research communications
and Hirshfeld surface analysis of (2,7-diethoxynaphthalene-1,8-diyl)bis[(4-bromophenyl)methanone]
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
The title compound, C28H22Br2O4, crystallizes in the monoclinic P21/c at 193 K. The two 4-bromobenzoyl groups are attached in a non-coplanar fashion to the naphthalene ring system and are oriented in opposite directions. The two 4-bromobenzene rings are tilted almost symmetrically with respect to the naphthalene ring system. The crystal packing features several kinds of non-classical hydrogen bonds such as C—H⋯X (X = polar atom), in which the C—H group acts as a hydrogen-atom donor, and C—H⋯π interactions. The two-dimensional fingerprint plots generated in a Hirshfeld surface analysis show non-classical hydrogen bonding with short contacts involving the bromo group.
Keywords: non-coplanar aromatic rings; symmetric spatial organization; non-classical hydrogen bonds; bromo⋯hydrogen/carbon short contacts; Hirshfeld surface analysis; crystal structure.
CCDC reference: 2403767
1. Chemical context
Supramolecular architectures along with supramolecular chemistry have become of interest in recent years from the viewpoint of green chemistry and novel phases of functional device material development (Desiraju, 1989; Lehn, 1995; Atwood et al., 1996; Desiraju et al., 2011). Various building blocks bearing unique functions might be tailored to a supramolecular structure exhibiting desired chemical and physical properties without formation of covalent bonds. The research primarily relies on knowledge of the characteristics of non-covalent bonding interactions, including atomic, geometrical and molecular orientation features (Jeffrey & Saenger, 1991; Steiner & Desiraju, 1998). Attempts to form robust hydrogen bonds involving CONR2 and OH groups, and COOH and NH2 groups were undertaken both experimentally and theoretically. These have been successfully employed for the preparation of numerous molecular assemblies (Price, 2004; Tanabe et al., 2013; Hubbard et al., 2016). On the other hand, attempts to grasp the nature of weak hydrogen bonds, including non-classical hydrogen bonds where the C—H group acts as a hydrogen-atom donor, for example, have scarcely been achieved, probably because they are often hidden by strong hydrogen bonds. Congested molecules of accumulated aromatic rings have unique spatial structural restrictions such that the aromatic rings are compelled to be arranged in a non-coplanar manner. This structural constraint suggests that the contribution of a parallel overlap of aromatic rings, i.e., π–π stacking is extremely small. From this viewpoint, the crystal structures of compounds with non-coplanarly accumulated aromatic rings can be expected to emphasize the contributions of rather weak, non-covalent bonding interactions other than π–π stacking interactions and classical hydrogen bonds. The authors have studied compounds with non-coplanarly accumulated aromatic ring structures in formation reactions and spatial structures (Okamoto & Yonezawa, 2009, 2015; Okamoto et al., 2011).
peri-Aroylnaphthalene compounds and their homologues usually show an excellent tendency to give single crystallinity, and the crystal structures of over 100 homologues and related compounds have been determined by the authors. With the aid of a systematical comparison of the single molecular structure and accumulation fashion of the of series of homologous compounds, the transition of the interaction feature among the homologues has been clarified, which suggests important roles for weak interactions involving C—H hydrogen atoms in the determination of the crystalline spatial placement of molecules (Iida et al., 2022; Kobayashi et al., 2023). Herein, the authors report on the and Hirshfeld surface analysis of the title peri-aroylnaphthalene, (2,7-diethoxynaphthalene-1,8-diyl)bis[(4-bromophenyl)methanone].
2. Structural commentary
The molecular structure of the title molecule is displayed in Fig. 1. The two 4-bromobenzoyl groups are twisted with respect to the naphthalene ring system and oriented in opposite direction (anti orientation). The two 4-bromobenzene rings are tilted almost symmetrically to the naphthalene ring system. The two interplanar angles between the best planes of the 4-bromobenzene rings and the naphthalene ring system are 79.38 (10) and 79.50 (10)°, respectively [torsion angles: C9—C1—C15—O3 = 54.9 (3) and C9—C8—C22—O4 = 50.5 (3)°]. On the other hand, the 4-bromobenzene rings are coplanar with the carbonyl moieties [torsion angles: O3—C15—C16—C21 = −155.7 (2) and O4—C22—C23—C28 = −155.5 (2)°]. The interplanar angle between the best planes of the two 4-bromobenzene rings is 60.44 (12)°.
3. Supramolecular features
In the crystal, several kinds of non-classical hydrogen bonds ensure the cohesion of the packing. C—H⋯O=C non-classical hydrogen bonds between the 4-bromobenzene ring and the carbonyl O atom arrange the molecules in a translational relationship along a-axis direction [C20—H20⋯O3i = 2.41 Å, C27—H27⋯O4ii = 2.50 Å; symmetry codes: (i) 1 + x, y, z; (ii) −1 + x, y, z] (Table 1, Fig. 2). C—H⋯π non-classical hydrogen bonds between the ethoxy moiety and the naphthalene ring system connect the molecules along ac-glide plane [C11—H11B⋯Cg2iii = 2.75 Å, C11—H11B⋯Cg5iii = 2.89 Å, C14—H14C⋯Cg2iv = 2.78 (4) Å, C14—H14C⋯Cg5iv = 2.85 (4) Å; symmetry codes: (iii) x, − y, + z; (iv) x, − y, − + z; Cg2 and Cg5 are the centroids of the C5–C10 ring and the C1–C10 ring system, respectively] (Fig. 3). The naphthalene ring system acts as hydrogen-atom acceptor of dual Csp3—H⋯π non-classical hydrogen bonds. Interactions involving the bromo group are formed complimentarily between two molecules, forming centrosymmetric dimeric aggregations [C12—H12A⋯Br1v = 2.82 (5) Å, C26—Br2⋯Cg3vi = 3.8749 (11) Å; symmetry codes: (v) 2 − x, 2 − y, 1 − z; (vi) −x, 2 − y, −z; Cg3 is the centroid of the C16–C21 ring] (Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.45, update of November 2023; Groom et al., 2016) for the 1,8-dibenzoylnaphthalene and 1,8-diaroyl-2,7-dialkoxynaphthalene frameworks of the title compound yields 39 and 29 hits, respectively. The structure of the title compound exhibits non-coplanarly accumulated aromatic rings, as found in the bromo group-free 1,8-dibenzoylnaphthalene homologues, the bromo group-bearing 1,8-dibenzoylnaphthalene, and 1-benzoylnaphthalene homologues, viz. 1,8-dibenzoyl-2,7-dimethoxynaphthalene (CSD refcode XIYSEE: Nakaema et al., 2008), 1,8-dibenzoyl-2,7-diethoxynaphthalene (CSD refcode NEQRUY; Isogai et al., 2013), 1,8-bis(4-bromobenzoyl)-2,7-dimethoxynaphthalene (CSD refcode DUNRUA; Watanabe et al., 2010), (8-[4-(bromomethyl)benzoyl]-2,7-dimethoxynaphthalen-1-yl)[4-(bromomethyl)phenyl]methanone (CSD refcode EVIWUC; Sasagawa et al., 2011), (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (CSD refcode KABGAX; Kato, Nagasawa, Hijikata et al., 2010), and 2,7-dimethoxy-1-(4-bromobenzoyl)naphthalene (CSD refcode VACLIW; Kato, Nagasawa, Tsumuki et al., 2010). The dihedral angle between the benzene ring and the naphthalene ring system in 1,8-dibenzoyl-2,7-dimethoxynaphthalene (XIYSEE) is larger than in the 2,7-diethoxy homologues (NEQRUY), i.e., 83.59 (5)° vs 68.42 (5) and 71.69 (5)°. On the other hand, the 4-bromobenzoyl group-bearing homologues exhibit the opposite tendency, viz. 70.18 (11) and 74.98 (12)° for 1,8-bis(4-bromobenzoyl)-2,7-dimethoxynaphthalene (DUNRUA) vs 79.38 (10) and 79.50 (10)° for the title compound. The homologue bearing a bromo group bonded to an sp3 carbon atom (EVIWUC) has almost the same dihedral angles as the 2,7-dimethoxynaphthalene homologue (DUNRUA) [70.98 (13) and 72.89 (13)°]. The 1-benzoylated homologue (KABGAX) affords three conformers, which have different dihedral angles between the benzene ring and the naphthalene ring system [75.34 (7), 86.47 (7) and 76.55 (6)°]. The homologue with a bromo group gives solely one type of conformer, even if it is 1-monoaroylated homologue [VACLIW; 72.02 (9)°]. Therefore, the introduction of a bromo group at the benzoyl groups at the 1,8-positions has a larger effect on the dihedral angle than an ethoxy group at the 2,7-positions. Furthermore, intra/intermolecular interactions involving the bromo groups contribute significantly to the three-dimensional molecular structure and packing structure.
5. Hirshfeld surface analysis and two-dimensional fingerprint plots
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surface of the title compound mapped over dnorm in the range −0.2470 to 1.3548 a.u. is shown in Fig. 4 (left). The red points represent close contacts and negative dnorm values on the surface. Several large red points correspond to the short contacts involving the carbonyl O atoms, O3i and O4ii, and hydrogen atoms, H20 and H27 [symmetry codes: (i)1 + x, y, z; (ii) −1 + x, y, z], and short Br1v⋯H12A interactions [symmetry code: (v) 2 − x, 2 − y, 1 − z] (Fig. 4, right).
The two-dimensional fingerprint plots from the Hirshfeld surface analysis are shown in Fig. 5, revealing the intermolecular contacts and their percentage contributions to the Hirshfeld surface. Not surprisingly, H⋯H contacts are the major contributor (43.1%), while the Br⋯H/H⋯Br contacts (18.2%) are present as a relatively large contributor, on the same level as C⋯H/H⋯C contacts (19.5%). O⋯H/H⋯O (10.3%), C⋯Br/Br⋯C (4.6%), C⋯O/O⋯C (1.7%), Br⋯Br (1.1%), and O⋯Br/Br⋯O (0.7%) contacts also make significant contributions to the Hirshfeld surface.
6. Synthesis and crystallization
To a 10 ml flask, 4-bromobenzoyl chloride (6.0 mmol, 1.32 g), TiCl4 (18 mmol, 3.41 g) and methylene dichloride (3.6 ml) were placed and stirred at 273 K. To reaction mixture thus obtained, 2,7-diethoxynaphthalene (2.0 mmol, 433 mg) was added. After the reaction mixture was stirred at 298 K for 24 h, it was poured into ice-cold water (30 ml). The aqueous layer was extracted with CHCl3 (20 ml, three times). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (96% crude yield). The crude product was purified by (CHCl3/methanol; isolated yield 77%). Finally, the isolated product was crystallized from methanol to give single crystals.
1H NMR (300 MHz, CDCl3): 0.962 (6H, t, J = 6.9 Hz), 3.97 (4H, q, J = 6.9 Hz), 7.16 (2H, d, J = 9.0 Hz), 7.50 (4H, d, J = 8.1 Hz), 7.59 (4H, d, J = 8.7 Hz), 7.93 (2H, d, J = 9.0 Hz) ppm; 13C NMR (75 MHz, CDCl3): 14.5, 65.0, 112.19, 121.02, 125.53, 127.67, 130.42, 130.58, 131.35, 132.54, 138.17, 156.13, 196.83 ppm; IR (KBr): 1658 (C=O), 1608, 1584, 1509 (Ar, naphthalene), 1274, 1112 (C—O—C) cm−1; HRMS (FAB): calculated for C28H23Br2O4 [M + H]+, 580.9958, found, 580.9963; m.p. = 491–492 K.
7. Refinement
Crystal data, data collection and structure . All H atoms were located in difference-Fourier maps and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic), 0.98 (methyl) and 0.99 Å (methylene), and with Uiso(H) = 1.2Ueq(C). The positions of the methyl H atoms were rotationally optimized.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2403767
https://doi.org/10.1107/S205698902401123X/jp2015sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902401123X/jp2015Isup2.hkl
Spectral data. DOI: https://doi.org/10.1107/S205698902401123X/jp2015sup3.pdf
C28H22Br2O4 | F(000) = 1168 |
Mr = 582.27 | Dx = 1.598 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54187 Å |
a = 7.74560 (14) Å | Cell parameters from 38566 reflections |
b = 24.4234 (4) Å | θ = 3.5–68.3° |
c = 13.0590 (2) Å | µ = 4.52 mm−1 |
β = 101.6109 (9)° | T = 193 K |
V = 2419.86 (8) Å3 | Platelet, colorless |
Z = 4 | 0.60 × 0.30 × 0.10 mm |
Rigaku R-AXIS RAPID diffractometer | 4038 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.080 |
ω scans | θmax = 68.3°, θmin = 3.6° |
Absorption correction: numerical (NUMABS; Rigaku, 1999) | h = −9→8 |
Tmin = 0.260, Tmax = 0.636 | k = −29→29 |
43148 measured reflections | l = −15→15 |
4414 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0674P)2 + 1.6111P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.003 |
4414 reflections | Δρmax = 0.97 e Å−3 |
331 parameters | Δρmin = −0.60 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.96576 (4) | 1.03404 (2) | 0.36431 (3) | 0.05270 (14) | |
Br2 | −0.39930 (5) | 0.96823 (2) | −0.11254 (3) | 0.05806 (14) | |
O1 | 0.5457 (2) | 0.83055 (7) | 0.50431 (13) | 0.0390 (4) | |
O2 | 0.0695 (2) | 0.75946 (7) | −0.00888 (13) | 0.0421 (4) | |
O3 | 0.2072 (2) | 0.88406 (7) | 0.30927 (14) | 0.0383 (4) | |
O4 | 0.3968 (2) | 0.85776 (7) | 0.11471 (13) | 0.0366 (4) | |
C1 | 0.3978 (3) | 0.80814 (9) | 0.33638 (17) | 0.0287 (5) | |
C2 | 0.4865 (3) | 0.79004 (10) | 0.43375 (18) | 0.0318 (5) | |
C3 | 0.5069 (3) | 0.73420 (10) | 0.45840 (19) | 0.0343 (5) | |
H3 | 0.573259 | 0.722794 | 0.524202 | 0.041* | |
C4 | 0.4296 (3) | 0.69638 (10) | 0.38604 (19) | 0.0348 (5) | |
H4 | 0.439489 | 0.658560 | 0.403185 | 0.042* | |
C5 | 0.2521 (3) | 0.67269 (9) | 0.2143 (2) | 0.0351 (5) | |
H5 | 0.260856 | 0.635155 | 0.233735 | 0.042* | |
C6 | 0.1602 (3) | 0.68654 (10) | 0.1181 (2) | 0.0362 (5) | |
H6 | 0.102926 | 0.659242 | 0.071504 | 0.043* | |
C7 | 0.1508 (3) | 0.74268 (10) | 0.08802 (18) | 0.0329 (5) | |
C8 | 0.2318 (3) | 0.78325 (9) | 0.15547 (18) | 0.0307 (5) | |
C9 | 0.3223 (3) | 0.76908 (9) | 0.25877 (17) | 0.0282 (5) | |
C10 | 0.3356 (3) | 0.71244 (9) | 0.28667 (19) | 0.0315 (5) | |
C11 | 0.6426 (3) | 0.81596 (11) | 0.60611 (18) | 0.0362 (5) | |
H11A | 0.750029 | 0.795168 | 0.600616 | 0.043* | |
H11B | 0.569300 | 0.793170 | 0.643391 | 0.043* | |
C12 | 0.6904 (5) | 0.86904 (13) | 0.6630 (2) | 0.0522 (7) | |
C13 | −0.0250 (3) | 0.72077 (10) | −0.08191 (18) | 0.0354 (5) | |
H13A | −0.112423 | 0.700710 | −0.050432 | 0.043* | |
H13B | 0.057209 | 0.693956 | −0.102999 | 0.043* | |
C14 | −0.1154 (4) | 0.75342 (13) | −0.1744 (2) | 0.0413 (6) | |
C15 | 0.3600 (3) | 0.86834 (9) | 0.32537 (17) | 0.0295 (5) | |
C16 | 0.5085 (3) | 0.90805 (9) | 0.33684 (17) | 0.0288 (5) | |
C17 | 0.4838 (4) | 0.96148 (10) | 0.3671 (2) | 0.0356 (6) | |
H17 | 0.372901 | 0.972407 | 0.380858 | 0.043* | |
C18 | 0.6210 (3) | 0.99900 (10) | 0.3774 (2) | 0.0397 (6) | |
H18 | 0.606068 | 1.035412 | 0.399668 | 0.048* | |
C19 | 0.7794 (3) | 0.98247 (10) | 0.35463 (19) | 0.0354 (5) | |
C20 | 0.8064 (3) | 0.92963 (10) | 0.3238 (2) | 0.0379 (5) | |
H20 | 0.916284 | 0.919065 | 0.308167 | 0.046* | |
C21 | 0.6708 (3) | 0.89269 (10) | 0.31622 (19) | 0.0346 (5) | |
H21 | 0.688291 | 0.855973 | 0.296535 | 0.042* | |
C22 | 0.2491 (3) | 0.83933 (9) | 0.11044 (17) | 0.0306 (5) | |
C23 | 0.0907 (3) | 0.87051 (9) | 0.05858 (18) | 0.0316 (5) | |
C24 | 0.1076 (4) | 0.90948 (10) | −0.0163 (2) | 0.0393 (6) | |
H24 | 0.219855 | 0.916307 | −0.032517 | 0.047* | |
C25 | −0.0379 (4) | 0.93838 (11) | −0.0673 (2) | 0.0450 (6) | |
H25 | −0.027117 | 0.964235 | −0.120001 | 0.054* | |
C26 | −0.1990 (4) | 0.92916 (10) | −0.04062 (19) | 0.0397 (6) | |
C27 | −0.2194 (4) | 0.89222 (10) | 0.0362 (2) | 0.0389 (6) | |
H27 | −0.330361 | 0.887427 | 0.055432 | 0.047* | |
C28 | −0.0730 (3) | 0.86228 (10) | 0.08457 (19) | 0.0359 (5) | |
H28 | −0.084796 | 0.835830 | 0.136056 | 0.043* | |
H12A | 0.755 (6) | 0.8901 (17) | 0.620 (3) | 0.087 (13)* | |
H12B | 0.767 (5) | 0.8628 (16) | 0.729 (3) | 0.077 (11)* | |
H12C | 0.582 (6) | 0.8867 (16) | 0.675 (3) | 0.076 (12)* | |
H14A | −0.198 (4) | 0.7801 (14) | −0.161 (3) | 0.054 (9)* | |
H14B | −0.175 (5) | 0.7325 (17) | −0.223 (3) | 0.067 (11)* | |
H14C | −0.028 (5) | 0.7722 (14) | −0.202 (3) | 0.060 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0453 (2) | 0.03872 (19) | 0.0717 (2) | −0.01329 (11) | 0.00611 (17) | 0.00497 (12) |
Br2 | 0.0582 (3) | 0.0595 (2) | 0.0506 (2) | 0.02283 (14) | −0.00315 (16) | 0.00419 (13) |
O1 | 0.0469 (11) | 0.0367 (9) | 0.0299 (8) | −0.0034 (7) | −0.0007 (7) | 0.0020 (7) |
O2 | 0.0493 (11) | 0.0352 (9) | 0.0360 (9) | −0.0048 (8) | −0.0054 (8) | −0.0029 (7) |
O3 | 0.0252 (9) | 0.0425 (9) | 0.0469 (10) | 0.0039 (7) | 0.0071 (7) | −0.0026 (7) |
O4 | 0.0310 (10) | 0.0418 (9) | 0.0377 (9) | −0.0062 (7) | 0.0085 (7) | −0.0011 (7) |
C1 | 0.0221 (12) | 0.0327 (11) | 0.0327 (11) | −0.0016 (9) | 0.0086 (9) | 0.0015 (9) |
C2 | 0.0254 (12) | 0.0374 (12) | 0.0328 (11) | −0.0029 (9) | 0.0065 (9) | −0.0003 (9) |
C3 | 0.0318 (13) | 0.0382 (12) | 0.0327 (12) | −0.0005 (10) | 0.0056 (10) | 0.0055 (9) |
C4 | 0.0302 (13) | 0.0338 (12) | 0.0409 (13) | 0.0009 (10) | 0.0084 (10) | 0.0061 (10) |
C5 | 0.0339 (13) | 0.0271 (11) | 0.0453 (13) | −0.0013 (9) | 0.0106 (11) | −0.0005 (9) |
C6 | 0.0330 (14) | 0.0310 (12) | 0.0439 (13) | −0.0036 (10) | 0.0064 (10) | −0.0055 (10) |
C7 | 0.0281 (13) | 0.0351 (12) | 0.0350 (12) | −0.0013 (9) | 0.0048 (10) | −0.0001 (9) |
C8 | 0.0259 (12) | 0.0313 (11) | 0.0352 (12) | 0.0001 (9) | 0.0067 (9) | −0.0007 (9) |
C9 | 0.0206 (12) | 0.0311 (11) | 0.0339 (12) | −0.0004 (8) | 0.0080 (9) | −0.0001 (8) |
C10 | 0.0256 (12) | 0.0327 (12) | 0.0375 (12) | 0.0003 (9) | 0.0091 (9) | 0.0009 (9) |
C11 | 0.0301 (13) | 0.0476 (14) | 0.0291 (11) | −0.0005 (10) | 0.0022 (10) | 0.0016 (10) |
C12 | 0.055 (2) | 0.0529 (17) | 0.0416 (15) | −0.0069 (14) | −0.0068 (14) | −0.0029 (13) |
C13 | 0.0327 (13) | 0.0400 (13) | 0.0338 (12) | −0.0068 (10) | 0.0072 (10) | −0.0075 (10) |
C14 | 0.0359 (15) | 0.0530 (16) | 0.0345 (13) | −0.0089 (13) | 0.0062 (11) | −0.0027 (11) |
C15 | 0.0262 (13) | 0.0355 (12) | 0.0269 (10) | 0.0018 (9) | 0.0059 (9) | −0.0022 (8) |
C16 | 0.0270 (12) | 0.0307 (11) | 0.0277 (10) | 0.0024 (9) | 0.0029 (9) | 0.0011 (8) |
C17 | 0.0323 (14) | 0.0342 (13) | 0.0406 (14) | 0.0046 (9) | 0.0086 (11) | −0.0010 (9) |
C18 | 0.0422 (15) | 0.0286 (11) | 0.0471 (14) | 0.0029 (10) | 0.0061 (11) | −0.0024 (10) |
C19 | 0.0324 (13) | 0.0320 (11) | 0.0389 (13) | −0.0049 (10) | 0.0001 (10) | 0.0056 (10) |
C20 | 0.0273 (13) | 0.0363 (13) | 0.0498 (14) | 0.0010 (10) | 0.0068 (10) | −0.0005 (10) |
C21 | 0.0294 (13) | 0.0304 (11) | 0.0436 (13) | 0.0024 (9) | 0.0067 (10) | −0.0019 (9) |
C22 | 0.0323 (13) | 0.0335 (11) | 0.0264 (11) | −0.0034 (9) | 0.0068 (9) | −0.0030 (9) |
C23 | 0.0331 (13) | 0.0307 (11) | 0.0301 (11) | −0.0013 (9) | 0.0044 (9) | −0.0020 (9) |
C24 | 0.0410 (15) | 0.0389 (13) | 0.0399 (13) | −0.0007 (11) | 0.0124 (11) | 0.0044 (10) |
C25 | 0.0573 (18) | 0.0395 (13) | 0.0396 (14) | 0.0059 (12) | 0.0129 (12) | 0.0093 (11) |
C26 | 0.0428 (15) | 0.0376 (13) | 0.0355 (12) | 0.0097 (11) | 0.0001 (11) | −0.0015 (10) |
C27 | 0.0330 (14) | 0.0442 (13) | 0.0386 (13) | 0.0004 (11) | 0.0051 (10) | −0.0018 (10) |
C28 | 0.0351 (14) | 0.0384 (12) | 0.0337 (12) | −0.0024 (10) | 0.0057 (10) | 0.0042 (10) |
Br1—C19 | 1.901 (2) | C12—H12C | 0.99 (4) |
Br2—C26 | 1.901 (3) | C13—C14 | 1.498 (4) |
O1—C2 | 1.367 (3) | C13—H13A | 0.9900 |
O1—C11 | 1.434 (3) | C13—H13B | 0.9900 |
O2—C7 | 1.358 (3) | C14—H14A | 0.95 (4) |
O2—C13 | 1.434 (3) | C14—H14B | 0.87 (4) |
O3—C15 | 1.221 (3) | C14—H14C | 0.94 (4) |
O4—C22 | 1.220 (3) | C15—C16 | 1.489 (3) |
C1—C2 | 1.390 (3) | C16—C17 | 1.388 (3) |
C1—C9 | 1.428 (3) | C16—C21 | 1.389 (3) |
C1—C15 | 1.501 (3) | C17—C18 | 1.390 (4) |
C2—C3 | 1.403 (3) | C17—H17 | 0.9500 |
C3—C4 | 1.370 (3) | C18—C19 | 1.379 (4) |
C3—H3 | 0.9500 | C18—H18 | 0.9500 |
C4—C10 | 1.410 (3) | C19—C20 | 1.381 (3) |
C4—H4 | 0.9500 | C20—C21 | 1.373 (3) |
C5—C6 | 1.357 (4) | C20—H20 | 0.9500 |
C5—C10 | 1.417 (3) | C21—H21 | 0.9500 |
C5—H5 | 0.9500 | C22—C23 | 1.486 (3) |
C6—C7 | 1.424 (3) | C23—C24 | 1.389 (3) |
C6—H6 | 0.9500 | C23—C28 | 1.392 (4) |
C7—C8 | 1.389 (3) | C24—C25 | 1.382 (4) |
C8—C9 | 1.432 (3) | C24—H24 | 0.9500 |
C8—C22 | 1.507 (3) | C25—C26 | 1.380 (4) |
C9—C10 | 1.429 (3) | C25—H25 | 0.9500 |
C11—C12 | 1.503 (4) | C26—C27 | 1.382 (4) |
C11—H11A | 0.9900 | C27—C28 | 1.390 (4) |
C11—H11B | 0.9900 | C27—H27 | 0.9500 |
C12—H12A | 0.97 (5) | C28—H28 | 0.9500 |
C12—H12B | 0.96 (4) | ||
C2—O1—C11 | 119.16 (19) | H13A—C13—H13B | 108.7 |
C7—O2—C13 | 119.96 (19) | C13—C14—H14A | 116 (2) |
C2—C1—C9 | 119.5 (2) | C13—C14—H14B | 112 (3) |
C2—C1—C15 | 116.8 (2) | H14A—C14—H14B | 105 (3) |
C9—C1—C15 | 122.8 (2) | C13—C14—H14C | 108 (2) |
O1—C2—C1 | 115.1 (2) | H14A—C14—H14C | 107 (3) |
O1—C2—C3 | 122.8 (2) | H14B—C14—H14C | 109 (3) |
C1—C2—C3 | 122.1 (2) | O3—C15—C16 | 121.0 (2) |
C4—C3—C2 | 118.9 (2) | O3—C15—C1 | 119.2 (2) |
C4—C3—H3 | 120.5 | C16—C15—C1 | 119.8 (2) |
C2—C3—H3 | 120.5 | C17—C16—C21 | 119.4 (2) |
C3—C4—C10 | 121.4 (2) | C17—C16—C15 | 119.5 (2) |
C3—C4—H4 | 119.3 | C21—C16—C15 | 121.0 (2) |
C10—C4—H4 | 119.3 | C16—C17—C18 | 120.0 (2) |
C6—C5—C10 | 122.1 (2) | C16—C17—H17 | 120.0 |
C6—C5—H5 | 119.0 | C18—C17—H17 | 120.0 |
C10—C5—H5 | 119.0 | C19—C18—C17 | 118.9 (2) |
C5—C6—C7 | 118.9 (2) | C19—C18—H18 | 120.6 |
C5—C6—H6 | 120.5 | C17—C18—H18 | 120.6 |
C7—C6—H6 | 120.5 | C18—C19—C20 | 122.0 (2) |
O2—C7—C8 | 116.2 (2) | C18—C19—Br1 | 119.22 (18) |
O2—C7—C6 | 122.4 (2) | C20—C19—Br1 | 118.8 (2) |
C8—C7—C6 | 121.4 (2) | C21—C20—C19 | 118.5 (2) |
C7—C8—C9 | 119.9 (2) | C21—C20—H20 | 120.8 |
C7—C8—C22 | 117.7 (2) | C19—C20—H20 | 120.8 |
C9—C8—C22 | 121.5 (2) | C20—C21—C16 | 121.2 (2) |
C1—C9—C10 | 117.9 (2) | C20—C21—H21 | 119.4 |
C1—C9—C8 | 124.1 (2) | C16—C21—H21 | 119.4 |
C10—C9—C8 | 118.1 (2) | O4—C22—C23 | 120.8 (2) |
C4—C10—C5 | 120.3 (2) | O4—C22—C8 | 118.3 (2) |
C4—C10—C9 | 120.1 (2) | C23—C22—C8 | 120.9 (2) |
C5—C10—C9 | 119.6 (2) | C24—C23—C28 | 119.3 (2) |
O1—C11—C12 | 106.0 (2) | C24—C23—C22 | 119.1 (2) |
O1—C11—H11A | 110.5 | C28—C23—C22 | 121.6 (2) |
C12—C11—H11A | 110.5 | C25—C24—C23 | 120.4 (2) |
O1—C11—H11B | 110.5 | C25—C24—H24 | 119.8 |
C12—C11—H11B | 110.5 | C23—C24—H24 | 119.8 |
H11A—C11—H11B | 108.7 | C26—C25—C24 | 119.1 (2) |
C11—C12—H12A | 106 (2) | C26—C25—H25 | 120.5 |
C11—C12—H12B | 111 (2) | C24—C25—H25 | 120.5 |
H12A—C12—H12B | 108 (3) | C25—C26—C27 | 122.1 (2) |
C11—C12—H12C | 109 (2) | C25—C26—Br2 | 118.88 (19) |
H12A—C12—H12C | 114 (3) | C27—C26—Br2 | 119.0 (2) |
H12B—C12—H12C | 109 (3) | C26—C27—C28 | 118.1 (2) |
O2—C13—C14 | 106.2 (2) | C26—C27—H27 | 120.9 |
O2—C13—H13A | 110.5 | C28—C27—H27 | 120.9 |
C14—C13—H13A | 110.5 | C27—C28—C23 | 120.9 (2) |
O2—C13—H13B | 110.5 | C27—C28—H28 | 119.6 |
C14—C13—H13B | 110.5 | C23—C28—H28 | 119.6 |
C11—O1—C2—C1 | −178.5 (2) | C2—C1—C15—O3 | −114.3 (2) |
C11—O1—C2—C3 | 4.0 (3) | C9—C1—C15—O3 | 54.9 (3) |
C9—C1—C2—O1 | −176.65 (19) | C2—C1—C15—C16 | 64.1 (3) |
C15—C1—C2—O1 | −7.0 (3) | C9—C1—C15—C16 | −126.6 (2) |
C9—C1—C2—C3 | 0.9 (3) | O3—C15—C16—C17 | 23.4 (3) |
C15—C1—C2—C3 | 170.5 (2) | C1—C15—C16—C17 | −155.0 (2) |
O1—C2—C3—C4 | 174.1 (2) | O3—C15—C16—C21 | −155.7 (2) |
C1—C2—C3—C4 | −3.3 (4) | C1—C15—C16—C21 | 25.9 (3) |
C2—C3—C4—C10 | 2.2 (4) | C21—C16—C17—C18 | −0.5 (4) |
C10—C5—C6—C7 | 1.5 (4) | C15—C16—C17—C18 | −179.5 (2) |
C13—O2—C7—C8 | −176.9 (2) | C16—C17—C18—C19 | 1.5 (4) |
C13—O2—C7—C6 | 5.8 (4) | C17—C18—C19—C20 | −1.1 (4) |
C5—C6—C7—O2 | 176.3 (2) | C17—C18—C19—Br1 | 178.12 (18) |
C5—C6—C7—C8 | −0.8 (4) | C18—C19—C20—C21 | −0.3 (4) |
O2—C7—C8—C9 | −179.3 (2) | Br1—C19—C20—C21 | −179.53 (19) |
C6—C7—C8—C9 | −2.0 (4) | C19—C20—C21—C16 | 1.3 (4) |
O2—C7—C8—C22 | −10.2 (3) | C17—C16—C21—C20 | −1.0 (4) |
C6—C7—C8—C22 | 167.1 (2) | C15—C16—C21—C20 | 178.1 (2) |
C2—C1—C9—C10 | 2.5 (3) | C7—C8—C22—O4 | −118.5 (2) |
C15—C1—C9—C10 | −166.5 (2) | C9—C8—C22—O4 | 50.5 (3) |
C2—C1—C9—C8 | −178.6 (2) | C7—C8—C22—C23 | 59.3 (3) |
C15—C1—C9—C8 | 12.5 (3) | C9—C8—C22—C23 | −131.8 (2) |
C7—C8—C9—C1 | −175.0 (2) | O4—C22—C23—C24 | 23.3 (3) |
C22—C8—C9—C1 | 16.3 (3) | C8—C22—C23—C24 | −154.3 (2) |
C7—C8—C9—C10 | 4.0 (3) | O4—C22—C23—C28 | −155.5 (2) |
C22—C8—C9—C10 | −164.7 (2) | C8—C22—C23—C28 | 26.8 (3) |
C3—C4—C10—C5 | −178.0 (2) | C28—C23—C24—C25 | −2.4 (4) |
C3—C4—C10—C9 | 1.2 (4) | C22—C23—C24—C25 | 178.8 (2) |
C6—C5—C10—C4 | 179.8 (2) | C23—C24—C25—C26 | 1.9 (4) |
C6—C5—C10—C9 | 0.5 (4) | C24—C25—C26—C27 | 0.5 (4) |
C1—C9—C10—C4 | −3.5 (3) | C24—C25—C26—Br2 | −179.1 (2) |
C8—C9—C10—C4 | 177.4 (2) | C25—C26—C27—C28 | −2.5 (4) |
C1—C9—C10—C5 | 175.8 (2) | Br2—C26—C27—C28 | 177.15 (18) |
C8—C9—C10—C5 | −3.3 (3) | C26—C27—C28—C23 | 2.0 (4) |
C2—O1—C11—C12 | 179.0 (2) | C24—C23—C28—C27 | 0.4 (4) |
C7—O2—C13—C14 | 173.3 (2) | C22—C23—C28—C27 | 179.2 (2) |
Cg2, Cg3 and Cg5 are the centroids of the C5–C10, C16–C21 and C1–C10 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20···O3i | 0.95 | 2.41 | 3.339 (3) | 167 |
C27—H27···O4ii | 0.95 | 2.50 | 3.439 (3) | 170 |
C11—H11B···Cg2iii | 0.99 | 2.75 | 3.632 (3) | 148 |
C11—H13B···Cg5iii | 0.99 | 2.89 | 3.838 (3) | 162 |
C14—H14C···Cg2iv | 0.98 | 2.78 (4) | 3.631 (3) | 151 (3) |
C14—H14C···Cg5iv | 0.98 | 2.85 (4) | 3.632 (3) | 141 (3) |
C12—H12A···Br1v | 0.97 (4) | 2.82 (5) | 3.634 (4) | 141 (3) |
C26—Br2···Cg3vi | 1.90 (1) | 3.88 (1) | 5.626 (3) | 152 (1) |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x, −y+3/2, z+1/2; (iv) x, −y+3/2, z−1/2; (v) −x+2, −y+2, −z+1; (vi) −x, −y+2, −z. |
Acknowledgements
The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for technical advice.
Funding information
The authors gratefully acknowledge the financial support provided by Tokyo Ohka Foundation for The Promotion of Science and Technology (grant No. 246089).
References
Atwood, J. L., Davies, J. E. D., MacNicol, D. D. & Vogtle, F. (1996). Comprehensive Supramolecular Chemistry, Vols. 1–11. Oxford: Pergamon. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL- 6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Desiraju, G. R., Vittal, J. J. & Ramanan, A. (2011). Crystal Engineering. A Textbook. Singapore: World Scientific Publishing. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hubbard, T. A., Brown, A. J., Bell, I. A. W. & Cockroft, S. L. (2016). J. Am. Chem. Soc. 138, 15114–15117. CrossRef CAS PubMed Google Scholar
Iida, K., Muto, T., Kobayashi, M., Iitsuka, H., Li, K., Yonezawa, N. & Okamoto, A. (2022). Lett. Org. Chem. 19, 757–765. CSD CrossRef CAS Google Scholar
Isogai, A., Tsumuki, T., Murohashi, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o71. CSD CrossRef IUCr Journals Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer. Google Scholar
Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kato, Y., Nagasawa, A., Tsumuki, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2939. CSD CrossRef IUCr Journals Google Scholar
Kobayashi, M., Sakamoto, R., Zhang, P., Zhao, Y., Li, K., Noguchi, K., Yonezawa, N. & Okamoto, A. (2023). Mol. Cryst. Liq. Cryst. 757, 107–124. CSD CrossRef CAS Google Scholar
Lehn, J.-M. (1995). Supramolecular Chemistry: Concepts and Perspectives. New York: VCH. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284. Web of Science CrossRef CAS Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Okamoto, A. & Yonezawa, N. (2015). J. Synth. Org. Chem. Jpn, 73, 339–360. Web of Science CrossRef CAS Google Scholar
Price, S. L. (2004). CrystEngComm, 6, 344–353. CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sasagawa, K., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2119. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Steiner, T. & Desiraju, G. R. (1998). Chem. Commun. pp. 891–892. Web of Science CrossRef Google Scholar
Tanabe, J., Taura, D., Yamada, H., Furusho, Y. & Yashima, E. (2013). Chem. Sci. 4, 2960–2966. CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net Google Scholar
Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.