0.041 (3)
H20.2049580.3154770.6820800.049*
C30.1913 (9)0.4367 (8)0.7302 (7)0.040 (3)
H30.1227410.4252800.7571360.048*
C40.2457 (9)0.5183 (8)0.7331 (6)0.034 (3)
H40.2137760.5644540.7615400.041*
C50.3470 (9)0.5321 (7)0.6940 (6)0.027 (2)
C60.4077 (8)0.6192 (7)0.6918 (6)0.028 (2)
H6A0.3694210.6580920.6561220.033*
H6B0.4028240.6478980.7396000.033*
C70.5773 (9)0.6911 (7)0.6440 (6)0.030 (3)
H7A0.6620370.6873200.6393990.046*
H7B0.5571220.7385880.6775900.046*
H7C0.5428850.7034020.5967830.046*
C80.5959 (8)0.5750 (7)0.7381 (6)0.026 (2)
H80.5419770.5353670.7653330.031*
C90.6351 (9)0.6475 (7)0.7899 (6)0.031 (3)
H9A0.6867560.6891040.7641620.038*
H9B0.5662290.6807670.8069200.038*
C100.6991 (10)0.6095 (8)0.8542 (6)0.040 (3)
H10A0.6470490.5693590.8812590.047*
H10B0.7235180.6576460.8868740.047*
C110.8075 (9)0.5581 (8)0.8273 (7)0.040 (3)
H11A0.8597230.5983150.8004860.048*
H11B0.8509740.5340180.8689250.048*
C120.7686 (9)0.4829 (8)0.7783 (6)0.035 (3)
H12A0.7192770.4414120.8059060.042*
H12B0.8375700.4502740.7607800.042*
C130.6996 (8)0.5188 (7)0.7137 (6)0.027 (2)
H130.7530590.5585080.6861780.033*
C140.6159 (10)0.3691 (7)0.6990 (7)0.042 (3)
H14A0.5619860.3851850.7377460.063*
H14B0.6829350.3379510.7194520.063*
H14C0.5761550.3306460.6644520.063*
C150.7553 (10)0.4274 (8)0.6131 (7)0.045 (3)
H15A0.8271330.4192390.6417750.053*
H15B0.7385910.3715140.5875250.053*
C160.7723 (9)0.4987 (8)0.5606 (6)0.038 (3)
C170.8793 (10)0.5165 (10)0.5279 (7)0.049 (4)
H170.9463720.4834210.5406930.059*
C180.8868 (12)0.5829 (10)0.4767 (8)0.054 (4)
H180.9590530.5969530.4546930.065*
C190.7858 (10)0.6284 (9)0.4582 (6)0.045 (3)
H190.7873720.6724520.4218750.054*
C200.6828 (10)0.6084 (8)0.4938 (6)0.034 (3)
H200.6145300.6406570.4820440.041*
C210.5172 (9)0.3580 (7)0.4853 (6)0.034 (3)
C220.5019 (9)0.2955 (7)0.4263 (7)0.041 (3)
H22A0.4753020.3270630.3832100.062*
H22B0.4438180.2512470.4399420.062*
H22C0.5760910.2663400.4160370.062*
C230.3584 (9)0.6009 (7)0.5003 (6)0.029 (3)
C240.2624 (10)0.6404 (8)0.4577 (7)0.044 (3)
H24A0.2487250.6047670.4144800.066*
H24B0.2837300.7005610.4434890.066*
H24C0.1914890.6420600.4869320.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0265 (4)0.0534 (5)0.0499 (5)0.0049 (4)0.0024 (4)0.0139 (4)
F10.030 (4)0.101 (7)0.141 (9)0.009 (4)0.002 (5)0.056 (7)
F20.053 (4)0.043 (4)0.066 (5)0.002 (3)0.008 (4)0.004 (3)
F30.018 (4)0.116 (8)0.198 (11)0.007 (4)0.003 (5)0.058 (8)
F40.125 (8)0.095 (7)0.060 (6)0.053 (6)0.019 (6)0.023 (5)
F50.073 (6)0.059 (6)0.222 (13)0.014 (5)0.023 (8)0.061 (7)
F60.120 (8)0.182 (11)0.051 (6)0.033 (8)0.013 (6)0.043 (7)
Sb20.0295 (4)0.0507 (5)0.0430 (5)0.0013 (4)0.0087 (4)0.0013 (4)
F70.044 (4)0.081 (6)0.053 (5)0.009 (4)0.008 (4)0.024 (4)
F80.023 (3)0.054 (4)0.083 (6)0.006 (3)0.004 (3)0.009 (4)
F90.058 (5)0.135 (8)0.054 (6)0.036 (5)0.000 (4)0.028 (5)
F100.045 (4)0.049 (5)0.065 (6)0.005 (3)0.020 (4)0.009 (4)
F110.037 (4)0.119 (7)0.112 (8)0.020 (5)0.022 (5)0.071 (6)
F120.092 (6)0.048 (5)0.049 (5)0.005 (4)0.016 (4)0.010 (4)
Fe10.0220 (7)0.0260 (8)0.0286 (8)0.0023 (6)0.0031 (6)0.0006 (6)
N10.029 (4)0.021 (5)0.035 (6)0.004 (3)0.002 (4)0.002 (4)
N20.017 (3)0.025 (4)0.027 (5)0.003 (3)0.001 (4)0.000 (4)
N30.033 (5)0.025 (5)0.034 (5)0.007 (4)0.007 (4)0.003 (4)
N40.026 (4)0.037 (5)0.029 (5)0.007 (4)0.005 (4)0.008 (4)
N50.026 (4)0.040 (6)0.038 (6)0.002 (4)0.002 (4)0.005 (4)
N60.025 (4)0.027 (5)0.034 (6)0.002 (4)0.005 (4)0.002 (4)
C10.025 (5)0.027 (6)0.043 (7)0.008 (5)0.008 (5)0.008 (5)
C20.043 (7)0.032 (7)0.047 (8)0.015 (5)0.010 (6)0.008 (6)
C30.025 (6)0.053 (8)0.042 (8)0.002 (5)0.001 (5)0.005 (6)
C40.023 (5)0.038 (7)0.042 (7)0.003 (5)0.004 (5)0.006 (5)
C50.024 (5)0.027 (6)0.030 (6)0.005 (4)0.010 (5)0.006 (4)
C60.023 (5)0.030 (6)0.031 (6)0.000 (4)0.005 (4)0.004 (5)
C70.024 (5)0.030 (6)0.037 (7)0.003 (4)0.000 (5)0.002 (5)
C80.022 (5)0.027 (6)0.029 (6)0.002 (4)0.005 (4)0.001 (5)
C90.036 (6)0.032 (7)0.026 (6)0.007 (4)0.000 (5)0.002 (5)
C100.045 (7)0.049 (8)0.025 (7)0.012 (6)0.005 (5)0.010 (5)
C110.035 (6)0.048 (7)0.035 (7)0.007 (5)0.012 (6)0.002 (6)
C120.034 (6)0.040 (7)0.031 (7)0.003 (5)0.004 (5)0.004 (5)
C130.025 (5)0.029 (6)0.028 (6)0.002 (4)0.004 (4)0.003 (5)
C140.052 (7)0.022 (6)0.052 (8)0.005 (5)0.020 (6)0.003 (5)
C150.029 (6)0.054 (8)0.050 (9)0.023 (5)0.013 (6)0.020 (7)
C160.030 (6)0.054 (8)0.030 (7)0.009 (5)0.005 (5)0.015 (7)
C170.026 (6)0.077 (11)0.044 (8)0.010 (6)0.001 (5)0.031 (8)
C180.042 (7)0.075 (11)0.045 (9)0.013 (7)0.007 (6)0.021 (8)
C190.037 (6)0.060 (9)0.037 (8)0.004 (6)0.007 (5)0.015 (6)
C200.034 (6)0.039 (7)0.030 (6)0.004 (5)0.000 (5)0.007 (5)
C210.023 (5)0.044 (7)0.036 (7)0.000 (5)0.003 (5)0.008 (5)
C220.034 (6)0.047 (7)0.043 (7)0.001 (5)0.004 (5)0.018 (6)
C230.029 (6)0.024 (6)0.035 (7)0.003 (4)0.003 (5)0.002 (5)
C240.028 (6)0.048 (8)0.055 (9)0.002 (5)0.006 (5)0.012 (6)
Geometric parameters (Å, º) top
Sb1—F11.856 (7)C7—H7A0.9800
Sb1—F21.870 (7)C7—H7B0.9800
Sb1—F31.870 (7)C7—H7C0.9800
Sb1—F41.845 (9)C8—H81.0000
Sb1—F51.842 (9)C8—C91.528 (14)
Sb1—F61.820 (10)C8—C131.534 (13)
Sb2—F71.884 (7)C9—H9A0.9900
Sb2—F81.876 (6)C9—H9B0.9900
Sb2—F91.859 (8)C9—C101.515 (15)
Sb2—F101.874 (7)C10—H10A0.9900
Sb2—F111.866 (7)C10—H10B0.9900
Sb2—F121.854 (7)C10—C111.553 (16)
Fe1—N11.995 (9)C11—H11A0.9900
Fe1—N22.042 (8)C11—H11B0.9900
Fe1—N32.031 (9)C11—C121.525 (15)
Fe1—N41.985 (9)C12—H12A0.9900
Fe1—N51.942 (9)C12—H12B0.9900
Fe1—N61.950 (9)C12—C131.537 (14)
N1—C11.350 (12)C13—H131.0000
N1—C51.352 (13)C14—H14A0.9800
N2—C61.484 (11)C14—H14B0.9800
N2—C71.480 (12)C14—H14C0.9800
N2—C81.513 (13)C15—H15A0.9900
N3—C131.504 (13)C15—H15B0.9900
N3—C141.482 (14)C15—C161.467 (18)
N3—C151.495 (14)C16—C171.397 (16)
N4—C161.344 (14)C17—H170.9500
N4—C201.342 (14)C17—C181.39 (2)
N5—C211.148 (13)C18—H180.9500
N6—C231.118 (13)C18—C191.393 (18)
C1—H10.9500C19—H190.9500
C1—C21.375 (15)C19—C201.389 (15)
C2—H20.9500C20—H200.9500
C2—C31.401 (16)C21—C221.459 (15)
C3—H30.9500C22—H22A0.9800
C3—C41.387 (16)C22—H22B0.9800
C4—H40.9500C22—H22C0.9800
C4—C51.388 (14)C23—C241.484 (15)
C5—C61.495 (14)C24—H24A0.9800
C6—H6A0.9900C24—H24B0.9800
C6—H6B0.9900C24—H24C0.9800
F1—Sb1—F290.0 (4)H6A—C6—H6B108.2
F1—Sb1—F3178.2 (5)N2—C7—H7A109.5
F3—Sb1—F288.6 (4)N2—C7—H7B109.5
F4—Sb1—F190.5 (5)N2—C7—H7C109.5
F4—Sb1—F287.1 (4)H7A—C7—H7B109.5
F4—Sb1—F390.6 (5)H7A—C7—H7C109.5
F5—Sb1—F187.8 (4)H7B—C7—H7C109.5
F5—Sb1—F2177.7 (4)N2—C8—H8107.3
F5—Sb1—F393.6 (4)N2—C8—C9115.5 (8)
F5—Sb1—F493.5 (5)N2—C8—C13108.2 (8)
F6—Sb1—F189.6 (5)C9—C8—H8107.3
F6—Sb1—F289.1 (4)C9—C8—C13110.9 (8)
F6—Sb1—F389.2 (5)C13—C8—H8107.3
F6—Sb1—F4176.2 (5)C8—C9—H9A109.3
F6—Sb1—F590.3 (6)C8—C9—H9B109.3
F8—Sb2—F791.4 (3)H9A—C9—H9B108.0
F9—Sb2—F790.1 (4)C10—C9—C8111.4 (9)
F9—Sb2—F889.4 (4)C10—C9—H9A109.3
F9—Sb2—F1090.0 (4)C10—C9—H9B109.3
F9—Sb2—F1192.7 (5)C9—C10—H10A109.9
F10—Sb2—F7179.0 (3)C9—C10—H10B109.9
F10—Sb2—F889.6 (3)C9—C10—C11109.1 (9)
F11—Sb2—F789.7 (3)H10A—C10—H10B108.3
F11—Sb2—F8177.7 (4)C11—C10—H10A109.9
F11—Sb2—F1089.3 (3)C11—C10—H10B109.9
F12—Sb2—F789.7 (4)C10—C11—H11A109.8
F12—Sb2—F888.5 (4)C10—C11—H11B109.8
F12—Sb2—F9177.9 (4)H11A—C11—H11B108.3
F12—Sb2—F1090.3 (4)C12—C11—C10109.3 (9)
F12—Sb2—F1189.4 (4)C12—C11—H11A109.8
N1—Fe1—N281.5 (3)C12—C11—H11B109.8
N1—Fe1—N396.9 (3)C11—C12—H12A109.5
N3—Fe1—N285.9 (3)C11—C12—H12B109.5
N4—Fe1—N1178.5 (4)C11—C12—C13110.6 (9)
N4—Fe1—N298.0 (3)H12A—C12—H12B108.1
N4—Fe1—N381.7 (4)C13—C12—H12A109.5
N5—Fe1—N193.7 (4)C13—C12—H12B109.5
N5—Fe1—N2175.1 (4)N3—C13—C8108.5 (8)
N5—Fe1—N394.0 (4)N3—C13—C12115.1 (9)
N5—Fe1—N486.7 (4)N3—C13—H13107.1
N5—Fe1—N688.8 (4)C8—C13—C12111.5 (9)
N6—Fe1—N187.0 (4)C8—C13—H13107.1
N6—Fe1—N291.7 (3)C12—C13—H13107.1
N6—Fe1—N3175.1 (4)N3—C14—H14A109.5
N6—Fe1—N494.5 (4)N3—C14—H14B109.5
C1—N1—Fe1127.1 (7)N3—C14—H14C109.5
C1—N1—C5118.3 (9)H14A—C14—H14B109.5
C5—N1—Fe1114.4 (7)H14A—C14—H14C109.5
C6—N2—Fe1106.6 (6)H14B—C14—H14C109.5
C6—N2—C8107.8 (8)N3—C15—H15A109.8
C7—N2—Fe1113.4 (6)N3—C15—H15B109.8
C7—N2—C6108.3 (8)H15A—C15—H15B108.2
C7—N2—C8112.4 (7)C16—C15—N3109.5 (9)
C8—N2—Fe1108.1 (6)C16—C15—H15A109.8
C13—N3—Fe1108.0 (6)C16—C15—H15B109.8
C14—N3—Fe1114.4 (7)N4—C16—C15115.3 (10)
C14—N3—C13112.3 (9)N4—C16—C17121.5 (12)
C14—N3—C15109.3 (9)C17—C16—C15123.2 (11)
C15—N3—Fe1105.3 (7)C16—C17—H17120.2
C15—N3—C13107.1 (8)C18—C17—C16119.5 (12)
C16—N4—Fe1114.0 (8)C18—C17—H17120.2
C20—N4—Fe1126.8 (8)C17—C18—H18120.8
C20—N4—C16119.2 (10)C17—C18—C19118.4 (12)
C21—N5—Fe1169.9 (9)C19—C18—H18120.8
C23—N6—Fe1173.2 (9)C18—C19—H19120.5
N1—C1—H1118.9C20—C19—C18119.0 (13)
N1—C1—C2122.2 (11)C20—C19—H19120.5
C2—C1—H1118.9N4—C20—C19122.3 (11)
C1—C2—H2120.1N4—C20—H20118.9
C1—C2—C3119.8 (10)C19—C20—H20118.9
C3—C2—H2120.1N5—C21—C22179.1 (12)
C2—C3—H3121.1C21—C22—H22A109.5
C4—C3—C2117.9 (10)C21—C22—H22B109.5
C4—C3—H3121.1C21—C22—H22C109.5
C3—C4—H4120.3H22A—C22—H22B109.5
C3—C4—C5119.4 (10)H22A—C22—H22C109.5
C5—C4—H4120.3H22B—C22—H22C109.5
N1—C5—C4122.3 (9)N6—C23—C24177.4 (12)
N1—C5—C6115.0 (9)C23—C24—H24A109.5
C4—C5—C6122.6 (10)C23—C24—H24B109.5
N2—C6—C5109.8 (8)C23—C24—H24C109.5
N2—C6—H6A109.7H24A—C24—H24B109.5
N2—C6—H6B109.7H24A—C24—H24C109.5
C5—C6—H6A109.7H24B—C24—H24C109.5
C5—C6—H6B109.7
Fe1—N1—C1—C2175.3 (8)C6—N2—C8—C983.2 (10)
Fe1—N1—C5—C4176.2 (8)C6—N2—C8—C13151.8 (8)
Fe1—N1—C5—C61.4 (11)C7—N2—C6—C5159.4 (9)
Fe1—N2—C6—C537.1 (9)C7—N2—C8—C936.0 (11)
Fe1—N2—C8—C9161.9 (7)C7—N2—C8—C1388.9 (9)
Fe1—N2—C8—C1336.9 (8)C8—N2—C6—C578.7 (9)
Fe1—N3—C13—C839.8 (10)C8—C9—C10—C1159.5 (12)
Fe1—N3—C13—C12165.5 (7)C9—C8—C13—N3178.9 (8)
Fe1—N3—C15—C1639.4 (10)C9—C8—C13—C1253.3 (12)
Fe1—N4—C16—C151.5 (13)C9—C10—C11—C1260.7 (13)
Fe1—N4—C16—C17179.8 (9)C10—C11—C12—C1358.8 (12)
Fe1—N4—C20—C19178.3 (8)C11—C12—C13—N3179.7 (9)
N1—C1—C2—C30.2 (16)C11—C12—C13—C855.6 (12)
N1—C5—C6—N224.6 (12)C13—N3—C15—C1675.3 (11)
N2—C8—C9—C10179.7 (8)C13—C8—C9—C1056.0 (12)
N2—C8—C13—N351.2 (10)C14—N3—C13—C887.3 (10)
N2—C8—C13—C12179.0 (8)C14—N3—C13—C1238.4 (12)
N3—C15—C16—N428.2 (14)C14—N3—C15—C16162.8 (9)
N3—C15—C16—C17153.5 (11)C15—N3—C13—C8152.7 (9)
N4—C16—C17—C180.7 (18)C15—N3—C13—C1281.6 (11)
C1—N1—C5—C41.4 (15)C15—C16—C17—C18177.4 (12)
C1—N1—C5—C6176.2 (9)C16—N4—C20—C190.5 (16)
C1—C2—C3—C41.4 (17)C16—C17—C18—C191.5 (19)
C2—C3—C4—C51.3 (17)C17—C18—C19—C202.7 (19)
C3—C4—C5—N10.2 (16)C18—C19—C20—N41.7 (17)
C3—C4—C5—C6177.3 (10)C20—N4—C16—C15176.5 (10)
C4—C5—C6—N2157.8 (10)C20—N4—C16—C171.8 (16)
C5—N1—C1—C21.3 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···F3i0.992.453.141 (13)127
C6—H6B···F12ii0.992.383.302 (13)154
C7—H7A···F10.982.393.307 (13)157
C17—H17···F9iii0.952.413.260 (15)149
C19—H19···F3iv0.952.523.372 (17)150
C20—H20···F4iv0.952.543.385 (15)148
C22—H22A···F6v0.982.513.113 (16)120
C24—H24B···F1iv0.982.443.232 (16)138
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1, z+1/2; (iii) x+1, y, z; (iv) x1/2, y+3/2, z+1; (v) x+3/2, y+1, z1/2.
(R,R)-Bis(acetonitrile-κN)[N,N'-dimethyl-N,N'-bis(pyridin-2-ylmethyl)cyclohexane-1,2-diamine-κ4N]iron(II) bis(hexafluoroantimonate) (II) top
Crystal data top
[Fe(C22H28N4)(C2H3N)2](SbF6)2Dx = 1.918 Mg m3
Mr = 933.92Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4610 reflections
a = 11.4986 (4) Åθ = 2.2–22.2°
b = 15.1454 (4) ŵ = 2.20 mm1
c = 18.5733 (5) ÅT = 173 K
V = 3234.56 (17) Å3Block, red
Z = 40.15 × 0.13 × 0.08 mm
F(000) = 1824
Data collection top
Bruker APEXII CCD
diffractometer
6490 reflections with I > 2σ(I)
φ and ω scansRint = 0.095
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.0°, θmin = 1.7°
Tmin = 0.582, Tmax = 0.746h = 1516
40783 measured reflectionsk = 2121
9446 independent reflectionsl = 2526
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.0279P)2 + 4.3489P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.001
S = 1.05Δρmax = 1.36 e Å3
9446 reflectionsΔρmin = 1.25 e Å3
410 parametersAbsolute structure: Flack x determined using 2001 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.021 (17)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb11.02104 (6)0.72826 (5)0.33421 (4)0.04228 (18)
F11.0172 (6)0.8500 (4)0.3486 (3)0.0587 (17)
F21.1818 (6)0.7338 (6)0.3312 (6)0.109 (3)
F31.0132 (10)0.7479 (7)0.2365 (4)0.126 (4)
F41.0189 (8)0.6078 (5)0.3200 (6)0.118 (3)
F50.8609 (5)0.7245 (5)0.3368 (5)0.089 (3)
F61.0272 (8)0.7169 (5)0.4335 (4)0.095 (3)
Sb20.16566 (6)0.38109 (5)0.56553 (4)0.04000 (17)
F70.3088 (5)0.4372 (4)0.5814 (4)0.0533 (16)
F80.1456 (7)0.4483 (6)0.4823 (4)0.084 (3)
F90.2370 (5)0.2916 (4)0.5125 (3)0.0587 (18)
F100.0230 (6)0.3255 (5)0.5541 (4)0.086 (3)
F110.1904 (7)0.3170 (4)0.6492 (3)0.067 (2)
F120.0920 (5)0.4701 (4)0.6189 (3)0.0537 (16)
Fe10.53484 (11)0.50741 (8)0.40270 (6)0.0248 (3)
N10.6758 (6)0.5454 (5)0.4559 (4)0.0280 (16)
N20.6562 (6)0.4505 (4)0.3388 (4)0.0287 (16)
N30.5319 (6)0.6063 (4)0.3288 (4)0.0232 (14)
N40.3956 (6)0.4684 (4)0.3480 (4)0.0260 (16)
N50.4284 (6)0.5712 (5)0.4650 (4)0.0273 (16)
N60.5268 (7)0.4088 (5)0.4689 (4)0.0339 (17)
C10.6829 (8)0.6085 (6)0.5061 (5)0.034 (2)
H10.6147130.6405920.5182790.041*
C20.7865 (9)0.6290 (8)0.5414 (5)0.044 (3)
H20.7887040.6739980.5769940.053*
C30.8858 (10)0.5827 (8)0.5238 (6)0.053 (3)
H30.9575310.5952380.5469750.063*
C40.8790 (9)0.5175 (8)0.4716 (6)0.048 (3)
H40.9464320.4854700.4577380.058*
C50.7731 (7)0.4997 (7)0.4401 (5)0.034 (2)
C60.7552 (9)0.4261 (6)0.3868 (5)0.039 (2)
H6A0.8266290.4172340.3579710.047*
H6B0.7376010.3703910.4125480.047*
C70.6156 (9)0.3693 (6)0.3005 (5)0.040 (2)
H7A0.5809410.3283000.3352080.061*
H7B0.6819380.3407630.2768030.061*
H7C0.5574930.3854900.2642250.061*
C80.6992 (7)0.5188 (6)0.2859 (5)0.0274 (19)
H80.7530190.5584910.3131480.033*
C90.7675 (8)0.4837 (6)0.2221 (5)0.035 (2)
H9A0.7186700.4415760.1947950.042*
H9B0.8369020.4515340.2396890.042*
C100.8058 (8)0.5583 (6)0.1725 (5)0.039 (2)
H10A0.8479390.5335090.1306850.046*
H10B0.8594190.5980950.1986860.046*
C110.7005 (8)0.6106 (7)0.1463 (5)0.037 (2)
H11A0.6488000.5716660.1178710.044*
H11B0.7265210.6595180.1148270.044*
C120.6340 (7)0.6479 (6)0.2107 (5)0.030 (2)
H12A0.6839080.6908220.2364230.036*
H12B0.5641480.6795740.1933830.036*
C130.5971 (7)0.5751 (6)0.2628 (5)0.0263 (19)
H130.5429910.5355110.2356750.032*
C140.5773 (7)0.6922 (5)0.3560 (5)0.029 (2)
H14A0.5402900.7061930.4021580.043*
H14B0.5597170.7388390.3210970.043*
H14C0.6616450.6880490.3626530.043*
C150.4075 (6)0.6192 (6)0.3092 (5)0.0267 (18)
H15A0.4021860.6489930.2618990.032*
H15B0.3693320.6573740.3455240.032*
C160.3463 (7)0.5314 (5)0.3059 (5)0.0281 (19)
C170.2470 (8)0.5188 (7)0.2673 (5)0.037 (2)
H170.2157830.5650610.2386850.044*
C180.1918 (9)0.4370 (6)0.2703 (5)0.040 (2)
H180.1232440.4257330.2433000.048*
C190.2403 (9)0.3723 (7)0.3141 (5)0.042 (3)
H190.2042620.3160200.3177940.051*
C200.3395 (8)0.3893 (6)0.3519 (5)0.033 (2)
H200.3706850.3443890.3819050.040*
C210.3574 (8)0.6013 (5)0.4996 (5)0.028 (2)
C220.2631 (8)0.6411 (6)0.5417 (5)0.041 (3)
H22A0.1908020.6393010.5137790.062*
H22B0.2826780.7025520.5528760.062*
H22C0.2527070.6080230.5866130.062*
C230.5163 (8)0.3580 (6)0.5148 (5)0.033 (2)
C240.5025 (8)0.2951 (6)0.5737 (5)0.038 (2)
H24A0.4376060.2552720.5630460.057*
H24B0.4864870.3271550.6184750.057*
H24C0.5741340.2607150.5791760.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0286 (3)0.0521 (4)0.0461 (4)0.0048 (3)0.0021 (3)0.0136 (3)
F10.065 (4)0.049 (3)0.063 (4)0.004 (3)0.010 (3)0.001 (3)
F20.028 (4)0.102 (6)0.196 (9)0.017 (4)0.000 (5)0.047 (7)
F30.155 (9)0.183 (9)0.039 (4)0.027 (8)0.008 (5)0.033 (5)
F40.091 (6)0.060 (5)0.204 (10)0.016 (5)0.031 (7)0.054 (6)
F50.033 (3)0.102 (6)0.131 (7)0.010 (4)0.001 (4)0.060 (6)
F60.142 (7)0.084 (5)0.058 (4)0.048 (5)0.023 (5)0.031 (4)
Sb20.0317 (3)0.0489 (4)0.0393 (4)0.0009 (3)0.0093 (3)0.0007 (3)
F70.037 (3)0.045 (3)0.079 (5)0.007 (3)0.010 (3)0.004 (3)
F80.073 (5)0.129 (7)0.050 (4)0.043 (5)0.001 (4)0.024 (4)
F90.044 (4)0.079 (5)0.053 (4)0.007 (3)0.006 (3)0.021 (4)
F100.035 (3)0.110 (5)0.112 (6)0.020 (4)0.024 (4)0.068 (5)
F110.114 (6)0.038 (3)0.048 (4)0.001 (4)0.015 (4)0.010 (3)
F120.045 (4)0.053 (4)0.064 (4)0.004 (3)0.014 (3)0.007 (3)
Fe10.0232 (6)0.0260 (6)0.0252 (6)0.0022 (5)0.0027 (5)0.0013 (5)
N10.026 (4)0.037 (4)0.021 (4)0.001 (3)0.004 (3)0.008 (3)
N20.029 (4)0.027 (4)0.030 (4)0.006 (3)0.001 (3)0.005 (3)
N30.020 (3)0.025 (3)0.025 (3)0.000 (3)0.002 (3)0.004 (3)
N40.025 (4)0.023 (4)0.030 (4)0.002 (3)0.011 (3)0.003 (3)
N50.026 (4)0.033 (4)0.023 (4)0.003 (3)0.001 (3)0.004 (3)
N60.035 (4)0.038 (4)0.029 (4)0.001 (4)0.007 (4)0.005 (3)
C10.036 (5)0.040 (5)0.027 (5)0.009 (4)0.001 (4)0.005 (4)
C20.043 (6)0.059 (7)0.030 (5)0.013 (5)0.012 (4)0.011 (5)
C30.048 (7)0.070 (8)0.040 (7)0.012 (6)0.017 (5)0.025 (6)
C40.032 (5)0.067 (8)0.044 (7)0.009 (5)0.005 (5)0.031 (6)
C50.023 (4)0.052 (6)0.026 (5)0.000 (4)0.001 (4)0.015 (5)
C60.040 (5)0.040 (5)0.038 (6)0.016 (4)0.008 (4)0.016 (5)
C70.052 (6)0.025 (5)0.043 (6)0.007 (4)0.019 (5)0.007 (4)
C80.026 (4)0.031 (5)0.025 (5)0.002 (4)0.003 (4)0.001 (4)
C90.032 (5)0.042 (6)0.029 (5)0.000 (4)0.001 (4)0.002 (4)
C100.031 (5)0.051 (6)0.034 (5)0.005 (4)0.011 (4)0.003 (5)
C110.041 (5)0.043 (6)0.026 (5)0.006 (5)0.003 (4)0.006 (4)
C120.030 (5)0.032 (5)0.028 (5)0.001 (4)0.003 (4)0.003 (4)
C130.021 (4)0.032 (5)0.026 (5)0.005 (3)0.003 (4)0.003 (4)
C140.027 (4)0.025 (4)0.035 (5)0.005 (3)0.004 (4)0.003 (4)
C150.016 (4)0.030 (4)0.034 (5)0.001 (4)0.003 (3)0.002 (4)
C160.023 (4)0.028 (4)0.034 (5)0.001 (4)0.006 (4)0.003 (4)
C170.031 (5)0.041 (6)0.038 (6)0.003 (4)0.005 (4)0.005 (5)
C180.036 (5)0.043 (6)0.041 (6)0.012 (4)0.002 (5)0.005 (5)
C190.053 (6)0.035 (5)0.040 (6)0.019 (5)0.013 (5)0.004 (5)
C200.039 (5)0.029 (4)0.032 (5)0.012 (4)0.010 (4)0.003 (4)
C210.024 (5)0.028 (5)0.032 (5)0.003 (4)0.003 (4)0.005 (4)
C220.031 (5)0.044 (6)0.049 (6)0.008 (4)0.013 (4)0.015 (5)
C230.027 (4)0.037 (5)0.035 (5)0.000 (4)0.005 (4)0.004 (4)
C240.043 (6)0.041 (5)0.030 (5)0.005 (4)0.001 (4)0.010 (4)
Geometric parameters (Å, º) top
Sb1—F11.863 (6)C7—H7A0.9800
Sb1—F21.851 (7)C7—H7B0.9800
Sb1—F31.842 (8)C7—H7C0.9800
Sb1—F41.844 (7)C8—H81.0000
Sb1—F51.843 (6)C8—C91.518 (12)
Sb1—F61.854 (7)C8—C131.513 (12)
Sb2—F71.876 (6)C9—H9A0.9900
Sb2—F81.865 (7)C9—H9B0.9900
Sb2—F91.866 (6)C9—C101.522 (12)
Sb2—F101.856 (6)C10—H10A0.9900
Sb2—F111.854 (6)C10—H10B0.9900
Sb2—F121.875 (6)C10—C111.526 (13)
Fe1—N11.983 (7)C11—H11A0.9900
Fe1—N22.024 (7)C11—H11B0.9900
Fe1—N32.031 (7)C11—C121.528 (12)
Fe1—N41.985 (7)C12—H12A0.9900
Fe1—N51.942 (7)C12—H12B0.9900
Fe1—N61.936 (7)C12—C131.526 (11)
N1—C11.339 (11)C13—H131.0000
N1—C51.347 (11)C14—H14A0.9800
N2—C61.493 (12)C14—H14B0.9800
N2—C71.496 (11)C14—H14C0.9800
N2—C81.511 (11)C15—H15A0.9900
N3—C131.513 (11)C15—H15B0.9900
N3—C141.490 (10)C15—C161.506 (12)
N3—C151.489 (9)C16—C171.362 (13)
N4—C161.358 (11)C17—H170.9500
N4—C201.363 (10)C17—C181.393 (13)
N5—C211.134 (11)C18—H180.9500
N6—C231.156 (11)C18—C191.391 (14)
C1—H10.9500C19—H190.9500
C1—C21.395 (13)C19—C201.363 (13)
C2—H20.9500C20—H200.9500
C2—C31.379 (16)C21—C221.467 (12)
C3—H30.9500C22—H22A0.9800
C3—C41.386 (16)C22—H22B0.9800
C4—H40.9500C22—H22C0.9800
C4—C51.378 (13)C23—C241.459 (12)
C5—C61.505 (14)C24—H24A0.9800
C6—H6A0.9900C24—H24B0.9800
C6—H6B0.9900C24—H24C0.9800
F2—Sb1—F189.0 (3)H6A—C6—H6B108.4
F2—Sb1—F689.8 (4)N2—C7—H7A109.5
F3—Sb1—F188.9 (4)N2—C7—H7B109.5
F3—Sb1—F290.7 (5)N2—C7—H7C109.5
F3—Sb1—F491.1 (5)H7A—C7—H7B109.5
F3—Sb1—F589.0 (5)H7A—C7—H7C109.5
F3—Sb1—F6176.0 (4)H7B—C7—H7C109.5
F4—Sb1—F1177.9 (4)N2—C8—H8106.6
F4—Sb1—F293.1 (4)N2—C8—C9115.9 (7)
F4—Sb1—F692.9 (4)N2—C8—C13108.5 (7)
F5—Sb1—F190.2 (3)C9—C8—H8106.6
F5—Sb1—F2179.1 (4)C13—C8—H8106.6
F5—Sb1—F487.7 (4)C13—C8—C9112.2 (7)
F5—Sb1—F690.5 (4)C8—C9—H9A109.4
F6—Sb1—F187.2 (3)C8—C9—H9B109.4
F8—Sb2—F789.5 (3)C8—C9—C10111.2 (8)
F8—Sb2—F990.8 (3)H9A—C9—H9B108.0
F8—Sb2—F1289.4 (3)C10—C9—H9A109.4
F9—Sb2—F791.5 (3)C10—C9—H9B109.4
F9—Sb2—F12179.2 (3)C9—C10—H10A109.6
F10—Sb2—F7177.5 (3)C9—C10—H10B109.6
F10—Sb2—F892.5 (4)C9—C10—C11110.4 (7)
F10—Sb2—F989.9 (3)H10A—C10—H10B108.1
F10—Sb2—F1289.3 (3)C11—C10—H10A109.6
F11—Sb2—F788.3 (3)C11—C10—H10B109.6
F11—Sb2—F8177.8 (4)C10—C11—H11A109.7
F11—Sb2—F989.7 (3)C10—C11—H11B109.7
F11—Sb2—F1089.7 (4)C10—C11—C12109.8 (7)
F11—Sb2—F1290.1 (3)H11A—C11—H11B108.2
F12—Sb2—F789.3 (3)C12—C11—H11A109.7
N1—Fe1—N281.5 (3)C12—C11—H11B109.7
N1—Fe1—N397.8 (3)C11—C12—H12A109.3
N1—Fe1—N4178.9 (3)C11—C12—H12B109.3
N2—Fe1—N386.0 (3)H12A—C12—H12B108.0
N4—Fe1—N297.4 (3)C13—C12—C11111.6 (7)
N4—Fe1—N382.0 (3)C13—C12—H12A109.3
N5—Fe1—N194.2 (3)C13—C12—H12B109.3
N5—Fe1—N2174.7 (3)N3—C13—C8109.3 (7)
N5—Fe1—N391.4 (3)N3—C13—C12115.2 (7)
N5—Fe1—N486.8 (3)N3—C13—H13106.7
N6—Fe1—N186.9 (3)C8—C13—C12111.7 (7)
N6—Fe1—N294.4 (3)C8—C13—H13106.7
N6—Fe1—N3175.2 (3)C12—C13—H13106.7
N6—Fe1—N493.3 (3)N3—C14—H14A109.5
N6—Fe1—N588.6 (3)N3—C14—H14B109.5
C1—N1—Fe1127.2 (6)N3—C14—H14C109.5
C1—N1—C5117.8 (8)H14A—C14—H14B109.5
C5—N1—Fe1114.9 (6)H14A—C14—H14C109.5
C6—N2—Fe1106.3 (6)H14B—C14—H14C109.5
C6—N2—C7108.6 (7)N3—C15—H15A109.7
C6—N2—C8107.9 (7)N3—C15—H15B109.7
C7—N2—Fe1114.5 (5)N3—C15—C16110.0 (7)
C7—N2—C8110.8 (7)H15A—C15—H15B108.2
C8—N2—Fe1108.4 (5)C16—C15—H15A109.7
C13—N3—Fe1108.0 (5)C16—C15—H15B109.7
C14—N3—Fe1114.2 (5)N4—C16—C15113.7 (7)
C14—N3—C13112.0 (6)N4—C16—C17123.7 (8)
C15—N3—Fe1106.1 (5)C17—C16—C15122.5 (8)
C15—N3—C13108.6 (6)C16—C17—H17120.5
C15—N3—C14107.7 (6)C16—C17—C18119.1 (9)
C16—N4—Fe1115.0 (5)C18—C17—H17120.5
C16—N4—C20116.8 (8)C17—C18—H18121.1
C20—N4—Fe1128.0 (6)C19—C18—C17117.9 (9)
C21—N5—Fe1172.3 (7)C19—C18—H18121.1
C23—N6—Fe1170.9 (7)C18—C19—H19119.9
N1—C1—H1118.7C20—C19—C18120.2 (9)
N1—C1—C2122.6 (10)C20—C19—H19119.9
C2—C1—H1118.7N4—C20—C19122.4 (9)
C1—C2—H2120.6N4—C20—H20118.8
C3—C2—C1118.8 (10)C19—C20—H20118.8
C3—C2—H2120.6N5—C21—C22177.7 (10)
C2—C3—H3120.6C21—C22—H22A109.5
C2—C3—C4118.8 (10)C21—C22—H22B109.5
C4—C3—H3120.6C21—C22—H22C109.5
C3—C4—H4120.5H22A—C22—H22B109.5
C5—C4—C3119.1 (10)H22A—C22—H22C109.5
C5—C4—H4120.5H22B—C22—H22C109.5
N1—C5—C4122.8 (10)N6—C23—C24179.0 (9)
N1—C5—C6114.2 (8)C23—C24—H24A109.5
C4—C5—C6123.0 (9)C23—C24—H24B109.5
N2—C6—C5108.2 (7)C23—C24—H24C109.5
N2—C6—H6A110.0H24A—C24—H24B109.5
N2—C6—H6B110.0H24A—C24—H24C109.5
C5—C6—H6A110.0H24B—C24—H24C109.5
C5—C6—H6B110.0
Fe1—N1—C1—C2178.7 (7)C6—N2—C8—C979.9 (9)
Fe1—N1—C5—C4179.6 (7)C6—N2—C8—C13152.9 (7)
Fe1—N1—C5—C62.2 (10)C7—N2—C6—C5164.0 (7)
Fe1—N2—C6—C540.3 (8)C7—N2—C8—C938.9 (10)
Fe1—N2—C8—C9165.3 (6)C7—N2—C8—C1388.3 (8)
Fe1—N2—C8—C1338.1 (8)C8—N2—C6—C575.8 (9)
Fe1—N3—C13—C836.5 (7)C8—C9—C10—C1157.5 (10)
Fe1—N3—C13—C12163.2 (6)C9—C8—C13—N3178.9 (7)
Fe1—N3—C15—C1638.0 (7)C9—C8—C13—C1252.3 (10)
Fe1—N4—C16—C150.2 (9)C9—C10—C11—C1258.4 (10)
Fe1—N4—C16—C17176.5 (7)C10—C11—C12—C1356.6 (10)
Fe1—N4—C20—C19176.3 (7)C11—C12—C13—N3179.2 (7)
N1—C1—C2—C30.2 (14)C11—C12—C13—C853.7 (10)
N1—C5—C6—N228.9 (11)C13—N3—C15—C1677.9 (8)
N2—C8—C9—C10179.8 (7)C13—C8—C9—C1054.4 (10)
N2—C8—C13—N349.6 (9)C14—N3—C13—C890.1 (8)
N2—C8—C13—C12178.3 (7)C14—N3—C13—C1236.7 (9)
N3—C15—C16—N426.2 (10)C14—N3—C15—C16160.7 (7)
N3—C15—C16—C17157.4 (8)C15—N3—C13—C8151.2 (7)
N4—C16—C17—C180.3 (14)C15—N3—C13—C1282.1 (8)
C1—N1—C5—C42.2 (13)C15—C16—C17—C18176.2 (8)
C1—N1—C5—C6175.9 (7)C16—N4—C20—C191.6 (12)
C1—C2—C3—C40.0 (15)C16—C17—C18—C191.2 (14)
C2—C3—C4—C51.3 (15)C17—C18—C19—C200.7 (14)
C3—C4—C5—N12.5 (15)C18—C19—C20—N40.7 (14)
C3—C4—C5—C6175.5 (9)C20—N4—C16—C15175.1 (7)
C4—C5—C6—N2153.0 (9)C20—N4—C16—C171.1 (12)
C5—N1—C1—C20.9 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F6i0.952.543.385 (12)148
C2—H2···F2ii0.952.523.371 (15)149
C4—H4···F8iii0.952.403.246 (13)148
C14—H14C···F50.982.413.317 (10)155
C15—H15A···F11iv0.992.403.322 (11)154
C15—H15B···F2v0.992.463.149 (11)126
C22—H22B···F5i0.982.503.241 (12)133
C24—H24B···F3vi0.982.473.098 (12)122
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1, y+3/2, z+3/2; (iii) x+1, y, z; (iv) x+1/2, y+1, z1/2; (v) x1, y, z; (vi) x+3/2, y+1, z+1/2.
 

Funding information

Funding for this research was provided by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of a scientific direction ‘Mathematical sciences and natural sciences’ at Taras Shevchenko National University of Kyiv.

References

First citationAldrich-Wright, J. R., Fenton, R. F., Greguric, I. D., Hambley, T. W. & Williams, P. A. (2002). J. Chem. Soc. Dalton Trans. pp. 4666–4671.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, K. & Que, L. Jr (1999). Chem. Commun. pp. 1375–1376.  CrossRef Google Scholar
First citationChen, L., Su, X. J. & Jurss, J. W. (2018). Organometallics, 37, 4535–4539.  CrossRef CAS Google Scholar
First citationChen, M. S. & White, M. C. (2007). Science, 318, 783–787.  CrossRef PubMed CAS Google Scholar
First citationCostas, M., Rohde, J. U., Stubna, A., Ho, R. Y. N., Quaroni, L., Münck, E. & Que, L. J. (2001). J. Am. Chem. Soc. 123, 12931–12932.  CrossRef PubMed CAS Google Scholar
First citationCostas, M., Tipton, A. K., Chen, K., Jo, D. H. & Que, L. J. (2001). J. Am. Chem. Soc. 123, 6722–6723.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEsarey, S. L., Holland, J. C. & Bartlett, B. M. (2016). Inorg. Chem. 55, 11040–11049.  CrossRef CAS PubMed Google Scholar
First citationFenton, R. R., Stephens, F. S., Vagg, R. S. & Williams, P. A. (1991). Inorg. Chim. Acta, 182, 67–75.  CrossRef CAS Google Scholar
First citationFenton, R. R., Stephens, F. S., Vagg, R. S. & Williams, P. A. (1995). Inorg. Chim. Acta, 236, 109–115.  CrossRef CAS Google Scholar
First citationFont, D., Canta, M., Milan, M., Cussó, O., Ribas, X., Klein Gebbink, R. J. M. & Costas, M. (2016). Angew. Chem. Int. Ed. 55, 5776–5779.  CrossRef CAS Google Scholar
First citationFujimoto, T., Sugimoto, H., Kai, K., Maeda, K. & Itoh, S. (2019). Eur. J. Inorg. Chem. pp. 2891–2898.  CrossRef Google Scholar
First citationGlerup, J., Goodson, P. A., Hazell, A., Hazell, R., Hodgson, D. J., McKenzie, C. J., Michelsen, K., Rychlewska, U. & Toftlund, H. (1994). Inorg. Chem. 33, 4105–4111.  CSD CrossRef CAS Web of Science Google Scholar
First citationGómez, L., Canta, M., Font, D., Prat, I., Ribas, X. & Costas, M. (2013). J. Org. Chem. 78, 1421–1433.  PubMed Google Scholar
First citationGómez, L., Garcia–Bosch, I., Company, A., Benet–Buchholz, J., Polo, A., Sala, X., Ribas, X. & Costas, M. (2009). Angew. Chem. Int. Ed. 48, 5720–5723.  Google Scholar
First citationGormisky, P. E. & White, M. C. (2013). J. Am. Chem. Soc. 135, 14052–14055.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKim, W., So, S. M., Chagal, L., Lough, A. J., Kim, B. M. & Chin, J. (2006). J. Org. Chem. 71, 8966–8968.  CrossRef PubMed CAS Google Scholar
First citationKooistra, T. M., Hekking, K. F. W., Knijnenburg, Q., de Bruin, B., Budzelaar, P. H. M., de Gelder, R., Smits, J. M. M. & Gal, A. W. (2003). Eur. J. Inorg. Chem. pp. 648–655.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLeverett, P., Petherick, J., Williams, P. A. & Vagg, R. S. (1996). J. Coord. Chem. 37, 195–204.  CrossRef CAS Google Scholar
First citationLeverett, P., Petherick, J., Williams, P. A. & Vagg, R. S. (1999). J. Coord. Chem. 49, 83–90.  CrossRef CAS Google Scholar
First citationMurphy, A., Dubois, G. & Stack, T. D. P. (2003). J. Am. Chem. Soc. 125, 5250–5251.  CrossRef PubMed CAS Google Scholar
First citationNg, V. Y. M., Tse, C. W., Guan, X., Chang, X., Yang, C., Low, K. H., Lee, H. K., Huang, J. S. & Che, C. M. (2017). Inorg. Chem. 56, 15066–15080.  CrossRef CAS PubMed Google Scholar
First citationOkuno, T., Ito, S., Ohba, S. & Nishida, Y. (1997). J. Chem. Soc. Dalton Trans. pp. 3547–3551.  CSD CrossRef Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiedlecka, R. (2023). Catalysts, 13, 121.  CrossRef Google Scholar
First citationStubna, A., Jo, D. H., Costas, M., Brenessel, W. W., Andres, H., Bominaar, E. L., Münck, E. & Que, L. (2004). Inorg. Chem. 43, 3067–3079.  CrossRef PubMed CAS Google Scholar
First citationTse, C. W., Liu, Y., Wai-Shan Chow, T., Ma, C., Yip, W. P., Chang, X. Y., Low, K. H., Huang, J. S. & Che, C. M. (2018). Chem. Sci. 9, 2803–2816.  CrossRef CAS PubMed Google Scholar
First citationWang, J. W., Zhang, X. Q., Huang, H. H. & Lu, T. B. (2016). ChemCatChem, 8, 3287–3293.  CrossRef CAS Google Scholar
First citationWhite, M. C., Doyle, A. G. & Jacobsen, E. N. (2001). J. Am. Chem. Soc. 123, 7194–7195.  CrossRef PubMed CAS Google Scholar
First citationZhang, Q. & Goldsmith, C. R. (2014). Inorg. Chem. 53, 5206–5211.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds