research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (2,7-di­eth­­oxy­naphthalene-1,8-di­yl)bis­­[(4-bromophen­yl)methanone]

crossmark logo

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 18 November 2024; accepted 19 November 2024; online 22 November 2024)

The title compound, C28H22Br2O4, crystallizes in the monoclinic space group P21/c at 193 K. The two 4-bromo­benzoyl groups are attached in a non-coplanar fashion to the naphthalene ring system and are oriented in opposite directions. The two 4-bromo­benzene rings are tilted almost symmetrically with respect to the naphthalene ring system. The crystal packing features several kinds of non-classical hydrogen bonds such as C—H⋯X (X = polar atom), in which the C—H group acts as a hydrogen-atom donor, and C—H⋯π inter­actions. The two-dimensional fingerprint plots generated in a Hirshfeld surface analysis show non-classical hydrogen bonding with short contacts involving the bromo group.

1. Chemical context

Supra­molecular architectures along with supra­molecular chemistry have become of inter­est in recent years from the viewpoint of green chemistry and novel phases of functional device material development (Desiraju, 1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]; Lehn, 1995[Lehn, J.-M. (1995). Supramolecular Chemistry: Concepts and Perspectives. New York: VCH.]; Atwood et al., 1996[Atwood, J. L., Davies, J. E. D., MacNicol, D. D. & Vogtle, F. (1996). Comprehensive Supramolecular Chemistry, Vols. 1-11. Oxford: Pergamon.]; Desiraju et al., 2011[Desiraju, G. R., Vittal, J. J. & Ramanan, A. (2011). Crystal Engin­eering. A Textbook. Singapore: World Scientific Publishing.]). Various building blocks bearing unique functions might be tailored to a supra­molecular structure exhibiting desired chemical and physical properties without formation of covalent bonds. The research primarily relies on knowledge of the characteristics of non-covalent bonding inter­actions, including atomic, geometrical and mol­ecular orientation features (Jeffrey & Saenger, 1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]; Steiner & Desiraju, 1998[Steiner, T. & Desiraju, G. R. (1998). Chem. Commun. pp. 891-892.]). Attempts to form robust hydrogen bonds involving CONR2 and OH groups, and COOH and NH2 groups were undertaken both experimentally and theoretically. These have been successfully employed for the preparation of numerous mol­ecular assemblies (Price, 2004[Price, S. L. (2004). CrystEngComm, 6, 344-353.]; Tanabe et al., 2013[Tanabe, J., Taura, D., Yamada, H., Furusho, Y. & Yashima, E. (2013). Chem. Sci. 4, 2960-2966.]; Hubbard et al., 2016[Hubbard, T. A., Brown, A. J., Bell, I. A. W. & Cockroft, S. L. (2016). J. Am. Chem. Soc. 138, 15114-15117.]). On the other hand, attempts to grasp the nature of weak hydrogen bonds, including non-classical hydrogen bonds where the C—H group acts as a hydrogen-atom donor, for example, have scarcely been achieved, probably because they are often hidden by strong hydrogen bonds. Congested mol­ecules of accumulated aromatic rings have unique spatial structural restrictions such that the aromatic rings are compelled to be arranged in a non-coplanar manner. This structural constraint suggests that the contribution of a parallel overlap of aromatic rings, i.e., ππ stacking is extremely small. From this viewpoint, the crystal structures of compounds with non-coplanarly accumulated aromatic rings can be expected to emphasize the contributions of rather weak, non-covalent bonding inter­actions other than ππ stacking inter­actions and classical hydrogen bonds. The authors have studied compounds with non-coplanarly accumulated aromatic ring structures in formation reactions and spatial structures (Okamoto & Yonezawa, 2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.], 2015[Okamoto, A. & Yonezawa, N. (2015). J. Synth. Org. Chem. Jpn, 73, 339-360.]; Okamoto et al., 2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]).

peri-Aroyl­naphthalene compounds and their homologues usually show an excellent tendency to give single crystallinity, and the crystal structures of over 100 homologues and related compounds have been determined by the authors. With the aid of a systematical comparison of the single mol­ecular structure and accumulation fashion of the crystal structure of series of homologous compounds, the transition of the inter­action feature among the homologues has been clarified, which suggests important roles for weak inter­actions involving C—H hydrogen atoms in the determination of the crystalline spatial placement of mol­ecules (Iida et al., 2022[Iida, K., Muto, T., Kobayashi, M., Iitsuka, H., Li, K., Yonezawa, N. & Okamoto, A. (2022). Lett. Org. Chem. 19, 757-765.]; Kobayashi et al., 2023[Kobayashi, M., Sakamoto, R., Zhang, P., Zhao, Y., Li, K., Noguchi, K., Yonezawa, N. & Okamoto, A. (2023). Mol. Cryst. Liq. Cryst. 757, 107-124.]). Herein, the authors report on the crystal structure and Hirshfeld surface analysis of the title peri-aroyl­naphthalene, (2,7-di­eth­oxy­naphthalene-1,8-di­yl)bis­[(4-bromo­phen­yl)methanone].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title mol­ecule is displayed in Fig. 1[link]. The two 4-bromo­benzoyl groups are twisted with respect to the naphthalene ring system and oriented in opposite direction (anti orientation). The two 4-bromo­benzene rings are tilted almost symmetrically to the naphthalene ring system. The two inter­planar angles between the best planes of the 4-bromo­benzene rings and the naphthalene ring system are 79.38 (10) and 79.50 (10)°, respectively [torsion angles: C9—C1—C15—O3 = 54.9 (3) and C9—C8—C22—O4 = 50.5 (3)°]. On the other hand, the 4-bromo­benzene rings are coplanar with the carbonyl moieties [torsion angles: O3—C15—C16—C21 = −155.7 (2) and O4—C22—C23—C28 = −155.5 (2)°]. The inter­planar angle between the best planes of the two 4-bromo­benzene rings is 60.44 (12)°.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

In the crystal, several kinds of non-classical hydrogen bonds ensure the cohesion of the packing. C—H⋯O=C non-classical hydrogen bonds between the 4-bromo­benzene ring and the carbonyl O atom arrange the mol­ecules in a translational relationship along a-axis direction [C20—H20⋯O3i = 2.41 Å, C27—H27⋯O4ii = 2.50 Å; symmetry codes: (i) 1 + x, y, z; (ii) −1 + x, y, z] (Table 1[link], Fig. 2[link]). C—H⋯π non-classical hydrogen bonds between the eth­oxy moiety and the naphthalene ring system connect the mol­ecules along ac-glide plane [C11—H11BCg2iii = 2.75 Å, C11—H11BCg5iii = 2.89 Å, C14—H14CCg2iv = 2.78 (4) Å, C14—H14CCg5iv = 2.85 (4) Å; symmetry codes: (iii) x, [{3\over 2}] − y, [{1\over 2}] + z; (iv) x, [{3\over 2}] − y, −[{1\over 2}] + z; Cg2 and Cg5 are the centroids of the C5–C10 ring and the C1–C10 ring system, respectively] (Fig. 3[link]). The naphthalene ring system acts as hydrogen-atom acceptor of dual Csp3—H⋯π non-classical hydrogen bonds. Inter­actions involving the bromo group are formed complimentarily between two mol­ecules, forming centrosymmetric dimeric aggregations [C12—H12A⋯Br1v = 2.82 (5) Å, C26—Br2⋯Cg3vi = 3.8749 (11) Å; symmetry codes: (v) 2 − x, 2 − y, 1 − z; (vi) −x, 2 − y, −z; Cg3 is the centroid of the C16–C21 ring] (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg5 are the centroids of the C5–C10, C16–C21 and C1–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O3i 0.95 2.41 3.339 (3) 167
C27—H27⋯O4ii 0.95 2.50 3.439 (3) 170
C11—H11BCg2iii 0.99 2.75 3.632 (3) 148
C11—H13BCg5iii 0.99 2.89 3.838 (3) 162
C14—H14CCg2iv 0.98 2.78 (4) 3.631 (3) 151 (3)
C14—H14CCg5iv 0.98 2.85 (4) 3.632 (3) 141 (3)
C12—H12A⋯Br1v 0.97 (4) 2.82 (5) 3.634 (4) 141 (3)
C26—Br2⋯Cg3vi 1.90 (1) 3.88 (1) 5.626 (3) 152 (1)
Symmetry codes: (i) [x+1, y, z]; (ii) [x-1, y, z]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x+2, -y+2, -z+1]; (vi) [-x, -y+2, -z].
[Figure 2]
Figure 2
Mol­ecular packing structure of the title compound showing the non-covalent bonding inter­actions and the relationship with the symmetry elements: C—H⋯O non-classical hydrogen bonds connect the mol­ecules in a translational relationship along a-axis [symmetry codes: (i)1 + x, y, z; (ii) −1 + x, y, z].
[Figure 3]
Figure 3
Crystal packing structure of title compound showing non-covalent bonding inter­actions and the relationship with symmetry elements. C—H⋯π non-classical hydrogen bonds connect the mol­ecules along the ac-glide plane [symmetry codes: (iii) x, [{3\over 2}] − y, [{1\over 2}] + z; (iv) x, [{3\over 2}] − y, −[{1\over 2}] + z]. C—H⋯Br non-classical hydrogen bonds and C—Br⋯π short contacts link pairs of mol­ecules centrosymmetrically along the b-axis [symmetry codes: (v) 2 − x, 2 − y, 1 − z; (vi) −x, 2 − y, −z].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, update of November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1,8-di­benzoyl­naphthalene and 1,8-diaroyl-2,7-di­alk­oxy­naphthalene frameworks of the title compound yields 39 and 29 hits, respectively. The structure of the title compound exhibits non-coplanarly accumulated aromatic rings, as found in the bromo group-free 1,8-di­benzoyl­naphthalene homologues, the bromo group-bearing 1,8-di­benzoyl­naphthalene, and 1-benzoyl­naphthalene homologues, viz. 1,8-dibenzoyl-2,7-di­meth­oxy­naphthalene (CSD refcode XIYSEE: Nakaema et al., 2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]), 1,8-dibenzoyl-2,7-di­eth­oxy­naphthalene (CSD refcode NEQRUY; Isogai et al., 2013[Isogai, A., Tsumuki, T., Murohashi, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o71.]), 1,8-bis­(4-bromo­benzo­yl)-2,7-di­meth­oxy­naphthalene (CSD refcode DUNRUA; Watanabe et al., 2010[Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403.]), (8-[4-(bromo­meth­yl)benzo­yl]-2,7-di­meth­oxy­naphthalen-1-yl)[4-(bromo­meth­yl)phen­yl]methanone (CSD refcode EVIWUC; Sasagawa et al., 2011[Sasagawa, K., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2119.]), (2,7-di­meth­oxy­naphthalen-1-yl)(phen­yl)methanone (CSD refcode KABGAX; Kato, Nagasawa, Hijikata et al., 2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.]), and 2,7-dimeth­oxy-1-(4-bromo­benzo­yl)naphthalene (CSD refcode VACLIW; Kato, Nagasawa, Tsumuki et al., 2010[Kato, Y., Nagasawa, A., Tsumuki, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2939.]). The dihedral angle between the benzene ring and the naphthalene ring system in 1,8-dibenzoyl-2,7-di­meth­oxy­naphthalene (XIYSEE) is larger than in the 2,7-dieth­oxy homologues (NEQRUY), i.e., 83.59 (5)° vs 68.42 (5) and 71.69 (5)°. On the other hand, the 4-bromo­benzoyl group-bearing homologues exhibit the opposite tendency, viz. 70.18 (11) and 74.98 (12)° for 1,8-bis­(4-bromo­benzo­yl)-2,7-di­meth­oxy­naphthalene (DUNRUA) vs 79.38 (10) and 79.50 (10)° for the title compound. The homologue bearing a bromo group bonded to an sp3 carbon atom (EVIWUC) has almost the same dihedral angles as the 2,7-dimeth­oxynaphthalene homologue (DUNRUA) [70.98 (13) and 72.89 (13)°]. The 1-benzoyl­ated homologue (KABGAX) affords three conformers, which have different dihedral angles between the benzene ring and the naphthalene ring system [75.34 (7), 86.47 (7) and 76.55 (6)°]. The homologue with a bromo group gives solely one type of conformer, even if it is 1-monoaroylated homologue [VACLIW; 72.02 (9)°]. Therefore, the introduction of a bromo group at the benzoyl groups at the 1,8-positions has a larger effect on the dihedral angle than an eth­oxy group at the 2,7-positions. Furthermore, intra/inter­molecular inter­actions involving the bromo groups contribute significantly to the three-dimensional mol­ecular structure and packing structure.

5. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net]). The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surface of the title compound mapped over dnorm in the range −0.2470 to 1.3548 a.u. is shown in Fig. 4[link] (left). The red points represent close contacts and negative dnorm values on the surface. Several large red points correspond to the short contacts involving the carbonyl O atoms, O3i and O4ii, and hydrogen atoms, H20 and H27 [symmetry codes: (i)1 + x, y, z; (ii) −1 + x, y, z], and short Br1v⋯H12A inter­actions [symmetry code: (v) 2 − x, 2 − y, 1 − z] (Fig. 4[link], right).

[Figure 4]
Figure 4
The Hirshfeld surface of the title compound mapped over dnorm (left). Several large red points are assigned as O3⋯H20, O5⋯H27, and Br1⋯H12A short contacts (right).

The two-dimensional fingerprint plots from the Hirshfeld surface analysis are shown in Fig. 5[link], revealing the inter­molecular contacts and their percentage contributions to the Hirshfeld surface. Not surprisingly, H⋯H contacts are the major contributor (43.1%), while the Br⋯H/H⋯Br contacts (18.2%) are present as a relatively large contributor, on the same level as C⋯H/H⋯C contacts (19.5%). O⋯H/H⋯O (10.3%), C⋯Br/Br⋯C (4.6%), C⋯O/O⋯C (1.7%), Br⋯Br (1.1%), and O⋯Br/Br⋯O (0.7%) contacts also make significant contributions to the Hirshfeld surface.

[Figure 5]
Figure 5
The full two-dimensional fingerprint plot for the title compound, and those delineated into (a) H⋯H, (b) C⋯H/H⋯C, (c) Br⋯H/H⋯Br, (d) O⋯H/H⋯O, (e) C⋯Br/Br⋯C, (f) C⋯O/O⋯C, (g) Br⋯Br, (h) O⋯Br/Br⋯O, and (i) O⋯O contacts.

6. Synthesis and crystallization

To a 10 ml flask, 4-bromo­benzoyl chloride (6.0 mmol, 1.32 g), TiCl4 (18 mmol, 3.41 g) and methyl­ene dichloride (3.6 ml) were placed and stirred at 273 K. To reaction mixture thus obtained, 2,7-di­eth­oxy­naphthalene (2.0 mmol, 433 mg) was added. After the reaction mixture was stirred at 298 K for 24 h, it was poured into ice-cold water (30 ml). The aqueous layer was extracted with CHCl3 (20 ml, three times). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (96% crude yield). The crude product was purified by reprecipitation (CHCl3/methanol; isolated yield 77%). Finally, the isolated product was crystallized from methanol to give single crystals.

1H NMR (300 MHz, CDCl3): 0.962 (6H, t, J = 6.9 Hz), 3.97 (4H, q, J = 6.9 Hz), 7.16 (2H, d, J = 9.0 Hz), 7.50 (4H, d, J = 8.1 Hz), 7.59 (4H, d, J = 8.7 Hz), 7.93 (2H, d, J = 9.0 Hz) ppm; 13C NMR (75 MHz, CDCl3): 14.5, 65.0, 112.19, 121.02, 125.53, 127.67, 130.42, 130.58, 131.35, 132.54, 138.17, 156.13, 196.83 ppm; IR (KBr): 1658 (C=O), 1608, 1584, 1509 (Ar, naphthalene), 1274, 1112 (C—O—C) cm−1; HRMS (FAB): calculated for C28H23Br2O4 [M + H]+, 580.9958, found, 580.9963; m.p. = 491–492 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference-Fourier maps and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic), 0.98 (meth­yl) and 0.99 Å (methyl­ene), and with Uiso(H) = 1.2Ueq(C). The positions of the methyl H atoms were rotationally optimized.

Table 2
Experimental details

Crystal data
Chemical formula C28H22Br2O4
Mr 582.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 193
a, b, c (Å) 7.74560 (14), 24.4234 (4), 13.0590 (2)
β (°) 101.6109 (9)
V3) 2419.86 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.52
Crystal size (mm) 0.60 × 0.30 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.260, 0.636
No. of measured, independent and observed [I > 2σ(I)] reflections 43148, 4414, 4038
Rint 0.080
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.02
No. of reflections 4414
No. of parameters 331
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.97, −0.60
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL- 6895. Oak Ridge National Laboratory. Tennessee, USA.]).

Supporting information


Computing details top

(2,7-Diethoxynaphthalene-1,8-diyl)bis[(4-bromophenyl)methanone] top
Crystal data top
C28H22Br2O4F(000) = 1168
Mr = 582.27Dx = 1.598 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
a = 7.74560 (14) ÅCell parameters from 38566 reflections
b = 24.4234 (4) Åθ = 3.5–68.3°
c = 13.0590 (2) ŵ = 4.52 mm1
β = 101.6109 (9)°T = 193 K
V = 2419.86 (8) Å3Platelet, colorless
Z = 40.60 × 0.30 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4038 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.080
ω scansθmax = 68.3°, θmin = 3.6°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 98
Tmin = 0.260, Tmax = 0.636k = 2929
43148 measured reflectionsl = 1515
4414 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0674P)2 + 1.6111P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
4414 reflectionsΔρmax = 0.97 e Å3
331 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.96576 (4)1.03404 (2)0.36431 (3)0.05270 (14)
Br20.39930 (5)0.96823 (2)0.11254 (3)0.05806 (14)
O10.5457 (2)0.83055 (7)0.50431 (13)0.0390 (4)
O20.0695 (2)0.75946 (7)0.00888 (13)0.0421 (4)
O30.2072 (2)0.88406 (7)0.30927 (14)0.0383 (4)
O40.3968 (2)0.85776 (7)0.11471 (13)0.0366 (4)
C10.3978 (3)0.80814 (9)0.33638 (17)0.0287 (5)
C20.4865 (3)0.79004 (10)0.43375 (18)0.0318 (5)
C30.5069 (3)0.73420 (10)0.45840 (19)0.0343 (5)
H30.5732590.7227940.5242020.041*
C40.4296 (3)0.69638 (10)0.38604 (19)0.0348 (5)
H40.4394890.6585600.4031850.042*
C50.2521 (3)0.67269 (9)0.2143 (2)0.0351 (5)
H50.2608560.6351550.2337350.042*
C60.1602 (3)0.68654 (10)0.1181 (2)0.0362 (5)
H60.1029260.6592420.0715040.043*
C70.1508 (3)0.74268 (10)0.08802 (18)0.0329 (5)
C80.2318 (3)0.78325 (9)0.15547 (18)0.0307 (5)
C90.3223 (3)0.76908 (9)0.25877 (17)0.0282 (5)
C100.3356 (3)0.71244 (9)0.28667 (19)0.0315 (5)
C110.6426 (3)0.81596 (11)0.60611 (18)0.0362 (5)
H11A0.7500290.7951680.6006160.043*
H11B0.5693000.7931700.6433910.043*
C120.6904 (5)0.86904 (13)0.6630 (2)0.0522 (7)
C130.0250 (3)0.72077 (10)0.08191 (18)0.0354 (5)
H13A0.1124230.7007100.0504320.043*
H13B0.0572090.6939560.1029990.043*
C140.1154 (4)0.75342 (13)0.1744 (2)0.0413 (6)
C150.3600 (3)0.86834 (9)0.32537 (17)0.0295 (5)
C160.5085 (3)0.90805 (9)0.33684 (17)0.0288 (5)
C170.4838 (4)0.96148 (10)0.3671 (2)0.0356 (6)
H170.3729010.9724070.3808580.043*
C180.6210 (3)0.99900 (10)0.3774 (2)0.0397 (6)
H180.6060681.0354120.3996680.048*
C190.7794 (3)0.98247 (10)0.35463 (19)0.0354 (5)
C200.8064 (3)0.92963 (10)0.3238 (2)0.0379 (5)
H200.9162840.9190650.3081670.046*
C210.6708 (3)0.89269 (10)0.31622 (19)0.0346 (5)
H210.6882910.8559730.2965350.042*
C220.2491 (3)0.83933 (9)0.11044 (17)0.0306 (5)
C230.0907 (3)0.87051 (9)0.05858 (18)0.0316 (5)
C240.1076 (4)0.90948 (10)0.0163 (2)0.0393 (6)
H240.2198550.9163070.0325170.047*
C250.0379 (4)0.93838 (11)0.0673 (2)0.0450 (6)
H250.0271170.9642350.1200010.054*
C260.1990 (4)0.92916 (10)0.04062 (19)0.0397 (6)
C270.2194 (4)0.89222 (10)0.0362 (2)0.0389 (6)
H270.3303610.8874270.0554320.047*
C280.0730 (3)0.86228 (10)0.08457 (19)0.0359 (5)
H280.0847960.8358300.1360560.043*
H12A0.755 (6)0.8901 (17)0.620 (3)0.087 (13)*
H12B0.767 (5)0.8628 (16)0.729 (3)0.077 (11)*
H12C0.582 (6)0.8867 (16)0.675 (3)0.076 (12)*
H14A0.198 (4)0.7801 (14)0.161 (3)0.054 (9)*
H14B0.175 (5)0.7325 (17)0.223 (3)0.067 (11)*
H14C0.028 (5)0.7722 (14)0.202 (3)0.060 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0453 (2)0.03872 (19)0.0717 (2)0.01329 (11)0.00611 (17)0.00497 (12)
Br20.0582 (3)0.0595 (2)0.0506 (2)0.02283 (14)0.00315 (16)0.00419 (13)
O10.0469 (11)0.0367 (9)0.0299 (8)0.0034 (7)0.0007 (7)0.0020 (7)
O20.0493 (11)0.0352 (9)0.0360 (9)0.0048 (8)0.0054 (8)0.0029 (7)
O30.0252 (9)0.0425 (9)0.0469 (10)0.0039 (7)0.0071 (7)0.0026 (7)
O40.0310 (10)0.0418 (9)0.0377 (9)0.0062 (7)0.0085 (7)0.0011 (7)
C10.0221 (12)0.0327 (11)0.0327 (11)0.0016 (9)0.0086 (9)0.0015 (9)
C20.0254 (12)0.0374 (12)0.0328 (11)0.0029 (9)0.0065 (9)0.0003 (9)
C30.0318 (13)0.0382 (12)0.0327 (12)0.0005 (10)0.0056 (10)0.0055 (9)
C40.0302 (13)0.0338 (12)0.0409 (13)0.0009 (10)0.0084 (10)0.0061 (10)
C50.0339 (13)0.0271 (11)0.0453 (13)0.0013 (9)0.0106 (11)0.0005 (9)
C60.0330 (14)0.0310 (12)0.0439 (13)0.0036 (10)0.0064 (10)0.0055 (10)
C70.0281 (13)0.0351 (12)0.0350 (12)0.0013 (9)0.0048 (10)0.0001 (9)
C80.0259 (12)0.0313 (11)0.0352 (12)0.0001 (9)0.0067 (9)0.0007 (9)
C90.0206 (12)0.0311 (11)0.0339 (12)0.0004 (8)0.0080 (9)0.0001 (8)
C100.0256 (12)0.0327 (12)0.0375 (12)0.0003 (9)0.0091 (9)0.0009 (9)
C110.0301 (13)0.0476 (14)0.0291 (11)0.0005 (10)0.0022 (10)0.0016 (10)
C120.055 (2)0.0529 (17)0.0416 (15)0.0069 (14)0.0068 (14)0.0029 (13)
C130.0327 (13)0.0400 (13)0.0338 (12)0.0068 (10)0.0072 (10)0.0075 (10)
C140.0359 (15)0.0530 (16)0.0345 (13)0.0089 (13)0.0062 (11)0.0027 (11)
C150.0262 (13)0.0355 (12)0.0269 (10)0.0018 (9)0.0059 (9)0.0022 (8)
C160.0270 (12)0.0307 (11)0.0277 (10)0.0024 (9)0.0029 (9)0.0011 (8)
C170.0323 (14)0.0342 (13)0.0406 (14)0.0046 (9)0.0086 (11)0.0010 (9)
C180.0422 (15)0.0286 (11)0.0471 (14)0.0029 (10)0.0061 (11)0.0024 (10)
C190.0324 (13)0.0320 (11)0.0389 (13)0.0049 (10)0.0001 (10)0.0056 (10)
C200.0273 (13)0.0363 (13)0.0498 (14)0.0010 (10)0.0068 (10)0.0005 (10)
C210.0294 (13)0.0304 (11)0.0436 (13)0.0024 (9)0.0067 (10)0.0019 (9)
C220.0323 (13)0.0335 (11)0.0264 (11)0.0034 (9)0.0068 (9)0.0030 (9)
C230.0331 (13)0.0307 (11)0.0301 (11)0.0013 (9)0.0044 (9)0.0020 (9)
C240.0410 (15)0.0389 (13)0.0399 (13)0.0007 (11)0.0124 (11)0.0044 (10)
C250.0573 (18)0.0395 (13)0.0396 (14)0.0059 (12)0.0129 (12)0.0093 (11)
C260.0428 (15)0.0376 (13)0.0355 (12)0.0097 (11)0.0001 (11)0.0015 (10)
C270.0330 (14)0.0442 (13)0.0386 (13)0.0004 (11)0.0051 (10)0.0018 (10)
C280.0351 (14)0.0384 (12)0.0337 (12)0.0024 (10)0.0057 (10)0.0042 (10)
Geometric parameters (Å, º) top
Br1—C191.901 (2)C12—H12C0.99 (4)
Br2—C261.901 (3)C13—C141.498 (4)
O1—C21.367 (3)C13—H13A0.9900
O1—C111.434 (3)C13—H13B0.9900
O2—C71.358 (3)C14—H14A0.95 (4)
O2—C131.434 (3)C14—H14B0.87 (4)
O3—C151.221 (3)C14—H14C0.94 (4)
O4—C221.220 (3)C15—C161.489 (3)
C1—C21.390 (3)C16—C171.388 (3)
C1—C91.428 (3)C16—C211.389 (3)
C1—C151.501 (3)C17—C181.390 (4)
C2—C31.403 (3)C17—H170.9500
C3—C41.370 (3)C18—C191.379 (4)
C3—H30.9500C18—H180.9500
C4—C101.410 (3)C19—C201.381 (3)
C4—H40.9500C20—C211.373 (3)
C5—C61.357 (4)C20—H200.9500
C5—C101.417 (3)C21—H210.9500
C5—H50.9500C22—C231.486 (3)
C6—C71.424 (3)C23—C241.389 (3)
C6—H60.9500C23—C281.392 (4)
C7—C81.389 (3)C24—C251.382 (4)
C8—C91.432 (3)C24—H240.9500
C8—C221.507 (3)C25—C261.380 (4)
C9—C101.429 (3)C25—H250.9500
C11—C121.503 (4)C26—C271.382 (4)
C11—H11A0.9900C27—C281.390 (4)
C11—H11B0.9900C27—H270.9500
C12—H12A0.97 (5)C28—H280.9500
C12—H12B0.96 (4)
C2—O1—C11119.16 (19)H13A—C13—H13B108.7
C7—O2—C13119.96 (19)C13—C14—H14A116 (2)
C2—C1—C9119.5 (2)C13—C14—H14B112 (3)
C2—C1—C15116.8 (2)H14A—C14—H14B105 (3)
C9—C1—C15122.8 (2)C13—C14—H14C108 (2)
O1—C2—C1115.1 (2)H14A—C14—H14C107 (3)
O1—C2—C3122.8 (2)H14B—C14—H14C109 (3)
C1—C2—C3122.1 (2)O3—C15—C16121.0 (2)
C4—C3—C2118.9 (2)O3—C15—C1119.2 (2)
C4—C3—H3120.5C16—C15—C1119.8 (2)
C2—C3—H3120.5C17—C16—C21119.4 (2)
C3—C4—C10121.4 (2)C17—C16—C15119.5 (2)
C3—C4—H4119.3C21—C16—C15121.0 (2)
C10—C4—H4119.3C16—C17—C18120.0 (2)
C6—C5—C10122.1 (2)C16—C17—H17120.0
C6—C5—H5119.0C18—C17—H17120.0
C10—C5—H5119.0C19—C18—C17118.9 (2)
C5—C6—C7118.9 (2)C19—C18—H18120.6
C5—C6—H6120.5C17—C18—H18120.6
C7—C6—H6120.5C18—C19—C20122.0 (2)
O2—C7—C8116.2 (2)C18—C19—Br1119.22 (18)
O2—C7—C6122.4 (2)C20—C19—Br1118.8 (2)
C8—C7—C6121.4 (2)C21—C20—C19118.5 (2)
C7—C8—C9119.9 (2)C21—C20—H20120.8
C7—C8—C22117.7 (2)C19—C20—H20120.8
C9—C8—C22121.5 (2)C20—C21—C16121.2 (2)
C1—C9—C10117.9 (2)C20—C21—H21119.4
C1—C9—C8124.1 (2)C16—C21—H21119.4
C10—C9—C8118.1 (2)O4—C22—C23120.8 (2)
C4—C10—C5120.3 (2)O4—C22—C8118.3 (2)
C4—C10—C9120.1 (2)C23—C22—C8120.9 (2)
C5—C10—C9119.6 (2)C24—C23—C28119.3 (2)
O1—C11—C12106.0 (2)C24—C23—C22119.1 (2)
O1—C11—H11A110.5C28—C23—C22121.6 (2)
C12—C11—H11A110.5C25—C24—C23120.4 (2)
O1—C11—H11B110.5C25—C24—H24119.8
C12—C11—H11B110.5C23—C24—H24119.8
H11A—C11—H11B108.7C26—C25—C24119.1 (2)
C11—C12—H12A106 (2)C26—C25—H25120.5
C11—C12—H12B111 (2)C24—C25—H25120.5
H12A—C12—H12B108 (3)C25—C26—C27122.1 (2)
C11—C12—H12C109 (2)C25—C26—Br2118.88 (19)
H12A—C12—H12C114 (3)C27—C26—Br2119.0 (2)
H12B—C12—H12C109 (3)C26—C27—C28118.1 (2)
O2—C13—C14106.2 (2)C26—C27—H27120.9
O2—C13—H13A110.5C28—C27—H27120.9
C14—C13—H13A110.5C27—C28—C23120.9 (2)
O2—C13—H13B110.5C27—C28—H28119.6
C14—C13—H13B110.5C23—C28—H28119.6
C11—O1—C2—C1178.5 (2)C2—C1—C15—O3114.3 (2)
C11—O1—C2—C34.0 (3)C9—C1—C15—O354.9 (3)
C9—C1—C2—O1176.65 (19)C2—C1—C15—C1664.1 (3)
C15—C1—C2—O17.0 (3)C9—C1—C15—C16126.6 (2)
C9—C1—C2—C30.9 (3)O3—C15—C16—C1723.4 (3)
C15—C1—C2—C3170.5 (2)C1—C15—C16—C17155.0 (2)
O1—C2—C3—C4174.1 (2)O3—C15—C16—C21155.7 (2)
C1—C2—C3—C43.3 (4)C1—C15—C16—C2125.9 (3)
C2—C3—C4—C102.2 (4)C21—C16—C17—C180.5 (4)
C10—C5—C6—C71.5 (4)C15—C16—C17—C18179.5 (2)
C13—O2—C7—C8176.9 (2)C16—C17—C18—C191.5 (4)
C13—O2—C7—C65.8 (4)C17—C18—C19—C201.1 (4)
C5—C6—C7—O2176.3 (2)C17—C18—C19—Br1178.12 (18)
C5—C6—C7—C80.8 (4)C18—C19—C20—C210.3 (4)
O2—C7—C8—C9179.3 (2)Br1—C19—C20—C21179.53 (19)
C6—C7—C8—C92.0 (4)C19—C20—C21—C161.3 (4)
O2—C7—C8—C2210.2 (3)C17—C16—C21—C201.0 (4)
C6—C7—C8—C22167.1 (2)C15—C16—C21—C20178.1 (2)
C2—C1—C9—C102.5 (3)C7—C8—C22—O4118.5 (2)
C15—C1—C9—C10166.5 (2)C9—C8—C22—O450.5 (3)
C2—C1—C9—C8178.6 (2)C7—C8—C22—C2359.3 (3)
C15—C1—C9—C812.5 (3)C9—C8—C22—C23131.8 (2)
C7—C8—C9—C1175.0 (2)O4—C22—C23—C2423.3 (3)
C22—C8—C9—C116.3 (3)C8—C22—C23—C24154.3 (2)
C7—C8—C9—C104.0 (3)O4—C22—C23—C28155.5 (2)
C22—C8—C9—C10164.7 (2)C8—C22—C23—C2826.8 (3)
C3—C4—C10—C5178.0 (2)C28—C23—C24—C252.4 (4)
C3—C4—C10—C91.2 (4)C22—C23—C24—C25178.8 (2)
C6—C5—C10—C4179.8 (2)C23—C24—C25—C261.9 (4)
C6—C5—C10—C90.5 (4)C24—C25—C26—C270.5 (4)
C1—C9—C10—C43.5 (3)C24—C25—C26—Br2179.1 (2)
C8—C9—C10—C4177.4 (2)C25—C26—C27—C282.5 (4)
C1—C9—C10—C5175.8 (2)Br2—C26—C27—C28177.15 (18)
C8—C9—C10—C53.3 (3)C26—C27—C28—C232.0 (4)
C2—O1—C11—C12179.0 (2)C24—C23—C28—C270.4 (4)
C7—O2—C13—C14173.3 (2)C22—C23—C28—C27179.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg5 are the centroids of the C5–C10, C16–C21 and C1–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···O3i0.952.413.339 (3)167
C27—H27···O4ii0.952.503.439 (3)170
C11—H11B···Cg2iii0.992.753.632 (3)148
C11—H13B···Cg5iii0.992.893.838 (3)162
C14—H14C···Cg2iv0.982.78 (4)3.631 (3)151 (3)
C14—H14C···Cg5iv0.982.85 (4)3.632 (3)141 (3)
C12—H12A···Br1v0.97 (4)2.82 (5)3.634 (4)141 (3)
C26—Br2···Cg3vi1.90 (1)3.88 (1)5.626 (3)152 (1)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+3/2, z+1/2; (iv) x, y+3/2, z1/2; (v) x+2, y+2, z+1; (vi) x, y+2, z.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for technical advice.

Funding information

The authors gratefully acknowledge the financial support provided by Tokyo Ohka Foundation for The Promotion of Science and Technology (grant No. 246089).

References

First citationAtwood, J. L., Davies, J. E. D., MacNicol, D. D. & Vogtle, F. (1996). Comprehensive Supramolecular Chemistry, Vols. 1–11. Oxford: Pergamon.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL- 6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationDesiraju, G. R., Vittal, J. J. & Ramanan, A. (2011). Crystal Engin­eering. A Textbook. Singapore: World Scientific Publishing.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHubbard, T. A., Brown, A. J., Bell, I. A. W. & Cockroft, S. L. (2016). J. Am. Chem. Soc. 138, 15114–15117.  CrossRef CAS PubMed Google Scholar
First citationIida, K., Muto, T., Kobayashi, M., Iitsuka, H., Li, K., Yonezawa, N. & Okamoto, A. (2022). Lett. Org. Chem. 19, 757–765.  CSD CrossRef CAS Google Scholar
First citationIsogai, A., Tsumuki, T., Murohashi, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o71.  CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, Y., Nagasawa, A., Tsumuki, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2939.  CSD CrossRef IUCr Journals Google Scholar
First citationKobayashi, M., Sakamoto, R., Zhang, P., Zhao, Y., Li, K., Noguchi, K., Yonezawa, N. & Okamoto, A. (2023). Mol. Cryst. Liq. Cryst. 757, 107–124.  CSD CrossRef CAS Google Scholar
First citationLehn, J.-M. (1995). Supramolecular Chemistry: Concepts and Perspectives. New York: VCH.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2015). J. Synth. Org. Chem. Jpn, 73, 339–360.  Web of Science CrossRef CAS Google Scholar
First citationPrice, S. L. (2004). CrystEngComm, 6, 344–353.  CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasagawa, K., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSteiner, T. & Desiraju, G. R. (1998). Chem. Commun. pp. 891–892.  Web of Science CrossRef Google Scholar
First citationTanabe, J., Taura, D., Yamada, H., Furusho, Y. & Yashima, E. (2013). Chem. Sci. 4, 2960–2966.  CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net  Google Scholar
First citationWatanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds