research communications
Synthesis, H-pyrazol-3-yl 4-nitrobenzenesulfonate at 90 K
and Hirshfeld surface analysis of 5-methyl-1aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Physical Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru-560 035, India, cDepartment of Chemistry, T. John Institute of Technology, Bengaluru-560 083, India, and dDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: yathirajan@hotmail.com
This study presents the synthesis, H-pyrazol-3-yl 4-nitrobenzenesulfonate(C10H9N3O5S), a pyrazole derivative with pharmacological potential. Pyrazoles are known for diverse bioactivities, and recent research emphasizes their role as a ‘privileged structure’ in drug design. Here, the of the title compound contains two distinct molecules, A and B, exhibiting differences in conformation resulting from variation in key torsion angles. These distinctions influence the molecular orientation and intermolecular interactions, with strong N—H⋯N and N—H⋯O hydrogen bonds forming a centrosymmetric tetramer stabilized by π–π stacking. Hirshfeld surface analysis readily confirms differing intermolecular contacts for A and B, primarily involving hydrogen atoms and differences in their close contacts to nitrogen and oxygen. This study offers further insight into the molecular architecture and potential interactions of pyrazole-based drug candidates.
and a Hirshfeld-surface analysis of the bioactive compound 5-methyl-1Keywords: synthesis; crystal structure; Hirshfeld surface; hydrogen bonding; π–π stacking; centrosymmetric tetramer.
CCDC reference: 2404829
1. Chemical context
Pyrazoles exhibit diverse pharmacological activities, including protein glycation inhibition, antibacterial, antifungal, anticancer, antidepressant, anti-inflammatory, antitubercular, antioxidant, and antiviral effects (Fustero et al., 2011; Steinbach et al., 2000; García-Lozano et al., 1997). Naim et al. (2016) provide an overview of the current status of pyrazoles and their biological activities. Various reviews focus on bioactive pyrazole derivatives (Ansari et al., 2017), synthetic and biological attributes of pyrazole compounds (Dwivedi et al., 2018), and the role of the pyrazole moiety in drug development as a ‘privileged structure’ (Faria et al., 2017; Patil, 2020; Yet, 2018). Comprehensive reviews on pyrazole synthesis and pharmacology are available, highlighting recent advances (Karrouchi et al., 2018; Fustero et al., 2009; Ebenezer et al., 2022).
Several crystal structures of pyrazole derivatives have been reported, including 1,3-diphenyl-4,5-dihydro-1H-pyrazol-5-one (Baddeley et al., 2012), 1-aryl-1H-pyrazole-3,4-dicarboxylate derivatives (Asma et al., 2018), and additional complex pyrazole compounds (Archana et al., 2022; Priyanka et al., 2022; Pintro et al., 2022; Metwally et al., 2021). Related structures, such as 5-methyl-1-[(4-methylphenyl)sulfonyl]-1H-pyrazol-3-yl 4-methylbenzenesulfonate (XEBLOH) and 1-(4-methylphenyl)-3-phenyl-1H-pyrazol-5-yl 4-nitrobenzenesulfonate, have also been described (Murtaza et al., 2012; Wardell et al., 2012).
Given the significance of pyrazoles and specifically 5-methyl-1H-pyrazol-3-yl 4-nitrobenzenesulfonate, this paper presents the crystal-structure analysis of the title compound, C10H9N3O5S, I.
2. Structural commentary
The molecular structure of I features a 4-nitrobenzene ring bonded to a sulfonate sulfur atom, along with a 3-methyl-1H-pyrazole ring attached to the single-bonded oxygen atom of the sulfonate group. The comprises two crystallographically distinct molecules, A and B (Fig. 1). While both molecules exhibit typical bond lengths and angles, their overall conformations differ. The primary distinctions are in the torsion angles N1—C1—O1—S1, C1—O1—S1—C5, and O1—S1—C5—C6, which are 88.97 (12), 64.92 (9), and 78.91 (10)° for molecule A, and 83.78 (12), −83.75 (9), and 95.42 (10)° for molecule B. These torsional variations lead to differences in the relative proximity and orientation of the pyrazole and benzene rings in each molecule. This is shown in a least-squares fit overlay plot (Fig. 2) and quantified in Table 1. The only other intramolecular degree of freedom lies in the rotation of the NO2 groups relative to their attached benzene rings. For molecule A, this dihedral angle is 1.37 (10)°, i.e. nearly coplanar, while in molecule B, it is slightly larger at 6.78 (4)°. There are no intramolecular hydrogen bonds of any type in either molecule A or B.
3. Supramolecular features
In I, there are only two strong intermolecular hydrogen bonds: N2A—H2A⋯N1B [dD⋯A = 2.9063 (15) Å] and N2B—H2B⋯O4Ai [dD⋯A = 2.9630 (15) Å; (i) −x, −y + 1, −z + 1], Table 2. The former connects the two molecules within the chosen while the latter generates a centrosymmetric tetramer (i.e., a pair of pairs), as shown in Fig. 3. The integrity of this tetramer is augmented by a pair of π–π stacking interactions that superimpose the pyrazole ring of molecule A with the benzene ring of B (plus the equivalent interaction – i, above), Cg⋯Cg = 3.524 (1) Å. These tetramers stack into columns that propagate parallel to the a-axis. In addition, there are a number of weaker hydrogen-bond-type interactions of the C—H⋯O form that connect these columns in both the b- and c-axis directions. The different intermolecular contacts experienced by molecules A and B are readily apparent in Hirshfeld surface fingerprint plots (CrystalExplorer21, Spackman et al., 2021). These are shown in Fig. 4 for molecules A and B calculated individually, but presented side-by-side for ease of comparison. While it is clear from Fig. 4a,b that most intermolecular contacts involve hydrogen atoms (56.9% and 50.5% for A and B, respectively), the distributions are different. For A, there are no short contacts to oxygen atoms on adjacent molecules (Fig. 4c), whereas for B there are (note the sharp blue spike in Fig. 4d). The situation is reversed for contacts to nitrogen on adjacent molecules (Fig. 4e,f). This, of course, is simply a consequence of the different hydrogen-bonding modes of molecules A and B. The only other types of contact with double-digit percentage coverage are those involving carbon atoms, which are similar, but not identical for A and B (Fig. 4g,h).
|
4. Database survey
A search of the CSD (v5.45 with updates to September 2024; Groom et al., 2016) of I with the nitro and methyl groups removed gave no hits. With the N—H hydrogen also removed, the search returned a single match, 5-methyl-1-[(4-methylphenyl)sulfonyl]-1H-pyrazol-3-yl-4-methylbenzene sulfonate (CSD refcode XEBLOH; Murtaza et al., 2012). A search target of 4-nitrobenzenesulfonate gave 95 hits whereas a search fragment of pyrazol-3-yl sulfonate gave two hits, XEBLOH again, and EBAQUX (Kim et al., 2018), di-t-butyl 3-[(trifluoromethanesulfonyl)oxy]-4,5,7,8-tetrahydropyrazolo[3,4-d]azepine-1,6-dicarboxylate, which has little else in common with I.
5. Synthesis and crystallization
An equimolar mixture (0.1 mol) of ethyl acetoacetate (12.75 ml) and hydrazine hydrate (4.96 ml) in ethanol was stirred for 15–20 min. at room temperature, forming a white precipitate of pyrazolone. The precipitate was then separated by filtration and dried. The pyrazolone (1 g, 10.3 mmol) and 4-nitrobenzenesulfonyl chloride (2.28 g, 10.3 mmol) were stirred in acetonitrile (25 ml) with triethylamine for 30 min., turning the reaction mixture yellow–red. Stirring continued for approximately 5 h, with progress monitored by TLC (using hexane and dichloromethane as the mobile phase). After acidifying the mixture with 5% HCl, the solvent was evaporated. The product was extracted with ethyl acetate (3 × 15 ml), and the combined organic layers were dried over anhydrous sodium sulfate to yield the crude product, as summarized in Fig. 5. Recrystallization by slow evaporation from a 1:1 acetonitrile–ethyl acetate mixture yielded orange–red crystals after one week.
6. Refinement
Crystal data, data collection, and structure . All hydrogen atoms were found in difference-Fourier maps. The N—H hydrogens (i.e., H2A and H2B) were refined freely (x, y, z, Uij), but carbon-bound hydrogens were included using riding models, with constrained distances set to 0.95 Å (Csp2H) and 0.98 Å (RCH3). Uiso(H) parameters were set to values of either 1.2Ueq or 1.5Ueq (RCH3 only) of their attached atom.
details are given in Table 3
|
Supporting information
CCDC reference: 2404829
https://doi.org/10.1107/S205698902401140X/nx2016sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902401140X/nx2016Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902401140X/nx2016Isup3.cml
C10H9N3O5S | Z = 4 |
Mr = 283.26 | F(000) = 584 |
Triclinic, P1 | Dx = 1.573 Mg m−3 |
a = 7.0823 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.7865 (6) Å | Cell parameters from 9613 reflections |
c = 15.8999 (8) Å | θ = 2.7–27.5° |
α = 68.340 (1)° | µ = 0.29 mm−1 |
β = 81.516 (2)° | T = 90 K |
γ = 76.435 (2)° | Solvent-rounded block, pale orange-brown |
V = 1196.39 (10) Å3 | 0.28 × 0.21 × 0.14 mm |
Bruker D8 Venture dual source diffractometer | 5472 independent reflections |
Radiation source: microsource | 4902 reflections with I > 2σ(I) |
Detector resolution: 7.41 pixels mm-1 | Rint = 0.039 |
φ and ω scans | θmax = 27.5°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→9 |
Tmin = 0.930, Tmax = 0.971 | k = −15→15 |
43837 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: mixed |
wR(F2) = 0.067 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0199P)2 + 0.6984P] where P = (Fo2 + 2Fc2)/3 |
5472 reflections | (Δ/σ)max = 0.001 |
353 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998). Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement progress was checked using PLATON (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF. |
x | y | z | Uiso*/Ueq | ||
S1A | 0.65614 (4) | 0.71414 (3) | 0.53685 (2) | 0.01651 (7) | |
O1A | 0.57056 (13) | 0.67119 (8) | 0.64020 (6) | 0.01783 (18) | |
O2A | 0.75936 (13) | 0.60887 (9) | 0.51477 (6) | 0.0230 (2) | |
O3A | 0.75121 (13) | 0.81135 (9) | 0.53055 (6) | 0.0229 (2) | |
O4A | −0.13447 (15) | 0.85898 (10) | 0.31425 (7) | 0.0315 (2) | |
O5A | −0.16207 (15) | 1.02917 (10) | 0.34137 (7) | 0.0310 (2) | |
N1A | 0.55538 (15) | 0.45947 (10) | 0.70016 (7) | 0.0172 (2) | |
N2A | 0.40705 (15) | 0.39661 (10) | 0.72300 (7) | 0.0170 (2) | |
H2A | 0.434 (2) | 0.3155 (16) | 0.7480 (11) | 0.025 (4)* | |
N3A | −0.07568 (16) | 0.92479 (11) | 0.34531 (7) | 0.0230 (2) | |
C1A | 0.46349 (18) | 0.57635 (11) | 0.66818 (8) | 0.0153 (2) | |
C2A | 0.26185 (18) | 0.59134 (12) | 0.66978 (8) | 0.0182 (2) | |
H2AA | 0.168467 | 0.666642 | 0.650595 | 0.022* | |
C3A | 0.23007 (18) | 0.47108 (12) | 0.70577 (8) | 0.0178 (2) | |
C4A | 0.0480 (2) | 0.42099 (14) | 0.7226 (1) | 0.0269 (3) | |
H4AA | 0.010163 | 0.422405 | 0.665312 | 0.040* | |
H4AB | −0.056285 | 0.472441 | 0.748079 | 0.040* | |
H4AC | 0.070410 | 0.335177 | 0.765466 | 0.040* | |
C5A | 0.44319 (18) | 0.77770 (11) | 0.47720 (8) | 0.0162 (2) | |
C6A | 0.34479 (19) | 0.89710 (12) | 0.47076 (9) | 0.0202 (3) | |
H6A | 0.393638 | 0.944183 | 0.496873 | 0.024* | |
C7A | 0.17492 (19) | 0.94661 (12) | 0.42591 (9) | 0.0213 (3) | |
H7A | 0.106102 | 1.028563 | 0.419575 | 0.026* | |
C8A | 0.10808 (18) | 0.87335 (12) | 0.39054 (8) | 0.0186 (2) | |
C9A | 0.20361 (19) | 0.75461 (12) | 0.39659 (9) | 0.0208 (3) | |
H9A | 0.153263 | 0.707371 | 0.371163 | 0.025* | |
C10A | 0.37520 (19) | 0.70585 (12) | 0.44076 (8) | 0.0189 (2) | |
H10A | 0.444972 | 0.624470 | 0.445926 | 0.023* | |
S1B | 0.76662 (4) | 0.14007 (3) | 0.96788 (2) | 0.01521 (7) | |
O1B | 0.82898 (12) | 0.13255 (8) | 0.86847 (6) | 0.01669 (18) | |
O2B | 0.92921 (13) | 0.17288 (9) | 0.98930 (7) | 0.0225 (2) | |
O3B | 0.69677 (13) | 0.03131 (8) | 1.02475 (6) | 0.01977 (19) | |
O4B | 0.15018 (15) | 0.68014 (9) | 0.87210 (8) | 0.0308 (2) | |
O5B | −0.05168 (13) | 0.55827 (9) | 0.89274 (7) | 0.0251 (2) | |
N1B | 0.55988 (15) | 0.13086 (9) | 0.79934 (7) | 0.0161 (2) | |
N2B | 0.50809 (16) | 0.04466 (10) | 0.77422 (7) | 0.0166 (2) | |
H2B | 0.400 (3) | 0.0622 (16) | 0.7499 (12) | 0.033 (5)* | |
N3B | 0.11314 (16) | 0.57702 (10) | 0.89035 (7) | 0.0197 (2) | |
C1B | 0.72563 (17) | 0.07052 (11) | 0.83722 (8) | 0.0144 (2) | |
C2B | 0.78320 (18) | −0.05058 (11) | 0.83709 (8) | 0.0171 (2) | |
H2BA | 0.896863 | −0.109716 | 0.860015 | 0.020* | |
C3B | 0.63631 (19) | −0.06460 (11) | 0.79581 (8) | 0.0177 (2) | |
C4B | 0.6056 (2) | −0.17205 (13) | 0.77508 (10) | 0.0278 (3) | |
H4BA | 0.621648 | −0.153437 | 0.709356 | 0.042* | |
H4BB | 0.473823 | −0.187007 | 0.797278 | 0.042* | |
H4BC | 0.701040 | −0.246413 | 0.804956 | 0.042* | |
C5B | 0.57217 (17) | 0.26894 (11) | 0.94752 (8) | 0.0143 (2) | |
C6B | 0.38283 (18) | 0.24866 (11) | 0.95975 (8) | 0.0162 (2) | |
H6B | 0.358137 | 0.166606 | 0.979940 | 0.019* | |
C7B | 0.23122 (18) | 0.35076 (11) | 0.94185 (8) | 0.0170 (2) | |
H7B | 0.099937 | 0.340364 | 0.949966 | 0.020* | |
C8B | 0.27494 (18) | 0.46842 (11) | 0.91184 (8) | 0.0161 (2) | |
C9B | 0.46244 (18) | 0.48948 (11) | 0.89999 (8) | 0.0173 (2) | |
H9B | 0.486532 | 0.571672 | 0.879863 | 0.021* | |
C10B | 0.61422 (18) | 0.38741 (11) | 0.91830 (8) | 0.0168 (2) | |
H10B | 0.745178 | 0.398187 | 0.910992 | 0.020* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1A | 0.01586 (14) | 0.01781 (15) | 0.01583 (15) | −0.00515 (11) | −0.00157 (11) | −0.00453 (11) |
O1A | 0.0224 (4) | 0.0181 (4) | 0.0148 (4) | −0.0083 (3) | −0.0019 (3) | −0.0050 (3) |
O2A | 0.0208 (5) | 0.0244 (5) | 0.0230 (5) | −0.0009 (4) | −0.0012 (4) | −0.0094 (4) |
O3A | 0.0215 (5) | 0.0239 (5) | 0.0241 (5) | −0.0108 (4) | −0.0031 (4) | −0.0048 (4) |
O4A | 0.0260 (5) | 0.0421 (6) | 0.0315 (6) | −0.0058 (5) | −0.0115 (4) | −0.0157 (5) |
O5A | 0.0240 (5) | 0.0300 (5) | 0.0335 (6) | 0.0023 (4) | −0.0068 (4) | −0.0075 (5) |
N1A | 0.0177 (5) | 0.0177 (5) | 0.0162 (5) | −0.0041 (4) | −0.0016 (4) | −0.0054 (4) |
N2A | 0.0192 (5) | 0.0135 (5) | 0.0177 (5) | −0.0039 (4) | −0.0018 (4) | −0.0041 (4) |
N3A | 0.0180 (5) | 0.0302 (6) | 0.0180 (5) | −0.0045 (5) | −0.0015 (4) | −0.0051 (5) |
C1A | 0.0193 (6) | 0.0151 (6) | 0.0125 (5) | −0.0054 (5) | −0.0017 (4) | −0.0046 (4) |
C2A | 0.0180 (6) | 0.0168 (6) | 0.0177 (6) | −0.0009 (5) | −0.0034 (5) | −0.0042 (5) |
C3A | 0.0177 (6) | 0.0201 (6) | 0.0157 (6) | −0.0042 (5) | −0.0022 (5) | −0.0057 (5) |
C4A | 0.0228 (7) | 0.0292 (7) | 0.0297 (7) | −0.0109 (6) | −0.0018 (6) | −0.0080 (6) |
C5A | 0.0171 (6) | 0.0178 (6) | 0.0130 (5) | −0.0058 (5) | −0.0003 (4) | −0.0033 (5) |
C6A | 0.0208 (6) | 0.0185 (6) | 0.0234 (6) | −0.0071 (5) | −0.0025 (5) | −0.0072 (5) |
C7A | 0.0202 (6) | 0.0176 (6) | 0.0244 (7) | −0.0034 (5) | −0.0015 (5) | −0.0054 (5) |
C8A | 0.0155 (6) | 0.0247 (6) | 0.0139 (6) | −0.0052 (5) | −0.0016 (4) | −0.0037 (5) |
C9A | 0.0233 (6) | 0.0249 (7) | 0.0175 (6) | −0.0067 (5) | −0.0034 (5) | −0.0093 (5) |
C10A | 0.0223 (6) | 0.0182 (6) | 0.0171 (6) | −0.0036 (5) | −0.0022 (5) | −0.0072 (5) |
S1B | 0.01556 (14) | 0.01389 (14) | 0.01669 (15) | −0.00051 (11) | −0.00472 (11) | −0.00597 (11) |
O1B | 0.0154 (4) | 0.0182 (4) | 0.0190 (4) | −0.0045 (3) | −0.0003 (3) | −0.0090 (3) |
O2B | 0.0192 (4) | 0.0218 (5) | 0.0308 (5) | −0.0003 (4) | −0.0104 (4) | −0.0131 (4) |
O3B | 0.0245 (5) | 0.0140 (4) | 0.0180 (4) | −0.0009 (3) | −0.0030 (4) | −0.0035 (3) |
O4B | 0.0298 (5) | 0.0151 (5) | 0.0473 (6) | 0.0016 (4) | −0.0057 (5) | −0.0130 (4) |
O5B | 0.0169 (4) | 0.0256 (5) | 0.0314 (5) | 0.0016 (4) | −0.0046 (4) | −0.0106 (4) |
N1B | 0.0174 (5) | 0.0139 (5) | 0.0170 (5) | −0.0029 (4) | −0.0024 (4) | −0.0053 (4) |
N2B | 0.0181 (5) | 0.0151 (5) | 0.0172 (5) | −0.0030 (4) | −0.0049 (4) | −0.0050 (4) |
N3B | 0.0199 (5) | 0.0171 (5) | 0.0216 (5) | 0.0006 (4) | −0.0022 (4) | −0.0085 (4) |
C1B | 0.0155 (5) | 0.0148 (6) | 0.0131 (5) | −0.0036 (4) | −0.0007 (4) | −0.0048 (4) |
C2B | 0.0189 (6) | 0.0143 (6) | 0.0164 (6) | 0.0001 (5) | −0.0036 (5) | −0.0046 (5) |
C3B | 0.0230 (6) | 0.0136 (6) | 0.0158 (6) | −0.0024 (5) | −0.0034 (5) | −0.0042 (5) |
C4B | 0.0356 (8) | 0.0180 (6) | 0.0334 (8) | −0.0036 (6) | −0.0115 (6) | −0.0104 (6) |
C5B | 0.0158 (6) | 0.0142 (5) | 0.0133 (5) | −0.0009 (4) | −0.0024 (4) | −0.0058 (4) |
C6B | 0.0192 (6) | 0.0142 (6) | 0.0155 (6) | −0.0049 (5) | −0.0002 (5) | −0.0048 (5) |
C7B | 0.0146 (6) | 0.0188 (6) | 0.0184 (6) | −0.0040 (5) | 0.0001 (5) | −0.0075 (5) |
C8B | 0.0179 (6) | 0.0151 (6) | 0.0148 (6) | 0.0006 (5) | −0.0018 (4) | −0.0066 (5) |
C9B | 0.0219 (6) | 0.0139 (6) | 0.0170 (6) | −0.0050 (5) | −0.0014 (5) | −0.0055 (5) |
C10B | 0.0167 (6) | 0.0173 (6) | 0.0179 (6) | −0.0047 (5) | −0.0015 (5) | −0.0070 (5) |
S1A—O2A | 1.4204 (10) | S1B—O2B | 1.4190 (9) |
S1A—O3A | 1.4260 (9) | S1B—O3B | 1.4197 (9) |
S1A—O1A | 1.6001 (9) | S1B—O1B | 1.6063 (9) |
S1A—C5A | 1.7615 (13) | S1B—C5B | 1.7595 (12) |
O1A—C1A | 1.3977 (14) | O1B—C1B | 1.3941 (14) |
O4A—N3A | 1.2304 (15) | O4B—N3B | 1.2235 (14) |
O5A—N3A | 1.2220 (15) | O5B—N3B | 1.2306 (14) |
N1A—C1A | 1.3190 (16) | N1B—C1B | 1.3220 (16) |
N1A—N2A | 1.3559 (14) | N1B—N2B | 1.3578 (14) |
N2A—C3A | 1.3506 (16) | N2B—C3B | 1.3483 (16) |
N2A—H2A | 0.875 (17) | N2B—H2B | 0.853 (19) |
N3A—C8A | 1.4706 (16) | N3B—C8B | 1.4741 (15) |
C1A—C2A | 1.3948 (17) | C1B—C2B | 1.3902 (16) |
C2A—C3A | 1.3785 (17) | C2B—C3B | 1.3793 (18) |
C2A—H2AA | 0.9500 | C2B—H2BA | 0.9500 |
C3A—C4A | 1.4905 (18) | C3B—C4B | 1.4896 (18) |
C4A—H4AA | 0.9800 | C4B—H4BA | 0.9800 |
C4A—H4AB | 0.9800 | C4B—H4BB | 0.9800 |
C4A—H4AC | 0.9800 | C4B—H4BC | 0.9800 |
C5A—C10A | 1.3858 (17) | C5B—C10B | 1.3891 (17) |
C5A—C6A | 1.3898 (17) | C5B—C6B | 1.3901 (17) |
C6A—C7A | 1.3831 (18) | C6B—C7B | 1.3833 (17) |
C6A—H6A | 0.9500 | C6B—H6B | 0.9500 |
C7A—C8A | 1.3838 (18) | C7B—C8B | 1.3842 (17) |
C7A—H7A | 0.9500 | C7B—H7B | 0.9500 |
C8A—C9A | 1.3789 (18) | C8B—C9B | 1.3809 (17) |
C9A—C10A | 1.3880 (18) | C9B—C10B | 1.3838 (17) |
C9A—H9A | 0.9500 | C9B—H9B | 0.9500 |
C10A—H10A | 0.9500 | C10B—H10B | 0.9500 |
O2A—S1A—O3A | 120.96 (6) | O2B—S1B—O3B | 121.47 (6) |
O2A—S1A—O1A | 110.09 (5) | O2B—S1B—O1B | 103.47 (5) |
O3A—S1A—O1A | 102.91 (5) | O3B—S1B—O1B | 109.58 (5) |
O2A—S1A—C5A | 109.10 (6) | O2B—S1B—C5B | 108.75 (6) |
O3A—S1A—C5A | 109.78 (6) | O3B—S1B—C5B | 109.18 (6) |
O1A—S1A—C5A | 102.30 (5) | O1B—S1B—C5B | 102.69 (5) |
C1A—O1A—S1A | 117.15 (7) | C1B—O1B—S1B | 117.88 (7) |
C1A—N1A—N2A | 102.28 (10) | C1B—N1B—N2B | 102.55 (10) |
C3A—N2A—N1A | 113.71 (10) | C3B—N2B—N1B | 113.21 (10) |
C3A—N2A—H2A | 127.6 (11) | C3B—N2B—H2B | 127.3 (12) |
N1A—N2A—H2A | 118.7 (11) | N1B—N2B—H2B | 119.4 (12) |
O5A—N3A—O4A | 123.75 (12) | O4B—N3B—O5B | 123.91 (11) |
O5A—N3A—C8A | 118.62 (11) | O4B—N3B—C8B | 118.19 (11) |
O4A—N3A—C8A | 117.62 (11) | O5B—N3B—C8B | 117.9 (1) |
N1A—C1A—C2A | 114.26 (11) | N1B—C1B—C2B | 114.10 (11) |
N1A—C1A—O1A | 119.11 (11) | N1B—C1B—O1B | 119.27 (10) |
C2A—C1A—O1A | 126.58 (11) | C2B—C1B—O1B | 126.55 (11) |
C3A—C2A—C1A | 103.64 (11) | C3B—C2B—C1B | 103.64 (11) |
C3A—C2A—H2AA | 128.2 | C3B—C2B—H2BA | 128.2 |
C1A—C2A—H2AA | 128.2 | C1B—C2B—H2BA | 128.2 |
N2A—C3A—C2A | 106.11 (11) | N2B—C3B—C2B | 106.49 (11) |
N2A—C3A—C4A | 122.50 (12) | N2B—C3B—C4B | 121.76 (12) |
C2A—C3A—C4A | 131.36 (12) | C2B—C3B—C4B | 131.75 (12) |
C3A—C4A—H4AA | 109.5 | C3B—C4B—H4BA | 109.5 |
C3A—C4A—H4AB | 109.5 | C3B—C4B—H4BB | 109.5 |
H4AA—C4A—H4AB | 109.5 | H4BA—C4B—H4BB | 109.5 |
C3A—C4A—H4AC | 109.5 | C3B—C4B—H4BC | 109.5 |
H4AA—C4A—H4AC | 109.5 | H4BA—C4B—H4BC | 109.5 |
H4AB—C4A—H4AC | 109.5 | H4BB—C4B—H4BC | 109.5 |
C10A—C5A—C6A | 121.96 (12) | C10B—C5B—C6B | 122.51 (11) |
C10A—C5A—S1A | 119.15 (10) | C10B—C5B—S1B | 118.58 (9) |
C6A—C5A—S1A | 118.86 (10) | C6B—C5B—S1B | 118.90 (9) |
C7A—C6A—C5A | 119.25 (12) | C7B—C6B—C5B | 118.43 (11) |
C7A—C6A—H6A | 120.4 | C7B—C6B—H6B | 120.8 |
C5A—C6A—H6A | 120.4 | C5B—C6B—H6B | 120.8 |
C6A—C7A—C8A | 118.10 (12) | C6B—C7B—C8B | 118.56 (11) |
C6A—C7A—H7A | 121.0 | C6B—C7B—H7B | 120.7 |
C8A—C7A—H7A | 121.0 | C8B—C7B—H7B | 120.7 |
C9A—C8A—C7A | 123.37 (12) | C9B—C8B—C7B | 123.43 (11) |
C9A—C8A—N3A | 118.64 (12) | C9B—C8B—N3B | 118.23 (11) |
C7A—C8A—N3A | 117.99 (12) | C7B—C8B—N3B | 118.33 (11) |
C8A—C9A—C10A | 118.33 (12) | C8B—C9B—C10B | 118.07 (11) |
C8A—C9A—H9A | 120.8 | C8B—C9B—H9B | 121.0 |
C10A—C9A—H9A | 120.8 | C10B—C9B—H9B | 121.0 |
C5A—C10A—C9A | 118.99 (12) | C9B—C10B—C5B | 118.99 (11) |
C5A—C10A—H10A | 120.5 | C9B—C10B—H10B | 120.5 |
C9A—C10A—H10A | 120.5 | C5B—C10B—H10B | 120.5 |
O2A—S1A—O1A—C1A | −50.95 (10) | O2B—S1B—O1B—C1B | 163.12 (8) |
O3A—S1A—O1A—C1A | 178.82 (9) | O3B—S1B—O1B—C1B | 32.2 (1) |
C5A—S1A—O1A—C1A | 64.92 (9) | C5B—S1B—O1B—C1B | −83.75 (9) |
C1A—N1A—N2A—C3A | 0.16 (13) | C1B—N1B—N2B—C3B | 0.10 (13) |
N2A—N1A—C1A—C2A | 0.21 (14) | N2B—N1B—C1B—C2B | 0.34 (14) |
N2A—N1A—C1A—O1A | 177.66 (10) | N2B—N1B—C1B—O1B | 177.21 (10) |
S1A—O1A—C1A—N1A | 88.97 (12) | S1B—O1B—C1B—N1B | 83.78 (12) |
S1A—O1A—C1A—C2A | −93.93 (13) | S1B—O1B—C1B—C2B | −99.77 (13) |
N1A—C1A—C2A—C3A | −0.48 (15) | N1B—C1B—C2B—C3B | −0.64 (14) |
O1A—C1A—C2A—C3A | −177.70 (11) | O1B—C1B—C2B—C3B | −177.24 (11) |
N1A—N2A—C3A—C2A | −0.46 (14) | N1B—N2B—C3B—C2B | −0.50 (14) |
N1A—N2A—C3A—C4A | 177.73 (11) | N1B—N2B—C3B—C4B | 179.33 (12) |
C1A—C2A—C3A—N2A | 0.53 (13) | C1B—C2B—C3B—N2B | 0.64 (13) |
C1A—C2A—C3A—C4A | −177.43 (13) | C1B—C2B—C3B—C4B | −179.16 (14) |
O2A—S1A—C5A—C10A | 17.63 (12) | O2B—S1B—C5B—C10B | 25.67 (11) |
O3A—S1A—C5A—C10A | 152.3 (1) | O3B—S1B—C5B—C10B | 160.25 (9) |
O1A—S1A—C5A—C10A | −98.95 (10) | O1B—S1B—C5B—C10B | −83.51 (10) |
O2A—S1A—C5A—C6A | −164.5 (1) | O2B—S1B—C5B—C6B | −155.4 (1) |
O3A—S1A—C5A—C6A | −29.83 (12) | O3B—S1B—C5B—C6B | −20.82 (11) |
O1A—S1A—C5A—C6A | 78.91 (10) | O1B—S1B—C5B—C6B | 95.42 (10) |
C10A—C5A—C6A—C7A | −0.67 (19) | C10B—C5B—C6B—C7B | 0.14 (18) |
S1A—C5A—C6A—C7A | −178.47 (10) | S1B—C5B—C6B—C7B | −178.75 (9) |
C5A—C6A—C7A—C8A | 1.16 (19) | C5B—C6B—C7B—C8B | 0.55 (18) |
C6A—C7A—C8A—C9A | −1.0 (2) | C6B—C7B—C8B—C9B | −0.98 (19) |
C6A—C7A—C8A—N3A | 178.18 (11) | C6B—C7B—C8B—N3B | 178.28 (11) |
O5A—N3A—C8A—C9A | 178.73 (12) | O4B—N3B—C8B—C9B | −7.47 (17) |
O4A—N3A—C8A—C9A | −0.58 (17) | O5B—N3B—C8B—C9B | 173.24 (11) |
O5A—N3A—C8A—C7A | −0.50 (17) | O4B—N3B—C8B—C7B | 173.24 (11) |
O4A—N3A—C8A—C7A | −179.80 (12) | O5B—N3B—C8B—C7B | −6.06 (17) |
C7A—C8A—C9A—C10A | 0.3 (2) | C7B—C8B—C9B—C10B | 0.67 (19) |
N3A—C8A—C9A—C10A | −178.90 (11) | N3B—C8B—C9B—C10B | −178.59 (11) |
C6A—C5A—C10A—C9A | −0.06 (19) | C8B—C9B—C10B—C5B | 0.05 (18) |
S1A—C5A—C10A—C9A | 177.74 (10) | C6B—C5B—C10B—C9B | −0.45 (18) |
C8A—C9A—C10A—C5A | 0.25 (19) | S1B—C5B—C10B—C9B | 178.44 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2A—H2A···N1B | 0.875 (17) | 2.047 (17) | 2.9063 (15) | 167.0 (15) |
N2B—H2B···O4Ai | 0.853 (19) | 2.121 (19) | 2.9630 (15) | 169.1 (16) |
C2B—H2BA···O2Bii | 0.95 | 2.63 | 3.3452 (15) | 132 |
C2B—H2BA···O4Biii | 0.95 | 2.66 | 3.5201 (15) | 151 |
C4B—H4BC···O5Biii | 0.98 | 2.60 | 3.5814 (17) | 177 |
C6B—H6B···O3Biv | 0.95 | 2.48 | 3.3910 (15) | 160 |
C7B—H7B···O2Bv | 0.95 | 2.39 | 3.1622 (15) | 138 |
C10B—H10B···O5Bvi | 0.95 | 2.54 | 3.3418 (16) | 142 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+2, −y, −z+2; (iii) x+1, y−1, z; (iv) −x+1, −y, −z+2; (v) x−1, y, z; (vi) x+1, y, z. |
Torsion angle | Molecule A | Molecule B |
N1—C1—O1—S1 | 88.97 (12) | 83.78 (12) |
C1—O1—S1—C5 | 64.92 (9) | -83.75 (9) |
O1—S1—C5—C6 | 78.91 (10) | 95.42 (10) |
C7—C8—N3—O5 | -0.50 (17) | -6.06 (17) |
Dihedral anglea | ||
bz/nitro | 1.37 (10) | 6.78 (4) |
bz/pz | 43.10 (4) | 37.22 (5) |
Centroid···centroida | ||
Cg(bz)···Cg(pz) | 4.505 (1)b | 4.936 (1)b |
Notes: (a) Abbreviations: bz = benzene; pz = pyrazole; Cg = centroid. (b) These distances do not imply any overlap, they merely show that the rings in A are closer than those in B. |
Hydrogen bonds | ||||
D—H···A | D—H | H···A | D···A | D—H···A |
N2A—H2A···N1B | 0.875 (17) | 2.047 (17) | 2.9063 (15) | 167.0 (15) |
N2B—H2B···O4Ai | 0.853 (19) | 2.121 (19) | 2.9630 (15) | 169.1 (16) |
C2B—H2BA···O2Bii | 0.95 | 2.63 | 3.3452 (15) | 132.1 |
C2B—H2BA···O4Biii | 0.95 | 2.66 | 3.5201 (15) | 151.4 |
C4B—H4BC···O5Biii | 0.98 | 2.60 | 3.5814 (17) | 176.8 |
C6B—H6B···O3Biv | 0.95 | 2.48 | 3.3910 (15) | 160.1 |
C7B—H7B···O2Bv | 0.95 | 2.39 | 3.1622 (15) | 137.6 |
C10B—H10B···O5Bv | 0.95 | 2.54 | 3.3418 (16) | 142.0 |
π–π stacks | ||||
Ring 1···ring 2 | Distance | Dihedral | ||
Cg(pzA)···Cg(bzB) | 3.524 (1) | 5.41 (4) |
Abbreviations: Cg = centroid; bz = benzene; pz = pyrazole. Symmetry codes: (i) = -x, -y + 1, -z + 1; (ii) = -x + 2, -y, -z + 2; (iii) = x + 1, y - 1, z; (iv) = -x + 1, -y, -z + 2; (v) = x - 1, y, z; (vi) x + 1, y, z. |
Acknowledgements
One of the authors (V) is grateful to the DST–PURSE Project, Vijnana Bhavana, UOM for providing research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.
References
Ansari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16–41. Web of Science CrossRef CAS Google Scholar
Archana, S. D., Nagma Banu, H. A., Kalluraya, B., Yathirajan, H. S., Balerao, R. & Butcher, R. J. (2022). IUCrData, 7, x220924. Google Scholar
Asma, Kalluraya, B., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 1783–1789. Web of Science CSD CrossRef IUCr Journals Google Scholar
Baddeley, T. C., Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1016–o1017. CSD CrossRef IUCr Journals Google Scholar
Bruker (2023). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dwivedi, J., Sharma, S., Jain, S. & Singh, A. (2018). Mini Rev. Med. Chem. 18, 918–947. CrossRef CAS PubMed Google Scholar
Ebenezer, O., Shapi, M. & Tuszynski, J. A. (2022). Biomedicines 10, 1124. Web of Science CrossRef PubMed Google Scholar
Faria, J. V., Vegi, P. F., Miguita, A. G. C., dos Santos, M. S., Boechat, N. & Bernardino, A. M. R. (2017). Bioorg. Med. Chem. 25, 5891–5903. CrossRef CAS PubMed Google Scholar
Fustero, S., Sánchez-Roselló, M., Barrio, P. & Simón-Fuentes, A. (2011). Chem. Rev. 111, 6984–7034. Web of Science CrossRef CAS PubMed Google Scholar
Fustero, S., Simón-Fuentes, A. & Sanz-Cervera, J. F. (2009). Org. Prep. Proced. Int. 41, 253–290. Web of Science CrossRef CAS Google Scholar
García-Lozano, J., Server-Carrió, J., Escrivà, E., Folgado, J.-V., Molla, C. & Lezama, L. (1997). Polyhedron, 16, 939–944. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134. CrossRef PubMed Google Scholar
Kim, Y., Kim, H., Lee, J., Lee, J. K., Min, S. J., Seong, J., Rhim, H., Tae, J., Lee, H. J. & Choo, H. (2018). J. Med. Chem. 61, 7218–7233. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 1054–1057. CrossRef IUCr Journals Google Scholar
Murtaza, S., Kausar, N., Tahir, M. N., Tariq, J. & Bibi, S. (2012). Acta Cryst. E68, o2196. CrossRef IUCr Journals Google Scholar
Naim, M. J., Alam, O., Nawaz, F., Alam, M. J. & Alam, P. (2016). J. Pharm. Bioallied Sci. 8, 2–17. CAS PubMed Google Scholar
Patil, S. B. (2020). J. Pharm. Sci. Res. 12, 402–404. Google Scholar
Pintro, C. J., Long, A. K., Amonette, A. J., Lobue, J. M. & Padgett, C. W. (2022). Acta Cryst. E78, 336–339. CrossRef IUCr Journals Google Scholar
Priyanka, P., Jayanna, B. K., Sunil Kumar, Y. C., Shreenivas, M. T., Srinivasa, G. R., Divakara, T. R., Yathirajan, H. S. & Parkin, S. (2022). Acta Cryst. E78, 1084–1088. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steinbach, G., Lynch, P. M., Phillips, R. K. S., Wallace, M. H., Hawk, E., Gordon, G. B., Wakabayashi, N., Saunders, B., Shen, Y., Fujimura, T., Su, L.-K., Levin, B., Godio, L., Patterson, S., Rodriguez-Bigas, M. A., Jester, S. L., King, K. L., Schumacher, M., Abbruzzese, J., DuBois, R. N., Hittelman, W. N., Zimmerman, S., Sherman, J. W. & Kelloff, G. (2000). N. Engl. J. Med. 342, 1946–1952. Web of Science CrossRef PubMed CAS Google Scholar
Wardell, S. M. S. V., Tiekink, E. R. T. & Wardell, J. L. (2012). Acta Cryst. E68, o1086–o1087. CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yet, L. (2018). Methods and Principles in Medicinal Chemistry. London, Hoboken, NJ: John Wiley & Sons. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.