research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis, DFT and mol­ecular docking studies of ethyl 5-amino-2-bromo­isonicotinate

crossmark logo

aDepartment of Physics, Yuvaraja's College, University of Mysore, Mysore, 570005, Karnataka, India, bDepartment of Pharmaceutical Chemistry, Kuvempu University, Shimoga, Karnataka, 577451, India, cDepartment of Physics, Government First Grade College, Chikkabalapura, Karnataka-562101, India, and dDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka 572103, India
*Correspondence e-mail: palaksha.bspm@gmail.com

Edited by S.-L. Zheng, Harvard University, USA (Received 11 October 2024; accepted 2 November 2024; online 8 November 2024)

In the title compound, C8H9BrN2O2, the C—O—C—C torsion angle between isonicotine and the ethyl group is 180.0 (2)°. Intra­molecular N—H⋯O and C—H⋯O inter­actions consolidate the mol­ecular structure. In the crystal, N—H⋯N inter­action form S(5) zigzag chains along [010]. The most significant contributions to the Hirshfeld surface arise from H⋯H (33.2%), Br⋯H/H⋯Br (20.9%), O⋯H/H⋯O (11.2%), C⋯H/H⋯C (11.1%) and N⋯H/H⋯N (10%) contacts. The topology of the three-dimensional energy frameworks was generated using the B3LYP/6–31 G(d,p) model to calculate the total inter­action energy. The net inter­action energies for the title compound are Eele = 59.2 kJ mol−1, Epol = 15.5 kJ mol−1, Edis = 140.3 kJ mol−1 and Erep = 107.2 kJ mol−1 with a total inter­action energy Etot of 128.8 kJ mol−1. The mol­ecular structure was optimized by density functional theory (DFT) at the B3LYP/6–311+G(d,p) level and the theoretical and experimentally obtained parameters were compared. The frontier mol­ecular orbitals HOMO and LUMO were generated, giving an energy gap ΔE of 4.0931 eV. The MEP was generated to identify active sites in the mol­ecule and mol­ecular docking studies carried out with the title compound (ligand) and the covid-19 main protease PDB ID: 6LU7, revealing a moderate binding affinity of −5.4 kcal mol−1.

1. Chemical context

The derivatives of isonicotinate are enanti­omerically enriched in the R and S configuration. The mol­ecules associated with 2-methyl­alkyl isonicotinate and nicotinate exhibit R and S configurations at the mol­ecular level. These compounds demonstrate a good anti-fungal activity against different phytopathogenic fungi species and they play significant role in the reduction of the damage at the plant cell and chloro­plast levels (Huras et al., 2017[Huras, B., Zakrzewski, J., Krawczyk, M., Bombińska, D., Cieniecka-Rosłonkiewicz, A. & Michalczyk, A. (2017). Med. Chem. Res. 26, 509-517.]). Isonicotinate ligands with an organoruthenium(II) ion form organometallic complexes that exhibit anti-cancer activities (Liu et al., 2012[Liu, K. G., Cai, X. Q., Li, X. C., Qin, D. A. & Hu, M. L. (2012). Inorg. Chim. Acta, 388, 78-83.]). Silver complexes with nicotinate-based ligands exhibit anti-bacterial activity against clinically isolated pathogens (Abu-Youssef et al., 2007[Abu-Youssef, M. A., Dey, R., Gohar, Y., Massoud, A. A. A., Öhrström, L. & Langer, V. (2007). Inorg. Chem. 46, 5893-5903.]). Various metal complexes with nicotinate moieties have been used to develop phytopathogenic drugs. Most importantly, organotin isonicotinate derivatives are extensively used in the development of anti­proliferative drugs, which play a significant role at the innermost layer of cells lining blood vessels and lymphatic vessels (Vieriu et al., 2021[Vieriu, S. M., Someşan, A. A., Silvestru, C., Licarete, E., Banciu, M. & Varga, R. A. (2021). New J. Chem. 45, 1020-1028.]). These drugs are used in drug-eluting stents to inhibit vascular smooth muscle cell proliferation possesses, exhibit considerable vasodilator properties and are also used to boost endothelial protective properties (Girgis et al., 2006[Girgis, A. S., Kalmouch, A. & Ellithey, M. (2006). Bioorg. Med. Chem. 14, 8488-8494.]). The isonicotinate-derived meso-tetra­aryl­porphyrin exhibits anti-oxidant, anti-fungal and allelopathic activities (Dardouri et al., 2024[Dardouri, N. E., Hrichi, S., Torres, P., Chaâbane-Banaoues, R., Sorrenti, A., Roisnel, T., Turowska-Tyrk, I., Babba, H., Crusats, J., Moyano, A. & Nasri, H. (2024). Molecules, 29, 3163.]). As part of our studies of this family of materials, we now present the synthesis, structure and Hirshfeld surface analysis of the title compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of title compound, which crystallizes in the monoclinic space group P21/c, is shown in Fig. 1[link]. The amino-2-bromo­isonicotinate ring system is essentially planar, with an r.m.s deviation of 0.043 (2) Å. The whole mol­ecule is essentially planar, the dihedral angle between the mean planes defined by the isonocotine moiety and the side chain being 4.30 (2)°. The C6—O1—C7—C8 torsion angle of 175.2 (2)° indicates that the ethyl group is in a planar orientation with the isonocotine ring [see also: C1—C6—O1—C7 = −178.0 (2)° and N2—C2–C1–C6 = −1.2 (4)°]. The mol­ecular structure is consolidated by N2—H2B⋯O2 and C5—H5⋯O1 intra­molecular inter­actions (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2 0.87 (3) 2.07 (3) 2.746 (3) 133 (2)
C5—H5⋯O1 0.93 2.37 2.694 (3) 100 (1)
N2—H2A⋯N1i 0.82 (3) 2.30 (3) 3.096 (3) 166 (3)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule with the atom-labeling scheme and 50% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, N2—H2A⋯N1 inter­actions (Table 1[link]) link the mol­ecules into S(5) zigzag chains along [010] as shown in Fig. 2[link]a and makes mol­ecular sheets through N—H⋯N interactions between the four independent molecules in the unit cell, as shown in Fig. 2[link]b.

[Figure 2]
Figure 2
(a) The three-dimensional mol­ecular packing of the title compound. Dashed lines indicate N—H⋯N inter­molecular hydrogen bonds forming zigzag chains along [010]. (b) Perspective view of the mol­ecular sheets.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was undertaken for mol­ecules containing ethyl 3-amino­isonicotinate, 5-amino-2-bromo­isonicotinic acid and ethyl 2-bromo­isonicotinate fragments, but no hits were found. However, 29 hits were found in a search for mol­ecules containing an ethyl isonicotinate fragment. Among those, in the structures with CSD refcodes ROMMIQ (Wang et al., 2009[Wang, W. & Mei, Z.-H. (2009). Acta Cryst. E65, o357.]), SILPOT (Wan et al., 2007[Wan, J., Li, F., Zeng, W.-L., Li, J. & Bi, S. (2007). Acta Cryst. E63, o3989.]), XEZDEM (Han et al., 2007[Han, X.-J., Zeng, W.-L., Bi, S. & Wan, J. (2007). Acta Cryst. E63, o1194-o1195.]) and XIMBIF (Li et al., 2007[Li, J., Zeng, W.-L., Wang, M.-H. & Wan, J. (2007). Acta Cryst. E63, o4177.]), the C—C—O—C torsion angles associated with the isonicotinate are 177.93 (2), −168.46 (3), −168.46 (3) and 176.82 (2)°, respectively, with the same anti conformation as in the title compound where the comparable torsion angle is 180.0 (2)°.

5. Hirshfeld surface analysis and inter­action energies

CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http://crystalexplorer.net.]) was used to perform a Hirshfeld surface analysis to qu­antify the various inter­molecular inter­actions. Fig. 3[link] illustrates the Hirshfeld surface mapped over dnorm with red spots corresponding to electronegative site of the nitro­gen through which a short contact N2—H2A⋯N1 forms a hydrogen-bonded chain. The fingerprint plots in Fig. 4[link] indicate that the major contributions to the Hirshfeld surface of the crystal structure are from H⋯H (33.2%), Br⋯H/H⋯Br (20.9%), O⋯H/H⋯O (11.2%), C⋯H/H⋯C (11.1%) and N⋯H/H⋯N (10%) contacts. The characteristic spikes in the N⋯H/H⋯N plot indicate the presence of the N2—H2A⋯N1 hydrogen bond listed in Table 1[link]. The three-dimensional inter­action energy between the mol­ecules of the title compound were computed using the basis set B3LYP/6-31G(d,p). The net inter­action energies are Eele = 59.2 kJ mol−1, Epol = 15.5 kJ mol−1, Edis = 140.3 kJ mol−1, Erep = 107.2 kJ mol−1 with a total inter­action energy Etot of128.8 kJ mol−1. The topology of the energy frameworks along the a, b and c axes for the different contributions (Coulombic energy, dispersion energy and total energy) are shown in Fig. 5[link].

[Figure 3]
Figure 3
The Hirshfeld surface mapped over dnorm with red spots corresponding to the electronegative site of the nitro­gen of the mol­ecule.
[Figure 4]
Figure 4
The fingerprint plots of the title mol­ecule, showing the major contributions to the Hirshfeld surface from H⋯H (33.2%), Br⋯H/H⋯Br (20.9%), O⋯H/H⋯O (11.2%), C⋯H/H⋯C (11.1%) and N⋯H/H⋯N (10%) contacts.
[Figure 5]
Figure 5
The topology of the energy frameworks along the a, b and c axes for inter­action energies.

6. DFT Studies

The title compound was studied by DFT calculations in the gas phase at the B3LYP/6-311+G(d,p) level of theory with Gaussian 09W (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09W, Revision A. 02. Gaussian, Inc., Wallingford CT, USA.]). GaussView 5.0 was used to generate the optimized mol­ecular structure (Fig. 6[link]). The optimized bond parameters obtained are in good correlation with those obtained from SCXRD analysis (Table 2[link]). The small deviations observed may be attributed to the gas phase (theoretical calculations) compared to the solid phase of SCXRD analysis. The calculated energies of the frontier mol­ecular orbitals are −6.2700 eV and −2.1769 eV. The energy gap ΔE was found to be 4.0931 eV (Fig. 7[link]). The reactivity descriptors calculated from the energy gap value, ionization energy (I), electron affinity (A), electronegativity (χ), chemical hardness (η), chemical potential (μ), electrophilicity index (ω) and chemical softness (S) are 6.2700, 2.1769, 4.2234, 2.0465, −4.2234, 4.3580 eV and 0.2440 eV−1 respectively.

Table 2
Selected bond lengths, angles and torsion angles (Å, °)

Parameter SCXRD DFT
Br1—C4 1.903 (2) 1.9253
O1—C6 1.335 (3) 1.3573
O1—C7 1.454 (3) 1.4551
N2—C2 1.354 (3) 1.3704
C3—N1 1.318 (3) 1.3228
N1—C4 1.327 (3) 1.3226
C6—O1—C7 117.00 (2) 116.13
N2—C2—C1 124.5 (2) 124.95
N2—C2—C3 119.3 (2) 118.77
C2—C3—N1 125.1 (2) 124.62
Br1—C4—N1 116.65 (15) 117.07
Br1—C4—C5 119.19 (16) 119.44
O1—C6—O2 123.0 (2) 122.35
C7—O1—C6—O2 −0.6 (4) −0.34
C7—O1—C6—C1 180.0 (2) 179.93
C3—N1—C4—Br1 178.8 (2) 179.84
N2—C2—C3—N1 −179.0 (3) −177.72
[Figure 6]
Figure 6
The optimized mol­ecular structure of the title compound generated using Gaussian 09W.
[Figure 7]
Figure 7
The frontier mol­ecular orbitals HOMO and LUMO energy levels, with the energy gap ΔE = 4.0931 eV.

The MEP surface of the optimized structure of the title compound is depicted in Fig. 8[link]. Nucleophilic and electrophilic reactive sites of the mol­ecule are represented by red- and blue-colored regions on the MEP surface. In the MEP surface of the title compound, the pale red color covering the oxygen and nitro­gen atoms of the isonicotinate fragment and the pale-blue color over the amino group are active sites for nucleophilic and electrophilic attack, respectively.

[Figure 8]
Figure 8
The MEP surface of the optimized mol­ecular structure of the title compound.

7. Mol­ecular docking studies

The inter­action of the ligand with the target receptor, covid-19 main protease (PDB ID: 6LU7) was performed using Autodock Vina 4.2 (Morris et al., 2009[Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). J. Comput. Chem. 30, 27852791.]) software. Biovia Discovery Studio (Biovia, 2017[Biovia (2017). Discovery Studio Visualizer. Biovia, SanDiego, CA, USA.]) was used for visualizing the inter­actions present between ligand and receptor. The docking results of the ligand with the receptor protein reveal that the ligand has a good binding affinity of −5.4 kcal mol−1 and the 2D inter­action view shows conventional hydrogen bonding of GLU A:166, LEU A:141, CYS A:145 and SER A:144 with nitro­gen and oxygen atoms, van der Waals inter­actions between the HIS A:163, ASN A:142 amino residues and ethyl −5-amino −2-bromo­isonicotinate, Fig. 9[link]. The binding affinity of the title compound with the receptor protein (covid-19 main protease) suggests it to be a potential candidate for pharmaceutical applications. Meanwhile, we have gone through the literature in order to study the efficiency of the title ligand. The docking results of imidazole-anchored azo-imidazole derivatives with the 6LU7 receptor also exhibit a binding affinity of −5.4 kcal mol−1 (Chhetri et al., 2021[Chhetri, A., Chettri, S., Rai, P., Mishra, D. K., Sinha, B. & Brahman, D. (2021). J. Mol. Struct. 1225, 129230.])

[Figure 9]
Figure 9
A graphical view of the three-dimensional and two-dimensional docking between the ligand and the receptor protein (covid-19 main protease).

8. Synthesis and crystallization

To a stirred a solution of ethyl 3-amino­isonicotinate (800 mg, 1.0 eq) in DMF (8 mL), N-bromo­succinimide (NBS; 0.937 mg. 1.1 eq) was added, and the reaction mixture was stirred at room temperature for 6 h. The reaction was monitored by TLC (30% EA: hexa­ne) and it confirmed that the reaction was complete. The reaction mixture was then quenched with water and extracted into ethyl acetate. The organic layer was separated and concentrated to obtain the crude product and purified through Combi-Flash chromatography using 30% EA. Hexane–ethyl acetate was used as mobile phase to obtain the pure compound as a pale-yellow crystal, yield: 98%. A suitable single crystal was used to collect the X-ray data.1H NMR (500 Hz) in CDCl3, δ 7.96 (s, 1H, Ar-H), 7.78 (s, 1H, Ar-H), 5.69 (s, 2H, NH2), 4.36 (t, J = 7 Hz, 2H, OCH2), 1.42 (t, J = 7 Hz, 3H, –CH3) ppm. 13C NMR, 125 Hz: δ 165.8, 144.1, 140.3, 126.9, 118.8, 61.6, 14.2 ppm.

[Scheme 2]

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms attached to N were located in difference maps. The distances H2A/H2B—N2 were restrained to 0.82 (2) Å. All other H atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Table 3
Experimental details

Crystal data
Chemical formula C8H9BrN2O2
Mr 245.08
Crystal system, space group Monoclinic, P21/c
Temperature (K) 567
a, b, c (Å) 4.1538 (9), 8.9978 (16), 25.487 (5)
β (°) 92.468 (7)
V3) 951.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.29
Crystal size (mm) 0.32 × 0.27 × 0.21
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.225, 0.401
No. of measured, independent and observed [I > 2σ(I)] reflections 21643, 2353, 1910
Rint 0.037
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.069, 1.04
No. of reflections 2353
No. of parameters 126
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.45
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Ethyl 5-amino-2-bromopyridine-4-carboxylate top
Crystal data top
C8H9BrN2O2F(000) = 488
Mr = 245.08Dx = 1.710 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.1538 (9) ÅCell parameters from 2367 reflections
b = 8.9978 (16) Åθ = 2.5–29.0°
c = 25.487 (5) ŵ = 4.29 mm1
β = 92.468 (7)°T = 567 K
V = 951.7 (3) Å3Prism, pale yellow
Z = 40.32 × 0.27 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2353 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 0.97 pixels mm-1θmax = 28.3°, θmin = 2.8°
φ and Ω scansh = 55
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.225, Tmax = 0.401l = 3333
21643 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0216P)2 + 0.6676P]
where P = (Fo2 + 2Fc2)/3
2353 reflections(Δ/σ)max = 0.001
126 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.45 e Å3
0.12 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.50981 (7)0.23668 (3)0.33291 (2)0.06255 (12)
O10.6756 (4)0.71953 (17)0.44789 (6)0.0519 (4)
O20.4245 (5)0.91607 (19)0.41176 (7)0.0678 (5)
N20.0811 (7)0.8705 (3)0.31867 (10)0.0679 (7)
C10.3910 (5)0.6820 (2)0.36780 (8)0.0389 (4)
C20.1949 (6)0.7303 (2)0.32486 (8)0.0451 (5)
C30.1106 (6)0.6220 (3)0.28677 (9)0.0511 (6)
H30.0194600.6518600.2580760.061*
N10.2016 (5)0.4817 (2)0.28864 (7)0.0480 (5)
C40.3867 (5)0.4403 (2)0.32981 (8)0.0419 (5)
C50.4870 (5)0.5336 (2)0.36960 (8)0.0414 (5)
H50.6174690.4985690.3974700.050*
C60.4947 (6)0.7863 (3)0.41030 (8)0.0455 (5)
C70.7917 (7)0.8112 (3)0.49174 (9)0.0558 (6)
H7A0.6124830.8602080.5077250.067*
H7B0.9381710.8865980.4797210.067*
C80.9601 (8)0.7121 (4)0.53018 (11)0.0737 (8)
H8A1.0399060.7694780.5597190.111*
H8B0.8127580.6381360.5418350.111*
H8C1.1370290.6644110.5139540.111*
H2A0.018 (6)0.889 (3)0.2911 (12)0.064 (8)*
H2B0.141 (7)0.934 (3)0.3432 (12)0.067 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.07039 (19)0.04411 (15)0.0714 (2)0.00444 (12)0.01747 (13)0.01644 (12)
O10.0718 (11)0.0421 (8)0.0399 (8)0.0006 (7)0.0200 (7)0.0075 (7)
O20.1044 (15)0.0396 (9)0.0572 (11)0.0078 (9)0.0225 (10)0.0068 (8)
N20.102 (2)0.0467 (12)0.0519 (14)0.0056 (12)0.0313 (13)0.0091 (10)
C10.0475 (12)0.0382 (10)0.0304 (10)0.0056 (9)0.0048 (9)0.0015 (8)
C20.0559 (13)0.0426 (11)0.0359 (11)0.0058 (10)0.0073 (9)0.0083 (9)
C30.0625 (15)0.0560 (14)0.0334 (11)0.0075 (11)0.0139 (10)0.0050 (10)
N10.0569 (12)0.0513 (11)0.0349 (9)0.0085 (9)0.0090 (8)0.0041 (8)
C40.0460 (12)0.0399 (11)0.0394 (11)0.0056 (9)0.0026 (9)0.0042 (9)
C50.0488 (12)0.0414 (11)0.0331 (10)0.0033 (9)0.0090 (9)0.0005 (8)
C60.0589 (14)0.0401 (11)0.0367 (11)0.0036 (10)0.0069 (10)0.0005 (8)
C70.0683 (16)0.0557 (14)0.0418 (12)0.0052 (12)0.0159 (11)0.0167 (11)
C80.080 (2)0.091 (2)0.0478 (15)0.0032 (17)0.0203 (14)0.0065 (14)
Geometric parameters (Å, º) top
Br1—C41.903 (2)C3—N11.318 (3)
O1—C61.335 (3)C3—H30.9300
O1—C71.454 (2)N1—C41.327 (3)
O2—C61.204 (3)C4—C51.368 (3)
N2—C21.354 (3)C5—H50.9300
N2—H2A0.82 (3)C7—C81.478 (4)
N2—H2B0.87 (3)C7—H7A0.9700
C1—C51.393 (3)C7—H7B0.9700
C1—C21.405 (3)C8—H8A0.9600
C1—C61.483 (3)C8—H8B0.9600
C2—C31.409 (3)C8—H8C0.9600
C6—O1—C7117.00 (18)C1—C5—H5120.5
C2—N2—H2A117 (2)O2—C6—O1123.0 (2)
C2—N2—H2B115.9 (19)O2—C6—O1123.0 (2)
H2A—N2—H2B127 (3)O2—C6—C1125.0 (2)
C5—C1—C2118.54 (19)O2—C6—C1125.0 (2)
C5—C1—C6120.56 (19)O1—C6—C1112.08 (19)
C2—C1—C6120.9 (2)O1—C7—C8107.4 (2)
N2—C2—C1124.5 (2)O1—C7—H7A110.2
N2—C2—C3119.3 (2)C8—C7—H7A110.2
C1—C2—C3116.2 (2)O1—C7—H7B110.2
N1—C3—C2125.1 (2)C8—C7—H7B110.2
N1—C3—H3117.4H7A—C7—H7B108.5
C2—C3—H3117.4C7—C8—H8A109.5
C3—N1—C4116.92 (19)C7—C8—H8B109.5
N1—C4—C5124.2 (2)H8A—C8—H8B109.5
N1—C4—Br1116.65 (15)C7—C8—H8C109.5
C5—C4—Br1119.19 (16)H8A—C8—H8C109.5
C4—C5—C1119.1 (2)H8B—C8—H8C109.5
C4—C5—H5120.5
C5—C1—C2—N2179.0 (2)C6—C1—C5—C4179.9 (2)
C6—C1—C2—N21.2 (4)C7—O1—C6—O20.6 (4)
C5—C1—C2—C30.2 (3)C7—O1—C6—O20.6 (4)
C6—C1—C2—C3180.0 (2)C7—O1—C6—C1180.0 (2)
N2—C2—C3—N1179.0 (3)C5—C1—C6—O2179.6 (2)
C1—C2—C3—N10.1 (4)C2—C1—C6—O20.2 (4)
C2—C3—N1—C40.1 (4)C5—C1—C6—O2179.6 (2)
C3—N1—C4—C50.2 (3)C2—C1—C6—O20.2 (4)
C3—N1—C4—Br1178.77 (18)C5—C1—C6—O11.0 (3)
N1—C4—C5—C10.3 (4)C2—C1—C6—O1179.1 (2)
Br1—C4—C5—C1178.67 (16)C6—O1—C7—C8175.2 (2)
C2—C1—C5—C40.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.87 (3)2.07 (3)2.746 (3)133 (2)
C5—H5···O10.932.372.694 (3)100 (1)
N2—H2A···N1i0.82 (3)2.30 (3)3.096 (3)166 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
Selected bond lengths, angles and torsion angles (Å, °) top
ParameterSCXRDDFT
Br1—C41.903 (2)1.9253
O1—C61.335 (3)1.3573
O1—C71.454 (3)1.4551
N2—C21.354 (3)1.3704
C3—N11.318 (3)1.3228
N1—C41.327 (3)1.3226
C6—O1—C7117.00 (2)116.13
N2—C2—C1124.5 (2)124.95
N2—C2—C3119.3 (2)118.77
C2—C3—N1125.1 (2)124.62
Br1—C4—N1116.65 (15)117.07
Br1—C4—C5119.19 (16)119.44
O1—C6—O2123.0 (2)122.35
C7—O1—C6—O2-0.6 (4)-0.34
C7—O1—C6—C1180.0 (2)179.93
C3—N1—C4—Br1178.8 (2)179.84
N2—C2—C3—N1-179.0 (3)-177.72
 

Acknowledgements

HM extends his gratitude to Kishore and Shashikanth SSCU, IISc for their help in collecting the SCXRD data.

Funding information

Funding for this research was provided by: Vision Group of Science and Technology, Government of Karnataka (award No. GRD319 to Palakshamurthy Bandrehalli Siddagangaiah).

References

First citationAbu-Youssef, M. A., Dey, R., Gohar, Y., Massoud, A. A. A., Öhrström, L. & Langer, V. (2007). Inorg. Chem. 46, 5893–5903.  Web of Science PubMed CAS Google Scholar
First citationBiovia (2017). Discovery Studio Visualizer. Biovia, SanDiego, CA, USA.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChhetri, A., Chettri, S., Rai, P., Mishra, D. K., Sinha, B. & Brahman, D. (2021). J. Mol. Struct. 1225, 129230.  CrossRef PubMed Google Scholar
First citationDardouri, N. E., Hrichi, S., Torres, P., Chaâbane-Banaoues, R., Sorrenti, A., Roisnel, T., Turowska-Tyrk, I., Babba, H., Crusats, J., Moyano, A. & Nasri, H. (2024). Molecules, 29, 3163.  CrossRef PubMed Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09W, Revision A. 02. Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationGirgis, A. S., Kalmouch, A. & Ellithey, M. (2006). Bioorg. Med. Chem. 14, 8488–8494.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, X.-J., Zeng, W.-L., Bi, S. & Wan, J. (2007). Acta Cryst. E63, o1194–o1195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuras, B., Zakrzewski, J., Krawczyk, M., Bombińska, D., Cieniecka-Rosłonkiewicz, A. & Michalczyk, A. (2017). Med. Chem. Res. 26, 509–517.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, J., Zeng, W.-L., Wang, M.-H. & Wan, J. (2007). Acta Cryst. E63, o4177.  CrossRef IUCr Journals Google Scholar
First citationLiu, K. G., Cai, X. Q., Li, X. C., Qin, D. A. & Hu, M. L. (2012). Inorg. Chim. Acta, 388, 78–83.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). J. Comput. Chem. 30, 27852791.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http://crystalexplorer.net.  Google Scholar
First citationVieriu, S. M., Someşan, A. A., Silvestru, C., Licarete, E., Banciu, M. & Varga, R. A. (2021). New J. Chem. 45, 1020–1028.  CrossRef CAS Google Scholar
First citationWan, J., Li, F., Zeng, W.-L., Li, J. & Bi, S. (2007). Acta Cryst. E63, o3989.  CrossRef IUCr Journals Google Scholar
First citationWang, W. & Mei, Z.-H. (2009). Acta Cryst. E65, o357.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds