research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld-surface analysis of an etoxazole metabolite designated R13

crossmark logo

aDepartment of Physical Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru-560 035, India, bDepartment of Physical Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru-560 035, India, cNational Hill View Public School, Bengaluru-560 098, India, dDepartment of Chemistry, T. John Institute of Technology, Bengaluru-560 083, India, eDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, and fDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 30 October 2024; accepted 2 November 2024; online 8 November 2024)

The etoxazole metabolite R13, systematic name 4-(4-tert-butyl-2-eth­oxy­phen­yl)-2-(2,6-di­fluoro­phen­yl)oxazole (C21H21F2NO2), results from the oxidation of etoxazole, a chitin synthesis inhibitor belonging to the oxazoline class, widely used as an insecticide/acaricide since 1998. The structure of R13 features a central oxazole ring with attached 2,6-di­fluoro­phenyl and 4-t-butyl-2-eth­oxy­phenyl moieties. The overall conformation gives dihedral angles between these rings and the oxazole of 24.91 (5)° (with di­fluoro­phen­yl) and 15.30 (6)° (with t-butyl-eth­oxy­phen­yl), indicating an overall deviation from planarity. Additionally, torsion angles of the eth­oxy and t-butyl groups define the orientation of these substituents relative to their benzene ring. In the crystal packing, no significant hydrogen bonds are present, but a Hirshfeld surface analysis highlights weak inter­molecular contacts leading to ππ-stacked dimers linked by weak C—H⋯N contacts. The packing analysis confirms that most inter­molecular inter­actions involve hydrogen atoms.

1. Chemical context

The etoxazole metabolite designated R13, systematic name 4-(4-t-butyl-2-eth­oxy­phen­yl)-2-(2,6-di­fluoro­phen­yl)oxazole (C21H21F2NO2), is derived from etoxazole (C21H23F2NO2), an organofluorine chitin synthesis inhibitor. Etoxazole is a member of the oxazoline class of insecticides, having been developed as a new-generation insecticide and acaricide (Li et al., 2014[Wei, L., Hua, R., Li, M., Huang, Y., Li, S., He, Y. & Shen, Z. (2014). J. Insect Sci. 14, 104.]). It has been used globally since 1998 (Park et al., 2020[Park, W., Lim, W., Park, S., Whang, K.-Y. & Song, G. (2020). Environ. Pollut. 257, 113480.]). Etoxazole is readily absorbed by plants and translocates locally within leaves. The insecticidal mode of action of etoxazole is via the inhibition of chitin biosynthesis. A comprehensive review of the biological activities of oxazole derivatives was published by Kakkar & Narasimhan (2019[Kakkar, S. & Narasimhan, B. (2019). BMC Chem. 13, 16.]), while Joshi et al. (2023[Joshi, S., Mehra, M., Singh, R. & Kakkar, S. (2023). Egypt. J. Basic Appl. Sci, 10, 218-239.]) provided a detailed review of their chemistry. Recent research has also assessed the risks of oxidative stress and multiple toxicities induced by etoxazole (Macar et al., 2022[Macar, O., Kalefetoğlu Macar, T., Çavuşoğlu, K. & Yalçın, E. (2022). Sci. Rep. 12, 20453.]). The synthesis and activity of novel acaricidal/insecticidal 2,4-diphenyl-1,3-oxazolines were reported by Suzuki et al. (2002[Suzuki, J., Ishida, T., Kikuchi, Y., Ito, Y., Morikawa, C., Tsukidate, Y., Tanji, I., Ota, Y. & Toda, K. (2002). J. Pestic. Sci. 27, 1-8.]). It is well established that the key transformation of etoxazole in plants and animals involves oxidation of the oxazole ring, leading to the formation of the R13 metabolite (APVMA, 2024[APVMA (2024). Australian Pesticide and Veterinary Medicines Authority, pp. 17-18.]).

We have recently reported the crystal structures of phenyl­pyrazole-based insecticides (Priyanka et al., 2022[Priyanka, P., Jayanna, B. K., Sunil Kumar, Y. C., Shreenivas, M. T., Srinivasa, G. R., Divakara, T. R., Yathirajan, H. S. & Parkin, S. (2022). Acta Cryst. E78, 1084-1088.]; Vinaya et al., 2023[Vinaya, Basavaraju, Y. B., Srinivasa, G. R., Shreenivas, M. T., Yathirajan, H. S. & Parkin, S. (2023). Acta Cryst. E79, 54-59.]). The crystal structure of 2-(3-methyl-2-nitro­phen­yl)-4,5-di­hydro-1,3-oxazole, an inter­mediate in the synthesis of anthranilamide insecticides, was reported by Lei et al. (2009[Lei, D., Yang, H., Li, B. & Kang, Z. (2009). Acta Cryst. E65, o54.]). Additionally, the crystal structure of ethyl 3-(4-chloro­phen­yl)-5-[(E)-2-(di­methyl­amino)­ethen­yl]-1,2-oxazole-4-carboxyl­ate was described by Efimov et al. (2015[Efimov, I., Slepukhin, P. & Bakulev, V. (2015). Acta Cryst. E71, o1028.]), and the structure of the insecticide fipronil was published by Park et al. (2017[Park, H., Kim, J., Kwon, E. & Kim, T. H. (2017). Acta Cryst. E73, 1472-1474.]). Given the significance of etoxazole, we present in this paper the crystal structure of its metabolite, R13.

[Scheme 1]

2. Structural commentary

The crystal structure of R13 is monoclinic, space-group type C2/c. The mol­ecular structure (Fig. 1[link]) consists of three substituted rings: a central oxazole ring flanked by a 2,6-di­fluoro­phenyl ring attached to the oxazole carbon between the nitro­gen and oxygen atoms, and a 4-t-butyl-2-eth­oxy­phenyl group attached to the oxazole carbon on the opposite side of the nitro­gen. There are no unusual bond lengths or angles within the mol­ecule.

[Figure 1]
Figure 1
An ellipsoid plot of R13 (50% probability). Hydrogen atoms are shown as circles of arbitrary radius.

The overall conformation is primarily defined by the dihedral angles between the oxazole and di­fluoro­phenyl rings [24.91 (5)°], and between the oxazole and t-butyl-2-eth­oxy­phenyl rings [15.30 (6)°]. The dihedral angle between the two benzene rings is 11.56 (6)°. These values indicate that the mol­ecule deviates from planarity, mostly due to the tilt of the oxazole ring relative to its attached substituents. An intra­molecular close contact between H2 and O2 (Table 1[link]) is flagged as a ‘potential’ hydrogen bond by SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), but not by Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Table 1
Close contacts (Å, °) for R13

Weak hydrogen bonds        
D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.95 2.29 2.7807 (12) 111.1
C19i—H19i⋯N 0.95 2.61 3.3494 (14) 134.7
ππ stacks        
Ring 1⋯ring 2   Distance Dihedral angle  
Ox⋯Oxii(inter­planar)   3.3426 (11) 0 (parallel)  
Cg(Ox)⋯Cg(Ox)ii   3.3894 (11) 0 (parallel)  
Cg(C4–C9)⋯Cg(C16–C21)ii   3.9439 (11) 11.56 (6)  
Abbreviations: Ox = oxazole; Cg = centroid. Symmetry codes: (i) = [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (ii) = [{1\over 2}] − x, [{3\over 2}] − y, 1 − z.

Further degrees of freedom in the structure are characterized by torsion angles, specifically the positioning of the eth­oxy group, defined by C4—C9—O2—C10 [176.53 (9)°] and C9—O2—C10—C11 [174.49 (9)°], and the relative orientation of the t-butyl group to its attached benzene ring, indicated by torsion C6—C7—C12—C13 [−177.08 (9)°].

3. Supra­molecular features

There are no especially strong inter­molecular inter­actions in the crystal packing of R13. The default geometric search for hydrogen-bond type contacts in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) suggests no potential inter­molecular hydrogen bonds. A plot of the Hirshfeld surface (HS) mapped over dnorm (Fig. 2[link]a) in CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), however, reveals a pair of small red spots representing close contacts of the form C19i—H19i⋯N1 [symmetry code: (i) = [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z]. These are necessarily weak, as evident from the DA distance and D—H⋯A angle given in Table 1[link]. The remainder of the HS mapped over dnorm is a largely featureless expanse of blue and white (contact distances larger than and equal to the sum of van der Waals radii, respectively). The HS mapped over ‘shape index’ (Fig. 2[link]b), however, reveals pairs of juxtaposed, roughly triangular, blue and red regions that are a characteristic signature of ππ-stacking inter­actions (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The inter­planar separation of oxazole ring N1–C1–O1–C2–C3 to its inversion-related counterpart [via symmetry operation (ii) [{1\over 2}] − x, [{3\over 2}] − y, 1 − z] is 3.3426 (11) Å. Mutual overlap of benzene rings C4–C9 and C16ii–C21ii (and vice versa) is less distinct; the centroid–centroid distance is 3.9439 (11) Å and the rings are not parallel, but mis-aligned by 11.56 (6)° (Table 1[link]). The manner in which these ππ inter­actions as well as the weak hydrogen-bond-like contacts combine in the crystal packing is shown in Fig. 3[link]. Hirshfeld surface fingerprint plots qu­anti­fying the atom–atom contact coverages are given in Fig. 4[link], showing that the vast majority of inter­molecular contacts involve hydrogen.

[Figure 2]
Figure 2
Two views of the Hirshfeld surface of R13 showing: (a) the surface rendered as dnorm, highlighting close contacts of the form C19i—H19i⋯N1 [symmetry code: (i) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z] as small red spots; (b) the surface rendered by ‘shape index’, which provides evidence of ππ stacking as opposing blue and red roughly triangular regions at each of the oxazole and benzene rings.
[Figure 3]
Figure 3
A partial packing plot of R13 showing dimers resulting from the ππ stacking (indicated by dotted lines), and close C—H⋯N contacts between dimers (dashed lines).
[Figure 4]
Figure 4
Two-dimensional fingerprint plots qu­anti­fying the various atom–atom contact coverages present in the crystal packing: (a) H⋯H = 46.5%; (b) H⋯F/F⋯H = 18.1%; (c) H⋯C/C⋯H = 16.6%; (d) C⋯C = 5.6%; (e) H⋯O/O⋯H = 5.4%; (f) H⋯N/N⋯H = 3.3%.

4. Database survey

A search of the CSD (v5.45 with updates as of March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using a fragment consisting of the three rings of R13, but with the fluorine, eth­oxy, and t-butyl substituents removed and the double bonds of the oxazole ring specified as ‘any’ type of bond, returned 336 hits. The latter criterion ensures that entries with both oxazole and di­hydro-oxazole five-membered rings would be caught. A pared-down fragment without eth­oxy or t-butyl, but with the two fluorine atoms included gave just two matches, CSD refcodes DOGMEV and LIYZUS. Structure DOGMEV (Roque et al., 2023[Roque, J. B., Shimozono, A. M., Pabst, T. P., Hierlmeier, G., Peterson, P. O. & Chirik, P. J. (2023). Science, 382, 1165-1170.]), or 4-(4-t-butyl-2-eth­oxy­phen­yl)-2-[4-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)-2,6-di­fluoro­phen­yl]-4,5-di­hydro-1,3-oxazole, has a di­methyl­dioxaborinanyl group attached at the 4-position of the difluorinated benzene ring and a di­hydro-oxazole five-membered ring (i.e., just one double bond, as in etoxazole). Structure LIYZUS (Saha et al., 2023[Saha, A., Sen, C., Guin, S., Das, C., Maiti, D., Sen, S. & Maiti, D. (2023). Angew. Chem. Int. Ed. 62, e202308916.]) is 5-eth­oxy-2-(penta­fluoro­phen­yl)-4-phenyl-1,3-oxazole, which has an oxazole ring (i.e., two double bonds) as per R13, but with a penta­fluoro­phenyl ring at the oxazole 2-position, an unsubstituted phenyl at the 4-position and an eth­oxy group at the 5-position.

5. Synthesis and crystallization

5.0 g of etoxazole were placed in a 100 mL round-bottom flask and heated in a controlled manner at 2 K min−1 to 377 K, i.e., just past its melting point (374–375 K). After cooling to RT, the resulting solid was dissolved in 10 ml of 100% hexane. The resulting solution containing about 40% etoxazole, 40% of the R13 metabolite, and 20% unknown products was purified by column chromatography using 100% hexane as the mobile phase and 60-120 mesh size silica gel as the stationary phase. It was then recrystallized from 100% hexane, giving crystals of R13 suitable for X-ray analysis.

NMR spectra were recorded on an SA-AGILENT 400 MHz NMR spectrometer: 1H NMR: CDCl3 (400 MHz, δ ppm): 1.310–1.313 [s, 9H, C(CH3)3]; 1.524–1.559 (t, 3H, J = 6.8 Hz, CH3); 4.176–4.228 (q, 2H, J = 7.2 Hz, CH2); 6.96–7.09 (m, 4H, aromatic); 7.375–7.417 (m, 1H, aromatic); 8.116–8.135 (d, 1H, aromatic); 8.326 (s, 1H, oxazole).

6. Refinement

Crystal data, data collection, and structure refinement details are given in Table 2[link]. All hydrogens were present in difference-Fourier maps, but were subsequently included in the refinement using riding models, with constrained distances of 0.95 Å (R2CH), 0.99 Å (R2CH2) and 0.98 Å (RCH3). Uiso(H) parameters were set to either 1.2Ueq or 1.5Ueq (RCH3 only) of the attached carbon.

Table 2
Experimental details

Crystal data
Chemical formula C21H21F2NO2
Mr 357.39
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 18.4793 (6), 10.4036 (3), 18.5669 (7)
β (°) 93.035 (1)
V3) 3564.5 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.20 × 0.19 × 0.11
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.904, 0.959
No. of measured, independent and observed [I > 2σ(I)] reflections 41370, 4095, 3558
Rint 0.061
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.07
No. of reflections 4095
No. of parameters 239
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.22
Computer programs: APEX5 (Bruker, 2023[Bruker (2023). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

4-(4-tert-Butyl-2-ethoxyphenyl)-2-(2,6-difluorophenyl)oxazole top
Crystal data top
C21H21F2NO2F(000) = 1504
Mr = 357.39Dx = 1.332 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.4793 (6) ÅCell parameters from 9910 reflections
b = 10.4036 (3) Åθ = 2.3–27.5°
c = 18.5669 (7) ŵ = 0.10 mm1
β = 93.035 (1)°T = 100 K
V = 3564.5 (2) Å3Cut block, colourless
Z = 80.20 × 0.19 × 0.11 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
4095 independent reflections
Radiation source: microsource3558 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.061
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2323
Tmin = 0.904, Tmax = 0.959k = 1313
41370 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.085H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0317P)2 + 1.7737P]
where P = (Fo2 + 2Fc2)/3
4095 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 100K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.31274 (3)0.82135 (6)0.32509 (3)0.02734 (16)
F20.05890 (3)0.81737 (7)0.34205 (4)0.03608 (19)
O10.14316 (4)0.71474 (7)0.44635 (4)0.02199 (17)
O20.19533 (4)0.41164 (7)0.58364 (4)0.02220 (17)
N10.24848 (5)0.64149 (8)0.41010 (5)0.02001 (18)
C10.19516 (5)0.72003 (9)0.39718 (5)0.0190 (2)
C20.16811 (6)0.62314 (10)0.49472 (6)0.0216 (2)
H20.1442700.5961240.5362130.026*
C30.23218 (5)0.57765 (9)0.47364 (5)0.0189 (2)
C40.28343 (5)0.48460 (9)0.50675 (5)0.0190 (2)
C50.35428 (6)0.47979 (10)0.48489 (6)0.0216 (2)
H50.3682840.5359770.4477710.026*
C60.40484 (6)0.39551 (10)0.51568 (6)0.0229 (2)
H60.4528200.3952480.4996750.028*
C70.38619 (5)0.31068 (9)0.57009 (5)0.0196 (2)
C80.31520 (5)0.31386 (9)0.59192 (5)0.0197 (2)
H80.3010320.2558500.6280940.024*
C90.26455 (5)0.40030 (9)0.56181 (5)0.0190 (2)
C100.17146 (6)0.3233 (1)0.63687 (6)0.0222 (2)
H10A0.2050990.3246990.6801710.027*
H10B0.1698030.2347870.6172680.027*
C110.09681 (6)0.36551 (12)0.65605 (6)0.0294 (3)
H11A0.0636030.3602110.6132150.044*
H11B0.0988550.4543910.6735270.044*
H11C0.0794770.3093780.6938570.044*
C120.44366 (5)0.22003 (10)0.60412 (6)0.0216 (2)
C130.41297 (6)0.12946 (11)0.65984 (6)0.0283 (2)
H13A0.3739910.0776400.6367640.043*
H13B0.3937560.1800520.6990460.043*
H13C0.4515140.0726990.6793850.043*
C140.50460 (6)0.30006 (12)0.64139 (7)0.0315 (3)
H14A0.5251690.3578950.6061730.047*
H14B0.5425370.2425790.6614590.047*
H14C0.4849740.3507890.6803270.047*
C150.47507 (6)0.13723 (11)0.54504 (6)0.0282 (2)
H15A0.4358060.0901900.5191340.042*
H15B0.5099640.0759830.5670130.042*
H15C0.4995210.1925840.5112110.042*
C160.18637 (5)0.81374 (9)0.33852 (5)0.0192 (2)
C170.24577 (5)0.86239 (10)0.30370 (5)0.0203 (2)
C180.23993 (6)0.95121 (10)0.24873 (6)0.0227 (2)
H180.2819920.9817410.2269160.027*
C190.17194 (6)0.99543 (10)0.22567 (6)0.0241 (2)
H190.1670561.0570080.1879450.029*
C200.11108 (6)0.94965 (11)0.25776 (6)0.0264 (2)
H200.0641660.9786560.2418980.032*
C210.11937 (6)0.86175 (10)0.31282 (6)0.0237 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0184 (3)0.0327 (3)0.0312 (3)0.0040 (3)0.0041 (2)0.0080 (3)
F20.0179 (3)0.0475 (4)0.0429 (4)0.0016 (3)0.0019 (3)0.0198 (3)
O10.0204 (4)0.0240 (4)0.0219 (4)0.0021 (3)0.0036 (3)0.0044 (3)
O20.0174 (3)0.0247 (4)0.0250 (4)0.0020 (3)0.0051 (3)0.0068 (3)
N10.0217 (4)0.0190 (4)0.0194 (4)0.0001 (3)0.0017 (3)0.0007 (3)
C10.0186 (5)0.0191 (5)0.0193 (5)0.0016 (4)0.0020 (4)0.0013 (4)
C20.0225 (5)0.0223 (5)0.0199 (5)0.0006 (4)0.0020 (4)0.0042 (4)
C30.0208 (5)0.0178 (4)0.0181 (5)0.0025 (4)0.0009 (4)0.0005 (4)
C40.0202 (5)0.0176 (4)0.0191 (5)0.0000 (4)0.0008 (4)0.0013 (4)
C50.0235 (5)0.0208 (5)0.0209 (5)0.0008 (4)0.0040 (4)0.0020 (4)
C60.0184 (5)0.0252 (5)0.0254 (5)0.0005 (4)0.0036 (4)0.0005 (4)
C70.0197 (5)0.0195 (5)0.0195 (5)0.0009 (4)0.0004 (4)0.0028 (4)
C80.0211 (5)0.0190 (5)0.0190 (5)0.0004 (4)0.0018 (4)0.0001 (4)
C90.0178 (5)0.0201 (5)0.0193 (5)0.0010 (4)0.0019 (4)0.0019 (4)
C100.0217 (5)0.0223 (5)0.0227 (5)0.0011 (4)0.0026 (4)0.0056 (4)
C110.0224 (5)0.0364 (6)0.0297 (6)0.0012 (5)0.0049 (4)0.0118 (5)
C120.0193 (5)0.0239 (5)0.0216 (5)0.0028 (4)0.0008 (4)0.0000 (4)
C130.0254 (5)0.0316 (6)0.0282 (6)0.0072 (5)0.0031 (4)0.0078 (5)
C140.0239 (6)0.0360 (6)0.0337 (6)0.0001 (5)0.0053 (5)0.0009 (5)
C150.0284 (6)0.0287 (6)0.0277 (6)0.0084 (5)0.0048 (4)0.0001 (4)
C160.0218 (5)0.0180 (5)0.0179 (5)0.0001 (4)0.0008 (4)0.0011 (4)
C170.0188 (5)0.0212 (5)0.0210 (5)0.0023 (4)0.0014 (4)0.0025 (4)
C180.0249 (5)0.0224 (5)0.0212 (5)0.0011 (4)0.0055 (4)0.0005 (4)
C190.0305 (6)0.0210 (5)0.0209 (5)0.0011 (4)0.0010 (4)0.0021 (4)
C200.0233 (5)0.0281 (5)0.0276 (6)0.0037 (4)0.0017 (4)0.0041 (4)
C210.0195 (5)0.0255 (5)0.0265 (5)0.0020 (4)0.0032 (4)0.0023 (4)
Geometric parameters (Å, º) top
F1—C171.3489 (12)C11—H11A0.9800
F2—C211.3495 (12)C11—H11B0.9800
O1—C11.3611 (12)C11—H11C0.9800
O1—C21.3725 (12)C12—C131.5303 (15)
O2—C91.3671 (12)C12—C151.5328 (15)
O2—C101.4361 (12)C12—C141.5355 (15)
N1—C11.2927 (13)C13—H13A0.9800
N1—C31.4004 (13)C13—H13B0.9800
C1—C161.4644 (14)C13—H13C0.9800
C2—C31.3521 (14)C14—H14A0.9800
C2—H20.9500C14—H14B0.9800
C3—C41.4664 (14)C14—H14C0.9800
C4—C51.3919 (14)C15—H15A0.9800
C4—C91.4049 (14)C15—H15B0.9800
C5—C61.3827 (15)C15—H15C0.9800
C5—H50.9500C16—C211.3955 (15)
C6—C71.3983 (14)C16—C171.3978 (14)
C6—H60.9500C17—C181.3768 (14)
C7—C81.3938 (14)C18—C191.3843 (15)
C7—C121.5314 (14)C18—H180.9500
C8—C91.3934 (14)C19—C201.3848 (16)
C8—H80.9500C19—H190.9500
C10—C111.5081 (15)C20—C211.3741 (15)
C10—H10A0.9900C20—H200.9500
C10—H10B0.9900
C1—O1—C2104.02 (8)C13—C12—C7112.60 (8)
C9—O2—C10118.37 (8)C13—C12—C15107.80 (9)
C1—N1—C3105.08 (8)C7—C12—C15109.36 (8)
N1—C1—O1114.10 (9)C13—C12—C14108.56 (9)
N1—C1—C16127.75 (9)C7—C12—C14109.15 (9)
O1—C1—C16118.12 (9)C15—C12—C14109.32 (9)
C3—C2—O1108.82 (9)C12—C13—H13A109.5
C3—C2—H2125.6C12—C13—H13B109.5
O1—C2—H2125.6H13A—C13—H13B109.5
C2—C3—N1107.97 (9)C12—C13—H13C109.5
C2—C3—C4131.74 (9)H13A—C13—H13C109.5
N1—C3—C4120.22 (9)H13B—C13—H13C109.5
C5—C4—C9117.61 (9)C12—C14—H14A109.5
C5—C4—C3119.87 (9)C12—C14—H14B109.5
C9—C4—C3122.51 (9)H14A—C14—H14B109.5
C6—C5—C4121.84 (10)C12—C14—H14C109.5
C6—C5—H5119.1H14A—C14—H14C109.5
C4—C5—H5119.1H14B—C14—H14C109.5
C5—C6—C7120.8 (1)C12—C15—H15A109.5
C5—C6—H6119.6C12—C15—H15B109.5
C7—C6—H6119.6H15A—C15—H15B109.5
C8—C7—C6117.83 (9)C12—C15—H15C109.5
C8—C7—C12122.52 (9)H15A—C15—H15C109.5
C6—C7—C12119.65 (9)H15B—C15—H15C109.5
C9—C8—C7121.41 (9)C21—C16—C17114.61 (9)
C9—C8—H8119.3C21—C16—C1123.64 (9)
C7—C8—H8119.3C17—C16—C1121.75 (9)
O2—C9—C8123.77 (9)F1—C17—C18117.73 (9)
O2—C9—C4115.73 (9)F1—C17—C16118.68 (9)
C8—C9—C4120.49 (9)C18—C17—C16123.59 (10)
O2—C10—C11107.11 (8)C17—C18—C19119.12 (10)
O2—C10—H10A110.3C17—C18—H18120.4
C11—C10—H10A110.3C19—C18—H18120.4
O2—C10—H10B110.3C18—C19—C20119.8 (1)
C11—C10—H10B110.3C18—C19—H19120.1
H10A—C10—H10B108.5C20—C19—H19120.1
C10—C11—H11A109.5C21—C20—C19119.2 (1)
C10—C11—H11B109.5C21—C20—H20120.4
H11A—C11—H11B109.5C19—C20—H20120.4
C10—C11—H11C109.5F2—C21—C20117.70 (9)
H11A—C11—H11C109.5F2—C21—C16118.60 (9)
H11B—C11—H11C109.5C20—C21—C16123.68 (10)
C3—N1—C1—O10.50 (11)C3—C4—C9—C8179.69 (9)
C3—N1—C1—C16177.39 (9)C9—O2—C10—C11174.49 (9)
C2—O1—C1—N10.39 (11)C8—C7—C12—C133.86 (14)
C2—O1—C1—C16177.71 (9)C6—C7—C12—C13177.08 (9)
C1—O1—C2—C30.11 (11)C8—C7—C12—C15123.67 (10)
O1—C2—C3—N10.18 (11)C6—C7—C12—C1557.26 (12)
O1—C2—C3—C4176.69 (10)C8—C7—C12—C14116.78 (11)
C1—N1—C3—C20.40 (11)C6—C7—C12—C1462.29 (12)
C1—N1—C3—C4176.89 (9)N1—C1—C16—C21156.63 (11)
C2—C3—C4—C5162.47 (11)O1—C1—C16—C2125.56 (14)
N1—C3—C4—C514.08 (14)N1—C1—C16—C1723.42 (16)
C2—C3—C4—C915.99 (17)O1—C1—C16—C17154.39 (9)
N1—C3—C4—C9167.46 (9)C21—C16—C17—F1179.95 (9)
C9—C4—C5—C60.07 (15)C1—C16—C17—F10.01 (14)
C3—C4—C5—C6178.60 (9)C21—C16—C17—C180.45 (15)
C4—C5—C6—C70.45 (16)C1—C16—C17—C18179.51 (9)
C5—C6—C7—C80.16 (15)F1—C17—C18—C19179.85 (9)
C5—C6—C7—C12178.95 (9)C16—C17—C18—C190.35 (16)
C6—C7—C8—C91.30 (15)C17—C18—C19—C200.28 (16)
C12—C7—C8—C9177.78 (9)C18—C19—C20—C210.77 (16)
C10—O2—C9—C84.80 (14)C19—C20—C21—F2178.85 (10)
C10—O2—C9—C4176.53 (9)C19—C20—C21—C160.67 (17)
C7—C8—C9—O2176.75 (9)C17—C16—C21—F2178.24 (9)
C7—C8—C9—C41.86 (15)C1—C16—C21—F21.81 (16)
C5—C4—C9—O2177.51 (9)C17—C16—C21—C200.07 (16)
C3—C4—C9—O20.98 (14)C1—C16—C21—C20179.98 (10)
C5—C4—C9—C81.20 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.952.292.7807 (12)111
Close contacts (Å, °) for R13 top
Abbreviations: Ox = oxazole; Cg = centroid.
Weak hydrogen bonds
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.952.292.7807 (12)111.1
C19i—H19i···N0.952.613.3494 (14)134.7
ππ stacks
Ring 1···ring 2DistanceDihedral
Ox···Oxii(interplanar)3.3426 (11)0 (parallel)
Cg(Ox)···Cg(Ox)ii3.3894 (11)0 (parallel)
Cg(C4–C9)···Cg(C16–C21)ii3.9439 (11)11.56 (6)
Abbreviations: Ox = oxazole; Cg = centroid. Symmetry codes: (i) = 1/2 - x, 1/2 + y, 1/2 - z; (ii) = 1/2 - x, 3/2 - y, 1 - z.
 

Acknowledgements

The authors thank Honeychem Pharma Research Pvt. Ltd., Peenya Industrial Area, Bengaluru-560 058, India for a pure sample of etoxazole as a gift.

References

First citationAPVMA (2024). Australian Pesticide and Veterinary Medicines Authority, pp. 17–18.  Google Scholar
First citationBruker (2023). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEfimov, I., Slepukhin, P. & Bakulev, V. (2015). Acta Cryst. E71, o1028.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJoshi, S., Mehra, M., Singh, R. & Kakkar, S. (2023). Egypt. J. Basic Appl. Sci, 10, 218–239.  Google Scholar
First citationKakkar, S. & Narasimhan, B. (2019). BMC Chem. 13, 16.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLei, D., Yang, H., Li, B. & Kang, Z. (2009). Acta Cryst. E65, o54.  CrossRef IUCr Journals Google Scholar
First citationMacar, O., Kalefetoğlu Macar, T., Çavuşoğlu, K. & Yalçın, E. (2022). Sci. Rep. 12, 20453.  CrossRef PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPark, H., Kim, J., Kwon, E. & Kim, T. H. (2017). Acta Cryst. E73, 1472–1474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, W., Lim, W., Park, S., Whang, K.-Y. & Song, G. (2020). Environ. Pollut. 257, 113480.  CrossRef PubMed Google Scholar
First citationPriyanka, P., Jayanna, B. K., Sunil Kumar, Y. C., Shreenivas, M. T., Srinivasa, G. R., Divakara, T. R., Yathirajan, H. S. & Parkin, S. (2022). Acta Cryst. E78, 1084–1088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoque, J. B., Shimozono, A. M., Pabst, T. P., Hierlmeier, G., Peterson, P. O. & Chirik, P. J. (2023). Science, 382, 1165–1170.  CrossRef CAS PubMed Google Scholar
First citationSaha, A., Sen, C., Guin, S., Das, C., Maiti, D., Sen, S. & Maiti, D. (2023). Angew. Chem. Int. Ed. 62, e202308916.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, J., Ishida, T., Kikuchi, Y., Ito, Y., Morikawa, C., Tsukidate, Y., Tanji, I., Ota, Y. & Toda, K. (2002). J. Pestic. Sci. 27, 1–8.  CrossRef Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVinaya, Basavaraju, Y. B., Srinivasa, G. R., Shreenivas, M. T., Yathirajan, H. S. & Parkin, S. (2023). Acta Cryst. E79, 54–59.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, L., Hua, R., Li, M., Huang, Y., Li, S., He, Y. & Shen, Z. (2014). J. Insect Sci. 14, 104.  CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds