research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two polymorphs for fac-bromido­tricarbon­yl[4-(4-meth­­oxy­phen­yl)-2-(pyridin-2-yl)thia­zole-κ2N,N′]rhenium(I)

crossmark logo

aGraduate School of Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
*Correspondence e-mail: ozawa@sci.u-hyogo.ac.jp, mabe@sci.u-hyogo.ac.jp

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 21 October 2024; accepted 5 November 2024; online 8 November 2024)

Crystallization of the title compound, fac-[ReBr(ppt-OMe)(CO)3] (ppt-OMe = C15H12N2OS), from CH2Cl2/n-pentane (1:5 v/v) at room temperature gave two polymorphs, which crystallize in monoclinic (P21/c; α form) and ortho­rhom­bic (Pna21; β form) space groups. The ReI complex mol­ecules in either polymorph adopt a six-coordinate octa­hedral geometry with three facially-oriented carbonyl ligands, one bromido ligand, and two nitro­gen atoms from one chelating ligand ppt-OMe. In the crystal, both polymorph α and β form di-periodic sheet-like architectures supported by multiple hydrogen bonds. In polymorph α, two types of hydrogen bonds (C—H⋯O) are found while, in polymorph β, four types of hydrogen bonds (C—H⋯O and C—H⋯Br) exist.

1. Chemical context

Octa­hedral six-coordinate fac-tri(carbon­yl)halogenorhenium(I) complexes formulated as fac-[ReI(CO)3X(N^N)] (X = halogeno ligand, N^N = bidentate ligand with two N donor atoms such as 2,2′-bi­pyridine) constitute a remarkable class of transition-metal complexes, which have been intensively studied for some decades owing to their enormous inter­est in the versatile fields of science such as synthesis, photo-physics and chemistry (Stout et al., 2020[Stout, M. J., Skelton, B. W., Sobolev, A. N., Raiteri, P., Massi, M. & Simpson, P. V. (2020). Organometallics, 39, 3202-3211.]; Ioachim et al., 2006[Ioachim, E., Medlycott, E. A. & Hanan, G. S. (2006). Inorg. Chim. Acta, 359, 2599-2607.]), metallo­supra­molecular chemistry (Dinolfo et al., 2004[Dinolfo, P. H., Williams, M. E., Stern, C. L. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 12989-13001.]), catalysis (Talukdar et al., 2020[Talukdar, K., Sinha Roy, S., Amatya, E., Sleeper, E. A., Le Magueres, P. & Jurss, J. W. (2020). Inorg. Chem. 59, 6087-6099.]; Matlachowski et al., 2015[Matlachowski, C., Braun, B., Tschierlei, S. & Schwalbe, M. (2015). Inorg. Chem. 54, 10351-10360.]), and biological/medical science (Lo et al., 2006[Lo, K. K.-W., Tsang, K. H.-K. & Sze, K.-S. (2006). Inorg. Chem. 45, 1714-1722.]). Chemical modulations of monodentate halogeno ligands with X = F, Cl, and Br and bidentate chelating ligands allow the physicochemical properties of rhenium(I) complexes to be largely and finely tuned in intentional directions (Auvray et al., 2021[Auvray, T., Del Secco, B., Dubreuil, A., Zaccheroni, N. & Hanan, G. S. (2021). Inorg. Chem. 60, 70-79.]; Saldías et al., 2019[Saldías, M., Guzmán, N., Palominos, F., Sandoval-Altamirano, C., Günther, G., Pizarro, N. & Vega, A. (2019). ACS Omega, 4, 4679-4690.]). Among many derivatives so far explored, 2,2′-bi­pyridine (Kia & Safari, 2016[Kia, R. & Safari, F. (2016). Inorg. Chim. Acta, 453, 357-368.]) and 1,10-phenanthroline (Záliš et al., 2011[Záliš, S., Consani, C., Nahhas, A. E., Cannizzo, A., Chergui, M., Hartl, F. & Vlček, A. Jr (2011). Inorg. Chim. Acta, 374, 578-585.]) have been structurally characterized. To further develop the synthetic methodology to tune the nature of fac-[ReI(CO)3X(N^N)] complexes, complexation with unsymmetrical bidentate N^N ligands may provide an additional approach to be exploited, but the examples are still rare to date.

Organic compounds with a 2-(pyridie-2-yl)thia­zole backbone have been synthesized and structurally identified (WAYSAU: Puji Pamungkas et al., 2022[Puji Pamungkas, K. K., Maruyama, T. & Murai, T. (2022). RSC Adv. 12, 14698-14706.]; ITOSAO: Puji Pamungkas et al., 2021[Puji Pamungkas, K. K., Maruyama, T. & Murai, T. (2021). Org. Biomol. Chem. 19, 6804-6811.]; HUQSOD: Yamaguchi et al., 2015[Yamaguchi, K., Murai, T., Hasegawa, S., Miwa, Y., Kutsumizu, S., Maruyama, T., Sasamori, T. & Tokitoh, N. (2015). J. Org. Chem. 80, 10742-10756.]).

In our ongoing effort to develop transition-metal complexes using 2-(pyridin-2-yl)thia­zole derivatives as new unsymmetrical N^N-chelating ligands, we herein report the synthesis and structural determination of compound (I), a fac-tri(carbon­yl)bromido­rhenium(I) complex bearing 4-(4-meth­oxy­phen­yl)-2-(pyridin-2-yl)thia­zole, hereafter abbreviated as ppt-OMe.

[Scheme 1]

2. Structural commentary

Crystallization of (I) from CH2Cl2/n-pentane (1/5, v/v) gave two polymorphs, α and β, which differed in the color and shape of the crystals (see details in the Experimental section). Polymorph α, bright yellowish orange and rhomboid in shape, crystallizes in the monoclinic space group P21/c, while polymorph β, vivid orange, pillar shaped, crystallizes in the ortho­rhom­bic space group Pna21. The mol­ecular structure of (I) in polymorph α is shown in Fig. 1[link]. The rhenium(I) center is coordinated by three carbon atoms (C1–C3) from facially-oriented carbonyl ligands, one bromido ligand (Br1), and two nitro­gen atoms (N1 and N2) from the chelating ppt-OMe ligand to complete a six-coordinate octa­hedral geometry. The bond lengths and angles around the rhenium center (Re1) are listed in Table 1[link]. The Re—C bond lengths range between 1.903 (5) and 1.950 (5) Å. The ppt-OMe ligand chelates the rhenium(I) center unsymmetrically with Re1—N1 (Th group) and Re1—N2 (Py group) bond lengths of 2.198 (3) and 2.193 (3) Å, respectively. In the chelating ppt-OMe ligand, the mean planes of the Th and Py rings are almost co-planar, but the Th and phenyl (Ph) rings are twisted, the N1—C5—C12—C17 torsion angle being 118.0 (4)°.

Table 1
Selected geometric parameters (Å, °) for polymorph α[link]

Re1—C1 1.903 (5) Re1—Br1 2.6129 (5)
Re1—C2 1.923 (4) C1—O1 1.145 (5)
Re1—C3 1.950 (5) C2—O2 1.150 (5)
Re1—N1 2.198 (3) C3—O3 1.075 (6)
Re1—N2 2.193 (3)    
       
N1—C5—C12—C17 118.0 (4)    
[Figure 1]
Figure 1
Mol­ecular structure with the atomic labeling scheme for polymorph α of (I) at 296 K, showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

Polymorph β contains two crystallographically independent mol­ecules, A and B, in the asymmetric unit (Fig. 2[link]). Bond lengths around the rhenium centers are listed in Table 2[link]. As seen in the mol­ecular structure for polymorph α, the complex mol­ecules in polymorph β also adopt a six-coordinate octa­hedral geometry with a {C3BrN2} donor set. The unsymmet­rical complexation nature of the two nitro­gen donors of ppt-OMe towards the rhenium(I) center is more evident for polymorph β than α in a comparison of the Re—N (Th or Py) bond lengths. The Re—N (Th) bonds are longer than the Re—N (Py) bonds with Re1—N101 (Th) = 2.186 (7) and Re1—N102 (Py) = 2.105 (7) Å for mol­ecule A and Re2—N201 (Th) = 2.185 (7) and Re2—N202 (Py) = 2.157 (8) Å for mol­ecule B. The Re—C bond lengths range between 1.909 (10) and 1.932 (8) Å. The N101—C105—C112—C117 torsion angle is 61.0 (10)° in mol­ecule A, while N201—C205—C212—C217 in mol­ecule B is 61.1 (10)°. These angles are almost identical to each other.

Table 2
Selected geometric parameters (Å, °) for polymorph β[link]

Re1—Br1 2.6315 (8) Re2—C201 1.921 (9)
Re2—Br2 2.6308 (8) Re2—C202 1.909 (10)
Re1—N101 2.186 (7) Re2—C203 1.909 (8)
Re1—N102 2.105 (7) C101—O101 1.153 (11)
Re2—N201 2.185 (7) C102—O102 1.149 (10)
Re2—N202 2.157 (8) C103—O103 1.123 (10)
Re1—C101 1.909 (9) C201—O201 1.137 (11)
Re1—C102 1.919 (9) C202—O202 1.162 (11)
Re1—C103 1.932 (8) C203—O203 1.149 (9)
       
N101—C105—C112—C117 61.0 (10) N201—C205—C212—C217 61.1 (10)
[Figure 2]
Figure 2
Mol­ecular structures of independent mol­ecules A (left) and B (right) in polymorph β of (I) at 296 K with the atomic labeling scheme, showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

3. Supra­molecular features

Packing diagrams of polymorphs α and β are shown in Figs. 3[link] and 4[link], respectively. For both polymorphs, hydrogen bonds play an important role in the non-covalent supra­molecular architectures.

[Figure 3]
Figure 3
Packing diagram for polymorph α. Hydrogen bonds C18—H18B(meth­oxy)⋯O3(carbon­yl) and C11—H11(py)⋯O2(carbon­yl) are shown as dotted lines in green and orange, respectively. Color codes: Re (blue); Br (brown); S (yellow); O (red); N (light blue); C (gray); H (light gray).
[Figure 4]
Figure 4
Packing diagram for polymorph β. Hydrogen bonds, C109—H109(py)⋯O102(carbon­yl), C108—H108(py)⋯O104(meth­oxy), C118—H18A(methoxy)⋯Br1, and C117—H117(Ph)⋯Br1, are shown as dotted lines in orange, pink, blue, and green, respectively. Color codes: Re (blue); Br (brown); S (yellow); O (red); N (light blue); C (gray); H (light gray).

In polymorph α (Fig. 3[link]), two types of hydrogen bonds, C11—H11(Py)⋯O2 (carbon­yl) and C18—H18B(meth­oxy)⋯O3 (carbon­yl) (Table 3[link]), lead to the formation of a di-periodic sheet-like network in the bc plane.

Table 3
Hydrogen-bond geometry (Å, °) for polymorph α[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Br1i 0.93 2.80 3.691 (4) 160
C8—H8⋯Br1ii 0.93 2.95 3.828 (5) 158
C11—H11⋯O2iii 0.93 2.64 3.285 (6) 127
C18—H18B⋯O3iv 0.96 2.60 3.478 (8) 152
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, -y+1, -z+1]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

In polymorph β (Fig. 4[link]), four types of hydrogen bonds, C108—H108(Py)⋯O104(meth­oxy), C109—H109(Py)⋯O102(carbon­yl), C117—H117(Ph)⋯Br1, and C118—H18A(meth­oxy)⋯Br1 (Table 4[link]), give rise to a di-periodic sheet-like network in the ab plane.

Table 4
Hydrogen-bond geometry (Å, °) for polymorph β[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C108—H108⋯O104i 0.93 2.66 3.435 (13) 141
C109—H109⋯O102i 0.93 2.50 3.397 (14) 161
C208—H208⋯O204i 0.93 2.66 3.442 (13) 142
C209—H209⋯O202i 0.93 2.43 3.337 (13) 166
C210—H210⋯O101 0.93 2.72 3.110 (12) 106
C214—H214⋯O104ii 0.93 2.65 3.365 (12) 135
C117—H117⋯Br1iii 0.93 3.03 3.873 (9) 152
C118—H18A⋯Br1iv 0.96 2.94 3.868 (12) 162
C206—H206⋯Br1v 0.93 3.03 3.845 (14) 148
C106—H106⋯Br2vi 0.93 3.06 3.762 (14) 133
C218—H18D⋯Br2vii 0.96 2.97 3.865 (12) 155
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+1, -y+2, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+1, -y+1, z+{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z].

4. Database survey

A search in Cambridge Structural Database (CSD, Version 5.45, update of November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for fac-[Re(CO)3X(N^N)], where X = a halogeno ligand (F, Cl, and Br) and N^N = chelating ligand or complexing monodentate ligand, yielded 1177 hits, for which X = Br gave 441 hits. As for N^N chelates, compounds coordinated by 2,2′-bi­pyridine and substituted derivatives recorded 78 hits. For the fac-[Re(CO)3X(Py-Th)] complexes (X = halogeno ligand; Py-Th = bidentate N^N ligand containing 2-(pyridin-2-yl)thia­zolyl moiety), 16 crystal structures are available, of which only one structure is found with X = Br with the remainder with X = Cl. The survey found 62 hits for organic compounds containing the Py-Th backbone (except for transition-metal complexes). Transition-metal complexes chelated by Py-Th ligands include 65, 35, and 20 examples, respectively, for 3d, 4d, and 5d-transition-metal ions.

5. Photoluminescence study

Upon exposure to UV light at an excitation wavelength (λex) of 365 nm, polymorphs α and β were brightly emissive in yellow and orange, respectively. The solid-state photoluminescence (PL) spectra are depicted in Fig. 5[link]. The wavelengths of the PL peak maxima (λPL) were 580 and 593 nm for polymorphs α and β, respectively, at room temperature, indicating that the crystal-packing variation results in fine-tuning of the PL peak energy. For reference, the PL peak for fac-[Re(CO)3Br(2,2′-bi­pyridine)] in di­methyl­formamide is observed at λPL = 610 nm (Kutal et al., 1985[Kutal, C., Weber, M. A., Ferraudi, G. & Geiger, D. (1985). Organometallics, 4, 2161-2166.]).

[Figure 5]
Figure 5
Photoluminescence spectra for polymorphs α (blue line) and β (red line) with λex = 365 nm.

6. Synthesis and crystallization

The ligand ppt-OMe was prepared according to the literature method (Suryawanshi et al., 2018[Suryawanshi, M., Patil, A., Bholay, A. & Bobade, V. (2018). Indian J. Chem. 57B, 1179-1188.]). Compound (I) was prepared by referring to a previous report (Huff et al., 2016[Huff, G. S., Lo, W. K. C., Horvath, R., Turner, J. O., Sun, X.-Z., Weal, G. R., Davidson, H. J., Kennedy, A. D. W., McAdam, C. J., Crowley, J. D., George, M. W. & Gordon, K. C. (2016). Inorg. Chem. 55, 12238-12253.]). An ethano­lic solution (20 ml) of [ReBr(CO)5] (166 mg, 0.41 mmol) and ppt-OMe (107 mg, 0.40 mmol) was refluxed for 24 h under an Ar atmosphere. Cooling down the solution to room temperature resulted in precipitation of an orange powdery solid, which was collected by filtration and dried in a vacuum. Yield, 82.5% (based on Re). Recrystallization of the crude solid from CH2Cl2/n-pentane (1/5, v/v) at room temperature gave one of the two polymorphic forms α (bright yellowish orange, rhomboid-shaped) and β (vivid orange, pillar-shaped) separately in each test tube. 1H NMR (CDCl3, 600 MHz): δ (ppm) 9.09 (d, 1H, py 6-H), 8.09–8.04 (m, 2H, py 3,4-H), 7.60 (td, 2H, Ph 2,6-H), 7.54–7.52 (m, 1H, py 5-H), 7.49 (s, 1H, Th), 7.08–7.05 (m, 2H, Ph 3,5-H), 3.89 (s, 3H, CH3).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All hydrogen atoms were added at calculated positions and refined using of a riding model with isotropic displacement parameters based on those of the parent atom [C—H = 0.95 Å, Uiso(H) = 1.2UeqC for CH, C—H = 0.98 Å, Uiso(H) = 1.5UeqC for CH3]. Idealized methyl groups were refined as rotating groups. Inversion twin refinements were applied to polymorph β with a non-centrosymmetric space group in which the absolute structure parameter converged to 0.487 (10).

Table 5
Experimental details

  Polymorph α Polymorph β
Crystal data
Chemical formula [ReBr(C15H12N2OS)(CO)3] [ReBr(C15H12N2OS)(CO)3]
Mr 618.47 618.47
Crystal system, space group Monoclinic, P21/c Orthorhombic, Pna21
Temperature (K) 296 296
a, b, c (Å) 12.7442 (6), 10.6851 (6), 14.4027 (6) 13.2169 (3), 11.2764 (2), 25.8716 (5)
α, β, γ (°) 90, 96.645 (7), 90 90, 90, 90
V3) 1948.08 (17) 3855.88 (13)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 8.42 8.51
Crystal size (mm) 0.48 × 0.38 × 0.26 0.68 × 0.2 × 0.1
 
Data collection
Diffractometer Rigaku R-Axis Rapid Rigaku R-Axis Rapid
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan ABSCOR (Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.373, 1 0.318, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 22185, 5657, 4722 69569, 11206, 9179
Rint 0.035 0.055
(sin θ/λ)max−1) 0.703 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.079, 1.13 0.033, 0.065, 1.02
No. of reflections 5657 11206
No. of parameters 244 488
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.32, −0.60 2.38, −0.50
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.487 (10)
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

fac-Bromidotricarbonyl[4-(4-methoxyphenyl)-2-(pyridin-2-yl)thiazole-κ2N,N']rhenium(I) (polymorph-_a) top
Crystal data top
[ReBr(C15H12N2OS)(CO)3]F(000) = 1168
Mr = 618.47Dx = 2.109 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.7442 (6) ÅCell parameters from 18153 reflections
b = 10.6851 (6) Åθ = 2.3–30.0°
c = 14.4027 (6) ŵ = 8.42 mm1
β = 96.645 (7)°T = 296 K
V = 1948.08 (17) Å3Rhomboid, bright yellowish orange
Z = 40.48 × 0.38 × 0.26 mm
Data collection top
Rigaku R-Axis Rapid
diffractometer
5657 independent reflections
Radiation source: sealed x-ray tube4722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10 pixels mm-1θmax = 30.0°, θmin = 2.4°
ω oscillation scansh = 1617
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.373, Tmax = 1l = 2020
22185 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: dual
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.8663P]
where P = (Fo2 + 2Fc2)/3
5657 reflections(Δ/σ)max = 0.002
244 parametersΔρmax = 2.32 e Å3
0 restraintsΔρmin = 0.60 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.69332 (2)0.57379 (2)0.34624 (2)0.03362 (6)
Br10.85382 (3)0.72741 (4)0.35771 (3)0.04761 (11)
C10.5981 (4)0.7040 (5)0.3700 (3)0.0522 (11)
C20.6607 (3)0.6114 (4)0.2155 (3)0.0410 (9)
C30.5766 (4)0.4552 (5)0.3419 (3)0.0487 (10)
O40.7290 (3)0.4398 (4)0.1125 (2)0.0692 (11)
O10.5395 (4)0.7803 (4)0.3856 (3)0.0912 (14)
O20.6396 (3)0.6374 (3)0.1381 (2)0.0606 (9)
O30.5101 (3)0.3926 (4)0.3360 (3)0.0765 (11)
S10.97094 (8)0.30377 (10)0.42134 (7)0.0430 (2)
N10.8157 (3)0.4295 (3)0.3425 (2)0.0336 (6)
N20.7479 (3)0.5328 (3)0.4931 (2)0.0373 (7)
C40.8643 (3)0.3978 (3)0.4256 (3)0.0347 (8)
C50.8644 (3)0.3775 (4)0.2704 (3)0.0350 (7)
C60.9495 (3)0.3080 (4)0.3017 (3)0.0430 (9)
H60.9917850.2669820.2628580.052*
C70.8276 (3)0.4487 (3)0.5101 (3)0.0338 (8)
C80.8708 (4)0.4192 (4)0.5996 (3)0.0445 (9)
H80.9257850.3618260.6094530.053*
C90.8314 (4)0.4758 (5)0.6745 (3)0.0502 (10)
H90.8594350.4567100.7353130.060*
C100.7512 (4)0.5600 (4)0.6582 (3)0.0496 (11)
H100.7237440.5990920.7078140.060*
C110.7108 (4)0.5868 (4)0.5663 (3)0.0480 (10)
H110.6560120.6443850.5555170.058*
C120.8245 (3)0.3970 (4)0.1715 (3)0.0354 (8)
C130.7276 (3)0.3513 (4)0.1340 (3)0.0453 (10)
H130.6847760.3114440.1729870.054*
C140.6921 (3)0.3633 (4)0.0395 (3)0.0473 (10)
H140.6267690.3308590.0156420.057*
C150.7547 (4)0.4239 (4)0.0189 (3)0.0464 (10)
C160.8511 (4)0.4715 (6)0.0181 (3)0.0576 (12)
H160.8928890.5137640.0204790.069*
C170.8861 (4)0.4574 (5)0.1110 (3)0.0490 (10)
H170.9521050.4885400.1342640.059*
C180.6257 (6)0.4026 (7)0.1508 (4)0.084 (2)
H18A0.6168000.4182140.2168460.125*
H18B0.6164010.3150030.1395280.125*
H18C0.5742120.4496740.1217000.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02619 (8)0.04068 (9)0.03484 (9)0.00630 (6)0.00720 (6)0.00405 (6)
Br10.0396 (2)0.0519 (2)0.0510 (2)0.00480 (18)0.00401 (17)0.00717 (18)
C10.041 (2)0.063 (3)0.053 (3)0.014 (2)0.0099 (19)0.007 (2)
C20.033 (2)0.042 (2)0.048 (2)0.0057 (16)0.0046 (16)0.0072 (17)
C30.029 (2)0.055 (3)0.059 (3)0.0102 (19)0.0049 (18)0.010 (2)
O40.060 (2)0.110 (3)0.0371 (17)0.019 (2)0.0011 (16)0.0031 (17)
O10.082 (3)0.091 (3)0.105 (3)0.056 (3)0.031 (2)0.010 (2)
O20.069 (2)0.066 (2)0.0453 (18)0.0122 (18)0.0008 (15)0.0115 (15)
O30.054 (2)0.077 (3)0.101 (3)0.008 (2)0.017 (2)0.014 (2)
S10.0368 (5)0.0493 (6)0.0428 (5)0.0140 (4)0.0038 (4)0.0015 (4)
N10.0330 (17)0.0363 (16)0.0323 (16)0.0020 (12)0.0079 (12)0.0008 (11)
N20.0331 (17)0.0436 (17)0.0371 (16)0.0056 (14)0.0119 (13)0.0028 (13)
C40.0321 (19)0.0341 (18)0.039 (2)0.0040 (14)0.0075 (15)0.0040 (14)
C50.0325 (19)0.0390 (19)0.0352 (18)0.0005 (15)0.0106 (14)0.0033 (14)
C60.038 (2)0.055 (2)0.038 (2)0.0123 (18)0.0104 (16)0.0042 (17)
C70.0309 (18)0.0369 (19)0.0347 (18)0.0011 (14)0.0087 (14)0.0042 (13)
C80.044 (2)0.050 (2)0.040 (2)0.0031 (18)0.0054 (17)0.0067 (16)
C90.050 (3)0.069 (3)0.032 (2)0.002 (2)0.0051 (17)0.0037 (19)
C100.058 (3)0.058 (3)0.036 (2)0.001 (2)0.0163 (19)0.0051 (17)
C110.048 (3)0.056 (3)0.043 (2)0.0115 (19)0.0137 (19)0.0020 (18)
C120.0289 (18)0.042 (2)0.0371 (19)0.0030 (14)0.0099 (14)0.0045 (14)
C130.037 (2)0.059 (3)0.041 (2)0.0078 (19)0.0103 (17)0.0043 (18)
C140.039 (2)0.057 (3)0.045 (2)0.0103 (19)0.0010 (17)0.0004 (19)
C150.042 (2)0.061 (3)0.036 (2)0.0012 (19)0.0045 (17)0.0018 (17)
C160.045 (3)0.086 (4)0.042 (2)0.018 (2)0.0109 (19)0.006 (2)
C170.037 (2)0.068 (3)0.043 (2)0.012 (2)0.0084 (18)0.0003 (19)
C180.083 (5)0.109 (5)0.053 (3)0.029 (4)0.021 (3)0.013 (3)
Geometric parameters (Å, º) top
Re1—C11.903 (5)C7—C81.379 (5)
Re1—C21.923 (4)C8—C91.380 (6)
Re1—C31.950 (5)C8—H80.9300
Re1—N22.193 (3)C9—C101.361 (7)
Re1—N12.198 (3)C9—H90.9300
Re1—Br12.6129 (5)C10—C111.394 (6)
C1—O11.145 (5)C10—H100.9300
C2—O21.150 (5)C11—H110.9300
C3—O31.075 (6)C12—C131.379 (5)
O4—C151.361 (5)C12—C171.397 (5)
O4—C181.424 (7)C13—C141.389 (6)
S1—C41.697 (4)C13—H130.9300
S1—C61.713 (4)C14—C151.385 (6)
N1—C41.327 (5)C14—H140.9300
N1—C51.387 (5)C15—C161.379 (6)
N2—C111.336 (5)C16—C171.368 (6)
N2—C71.356 (5)C16—H160.9300
C4—C71.458 (5)C17—H170.9300
C5—C61.350 (5)C18—H18A0.9600
C5—C121.470 (5)C18—H18B0.9600
C6—H60.9300C18—H18C0.9600
C1—Re1—C287.31 (18)C8—C7—C4124.3 (4)
C1—Re1—C388.9 (2)C7—C8—C9119.3 (4)
C2—Re1—C391.56 (19)C7—C8—H8120.4
C1—Re1—N296.34 (16)C9—C8—H8120.4
C2—Re1—N2174.02 (14)C10—C9—C8119.3 (4)
C3—Re1—N293.25 (17)C10—C9—H9120.4
C1—Re1—N1170.47 (17)C8—C9—H9120.4
C2—Re1—N1101.33 (15)C9—C10—C11119.1 (4)
C3—Re1—N194.84 (16)C9—C10—H10120.4
N2—Re1—N174.72 (12)C11—C10—H10120.4
C1—Re1—Br192.31 (15)N2—C11—C10122.3 (4)
C2—Re1—Br190.54 (13)N2—C11—H11118.8
C3—Re1—Br1177.63 (14)C10—C11—H11118.8
N2—Re1—Br184.59 (9)C13—C12—C17117.5 (4)
N1—Re1—Br183.67 (8)C13—C12—C5121.6 (3)
O1—C1—Re1178.3 (5)C17—C12—C5120.9 (4)
O2—C2—Re1177.8 (4)C12—C13—C14121.8 (4)
O3—C3—Re1176.7 (5)C12—C13—H13119.1
C15—O4—C18117.0 (4)C14—C13—H13119.1
C4—S1—C689.20 (19)C15—C14—C13119.5 (4)
C4—N1—C5111.8 (3)C15—C14—H14120.2
C4—N1—Re1114.6 (2)C13—C14—H14120.2
C5—N1—Re1132.8 (3)O4—C15—C16116.0 (4)
C11—N2—C7118.1 (3)O4—C15—C14124.8 (4)
C11—N2—Re1124.9 (3)C16—C15—C14119.2 (4)
C7—N2—Re1117.0 (2)C17—C16—C15120.8 (4)
N1—C4—C7119.7 (3)C17—C16—H16119.6
N1—C4—S1114.3 (3)C15—C16—H16119.6
C7—C4—S1125.9 (3)C16—C17—C12121.2 (4)
C6—C5—N1112.5 (3)C16—C17—H17119.4
C6—C5—C12125.2 (3)C12—C17—H17119.4
N1—C5—C12122.3 (3)O4—C18—H18A109.5
C5—C6—S1112.3 (3)O4—C18—H18B109.5
C5—C6—H6123.9H18A—C18—H18B109.5
S1—C6—H6123.9O4—C18—H18C109.5
N2—C7—C8122.0 (4)H18A—C18—H18C109.5
N2—C7—C4113.7 (3)H18B—C18—H18C109.5
C5—N1—C4—C7176.9 (3)C4—C7—C8—C9178.2 (4)
Re1—N1—C4—C76.1 (4)C7—C8—C9—C100.3 (7)
C5—N1—C4—S10.0 (4)C8—C9—C10—C110.0 (7)
Re1—N1—C4—S1170.94 (17)C7—N2—C11—C100.2 (7)
C6—S1—C4—N10.3 (3)Re1—N2—C11—C10177.7 (3)
C6—S1—C4—C7176.5 (4)C9—C10—C11—N20.0 (7)
C4—N1—C5—C60.4 (5)C6—C5—C12—C13114.1 (5)
Re1—N1—C5—C6168.3 (3)N1—C5—C12—C1365.2 (5)
C4—N1—C5—C12179.0 (4)C6—C5—C12—C1762.7 (6)
Re1—N1—C5—C1212.3 (6)N1—C5—C12—C17118.0 (4)
N1—C5—C6—S10.6 (5)C17—C12—C13—C140.6 (6)
C12—C5—C6—S1178.7 (3)C5—C12—C13—C14176.3 (4)
C4—S1—C6—C50.5 (3)C12—C13—C14—C150.8 (7)
C11—N2—C7—C80.5 (6)C18—O4—C15—C16173.9 (5)
Re1—N2—C7—C8177.6 (3)C18—O4—C15—C146.8 (8)
C11—N2—C7—C4178.4 (4)C13—C14—C15—O4179.1 (4)
Re1—N2—C7—C40.3 (4)C13—C14—C15—C160.2 (7)
N1—C4—C7—N23.9 (5)O4—C15—C16—C17178.0 (5)
S1—C4—C7—N2172.7 (3)C14—C15—C16—C171.3 (8)
N1—C4—C7—C8178.2 (4)C15—C16—C17—C121.5 (8)
S1—C4—C7—C85.1 (6)C13—C12—C17—C160.5 (7)
N2—C7—C8—C90.6 (6)C5—C12—C17—C16177.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Br1i0.932.803.691 (4)160
C8—H8···Br1ii0.932.953.828 (5)158
C11—H11···O2iii0.932.643.285 (6)127
C18—H18B···O3iv0.962.603.478 (8)152
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x, y+3/2, z+1/2; (iv) x, y+1/2, z1/2.
fac-Bromidotricarbonyl[4-(4-methoxyphenyl)-2-(pyridin-2-yl)thiazole-κ2N,N']rhenium(I) (polymorph-_b) top
Crystal data top
[ReBr(C15H12N2OS)(CO)3]Dx = 2.131 Mg m3
Mr = 618.47Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 52848 reflections
a = 13.2169 (3) Åθ = 1.7–30.0°
b = 11.2764 (2) ŵ = 8.51 mm1
c = 25.8716 (5) ÅT = 296 K
V = 3855.88 (13) Å3Pillar, vivid orange
Z = 80.68 × 0.2 × 0.1 mm
F(000) = 2336
Data collection top
Rigaku R-Axis Rapid
diffractometer
11206 independent reflections
Radiation source: sealed x-ray tube9179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 10 pixels mm-1θmax = 30.0°, θmin = 2.4°
ω oscillation scansh = 1818
Absorption correction: multi-scan
ABSCOR (Higashi, 1995)
k = 1515
Tmin = 0.318, Tmax = 1l = 3636
69569 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0351P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.001
S = 1.02Δρmax = 2.38 e Å3
11206 reflectionsΔρmin = 0.49 e Å3
488 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 0.487 (10)
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.42111 (2)0.32777 (3)0.57274 (2)0.03102 (7)
Re20.81648 (2)0.82562 (3)0.42520 (2)0.03003 (7)
Br10.59268 (6)0.31952 (8)0.62422 (4)0.0463 (2)
Br20.64622 (6)0.81674 (7)0.37267 (4)0.04512 (19)
C1010.4884 (6)0.3571 (9)0.5087 (4)0.044 (2)
C1020.4162 (5)0.4955 (8)0.5850 (3)0.034 (2)
C1030.2921 (6)0.3320 (7)0.5377 (3)0.0377 (17)
C2010.7481 (6)0.8531 (9)0.4896 (4)0.044 (2)
C2020.8197 (5)0.9933 (9)0.4153 (4)0.041 (2)
C2030.9428 (6)0.8350 (7)0.4608 (3)0.0367 (17)
O1010.5286 (5)0.3730 (8)0.4698 (3)0.073 (2)
O1020.4168 (5)0.5965 (6)0.5907 (3)0.054 (2)
O1030.2190 (5)0.3408 (6)0.5159 (3)0.0567 (17)
O1040.2265 (5)0.8047 (6)0.6793 (3)0.0572 (18)
O2010.7076 (5)0.8627 (8)0.5282 (3)0.072 (2)
O2041.0177 (5)1.3088 (6)0.3140 (3)0.0603 (19)
O2020.8169 (5)1.0953 (6)0.4091 (3)0.056 (2)
O2031.0185 (4)0.8387 (6)0.4825 (3)0.0518 (16)
S10.34498 (19)0.1014 (3)0.71414 (11)0.0583 (7)
S20.90592 (19)0.6057 (3)0.28377 (11)0.0551 (6)
N1010.3575 (4)0.2621 (6)0.6453 (3)0.0350 (16)
N1020.4408 (4)0.1427 (6)0.5690 (3)0.0319 (15)
N2010.8824 (4)0.7637 (6)0.3526 (3)0.0317 (14)
N2020.8055 (5)0.6348 (7)0.4266 (5)0.0485 (18)
C1040.3707 (6)0.1469 (8)0.6523 (3)0.0414 (19)
C1050.3240 (6)0.3178 (8)0.6900 (4)0.040 (2)
C1060.3157 (6)0.2441 (10)0.7310 (5)0.053 (3)
H1060.2966070.2677410.7640480.063*
C1070.4075 (6)0.0731 (8)0.6103 (4)0.047 (2)
C1080.4128 (7)0.0497 (10)0.6119 (5)0.058 (3)
H1080.3906530.0912760.6407780.070*
C1090.4514 (7)0.1090 (9)0.5697 (7)0.067 (3)
H1090.4542970.1913620.5697450.080*
C1100.4853 (7)0.0472 (9)0.5278 (5)0.063 (3)
H1100.5140550.0856870.4995870.076*
C1110.4753 (6)0.0751 (9)0.5289 (4)0.054 (2)
H1110.4940830.1155760.4991050.064*
C1120.2953 (6)0.4467 (8)0.6879 (3)0.0381 (18)
C1130.3431 (7)0.5308 (9)0.7179 (4)0.054 (2)
H1130.3938040.5072620.7405410.065*
C1140.3174 (8)0.6485 (11)0.7150 (5)0.059 (3)
H1140.3504500.7036000.7357170.071*
C1150.2424 (7)0.6855 (8)0.6812 (4)0.042 (2)
C1160.1912 (6)0.6032 (8)0.6521 (4)0.0383 (19)
H1160.1396780.6268170.6299400.046*
C1170.2177 (6)0.4823 (8)0.6562 (3)0.0439 (19)
H1170.1821560.4260510.6371860.053*
C1180.1471 (10)0.8468 (11)0.6449 (5)0.077 (4)
H18A0.1430450.9316630.6468600.116*
H18B0.1624370.8235630.6100690.116*
H18C0.0835440.8128850.6550760.116*
C2040.8733 (6)0.6499 (7)0.3446 (3)0.0408 (19)
C2050.9186 (5)0.8245 (8)0.3099 (3)0.037 (2)
C2060.9333 (6)0.7506 (8)0.2692 (5)0.049 (3)
H2060.9557940.7757270.2369100.059*
C2070.8349 (5)0.5739 (8)0.3859 (4)0.043 (2)
C2080.8297 (7)0.4493 (8)0.3828 (5)0.061 (3)
H2080.8526370.4096430.3535220.073*
C2090.7902 (8)0.3876 (8)0.4239 (7)0.068 (3)
H2090.7873060.3051710.4230540.081*
C2100.7546 (7)0.4493 (9)0.4667 (5)0.065 (3)
H2100.7261450.4093780.4945410.078*
C2110.7625 (6)0.5696 (8)0.4668 (4)0.050 (2)
H2110.7377280.6106080.4952830.060*
C2120.9437 (5)0.9508 (8)0.3119 (3)0.0349 (17)
C2130.8936 (6)1.0346 (9)0.2805 (4)0.051 (2)
H2130.8426251.0108030.2579860.061*
C2140.9213 (7)1.1524 (9)0.2836 (4)0.050 (2)
H2140.8874571.2075970.2631990.060*
C2150.9973 (6)1.1906 (8)0.3158 (4)0.044 (2)
C2161.0462 (6)1.1085 (10)0.3460 (3)0.047 (2)
H2161.0988811.1325350.3674280.056*
C2171.0182 (5)0.9917 (8)0.3449 (3)0.0392 (17)
H2171.0500940.9383990.3670140.047*
C2181.0987 (10)1.3514 (11)0.3443 (6)0.085 (4)
H18D1.1051121.4355230.3396210.128*
H18E1.0857561.3345640.3800880.128*
H18F1.1602691.3131540.3338760.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.03245 (13)0.02514 (14)0.03548 (15)0.00021 (11)0.00028 (13)0.0014 (2)
Re20.03197 (13)0.02439 (14)0.03373 (14)0.00033 (10)0.00011 (13)0.0005 (2)
Br10.0383 (4)0.0416 (5)0.0590 (5)0.0002 (3)0.0111 (4)0.0010 (4)
Br20.0371 (4)0.0420 (5)0.0563 (5)0.0006 (3)0.0104 (3)0.0012 (4)
C1010.044 (4)0.044 (5)0.045 (5)0.005 (4)0.002 (4)0.003 (4)
C1020.031 (3)0.034 (4)0.038 (6)0.005 (3)0.002 (3)0.010 (3)
C1030.039 (4)0.031 (4)0.043 (4)0.002 (4)0.004 (4)0.000 (3)
C2010.038 (4)0.052 (5)0.042 (5)0.000 (4)0.002 (4)0.003 (4)
C2020.038 (4)0.044 (5)0.042 (7)0.001 (3)0.003 (3)0.006 (4)
C2030.043 (4)0.033 (4)0.034 (4)0.002 (3)0.004 (3)0.003 (3)
O1010.066 (4)0.106 (6)0.047 (4)0.007 (4)0.019 (3)0.016 (4)
O1020.069 (4)0.019 (3)0.072 (6)0.005 (3)0.004 (3)0.002 (3)
O1030.044 (3)0.065 (5)0.061 (4)0.001 (3)0.011 (3)0.007 (3)
O1040.072 (4)0.039 (4)0.061 (4)0.014 (3)0.004 (3)0.006 (3)
O2010.066 (4)0.102 (6)0.049 (4)0.008 (4)0.016 (3)0.006 (4)
O2040.061 (4)0.045 (4)0.075 (5)0.006 (3)0.008 (4)0.005 (4)
O2020.074 (4)0.032 (4)0.062 (5)0.003 (3)0.005 (3)0.005 (3)
O2030.043 (3)0.057 (4)0.055 (4)0.002 (3)0.012 (3)0.002 (3)
S10.0505 (12)0.0546 (15)0.0699 (17)0.0037 (12)0.0001 (12)0.0348 (14)
S20.0574 (13)0.0508 (15)0.0571 (14)0.0089 (12)0.0030 (12)0.0264 (12)
N1010.031 (3)0.028 (4)0.046 (5)0.001 (3)0.005 (3)0.006 (3)
N1020.019 (2)0.047 (4)0.030 (3)0.017 (2)0.006 (3)0.009 (4)
N2010.030 (3)0.031 (4)0.034 (4)0.001 (3)0.001 (3)0.009 (3)
N2020.047 (4)0.038 (4)0.060 (5)0.022 (3)0.017 (4)0.007 (5)
C1040.034 (4)0.034 (4)0.055 (5)0.003 (3)0.002 (4)0.014 (4)
C1050.036 (4)0.044 (6)0.039 (5)0.002 (3)0.002 (3)0.011 (4)
C1060.044 (5)0.074 (9)0.041 (8)0.006 (4)0.006 (4)0.023 (5)
C1070.038 (4)0.027 (4)0.077 (7)0.006 (4)0.012 (4)0.007 (4)
C1080.051 (5)0.040 (6)0.085 (8)0.004 (4)0.015 (5)0.013 (5)
C1090.064 (6)0.029 (5)0.109 (10)0.002 (4)0.016 (8)0.006 (7)
C1100.058 (5)0.043 (6)0.089 (8)0.008 (4)0.017 (5)0.020 (6)
C1110.042 (4)0.046 (5)0.073 (6)0.003 (4)0.014 (4)0.006 (5)
C1120.039 (4)0.044 (5)0.032 (4)0.009 (4)0.004 (3)0.004 (3)
C1130.056 (5)0.059 (6)0.047 (5)0.016 (5)0.018 (4)0.007 (5)
C1140.060 (6)0.064 (7)0.054 (6)0.008 (5)0.009 (5)0.024 (5)
C1150.049 (5)0.039 (5)0.039 (5)0.015 (4)0.008 (4)0.001 (4)
C1160.034 (4)0.035 (5)0.046 (5)0.004 (3)0.005 (3)0.003 (4)
C1170.037 (4)0.045 (5)0.050 (5)0.003 (4)0.009 (3)0.002 (4)
C1180.098 (9)0.063 (8)0.072 (8)0.036 (7)0.016 (7)0.003 (6)
C2040.033 (4)0.034 (5)0.055 (5)0.008 (3)0.003 (3)0.011 (4)
C2050.031 (4)0.052 (6)0.029 (4)0.002 (3)0.002 (3)0.006 (4)
C2060.053 (5)0.054 (8)0.040 (8)0.004 (5)0.001 (4)0.010 (4)
C2070.029 (3)0.032 (4)0.068 (6)0.002 (3)0.013 (4)0.003 (4)
C2080.051 (5)0.025 (5)0.107 (10)0.007 (4)0.017 (5)0.015 (6)
C2090.066 (6)0.026 (4)0.111 (9)0.017 (4)0.031 (8)0.015 (7)
C2100.052 (5)0.041 (6)0.102 (9)0.010 (4)0.021 (6)0.020 (6)
C2110.046 (4)0.035 (5)0.068 (6)0.004 (4)0.009 (4)0.022 (4)
C2120.030 (3)0.045 (5)0.031 (4)0.003 (3)0.004 (3)0.001 (3)
C2130.042 (4)0.058 (6)0.054 (5)0.004 (4)0.011 (4)0.005 (5)
C2140.053 (5)0.043 (5)0.054 (6)0.005 (4)0.019 (4)0.010 (5)
C2150.043 (4)0.044 (6)0.044 (5)0.001 (4)0.001 (4)0.000 (4)
C2160.040 (4)0.068 (7)0.033 (4)0.011 (5)0.006 (4)0.005 (4)
C2170.044 (4)0.040 (5)0.034 (4)0.002 (4)0.005 (3)0.007 (3)
C2180.092 (9)0.042 (7)0.122 (12)0.012 (6)0.012 (9)0.019 (7)
Geometric parameters (Å, º) top
Re1—Br12.6315 (8)C210—C2111.360 (13)
Re2—Br22.6308 (8)C205—C2121.463 (12)
Re1—N1012.186 (7)C212—C2131.411 (12)
Re1—N1022.105 (7)C213—C2141.379 (14)
Re2—N2012.185 (7)O204—C2151.361 (11)
Re2—N2022.157 (8)C214—C2151.376 (13)
Re1—C1011.909 (9)C215—C2161.373 (13)
Re1—C1021.919 (9)C216—C2171.369 (14)
Re1—C1031.932 (8)C212—C2171.384 (11)
S1—C1041.713 (9)O204—C2181.411 (14)
N101—C1041.323 (10)C106—H1060.9300
N101—C1051.390 (12)C108—H1080.9300
S1—C1061.711 (13)C109—H1090.9300
C105—C1061.353 (14)C110—H1100.9300
N102—C1071.398 (12)C111—H1110.9300
C104—C1071.452 (13)C113—H1130.9300
C107—C1081.387 (13)C114—H1140.9300
C108—C1091.377 (18)C116—H1160.9300
C109—C1101.364 (19)C117—H1170.9300
N102—C1111.365 (13)C118—H18A0.9600
C110—C1111.386 (13)C118—H18B0.9600
C105—C1121.503 (12)C118—H18C0.9600
C112—C1131.378 (13)C218—H18D0.9600
C113—C1141.372 (15)C218—H18E0.9600
O104—C1151.361 (12)C218—H18F0.9600
C114—C1151.386 (14)C206—H2060.9300
C115—C1161.373 (13)C208—H2080.9300
C116—C1171.411 (12)C209—H2090.9300
C112—C1171.373 (11)C210—H2100.9300
O104—C1181.456 (13)C211—H2110.9300
Re2—C2011.921 (9)C213—H2130.9300
Re2—C2021.909 (10)C214—H2140.9300
Re2—C2031.909 (8)C216—H2160.9300
S2—C2041.707 (9)C217—H2170.9300
N201—C2041.305 (10)Re1—N1012.186 (7)
N201—C2051.387 (11)Re1—N1022.106 (7)
S2—C2061.716 (11)Re2—N2012.185 (7)
C205—C2061.357 (14)Re2—N2022.157 (8)
N202—C2071.317 (14)C101—O1011.153 (11)
C204—C2071.460 (13)C102—O1021.149 (10)
C207—C2081.409 (12)C103—O1031.123 (10)
C208—C2091.374 (19)C201—O2011.137 (11)
C209—C2101.390 (19)C202—O2021.162 (11)
N202—C2111.394 (13)C203—O2031.149 (9)
C101—Re1—C10289.4 (4)N102—C111—H111116.5
C101—Re1—C10390.0 (4)C110—C111—H111116.5
C102—Re1—C10391.4 (3)C117—C112—C113118.5 (8)
C101—Re1—N10294.3 (4)C117—C112—C105119.6 (8)
C102—Re1—N102171.4 (3)C113—C112—C105121.9 (8)
C103—Re1—N10296.4 (3)C114—C113—C112121.5 (9)
C101—Re1—N101169.4 (3)C114—C113—H113119.3
C102—Re1—N101100.3 (3)C112—C113—H113119.3
C103—Re1—N10194.1 (3)C113—C114—C115120.2 (10)
N102—Re1—N10175.6 (3)C113—C114—H114119.9
C101—Re1—Br192.5 (3)C115—C114—H114119.9
C102—Re1—Br188.9 (2)O104—C115—C116124.9 (8)
C103—Re1—Br1177.5 (2)O104—C115—C114115.5 (9)
N102—Re1—Br183.20 (19)C116—C115—C114119.6 (9)
N101—Re1—Br183.40 (16)C115—C116—C117119.4 (8)
C202—Re2—C20389.5 (3)C115—C116—H116120.3
C202—Re2—C20188.1 (4)C117—C116—H116120.3
C203—Re2—C20189.1 (4)C112—C117—C116120.8 (8)
C202—Re2—N202172.8 (4)C112—C117—H117119.6
C203—Re2—N20296.1 (3)C116—C117—H117119.6
C201—Re2—N20296.6 (4)O104—C118—H18A109.5
C202—Re2—N201101.1 (3)O104—C118—H18B109.5
C203—Re2—N20194.8 (3)H18A—C118—H18B109.5
C201—Re2—N201170.0 (3)O104—C118—H18C109.5
N202—Re2—N20173.9 (4)H18A—C118—H18C109.5
C202—Re2—Br289.3 (2)H18B—C118—H18C109.5
C203—Re2—Br2177.5 (3)N201—C204—C207119.5 (8)
C201—Re2—Br293.0 (3)N201—C204—S2114.2 (7)
N202—Re2—Br285.0 (2)C207—C204—S2126.2 (7)
N201—Re2—Br283.38 (15)C206—C205—N201111.4 (9)
O101—C101—Re1178.9 (9)C206—C205—C212126.3 (9)
O102—C102—Re1176.8 (7)N201—C205—C212122.1 (7)
O103—C103—Re1175.6 (7)C205—C206—S2112.6 (9)
O201—C201—Re2176.2 (9)C205—C206—H206123.7
O202—C202—Re2176.9 (7)S2—C206—H206123.7
O203—C203—Re2178.8 (8)N202—C207—C208123.5 (10)
C115—O104—C118117.1 (8)N202—C207—C204112.5 (8)
C215—O204—C218117.7 (9)C208—C207—C204124.1 (10)
C106—S1—C10490.1 (5)C209—C208—C207118.7 (12)
C204—S2—C20688.7 (5)C209—C208—H208120.7
C104—N101—C105111.8 (8)C207—C208—H208120.7
C104—N101—Re1113.6 (6)C208—C209—C210119.4 (9)
C105—N101—Re1133.2 (6)C208—C209—H209120.3
C111—N102—C107111.9 (8)C210—C209—H209120.3
C111—N102—Re1129.0 (7)C211—C210—C209118.4 (10)
C107—N102—Re1118.9 (6)C211—C210—H210120.8
C204—N201—C205113.0 (7)C209—C210—H210120.8
C204—N201—Re2114.5 (6)C210—C211—N202123.8 (11)
C205—N201—Re2131.7 (6)C210—C211—H211118.1
C207—N202—C211116.2 (8)N202—C211—H211118.1
C207—N202—Re2119.1 (8)C217—C212—C213117.8 (8)
C211—N202—Re2124.5 (8)C217—C212—C205120.5 (7)
N101—C104—C107120.2 (8)C213—C212—C205121.7 (8)
N101—C104—S1113.4 (7)C214—C213—C212119.2 (8)
C107—C104—S1126.4 (7)C214—C213—H213120.4
C106—C105—N101113.6 (9)C212—C213—H213120.4
C106—C105—C112127.1 (9)C215—C214—C213122.0 (9)
N101—C105—C112119.2 (7)C215—C214—H214119.0
C105—C106—S1111.1 (10)C213—C214—H214119.0
C105—C106—H106124.5O204—C215—C216125.9 (8)
S1—C106—H106124.5O204—C215—C214115.5 (8)
C108—C107—N102124.5 (10)C216—C215—C214118.6 (9)
C108—C107—C104124.6 (10)C217—C216—C215120.6 (8)
N102—C107—C104110.9 (7)C217—C216—H216119.7
C109—C108—C107118.7 (12)C215—C216—H216119.7
C109—C108—H108120.6C216—C217—C212121.7 (8)
C107—C108—H108120.6C216—C217—H217119.1
C110—C109—C108120.3 (10)C212—C217—H217119.1
C110—C109—H109119.9O204—C218—H18D109.5
C108—C109—H109119.9O204—C218—H18E109.5
C109—C110—C111117.4 (11)H18D—C218—H18E109.5
C109—C110—H110121.3O204—C218—H18F109.5
C111—C110—H110121.3H18D—C218—H18F109.5
N102—C111—C110127.1 (11)H18E—C218—H18F109.5
C105—N101—C104—C107178.7 (7)C205—N201—C204—C207179.3 (6)
Re1—N101—C104—C10710.5 (9)Re2—N201—C204—C2078.3 (9)
C105—N101—C104—S11.0 (8)C205—N201—C204—S21.1 (8)
Re1—N101—C104—S1167.2 (4)Re2—N201—C204—S2169.8 (3)
C106—S1—C104—N1010.2 (6)C206—S2—C204—N2010.2 (6)
C106—S1—C104—C107177.3 (8)C206—S2—C204—C207178.2 (7)
C104—N101—C105—C1062.2 (10)C204—N201—C205—C2061.8 (9)
Re1—N101—C105—C106163.0 (6)Re2—N201—C205—C206167.2 (5)
C104—N101—C105—C112174.1 (7)C204—N201—C205—C212174.0 (7)
Re1—N101—C105—C11220.8 (11)Re2—N201—C205—C21217.1 (10)
N101—C105—C106—S12.3 (10)N201—C205—C206—S21.6 (9)
C112—C105—C106—S1173.6 (7)C212—C205—C206—S2173.9 (6)
C104—S1—C106—C1051.4 (7)C204—S2—C206—C2050.8 (7)
C111—N102—C107—C1082.8 (12)C211—N202—C207—C2083.5 (12)
Re1—N102—C107—C108177.6 (7)Re2—N202—C207—C208179.3 (6)
C111—N102—C107—C104179.6 (6)C211—N202—C207—C204176.6 (6)
Re1—N102—C107—C1044.8 (9)Re2—N202—C207—C2040.8 (9)
N101—C104—C107—C108172.2 (8)N201—C204—C207—N2025.2 (10)
S1—C104—C107—C10810.5 (13)S2—C204—C207—N202172.7 (6)
N101—C104—C107—N10210.2 (10)N201—C204—C207—C208174.8 (8)
S1—C104—C107—N102167.1 (6)S2—C204—C207—C2087.3 (12)
N102—C107—C108—C1091.4 (14)N202—C207—C208—C2091.3 (14)
C104—C107—C108—C109178.6 (9)C204—C207—C208—C209178.8 (8)
C107—C108—C109—C1101.2 (16)C207—C208—C209—C2101.4 (14)
C108—C109—C110—C1112.6 (16)C208—C209—C210—C2111.5 (14)
C107—N102—C111—C1104.5 (12)C209—C210—C211—N2020.9 (14)
Re1—N102—C111—C110178.7 (7)C207—N202—C211—C2103.3 (12)
C109—C110—C111—N1024.6 (15)Re2—N202—C211—C210178.9 (7)
C106—C105—C112—C117114.7 (10)C206—C205—C212—C217113.9 (10)
N101—C105—C112—C11761.0 (10)N201—C205—C212—C21761.1 (10)
C106—C105—C112—C11363.7 (13)C206—C205—C212—C21366.0 (11)
N101—C105—C112—C113120.6 (9)N201—C205—C212—C213119.0 (9)
C117—C112—C113—C1142.7 (15)C217—C212—C213—C2140.7 (13)
C105—C112—C113—C114178.9 (9)C205—C212—C213—C214179.3 (8)
C112—C113—C114—C1150.3 (17)C212—C213—C214—C2150.9 (16)
C118—O104—C115—C1161.9 (14)C218—O204—C215—C2162.4 (15)
C118—O104—C115—C114179.0 (10)C218—O204—C215—C214176.7 (11)
C113—C114—C115—O104176.6 (10)C213—C214—C215—O204178.7 (9)
C113—C114—C115—C1162.5 (16)C213—C214—C215—C2160.5 (16)
O104—C115—C116—C117177.5 (8)O204—C215—C216—C217179.3 (8)
C114—C115—C116—C1171.5 (14)C214—C215—C216—C2171.5 (14)
C113—C112—C117—C1163.6 (13)C215—C216—C217—C2123.2 (13)
C105—C112—C117—C116177.9 (8)C213—C212—C217—C2162.7 (12)
C115—C116—C117—C1121.6 (13)C205—C212—C217—C216177.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C108—H108···O104i0.932.663.435 (13)141
C109—H109···O102i0.932.503.397 (14)161
C208—H208···O204i0.932.663.442 (13)142
C209—H209···O202i0.932.433.337 (13)166
C210—H210···O1010.932.723.110 (12)106
C214—H214···O104ii0.932.653.365 (12)135
C117—H117···Br1iii0.933.033.873 (9)152
C118—H18A···Br1iv0.962.943.868 (12)162
C206—H206···Br1v0.933.033.845 (14)148
C106—H106···Br2vi0.933.063.762 (14)133
C218—H18D···Br2vii0.962.973.865 (12)155
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z1/2; (iii) x1/2, y+1/2, z; (iv) x1/2, y+3/2, z; (v) x+3/2, y+1/2, z1/2; (vi) x+1, y+1, z+1/2; (vii) x+1/2, y+5/2, z.
 

Acknowledgements

The authors thank Professor Toshikazu Ono (Kyushu University) for obtaining the PL spectrum for polymorph β.

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP16H06514 to M. Abe); Japan Science and Technology Agency, Support for Pioneering Research Inintiated by the Next Generation (studentship No. JPMJSP2175 to Y. Matsuda).

References

First citationAuvray, T., Del Secco, B., Dubreuil, A., Zaccheroni, N. & Hanan, G. S. (2021). Inorg. Chem. 60, 70–79.  CrossRef CAS PubMed Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDinolfo, P. H., Williams, M. E., Stern, C. L. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 12989–13001.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuff, G. S., Lo, W. K. C., Horvath, R., Turner, J. O., Sun, X.-Z., Weal, G. R., Davidson, H. J., Kennedy, A. D. W., McAdam, C. J., Crowley, J. D., George, M. W. & Gordon, K. C. (2016). Inorg. Chem. 55, 12238–12253.  CrossRef CAS PubMed Google Scholar
First citationIoachim, E., Medlycott, E. A. & Hanan, G. S. (2006). Inorg. Chim. Acta, 359, 2599–2607.  CrossRef CAS Google Scholar
First citationKia, R. & Safari, F. (2016). Inorg. Chim. Acta, 453, 357–368.  Web of Science CSD CrossRef CAS Google Scholar
First citationKutal, C., Weber, M. A., Ferraudi, G. & Geiger, D. (1985). Organometallics, 4, 2161–2166.  CrossRef CAS Google Scholar
First citationLo, K. K.-W., Tsang, K. H.-K. & Sze, K.-S. (2006). Inorg. Chem. 45, 1714–1722.  CrossRef PubMed CAS Google Scholar
First citationMatlachowski, C., Braun, B., Tschierlei, S. & Schwalbe, M. (2015). Inorg. Chem. 54, 10351–10360.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPuji Pamungkas, K. K., Maruyama, T. & Murai, T. (2021). Org. Biomol. Chem. 19, 6804–6811.  CrossRef CAS PubMed Google Scholar
First citationPuji Pamungkas, K. K., Maruyama, T. & Murai, T. (2022). RSC Adv. 12, 14698–14706.  CrossRef PubMed Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSaldías, M., Guzmán, N., Palominos, F., Sandoval-Altamirano, C., Günther, G., Pizarro, N. & Vega, A. (2019). ACS Omega, 4, 4679–4690.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStout, M. J., Skelton, B. W., Sobolev, A. N., Raiteri, P., Massi, M. & Simpson, P. V. (2020). Organometallics, 39, 3202–3211.  CrossRef CAS Google Scholar
First citationSuryawanshi, M., Patil, A., Bholay, A. & Bobade, V. (2018). Indian J. Chem. 57B, 1179–1188.  CAS Google Scholar
First citationTalukdar, K., Sinha Roy, S., Amatya, E., Sleeper, E. A., Le Magueres, P. & Jurss, J. W. (2020). Inorg. Chem. 59, 6087–6099.  CrossRef CAS PubMed Google Scholar
First citationYamaguchi, K., Murai, T., Hasegawa, S., Miwa, Y., Kutsumizu, S., Maruyama, T., Sasamori, T. & Tokitoh, N. (2015). J. Org. Chem. 80, 10742–10756.  CrossRef CAS PubMed Google Scholar
First citationZáliš, S., Consani, C., Nahhas, A. E., Cannizzo, A., Chergui, M., Hartl, F. & Vlček, A. Jr (2011). Inorg. Chim. Acta, 374, 578–585.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds