research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Intra- and inter­molecular C—H⋯F hydrogen bonds in the crystal structure of 1,2-bis­­[2-(2,3,4,5-tetra­fluoro­phen­yl)ethyn­yl]benzene

crossmark logo

aChemistry and Biochemistry Department, Missouri State University, 901 South National Avenue, Springfield MO 65897, USA, and bDepartment of Chemistry, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI 54481, USA
*Correspondence e-mail: ericbosch@missouristate.edu

Edited by J. Reibenspies, Texas A & M University, USA (Received 23 September 2024; accepted 12 November 2024; online 22 November 2024)

The title mol­ecule, C22H6F8, crystallizes in the monoclinic space group P21/c with two unique mol­ecules in the asymmetric unit and Z = 8. Each mol­ecule features a short intra­molecular sp2-C—H⋯F hydrogen bond with H⋯F separations at 2.363 (14) and 2.270 (14) Å, corresponding to 91 and 87.5% of the sum of the van der Waals radii, and C—H⋯F angles of 158.3 (14) and 166.8 (14)°, respectively. Each mol­ecule also forms an inter­molecular bifurcated CH⋯(F)2 inter­action with H⋯F distances ranging from 2.500 (16) to 2.597 (17) Å.

1. Chemical context

Non-covalent inter­actions, including hydrogen bonding, halogen bonding and coordinate bonds, are incorporated in the design and deliberate formation of multicomponent supra­molecular solids with desired physical properties (Panja & Adams, 2021[Panja, S. & Adams, D. J. (2021). Chem. Soc. Rev. 50, 5165-5200.]). Amongst hydrogen bonds, the existence of C—H hydrogen bonds to O and N has long been recognized and extensively reviewed (Desiraju, 1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.]). The focus of this report is the lesser-known C—H⋯F hydrogen bond. The role of organic fluorine as a C—H hydrogen-bond acceptor, while controversial, is now accepted to be a weak inter­action (Cole & Taylor, 2022[Cole, J. C. & Taylor, R. (2022). Cryst. Growth Des. 22, 1352-1364.]). The title compound, 1,2-bis-(2,3,4,5-tetra­fluoro­phenyl­ethyn­yl) benzene, was specifically prepared to probe intra­molecular C—H⋯F hydrogen bonding. We had previously used the same framework to demonstrate intra­molecular halogen bonding (Widner et al., 2014[Widner, D. L., Knauf, Q. R., Merucci, M. T., Fritz, T. R., Sauer, J. S., Speetzen, E. D., Bosch, E. & Bowling, N. P. (2014). J. Org. Chem. 79, 6269-6278.]) and intra­molecular C—H⋯N hydrogen bonding (Bosch et al., 2015[Bosch, E., Bowling, N. P. & Darko, J. (2015). Cryst. Growth Des. 15, 1634-1641.]).

[Scheme 1]

2. Structural commentary

The compound C22H6F8 crystallizes in the monoclinic space group P21/c with two unique mol­ecules in the asymmetric unit. In each mol­ecule, as shown in Fig. 1[link], an H atom on one tetra­fluorphenyl ring forms an intra­molecular hydrogen bond to an F atom on the second tetra­fluoro­phenyl ring. The inter­molecular dihedral angle between the two core benzene rings, C1–C6 and C23–C28, is 5.34 (6)°. The intra­molecular C—H⋯F hydrogen bonds (Table 1[link]) have separations H5⋯F5 and H27⋯F13 of 2.270 (14) and 2.363 (14) Å and C—H⋯F angles of 166.8 (14) and 158.3 (14)°, respectively. These separations are 87.5 and 91.0% of the sum of the van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯F5 0.98 (1) 2.27 (1) 3.230 (2) 167 (1)
C44—H44⋯F14i 0.95 (1) 2.57 (2) 3.356 (2) 140 (1)
C44—H44⋯F15i 0.95 (1) 2.46 (2) 3.314 (2) 150 (1)
C27—H27⋯F13 0.96 (1) 2.36 (1) 3.278 (2) 158 (1)
C22—H22⋯F6ii 0.95 (2) 2.60 (2) 3.389 (2) 141 (2)
C22—H22⋯F7ii 0.95 (2) 2.50 (2) 3.345 (2) 148 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level and the intra­molecular C—H⋯F hydrogen bonds shown as dashed lines.

The two unique mol­ecules are essentially planar and coplanar in the crystal structure. The intra­molecularly hydrogen-bonded tetra­fluoro­phenyl rings are slightly twisted with respect the central diethynyl benzene ring. The intra­molecular dihedral angles between tetra­fluoro phenyl rings that are C—H⋯F hydrogen bonded are 13.01 (6)° between benzene rings C1–C6 and C17–C22 and 9.63 (6)° between benzene rings C23–C28 and C39–C44. The F⋯F contacts between the adjacent mol­ecules in the asymmetric unit are 3.0900 (15), 3.1719 (15) and 3.0223 (15)Å for F3⋯F10, F2⋯F11 and F3⋯F11, respectively. These separations are above the sum of the van der Waals radii of 2.80 Å.

3. Supra­molecular features

The two hydrogen atoms on the tetra­fluoro­phenyl rings that are not involved in intra­molecular hydrogen bonding (Table 1[link]) each have close contacts with two fluorine atoms on adjacent tetra­fluoro­phenyl rings labelled as ‘x’ and ‘y’ in Fig. 2[link]. The H⋯F separations in ‘x’, H22⋯F6i and H22⋯F7i, are 2.597 (17) and 2.500 (16) Å, respectively [symmetry code: (i) 1 − x, y − [{1\over 2}], −z − [{1\over 2}]] and those in ‘y’, H44⋯F14ii and H44⋯F15ii, are 2.574 (16) and 2.460 (15) Å, respectively [symmetry code: (ii) 2 − x, [{1\over 2}] + y, [{5\over 2}] − z].

[Figure 2]
Figure 2
Partial view of one sheet of mol­ecules in the crystal structure with bifurcated C—H⋯F inter­actions labeled ‘x’ and ‘y’.

The non-covalent inter­actions were investigated and visualized using Hirshfeld surface analysis (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) as shown in Fig. 3[link]. The red spots on the Hirshfeld surface represent close contacts with separations less than the sum of the van der Waals radii while the dark-blue areas correspond to areas where the separations are greater than the sum of the van der Waals radii. The red areas in the plane of the mol­ecules correspond to C—H⋯F hydrogen bonds with the hydrogen-bonded mol­ecules shown.

[Figure 3]
Figure 3
Hirshfeld surface for both mol­ecules in the asymmetric unit with dnorm mapped over the surface. Included are the mol­ecules within the same plane separated by less than 3.25 Å with C—H⋯F hydrogen bonds shown as green dashed lines. Close contacts related to π-stacked mol­ecules are labelled P1 to P4 (see text).

Also shown in this figure are several close contacts corresponding to π-stacking; labelled P1P4. Contacts P1 and P2 correspond to inter­actions between an alkynyl C atom and a tetra­fluoro­phenyl C atom. The separations for C38⋯C25i and C25⋯C8i are 3.282 (3) and 3.273 (3) Å respectively [symmetry code: (i) x, −y + [{3\over 2}], z − [{1\over 2}]]. Contact P3 is between an F atom and a tetra­fluoro­phenyl H atom while contact P4 is between two tetra­fluoro phenyl C atoms. The separations are 2.874 (16) and 3.321 (3) Å for F2⋯H5ii and C4⋯C19ii, respectively [symmetry code: (ii) x, −y + [{3\over 2}], z − [{1\over 2}]]. The planar sheets are π-stacked along the b-axis direction as shown in Fig. 4[link].

[Figure 4]
Figure 4
Partial view of the packing within the crystal structure along the b-axis.

The fingerprint plots of the close contacts revealed on the surface of each individual mol­ecule in the asymmetric unit are shown in Fig. 5[link] along with the corresponding percentage of the surface area. In both mol­ecules, the dominant inter­action is F⋯H and is largely between adjacent mol­ecules in the same plane. Within each fingerprint plot, the inter­actions with higher frequency are colored turquoise through green, yellow and red with red corresponding to the highest frequency. The C⋯C inter­action that is exclusively correlated to inter­actions between π-stacked mol­ecules has a high frequency of inter­actions focused on distances di and de of 1.8 Å corresponding to a ππ separation of 3.6 Å, typical for π-stacking.

[Figure 5]
Figure 5
The two-dimensional fingerprint plots delineated into F⋯H contacts, F ⋯C contacts, F⋯F contacts and C⋯C contacts for each of the individual mol­ecules in the asymmetric unit along with the relative percentages. In all cases, reciprocal contacts are included.

4. Database survey

A search of the Cambridge Structural Database (CSD2024.2.0, build 415171; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for C—H⋯F contacts between an aryl H and an aryl F atom with an H⋯F separation less than or equal to the sum of the van der Waals radii with the C—F⋯H angle between 90 and 180° was performed. The search was further limited to single-crystal structures of organic compounds with 3D coordinates determined, R factor less than or equal to 0.1, only non-disordered, non polymeric structures with no errors. This search yielded 7195 unique database entries, including duplicate structures and structures at multiple temperatures, for a total of 13,732 data points. Most of these data points (10,370) have H⋯F separations greater than 2.5 Å, as shown in Fig. 6[link]. The shorter separations are mostly found within sterically constrained environments. For example, in the structure of 1,2,4-tri­fluoro-3-phenyl­tri­phenyl­ene, an H—F separation of 2.018 Å, 77.6% of the sum of the van der Waals radii, is observed. This inter­action corresponds to a 1,6 H⋯F inter­action between atoms on adjacent phenyl rings in the planar tri­phenyl­ene core of 1,2,4-tri­fluoro-3-phenyl­tri­phenyl­ene (Pan et al., 2023[Pan, H. M., He, J., Yu, W. H., Hu, P., Wang, B. Q., Zhao, K. Q. & Donnio, B. (2023). J. Mater. Chem. C11, 14695-14704.]). This is an example of a sterically induced/enforced short intra­molecular inter­action. Similar, very short inter­molecular separations are reported for co-crystals containing anthracene and octa­fluoro­naphthalene with data collected under pressure (Friedrich et al., 2020[Friedrich, A., Collings, I. E., Dziubek, K. F., Fanetti, S., Radacki, K., Ruiz-Fuertes, J., Pellicer-Porres, J., Hanfland, M., Sieh, D., Bini, R., Clark, S. J. & Marder, T. B. (2020). J. Am. Chem. Soc. 142, 18907-18923.]). Thus, at 120 K and atmospheric pressure the shortest C—H⋯F contact is 2.481 Å (Collings et al. 2001[Collings, J. C., Roscoe, K. P., Thomas, R. L., Batsanov, A. S., Stimson, L. M., Howard, J. A. K. & Marder, T. B. (2001). New J. Chem. 25, 1410-1417.]), while under a pressure of 22.2 GPa at 293 K this separation is reduced to 1.944 Å.

[Figure 6]
Figure 6
Scatter plot of the hydrogen-bond distance (H⋯F) versus the C—F⋯H bond angle for single-crystal X-ray structures deposited in the CSD.

5. Synthesis and crystallization

The title compound, C22H6F8, as prepared by palladium-catalyzed Sonogashira coupling of 1,2,3,4-tetra­fluoro-5-iodo­benzene and 1,2-diethynyl­benzene. 1,2-Diethynyl­benzene was prepared from 1,2-di­iodo­benzene as previously described (Takahashi et al., 1980[Takahashi, S. Y., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, pp. 627-630.]) while all other chemicals were commercially available and used as received. 1,2-Diethynyl­benzene (0.22 g, 1.7 mmol) and 1,2,3,4-tetra­fluoro-5-iodo­benzene (0.88 g, 3.8 mmol) were dissolved in NEt3 (4 mL) in a pressure flask. Argon was bubbled through the solution for 10 minutes and PdCl2(PPh3)2 (50 mg, 0.06 mmol) and CuI (25 mg, 0.12 mmol) then added to the flask. The flask was sealed and stirred at 333 K for 24 h. The solvent was evaporated from the crude reaction mixture and the residue purified using flash column chromatography with progressively more polar mixtures of hexane and ethyl acetate to give the title compound as colorless crystals (0.43 g, 59%). Crystals suitable for single-crystal X-ray diffraction were grown on slow evaporation from a di­chloro­methane solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were located in difference maps. H atoms involved in C—H⋯F hydrogen-bonding inter­actions were restrained in the refinement with C—H = 0.95 (2) Å and Uiso(H) = 1.2Ueq(C). All other H atoms were treated as riding atoms in geometrically idealized positions with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C22H6F8
Mr 422.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 21.8447 (13), 13.0140 (8), 12.1123 (7)
β (°) 92.620 (1)
V3) 3439.8 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.25 × 0.25 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.672, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 44014, 7632, 5101
Rint 0.048
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.01
No. of reflections 7632
No. of parameters 557
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2. and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and X-SEED (Barbour, 2020[Barbour, L. J. (2020). J. Appl. Cryst. 53, 1141-1146.]).

Supporting information


Computing details top

1,2-Bis[2-(2,3,4,5-tetrafluorophenyl)ethynyl]benzene top
Crystal data top
C22H6F8F(000) = 1680
Mr = 422.27Dx = 1.631 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 21.8447 (13) ÅCell parameters from 7323 reflections
b = 13.0140 (8) Åθ = 2.3–27.1°
c = 12.1123 (7) ŵ = 0.16 mm1
β = 92.620 (1)°T = 100 K
V = 3439.8 (4) Å3Block, colourless
Z = 80.25 × 0.25 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
7632 independent reflections
Radiation source: fine-focus sealed tube5101 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 8.3660 pixels mm-1θmax = 27.2°, θmin = 1.8°
phi and ω scansh = 2828
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1616
Tmin = 0.672, Tmax = 0.746l = 1515
44014 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: diffmap
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0515P)2 + 1.115P]
where P = (Fo2 + 2Fc2)/3
7632 reflections(Δ/σ)max = 0.001
557 parametersΔρmax = 0.23 e Å3
4 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.77779 (5)0.93658 (8)0.51579 (9)0.0338 (3)
C10.79548 (8)0.86262 (14)0.58746 (14)0.0214 (4)
F20.75740 (5)0.73905 (9)0.45920 (8)0.0314 (3)
C20.78455 (8)0.76168 (14)0.55770 (14)0.0212 (4)
F30.79008 (5)0.58519 (8)0.60076 (9)0.0298 (3)
C30.80089 (8)0.68326 (14)0.62972 (15)0.0218 (4)
F40.84323 (5)0.63004 (8)0.80143 (9)0.0340 (3)
C40.82795 (8)0.70779 (14)0.73179 (15)0.0227 (4)
F50.92433 (5)0.84712 (8)0.98359 (9)0.0322 (3)
C50.83980 (8)0.80741 (14)0.76191 (15)0.0235 (4)
F60.97196 (5)0.70715 (8)1.12628 (9)0.0321 (3)
C60.82350 (8)0.88797 (14)0.68959 (14)0.0207 (4)
F71.01924 (5)0.76616 (9)1.32791 (9)0.0320 (3)
C70.83445 (8)0.99237 (15)0.72119 (15)0.0233 (4)
F81.01963 (5)0.96706 (9)1.38461 (9)0.0367 (3)
C80.84329 (8)1.07804 (14)0.75469 (15)0.0216 (4)
F90.71615 (5)0.16630 (8)0.47865 (8)0.0280 (3)
C90.84968 (8)1.18143 (13)0.79439 (14)0.0192 (4)
F100.74191 (5)0.36203 (8)0.53715 (8)0.0291 (3)
C100.82886 (8)1.26325 (14)0.72793 (15)0.0215 (4)
H100.8121711.2501300.6554980.026*
F110.72140 (5)0.51762 (8)0.39096 (9)0.0273 (3)
C110.83237 (8)1.36323 (14)0.76679 (15)0.0229 (4)
H110.8177861.4182060.7211800.027*
F120.67428 (5)0.47675 (8)0.18546 (9)0.0314 (3)
C120.85710 (8)1.38342 (14)0.87206 (15)0.0245 (4)
H120.8591251.4521120.8985040.029*
F130.57293 (5)0.25053 (8)0.01742 (8)0.0246 (2)
C130.87890 (8)1.30360 (14)0.93890 (15)0.0225 (4)
H130.8961611.3181061.0106180.027*
F140.52464 (5)0.39200 (8)0.12408 (8)0.0275 (3)
C140.87566 (8)1.20176 (14)0.90146 (15)0.0199 (4)
F150.47673 (5)0.33454 (8)0.32557 (8)0.0269 (3)
C150.89857 (8)1.12068 (14)0.97172 (14)0.0212 (4)
F160.47389 (5)0.13386 (8)0.38270 (8)0.0274 (3)
C160.91961 (8)1.05709 (14)1.03384 (15)0.0230 (4)
C170.94577 (8)0.98316 (14)1.11011 (15)0.0210 (4)
C180.94714 (8)0.87951 (14)1.08257 (14)0.0220 (4)
C190.97165 (8)0.80652 (14)1.15475 (15)0.0226 (4)
C200.99584 (8)0.83679 (14)1.25661 (15)0.0234 (4)
C210.99569 (8)0.94005 (15)1.28511 (15)0.0243 (4)
C220.97135 (8)1.01266 (15)1.21354 (15)0.0231 (4)
C230.70518 (8)0.24157 (14)0.40448 (14)0.0192 (4)
C240.71860 (8)0.34157 (14)0.43517 (14)0.0198 (4)
C250.70821 (8)0.42049 (14)0.36111 (15)0.0204 (4)
C260.68407 (8)0.39796 (14)0.25635 (14)0.0205 (4)
C270.67024 (8)0.29921 (14)0.22483 (14)0.0195 (4)
C280.68050 (8)0.21840 (14)0.29938 (14)0.0189 (4)
C290.66737 (8)0.11407 (14)0.26837 (14)0.0204 (4)
C300.65718 (8)0.02747 (14)0.23943 (14)0.0198 (4)
C310.64841 (7)0.07709 (13)0.20536 (14)0.0177 (4)
C320.66839 (8)0.15734 (14)0.27533 (15)0.0222 (4)
H320.6864370.1419610.3462550.027*
C330.66212 (8)0.25874 (14)0.24218 (15)0.0238 (4)
H330.6754550.3124470.2906660.029*
C340.63633 (8)0.28225 (14)0.13805 (16)0.0241 (4)
H340.6326770.3518780.1151400.029*
C350.61592 (8)0.20398 (14)0.06754 (15)0.0205 (4)
H350.5984330.2204170.0035190.025*
C360.62093 (7)0.10131 (13)0.10035 (14)0.0179 (4)
C370.59700 (8)0.02175 (13)0.02839 (14)0.0181 (4)
C380.57445 (8)0.04127 (14)0.03304 (14)0.0195 (4)
C390.54855 (7)0.11567 (13)0.10834 (14)0.0176 (4)
C400.54873 (7)0.21924 (13)0.08080 (13)0.0176 (4)
C410.52474 (8)0.29280 (13)0.15302 (14)0.0191 (4)
C420.50012 (8)0.26319 (13)0.25523 (14)0.0195 (4)
C430.49908 (8)0.16028 (13)0.28360 (14)0.0194 (4)
C440.52294 (8)0.08682 (14)0.21200 (15)0.0200 (4)
H50.8594 (7)0.8242 (13)0.8339 (12)0.015 (4)*
H440.5228 (8)0.0162 (11)0.2305 (14)0.018 (5)*
H270.6514 (7)0.2864 (13)0.1527 (12)0.014 (4)*
H220.9727 (8)1.0835 (12)1.2336 (16)0.026 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0503 (7)0.0241 (6)0.0262 (6)0.0040 (5)0.0059 (5)0.0067 (5)
C10.0253 (10)0.0191 (9)0.0195 (9)0.0047 (7)0.0006 (7)0.0053 (7)
F20.0432 (7)0.0315 (6)0.0186 (6)0.0005 (5)0.0095 (5)0.0030 (5)
C20.0226 (9)0.0255 (10)0.0154 (9)0.0020 (7)0.0022 (7)0.0020 (7)
F30.0379 (6)0.0175 (6)0.0334 (6)0.0002 (5)0.0056 (5)0.0036 (5)
C30.0235 (9)0.0167 (9)0.0252 (10)0.0004 (7)0.0008 (7)0.0035 (7)
F40.0479 (7)0.0234 (6)0.0295 (6)0.0036 (5)0.0115 (5)0.0081 (5)
C40.0266 (10)0.0186 (10)0.0226 (9)0.0046 (7)0.0027 (7)0.0048 (8)
F50.0398 (7)0.0300 (6)0.0255 (6)0.0037 (5)0.0113 (5)0.0024 (5)
C50.0250 (10)0.0238 (10)0.0212 (10)0.0022 (8)0.0030 (8)0.0010 (8)
F60.0379 (7)0.0192 (6)0.0384 (7)0.0034 (5)0.0070 (5)0.0005 (5)
C60.0217 (9)0.0185 (9)0.0220 (9)0.0015 (7)0.0020 (7)0.0014 (7)
F70.0364 (6)0.0286 (6)0.0301 (6)0.0063 (5)0.0084 (5)0.0103 (5)
C70.0233 (10)0.0234 (10)0.0231 (10)0.0021 (7)0.0007 (7)0.0001 (8)
F80.0482 (7)0.0361 (7)0.0244 (6)0.0038 (6)0.0141 (5)0.0029 (5)
C80.0215 (9)0.0220 (10)0.0211 (9)0.0020 (7)0.0011 (7)0.0014 (8)
F90.0400 (7)0.0231 (6)0.0207 (6)0.0033 (5)0.0024 (5)0.0060 (4)
C90.0175 (8)0.0174 (9)0.0227 (9)0.0001 (7)0.0008 (7)0.0011 (7)
F100.0370 (6)0.0323 (6)0.0172 (5)0.0008 (5)0.0077 (5)0.0052 (5)
C100.0204 (9)0.0237 (10)0.0203 (9)0.0008 (7)0.0002 (7)0.0034 (8)
F110.0329 (6)0.0173 (6)0.0313 (6)0.0022 (4)0.0020 (5)0.0053 (5)
C110.0228 (9)0.0191 (9)0.0267 (10)0.0023 (7)0.0006 (7)0.0070 (8)
F120.0454 (7)0.0208 (6)0.0272 (6)0.0037 (5)0.0070 (5)0.0072 (5)
C120.0268 (10)0.0167 (9)0.0301 (10)0.0009 (7)0.0034 (8)0.0010 (8)
F130.0309 (6)0.0263 (6)0.0157 (5)0.0022 (4)0.0079 (4)0.0021 (4)
C130.0233 (9)0.0224 (10)0.0216 (10)0.0013 (7)0.0014 (7)0.0009 (8)
F140.0409 (7)0.0160 (5)0.0249 (6)0.0038 (5)0.0063 (5)0.0018 (4)
C140.0175 (8)0.0188 (9)0.0233 (9)0.0006 (7)0.0008 (7)0.0040 (7)
F150.0367 (6)0.0211 (6)0.0218 (6)0.0040 (5)0.0093 (5)0.0074 (4)
C150.0211 (9)0.0211 (10)0.0212 (9)0.0003 (7)0.0005 (7)0.0005 (8)
F160.0377 (6)0.0263 (6)0.0171 (5)0.0037 (5)0.0113 (5)0.0001 (4)
C160.0226 (9)0.0232 (10)0.0232 (10)0.0005 (8)0.0011 (7)0.0003 (8)
C170.0189 (9)0.0205 (9)0.0236 (9)0.0020 (7)0.0004 (7)0.0042 (8)
C180.0205 (9)0.0249 (10)0.0203 (9)0.0005 (7)0.0031 (7)0.0017 (8)
C190.0217 (9)0.0177 (9)0.0283 (10)0.0031 (7)0.0013 (7)0.0008 (8)
C200.0214 (9)0.0236 (10)0.0248 (10)0.0041 (7)0.0025 (7)0.0077 (8)
C210.0255 (10)0.0259 (10)0.0211 (9)0.0003 (8)0.0038 (7)0.0001 (8)
C220.0240 (10)0.0201 (10)0.0249 (10)0.0009 (7)0.0011 (8)0.0010 (8)
C230.0198 (9)0.0202 (10)0.0176 (9)0.0037 (7)0.0010 (7)0.0030 (7)
C240.0193 (9)0.0251 (10)0.0145 (8)0.0005 (7)0.0030 (7)0.0037 (7)
C250.0225 (9)0.0156 (9)0.0231 (9)0.0003 (7)0.0004 (7)0.0035 (7)
C260.0225 (9)0.0201 (9)0.0188 (9)0.0032 (7)0.0010 (7)0.0050 (7)
C270.0210 (9)0.0213 (10)0.0158 (9)0.0015 (7)0.0027 (7)0.0010 (7)
C280.0179 (8)0.0203 (9)0.0185 (9)0.0010 (7)0.0020 (7)0.0021 (7)
C290.0197 (9)0.0225 (10)0.0190 (9)0.0014 (7)0.0001 (7)0.0005 (8)
C300.0195 (9)0.0231 (10)0.0163 (9)0.0006 (7)0.0023 (7)0.0015 (7)
C310.0174 (8)0.0168 (9)0.0187 (9)0.0007 (7)0.0006 (7)0.0021 (7)
C320.0237 (9)0.0230 (10)0.0193 (9)0.0020 (7)0.0047 (7)0.0032 (8)
C330.0237 (9)0.0197 (10)0.0276 (10)0.0024 (7)0.0030 (8)0.0088 (8)
C340.0249 (10)0.0165 (9)0.0307 (10)0.0023 (7)0.0025 (8)0.0019 (8)
C350.0206 (9)0.0217 (10)0.0191 (9)0.0000 (7)0.0025 (7)0.0002 (7)
C360.0166 (8)0.0182 (9)0.0190 (9)0.0004 (7)0.0002 (7)0.0035 (7)
C370.0191 (9)0.0179 (9)0.0170 (9)0.0007 (7)0.0016 (7)0.0006 (7)
C380.0187 (9)0.0215 (10)0.0182 (9)0.0005 (7)0.0007 (7)0.0012 (7)
C390.0148 (8)0.0211 (9)0.0170 (9)0.0001 (7)0.0002 (7)0.0047 (7)
C400.0187 (9)0.0208 (9)0.0130 (8)0.0004 (7)0.0027 (7)0.0012 (7)
C410.0220 (9)0.0134 (9)0.0219 (9)0.0004 (7)0.0007 (7)0.0004 (7)
C420.0227 (9)0.0180 (9)0.0173 (9)0.0011 (7)0.0043 (7)0.0066 (7)
C430.0228 (9)0.0197 (9)0.0153 (8)0.0026 (7)0.0044 (7)0.0002 (7)
C440.0227 (9)0.0174 (9)0.0195 (9)0.0027 (7)0.0029 (7)0.0015 (7)
Geometric parameters (Å, º) top
F1—C11.341 (2)C16—C171.434 (2)
C1—C21.380 (3)C17—C181.390 (3)
C1—C61.394 (2)C17—C221.402 (3)
F2—C21.341 (2)C18—C191.382 (2)
C2—C31.379 (3)C19—C201.377 (3)
F3—C31.342 (2)C20—C211.387 (3)
C3—C41.383 (3)C21—C221.373 (3)
F4—C41.349 (2)C22—H220.953 (15)
C4—C51.368 (3)C23—C241.381 (2)
F5—C181.345 (2)C23—C281.393 (2)
C5—C61.402 (3)C24—C251.376 (2)
C5—H50.978 (13)C25—C261.383 (2)
F6—C191.339 (2)C26—C271.370 (2)
C6—C71.429 (3)C27—C281.398 (2)
F7—C201.346 (2)C27—H270.963 (13)
C7—C81.199 (3)C28—C291.434 (3)
F8—C211.339 (2)C29—C301.198 (2)
C8—C91.433 (3)C30—C311.432 (2)
F9—C231.3433 (19)C31—C321.402 (2)
C9—C101.398 (2)C31—C361.417 (2)
C9—C141.417 (2)C32—C331.384 (3)
F10—C241.3411 (19)C32—H320.9500
C10—C111.385 (3)C33—C341.392 (3)
C10—H100.9500C33—H330.9500
F11—C251.342 (2)C34—C351.389 (2)
C11—C121.387 (3)C34—H340.9500
C11—H110.9500C35—C361.397 (2)
F12—C261.3483 (19)C35—H350.9500
C12—C131.388 (3)C36—C371.437 (2)
C12—H120.9500C37—C381.198 (2)
F13—C401.3429 (19)C38—C391.429 (2)
C13—C141.401 (3)C39—C401.388 (2)
C13—H130.9500C39—C441.402 (2)
F14—C411.338 (2)C40—C411.383 (2)
C14—C151.432 (2)C41—C421.382 (2)
F15—C421.3451 (19)C42—C431.383 (2)
C15—C161.196 (2)C43—C441.377 (2)
F16—C431.3422 (19)C44—H440.945 (14)
F1—C1—C2118.22 (16)F9—C23—C24118.55 (15)
F1—C1—C6120.41 (16)F9—C23—C28120.21 (16)
C2—C1—C6121.37 (16)C24—C23—C28121.24 (16)
F2—C2—C3119.45 (16)F10—C24—C25119.78 (16)
F2—C2—C1120.37 (16)F10—C24—C23120.13 (16)
C3—C2—C1120.18 (16)C25—C24—C23120.09 (16)
F3—C3—C2120.09 (16)F11—C25—C24120.03 (15)
F3—C3—C4121.07 (16)F11—C25—C26120.99 (16)
C2—C3—C4118.84 (16)C24—C25—C26118.98 (16)
F4—C4—C5120.36 (16)F12—C26—C27120.61 (16)
F4—C4—C3117.97 (16)F12—C26—C25117.76 (16)
C5—C4—C3121.66 (17)C27—C26—C25121.63 (16)
C4—C5—C6120.17 (17)C26—C27—C28119.92 (16)
C4—C5—H5121.2 (10)C26—C27—H27119.7 (11)
C6—C5—H5118.6 (10)C28—C27—H27120.3 (11)
C1—C6—C5117.78 (16)C23—C28—C27118.14 (16)
C1—C6—C7121.60 (16)C23—C28—C29120.59 (16)
C5—C6—C7120.61 (16)C27—C28—C29121.26 (16)
C8—C7—C6175.7 (2)C30—C29—C28178.0 (2)
C7—C8—C9176.33 (19)C29—C30—C31176.97 (19)
C10—C9—C14119.40 (16)C32—C31—C36118.97 (16)
C10—C9—C8119.84 (16)C32—C31—C30119.98 (16)
C14—C9—C8120.75 (16)C36—C31—C30121.03 (15)
C11—C10—C9120.56 (17)C33—C32—C31120.72 (16)
C11—C10—H10119.7C33—C32—H32119.6
C9—C10—H10119.7C31—C32—H32119.6
C10—C11—C12120.24 (17)C32—C33—C34120.19 (16)
C10—C11—H11119.9C32—C33—H33119.9
C12—C11—H11119.9C34—C33—H33119.9
C11—C12—C13120.22 (17)C35—C34—C33120.07 (17)
C11—C12—H12119.9C35—C34—H34120.0
C13—C12—H12119.9C33—C34—H34120.0
C12—C13—C14120.54 (17)C34—C35—C36120.50 (16)
C12—C13—H13119.7C34—C35—H35119.7
C14—C13—H13119.7C36—C35—H35119.7
C13—C14—C9119.01 (16)C35—C36—C31119.51 (15)
C13—C14—C15119.58 (16)C35—C36—C37119.69 (15)
C9—C14—C15121.41 (16)C31—C36—C37120.79 (16)
C16—C15—C14176.2 (2)C38—C37—C36176.52 (19)
C15—C16—C17178.3 (2)C37—C38—C39178.59 (19)
C18—C17—C22117.91 (16)C40—C39—C44118.14 (15)
C18—C17—C16120.57 (17)C40—C39—C38120.52 (15)
C22—C17—C16121.51 (17)C44—C39—C38121.34 (16)
F5—C18—C19117.74 (16)F13—C40—C41118.21 (15)
F5—C18—C17120.46 (15)F13—C40—C39120.25 (15)
C19—C18—C17121.80 (17)C41—C40—C39121.54 (15)
F6—C19—C20120.05 (16)F14—C41—C42119.90 (15)
F6—C19—C18120.49 (16)F14—C41—C40120.48 (15)
C20—C19—C18119.46 (17)C42—C41—C40119.61 (16)
F7—C20—C19119.90 (16)F15—C42—C41119.73 (15)
F7—C20—C21120.46 (16)F15—C42—C43120.66 (15)
C19—C20—C21119.65 (16)C41—C42—C43119.60 (15)
F8—C21—C22120.78 (17)F16—C43—C44120.88 (16)
F8—C21—C20118.23 (16)F16—C43—C42118.15 (15)
C22—C21—C20120.98 (17)C44—C43—C42120.97 (16)
C21—C22—C17120.18 (18)C43—C44—C39120.13 (17)
C21—C22—H22119.9 (12)C43—C44—H44121.9 (11)
C17—C22—H22119.9 (12)C39—C44—H44118.0 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···F50.98 (1)2.27 (1)3.230 (2)167 (1)
C44—H44···F14i0.95 (1)2.57 (2)3.356 (2)140 (1)
C44—H44···F15i0.95 (1)2.46 (2)3.314 (2)150 (1)
C27—H27···F130.96 (1)2.36 (1)3.278 (2)158 (1)
C22—H22···F6ii0.95 (2)2.60 (2)3.389 (2)141 (2)
C22—H22···F7ii0.95 (2)2.50 (2)3.345 (2)148 (2)
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x+2, y+1/2, z+5/2.
 

Acknowledgements

EB acknowledges the Missouri State University Provost Incentive Fund for the purchase of the X-ray diffractometer used in this contribution.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. RUI 1306284).

References

First citationBarbour, L. J. (2020). J. Appl. Cryst. 53, 1141–1146.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBosch, E., Bowling, N. P. & Darko, J. (2015). Cryst. Growth Des. 15, 1634–1641.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2012). APEX2. and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCole, J. C. & Taylor, R. (2022). Cryst. Growth Des. 22, 1352–1364.  CrossRef CAS Google Scholar
First citationCollings, J. C., Roscoe, K. P., Thomas, R. L., Batsanov, A. S., Stimson, L. M., Howard, J. A. K. & Marder, T. B. (2001). New J. Chem. 25, 1410–1417.  CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296.  CrossRef CAS Web of Science Google Scholar
First citationFriedrich, A., Collings, I. E., Dziubek, K. F., Fanetti, S., Radacki, K., Ruiz-Fuertes, J., Pellicer-Porres, J., Hanfland, M., Sieh, D., Bini, R., Clark, S. J. & Marder, T. B. (2020). J. Am. Chem. Soc. 142, 18907–18923.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPan, H. M., He, J., Yu, W. H., Hu, P., Wang, B. Q., Zhao, K. Q. & Donnio, B. (2023). J. Mater. Chem. C11, 14695–14704.  Google Scholar
First citationPanja, S. & Adams, D. J. (2021). Chem. Soc. Rev. 50, 5165–5200.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, S. Y., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, pp. 627–630.  CrossRef Google Scholar
First citationWidner, D. L., Knauf, Q. R., Merucci, M. T., Fritz, T. R., Sauer, J. S., Speetzen, E. D., Bosch, E. & Bowling, N. P. (2014). J. Org. Chem. 79, 6269–6278.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds