research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Variable temperature studies of tetra­pyridine­silver(I) hexa­fluoro­phosphate and tetra­pyridine­silver(I) hexa­fluoro­anti­monate

crossmark logo

aChemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
*Correspondence e-mail: amber.thompson@chem.ox.ac.uk

Edited by L. Suescun, Universidad de la República, Uruguay (Received 6 June 2024; accepted 18 November 2024; online 28 November 2024)

As part of a larger study into phase transitions, the structures of tetra­pyridine­silver(I) hexa­fluoro­phosphate, [Ag(C5H5N)4](PF6) or AgPy4PF6, and tetra­pyridine­silver(I) hexa­fluoro­anti­monate, [Ag(C5H5N)4](SbF6) or AgPy4SbF6, were determined at 300 and 100 K from single-crystal X-ray diffraction. The compounds are isostructural, crystallizing in the space group I[\overline{4}] with Z′ = 1/4. Over the temperature range studied no evidence of a phase change was found. The dihedral angles between the pyridine rings are compared with similar cations from the literature and discussed.

1. Chemical context

Barluenga's reagent, IPy2BF4, and some of its derivatives have been shown to exhibit phase transitions (Kim et al., 2014[Kim, Y., Mckinley, E. J., Christensen, K. E., Rees, N. H. & Thompson, A. L. (2014). Cryst. Growth Des. 14, 6294-6301.]; Morgan et al., 2018[Morgan, L. C. F., Kim, Y., Blandy, J. N., Murray, C. A., Christensen, K. E. & Thompson, A. L. (2018). Chem. Commun. 54, 9849-9852.]). This study was recently extended to silver complexes of the form AgL2X where L is a pyridine-based ligand and X is an anion with a single charge (Fleming, 2021[Fleming, V. M. A. (2021). Masters Thesis Towards a Better Understanding of Structural Modulation in Molecular Systems.]; Thompson et al., 2023[Thompson, A. L., Funnell, N. P., Fortes, A. D. & Christensen, K. E. (2023). Acta Cryst. A79, C187.]).

[Scheme 1]

While making and studying the parent compound AgPy2PF6 and the related AgPy2SbF6, the side-products AgPy4PF6 (I) and AgPy4SbF6 (II) crystallized. Although these have not been previously reported, a number of isostructural species are known including CuPy4PF6 (Coles et al., 2008[Coles, S. J., Hursthouse, M. B., Sengul, A. & Kurt, O. (2008). University of Southampton, Crystal Structure Report Archive, 385.]), AgPy4ClO4, CuPy4ClO4 (Nilsson & Oskarsson, 1981[Nilsson, K. & Oskarsson, Å. (1981). Acta Cryst. A37, C227.], 1982[Nilsson, K. & Oskarsson, Å. (1982). Acta Chem. Scand. 36a, 605-610.]), CuPy4I (Al Shamaileh & Al-Far, 2016[Al Shamaileh, E. & Al-Far, E. (2016). CSD Communication (refcode YAGMAX). CCDC, Cambridge, England.]), LiPy4PF6 (Jalil et al., 2017[Jalil, A. A., Clymer, R. N., Hamilton, C. R., Vaddypally, S., Gau, M. R. & Zdilla, M. J. (2017). Acta Cryst. C73, 264-269.]) and LiPy4ClO4 (Harvey et al., 1992[Harvey, S., Kildea, J. D., Skelton, B. W. & White, A. H. (1992). Aust. J. Chem. 45, 1135-1142.]). All of these crystallize in the space group I[\overline{4}] with both the cation and the anion occupying a position on a fourfold rotoinversion axis.

2. Structural commentary

Single-crystal X-ray diffraction data were collected initially at 300 K, before the crystals were cooled at 200 K h−1 to 100 K where a similar dataset was collected. In both cases, aside from the expected unit-cell contraction and some peak broadening (presumably caused by strain), there was no evidence of a change in phase over the temperature range studied (Figs. 1[link] and 2[link]). Both I and II crystallize with Z′ = 1/4, with the silver atom at the centre of the cation and the phospho­rus/anti­mony and one fluorine all lying on the fourfold rotoinversion axis with the other atoms on general positions (Figs. 3[link] and 4[link]). In both cases, the structure forms a close-packed, body-centred arrangement of cations with the anions located in the voids. At 300 K, the voids in I are 118 Å3 contracting to 101 Å3 at 100 K; for II the void of 134 Å3 contracts to 120 Å3 showing a similar lattice contraction to I. Geometric parameters are given for I and II at 300 and 100 K in Tables 1[link]–4[link][link][link].

Table 1
Selected geometric parameters (Å, °) for I at 300 K[link]

Ag1—N1i 2.322 (3) C13—C14 1.356 (6)
Ag1—N1ii 2.322 (3) C14—C15 1.362 (6)
Ag1—N1iii 2.322 (3) P1—F1iv 1.572 (2)
Ag1—N1 2.322 (3) P1—F1v 1.572 (2)
N1—C11 1.318 (5) P1—F1vi 1.572 (2)
N1—C15 1.331 (4) P1—F2iv 1.556 (4)
C11—C12 1.354 (6) P1—F1 1.572 (2)
C12—C13 1.363 (6) P1—F2 1.556 (4)
       
N1i—Ag1—N1ii 106.90 (8) F1iv—P1—F1vi 179.7 (2)
N1i—Ag1—N1iii 114.75 (16) F1v—P1—F1vi 90.00
N1ii—Ag1—N1iii 106.90 (8) F1iv—P1—F2iv 90.16 (12)
N1i—Ag1—N1 106.90 (8) F1v—P1—F2iv 89.84 (12)
N1ii—Ag1—N1 114.75 (16) F1vi—P1—F2iv 90.16 (12)
N1iii—Ag1—N1 106.90 (8) F1iv—P1—F1 90.00
Ag1—N1—C11 121.2 (2) F1v—P1—F1 179.7 (2)
Ag1—N1—C15 120.9 (3) F1vi—P1—F1 90.00
C11—N1—C15 117.5 (3) F2iv—P1—F1 89.84 (12)
N1—C11—C12 122.5 (4) F1iv—P1—F2 89.84 (12)
C11—C12—C13 119.8 (4) F1v—P1—F2 90.16 (12)
C12—C13—C14 118.3 (4) F1vi—P1—F2 89.84 (12)
C13—C14—C15 118.9 (4) F2iv—P1—F2 179.99
C14—C15—N1 122.9 (4) F1—P1—F2 90.16 (12)
F1iv—P1—F1v 90.00    
Symmetry codes: (i) [y, -x+1, -z+1]; (ii) [-x+1, -y+1, z]; (iii) [-y+1, x, -z+1]; (iv) [y-{\script{1\over 2}}, -x+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, -y+1, z]; (vi) [-y+{\script{1\over 2}}, x+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Selected geometric parameters (Å, °) for I at 100 K[link]

Ag1—N1i 2.310 (2) C13—C14 1.381 (5)
Ag1—N1ii 2.310 (2) C14—C15 1.392 (4)
Ag1—N1iii 2.310 (2) P1—F1iv 1.6047 (15)
Ag1—N1 2.310 (2) P1—F1v 1.6047 (15)
N1—C11 1.346 (3) P1—F1vi 1.6047 (15)
N1—C15 1.343 (3) P1—F2iv 1.584 (4)
C11—C12 1.381 (4) P1—F1 1.6047 (15)
C12—C13 1.389 (4) P1—F2 1.584 (4)
       
N1i—Ag1—N1ii 105.36 (5) F1iv—P1—F1vi 179.88 (12)
N1i—Ag1—N1iii 105.36 (5) F1v—P1—F1vi 90.00
N1ii—Ag1—N1iii 118.04 (10) F1iv—P1—F2iv 90.06 (6)
N1i—Ag1—N1 118.04 (10) F1v—P1—F2iv 89.94 (6)
N1ii—Ag1—N1 105.36 (5) F1vi—P1—F2iv 90.06 (6)
N1iii—Ag1—N1 105.36 (5) F1iv—P1—F1 90.00
Ag1—N1—C11 121.60 (16) F1v—P1—F1 179.88 (12)
Ag1—N1—C15 120.02 (17) F1vi—P1—F1 90.00
C11—N1—C15 117.5 (2) F2iv—P1—F1 89.94 (6)
N1—C11—C12 122.9 (2) F1iv—P1—F2 89.94 (6)
C11—C12—C13 119.2 (3) F1v—P1—F2 90.06 (6)
C12—C13—C14 118.5 (3) F1vi—P1—F2 89.94 (6)
C13—C14—C15 119.0 (2) F2iv—P1—F2 179.99
C14—C15—N1 122.9 (2) F1—P1—F2 90.06 (6)
F1iv—P1—F1v 90.00    
Symmetry codes: (i) [-x+1, -y+1, z]; (ii) [y, -x+1, -z+1]; (iii) [-y+1, x, -z+1]; (iv) [y-{\script{1\over 2}}, -x+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, -y+1, z]; (vi) [-y+{\script{1\over 2}}, x+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 3
Selected geometric parameters (Å, °) for II at 300 K[link]

Ag1—N1i 2.324 (7) C13—C14 1.370 (18)
Ag1—N1ii 2.324 (7) C14—C15 1.366 (15)
Ag1—N1iii 2.324 (7) Sb1—F2iv 1.872 (8)
Ag1—N1 2.324 (7) Sb1—F1v 1.849 (5)
N1—C11 1.328 (12) Sb1—F1iv 1.849 (5)
N1—C15 1.347 (10) Sb1—F1vi 1.849 (5)
C11—C12 1.342 (15) Sb1—F1 1.849 (5)
C12—C13 1.368 (17) Sb1—F2 1.872 (8)
       
N1i—Ag1—N1ii 108.10 (18) F2iv—Sb1—F1iv 92.0 (5)
N1i—Ag1—N1iii 108.10 (18) F1v—Sb1—F1iv 176.1 (10)
N1ii—Ag1—N1iii 112.2 (4) F2iv—Sb1—F1vi 88.0 (5)
N1i—Ag1—N1 112.2 (4) F1v—Sb1—F1vi 90.07 (3)
N1ii—Ag1—N1 108.10 (18) F1iv—Sb1—F1vi 90.07 (3)
N1iii—Ag1—N1 108.10 (18) F2iv—Sb1—F1 88.0 (5)
Ag1—N1—C11 121.3 (5) F1v—Sb1—F1 90.07 (3)
Ag1—N1—C15 121.0 (6) F1iv—Sb1—F1 90.07 (3)
C11—N1—C15 117.6 (8) F1vi—Sb1—F1 176.1 (10)
N1—C11—C12 123.2 (9) F2iv—Sb1—F2 179.99
C11—C12—C13 120.1 (11) F1v—Sb1—F2 88.0 (5)
C12—C13—C14 117.4 (10) F1iv—Sb1—F2 88.0 (5)
C13—C14—C15 120.3 (9) F1vi—Sb1—F2 92.0 (5)
C14—C15—N1 121.3 (9) F1—Sb1—F2 92.0 (5)
F2iv—Sb1—F1v 92.0 (5)    
Symmetry codes: (i) [-x+1, -y+1, z]; (ii) [y, -x+1, -z+1]; (iii) [-y+1, x, -z+1]; (iv) [y-{\script{1\over 2}}, -x+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-y+{\script{1\over 2}}, x+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x, -y+1, z].

Table 4
Selected geometric parameters (Å, °) for II at 100 K[link]

Ag1—N1i 2.305 (2) C13—C14 1.384 (4)
Ag1—N1ii 2.305 (2) C14—C15 1.385 (4)
Ag1—N1iii 2.305 (2) Sb1—F2iv 1.8809 (17)
Ag1—N1 2.305 (2) Sb1—F1v 1.8776 (13)
N1—C11 1.338 (3) Sb1—F1iv 1.8776 (13)
N1—C15 1.348 (3) Sb1—F1vi 1.8776 (13)
C11—C12 1.386 (4) Sb1—F1 1.8776 (13)
C12—C13 1.383 (4) Sb1—F2 1.8809 (17)
       
N1i—Ag1—N1ii 107.70 (5) F2iv—Sb1—F1iv 90.62 (7)
N1i—Ag1—N1iii 107.70 (5) F1v—Sb1—F1iv 178.75 (14)
N1ii—Ag1—N1iii 113.08 (11) F2iv—Sb1—F1vi 89.38 (7)
N1i—Ag1—N1 113.08 (11) F1v—Sb1—F1vi 90.01
N1ii—Ag1—N1 107.70 (5) F1iv—Sb1—F1vi 90.01
N1iii—Ag1—N1 107.70 (5) F2iv—Sb1—F1 89.38 (7)
Ag1—N1—C11 121.63 (17) F1v—Sb1—F1 90.01
Ag1—N1—C15 120.93 (17) F1iv—Sb1—F1 90.01
C11—N1—C15 117.1 (2) F1vi—Sb1—F1 178.75 (14)
N1—C11—C12 123.3 (2) F2iv—Sb1—F2 179.99
C11—C12—C13 118.9 (3) F1v—Sb1—F2 89.38 (7)
C12—C13—C14 118.5 (2) F1iv—Sb1—F2 89.38 (7)
C13—C14—C15 119.0 (2) F1vi—Sb1—F2 90.62 (7)
C14—C15—N1 123.1 (3) F1—Sb1—F2 90.62 (7)
F2iv—Sb1—F1v 90.62 (7)    
Symmetry codes: (i) [-x+1, -y+1, z]; (ii) [y, -x+1, -z+1]; (iii) [-y+1, x, -z+1]; (iv) [y-{\script{1\over 2}}, -x+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-y+{\script{1\over 2}}, x+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x, -y+1, z].
[Figure 1]
Figure 1
Selected reciprocal lattice sections reconstructed to 1.5 Å for the zero order layers for I at 300 K and 100 K.
[Figure 2]
Figure 2
Selected reciprocal lattice sections reconstructed to 1.5 Å for the zero order layers for II at 300 K and 100 K.
[Figure 3]
Figure 3
The mol­ecular structure of I at 100 K. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) y, 1 − x, 1 − z; (ii) 1 − x, 1 − y, z; (iii) 1 − y, x, 1 − z; (iv) y − [{1\over 2}], [{1\over 2}] − x, [{1\over 2}] − z; (v) −x, 1 − y, z; (vi) [{1\over 2}] − y, [{1\over 2}] + x, [{1\over 2}] − z.
[Figure 4]
Figure 4
The mol­ecular structure of II at 100 K. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) y, 1 − x, 1 − z; (ii) 1 − x, 1 − y, z; (iii) 1 − y, x, 1 − z; (iv) y − [{1\over 2}], [{1\over 2}] − x, [{1\over 2}] − z; (v) −x, 1 − y, z; (vi) [{1\over 2}] − y, [{1\over 2}] + x, [{1\over 2}] − z.

3. Database survey

Searching the Cambridge Structural Database (CSD V. 5.45 with March 2024 and June 2024 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using CONQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for XPy4 structures in the space group I[\overline{4}] yields ten structures with three-dimensional coordinates deposited. For these, the X—N distance and the dihedral angles between the pyridine rings have been determined and plotted (Fig. 5[link]). Since X occupies a special position, two pyridine–pyridine angles are the same and the third is related, such that as one decreases, the other increases. There is a general correlation between the X—N length and the dihedral angle; however, it is noticeable that the two compounds discussed herein exhibit larger dihedral angles than those previously reported and on cooling to 100 K, I (AgPy4PF6) shows a marked increase that is not seen for the SbF6 analogue.

[Figure 5]
Figure 5
Scattergram plotting the dihedral angle between pyridine rings against the X—N bond distance for XPy4 cations. Data points shown in blue are from literature values taken from the CSD while those in red are from this study. Each point is labelled with X, and the asterisk denotes an unusually short Cu—N distance as discussed herein.

It is also worth pointing out that the Cu—N distance for CuPy4I (YAGMAX, marked with an asterisk in Fig. 5[link]; Al Shamaileh & Al-Far, 2016[Al Shamaileh, E. & Al-Far, E. (2016). CSD Communication (refcode YAGMAX). CCDC, Cambridge, England.]) is considerably shorter than the values for the other Cu structures plotted. Indeed, the value of 1.903 (4) Å is outside the inter­quartile range of 2.008–2.054 Å determined from a simple CSD search for a four-coordinate copper with four pyridine derived ligands. This structure was deposited in the CSD as a private communication, so while it is possible there is an error (e.g. the wrong atom type) more information is not readily available and the structure is included in the plot in Fig. 5[link] for completeness.

4. Synthesis and crystallization

For the synthesis of AgPy4PF6 (I), silver nitrate (1.5 g, 8.83 mmol, 1 eq.) and potassium hexa­fluoro­phosphate (1.63 g, 8.83 mmol, 1 eq.) were dissolved in deionized water (15 ml). Pyridine (2.0 ml, 24.7 mmol, 2.8 eq.) was added dropwise and the solution was stirred for 1 h. The precipitate was collected by suction filtration, washed with copious amounts of deionized water and dried for two days in a desiccator. Crystals were grown by vapour diffusion using DCM as the solvent and petroleum ether as the anti-solvent. Similar crystals (with a statistically indistinguishable unit cell) were also found using MeOH as the anti-solvent.

AgPy2SbF6 (II) was synthesized directly from AgSbF6 (0.8 g, 2.33 mmol, 1 eq.) which was dissolved in deionized water (10 ml). Pyridine (0.53 ml, 6.52 mmol, 2.8 eq.) was added dropwise and the solution was stirred for 1 h. The precipitate was collected by suction filtration, washed with copious amounts of deionized water and dried for two days in a desiccator. Crystals were grown by solvent evaporation of DCM. Similar crystals (with a statistically indistinguishable unit cell) were also grown by vapour diffusion using DCM as the solvent and EtOH as the anti-solvent.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Both I and II crystallized from a mixed phase mixture with the AgPy2X analogue. Suitable crystals were isolated and mounted on a MiTeGen loop using perfluoro­polyether oil and placed in the N2 stream of an Oxford CryoSystems CryoStream unit (Cosier & Glazer, 1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]) at 300 K. Diffraction data were measured using a (Rigaku) Oxford Diffraction SuperNova A diffractometer (Kα radiation, λ = 1.54184 Å). Raw frame images were processed using CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Holdings Corporation, Tokyo, Japan.]). In both cases, the reflections were indexed using the same orientation matrix at both temperatures to enable comparison.

Table 5
Experimental details

  I at 300 K I at 100 K II at 300 K II at 100 K
Crystal data
Chemical formula [Ag(C5H5N)4](PF6) [Ag(C5H5N)4](PF6) [Ag(C5H5N)4](SbF6) [Ag(C5H5N)4](SbF6)
Mr 569.24 569.23 660.01 660.01
Crystal system, space group Tetragonal, I[\overline{4}] Tetragonal, I[\overline{4}] Tetragonal, I[\overline{4}] Tetragonal, I[\overline{4}]
Temperature (K) 300 100 300 100
a, c (Å) 13.2831 (3), 6.6894 (7) 13.4408 (2), 6.1851 (1) 13.3825 (1), 6.8847 (1) 13.3461 (1), 6.5798 (1)
V3) 1180.28 (13) 1117.37 (4) 1232.99 (3) 1171.98 (3)
Z 2 2 2 2
Radiation type Cu Kα Cu Kα Cu Kα Cu Kα
μ (mm−1) 8.06 8.52 15.60 16.42
Crystal size (mm) 0.23 × 0.06 × 0.05 0.23 × 0.06 × 0.05 0.25 × 0.20 × 0.05 0.25 × 0.20 × 0.05
 
Data collection
Diffractometer Oxford Diffraction SuperNova A Oxford Diffraction SuperNova A Oxford Diffraction SuperNova A Oxford Diffraction SuperNova A
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Holdings Corporation, Tokyo, Japan.]) Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Holdings Corporation, Tokyo, Japan.]) Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Holdings Corporation, Tokyo, Japan.]) Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Holdings Corporation, Tokyo, Japan.])
Tmin, Tmax 0.499, 1.000 0.153, 0.627 0.012, 0.394 0.093, 0.623
No. of measured, independent and observed [I > 2.0σ(I)] reflections 12427, 1240, 1154 10819, 1162, 1153 5859, 1286, 1281 5473, 1219, 1215
Rint 0.044 0.054 0.053 0.028
(sin θ/λ)max−1) 0.629 0.629 0.628 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 0.86 0.021, 0.028, 1.01 0.048, 0.132, 1.01 0.017, 0.045, 1.02
No. of reflections 1240 1162 1286 1219
No. of parameters 73 73 73 73
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.30 0.58, −0.75 0.27, −0.73 0.20, −0.30
Absolute structure Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), 469 Friedel Pairs Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), 456 Friedel Pairs Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), 471 Friedel Pairs Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), 469 Friedel Pairs
Absolute structure parameter −0.020 (5) −0.028 (4) −0.022 (17) −0.006 (5)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Holdings Corporation, Tokyo, Japan.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]).

Examination of the symmetry equivalents and systematic absences suggested possible space groups of I4, I[\overline{4}] and I4/m; however, structure solution with charge flipping using SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]) suggested the space group was I[\overline{4}]. Once the symmetry and unit-cell contents had been confirmed, the crystal faces were indexed and an absorption correction applied.

The initial solution of the structure of I from the data collected at 300 K located all non-hydrogen atoms. Subsequent full-matrix least-squares refinement was carried out using the CRYSTALS program suite (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]). Coordinates and anisotropic displacement parameters of all non-hydrogen atoms were refined. The hydrogen atoms were all visible in the difference map, but were repositioned geometrically (Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]). Initially they were refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H distance = 0.93 Å), and Uiso(H) (1.2 times Ueq of the parent atom), after which the positions were refined with riding constraints.

The structure of I from the 300 K data was then refined against the data collected at 100 K: initially the non-hydrogen atoms were refined, then the hydrogen atoms with restraints before including them in the model with riding constraints. Similarly and to give a comparable set of structures, the structure of I at 300 K was refined against the data collected on II at 300 K. The model was modified to replace phospho­rus with anti­mony and it was refined as above. Finally, the model for II at 300 K was refined against the data collected at 100 K (also as above). It is of note that the R-indices for II refined against the 300 K data are higher than those for the structure refined against the 100 K data. This is thought to be due to the fact that the data are weaker at the higher temperature and therefore noisier, something that is reflected in the inter­nal agreement factors (5.3% and 300 K and 2.8% at 100 K).

Towards the end of each refinement, a modified Sheldrick weighting scheme was applied as per the details below (Watkin, 1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]). In each case, the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) was included in the refinement and the absolute structure determined by analysis of the Bijvoet pairs (Thompson et al., 2009[Thompson, A. L. & Watkin, D. J. (2009). Tetrahedron Asymmetry, 20, 712-717.]; Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). The void and dihedral angle calculations were carried out using PLATON (van der Sluis & Spek 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.], Spek 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) and displacement ellipsoid plots were drawn with CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]).

Supporting information


Computing details top

Tetrapyridinesilver(I) hexafluorophosphate (I-300K) top
Crystal data top
[Ag(C5H5N)4](PF6)Dx = 1.602 Mg m3
Mr = 569.24Melting point: not measured K
Tetragonal, I4Cu Kα radiation, λ = 1.54184 Å
Hall symbol: I -4Cell parameters from 3328 reflections
a = 13.2831 (3) Åθ = 4.7–73.0°
c = 6.6894 (7) ŵ = 8.06 mm1
V = 1180.28 (13) Å3T = 300 K
Z = 2Needle, clear_pale_colourless
F(000) = 5680.23 × 0.06 × 0.05 mm
Data collection top
Oxford Diffraction SuperNova A
diffractometer
1154 reflections with I > 2.0σ(I)
Focussing mirrors monochromatorRint = 0.044
ω scansθmax = 76.0°, θmin = 4.7°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
h = 1516
Tmin = 0.499, Tmax = 1.000k = 1616
12427 measured reflectionsl = 88
1240 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.03P)2 + 1.19P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.0001
S = 0.86Δρmax = 0.15 e Å3
1240 reflectionsΔρmin = 0.30 e Å3
73 parametersAbsolute structure: Parsons et al. (2013), 469 Friedel Pairs
0 restraintsAbsolute structure parameter: 0.020 (5)
Primary atom site location: other
Special details top

Refinement. Reflections are selected by the following conditions :- Minimum value of SQRTW is 0.00 Minimum value of RATIO is -3.00

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.50000.50000.50000.0932
N10.3770 (2)0.5809 (2)0.6871 (5)0.0789
C110.4011 (3)0.6450 (3)0.8296 (7)0.0917
C120.3323 (4)0.6830 (3)0.9585 (8)0.1104
C130.2339 (4)0.6548 (4)0.9433 (8)0.1110
C140.2075 (3)0.5911 (3)0.7940 (8)0.1002
C150.2804 (3)0.5557 (3)0.6692 (7)0.0875
P10.00000.50000.25000.0703
F10.0213 (2)0.38358 (17)0.2493 (5)0.1276
F20.00000.50000.4827 (7)0.1263
H1110.46930.66620.83900.1101*
H1210.35140.72521.06250.1420*
H1310.18550.67971.03310.1380*
H1410.13980.57170.77590.1199*
H1510.26200.51170.56520.1029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0809 (2)0.0809 (2)0.1176 (4)0.00000.00000.0000
N10.0643 (15)0.0762 (17)0.096 (2)0.0041 (12)0.0023 (14)0.0071 (15)
C110.074 (2)0.090 (2)0.110 (3)0.0056 (18)0.008 (2)0.020 (2)
C120.117 (3)0.108 (3)0.106 (4)0.010 (2)0.003 (3)0.026 (3)
C130.107 (3)0.103 (3)0.122 (4)0.023 (2)0.028 (3)0.005 (3)
C140.068 (2)0.097 (3)0.135 (4)0.0037 (19)0.012 (2)0.011 (3)
C150.069 (2)0.082 (2)0.111 (3)0.0105 (17)0.0020 (19)0.009 (2)
P10.0686 (5)0.0686 (5)0.0738 (10)0.00000.00000.0000
F10.152 (2)0.0723 (14)0.158 (2)0.0152 (15)0.001 (2)0.0115 (15)
F20.176 (3)0.132 (3)0.0702 (18)0.007 (2)0.00000.0000
Geometric parameters (Å, º) top
Ag1—N1i2.322 (3)C13—H1310.940
Ag1—N1ii2.322 (3)C14—C151.362 (6)
Ag1—N1iii2.322 (3)C14—H1410.944
Ag1—N12.322 (3)C15—H1510.940
N1—C111.318 (5)P1—F1iv1.572 (2)
N1—C151.331 (4)P1—F1v1.572 (2)
C11—C121.354 (6)P1—F1vi1.572 (2)
C11—H1110.951P1—F2iv1.556 (4)
C12—C131.363 (6)P1—F11.572 (2)
C12—H1210.929P1—F21.556 (4)
C13—C141.356 (6)
N1i—Ag1—N1ii106.90 (8)C15—C14—H141120.3
N1i—Ag1—N1iii114.75 (16)C14—C15—N1122.9 (4)
N1ii—Ag1—N1iii106.90 (8)C14—C15—H151118.9
N1i—Ag1—N1106.90 (8)N1—C15—H151118.2
N1ii—Ag1—N1114.75 (16)F1iv—P1—F1v90.00
N1iii—Ag1—N1106.90 (8)F1iv—P1—F1vi179.7 (2)
Ag1—N1—C11121.2 (2)F1v—P1—F1vi90.00
Ag1—N1—C15120.9 (3)F1iv—P1—F2iv90.16 (12)
C11—N1—C15117.5 (3)F1v—P1—F2iv89.84 (12)
N1—C11—C12122.5 (4)F1vi—P1—F2iv90.16 (12)
N1—C11—H111118.1F1iv—P1—F190.00
C12—C11—H111119.4F1v—P1—F1179.7 (2)
C11—C12—C13119.8 (4)F1vi—P1—F190.00
C11—C12—H121121.2F2iv—P1—F189.84 (12)
C13—C12—H121118.9F1iv—P1—F289.84 (12)
C12—C13—C14118.3 (4)F1v—P1—F290.16 (12)
C12—C13—H131120.8F1vi—P1—F289.84 (12)
C14—C13—H131120.9F2iv—P1—F2179.99
C13—C14—C15118.9 (4)F1—P1—F290.16 (12)
C13—C14—H141120.8
Symmetry codes: (i) y, x+1, z+1; (ii) x+1, y+1, z; (iii) y+1, x, z+1; (iv) y1/2, x+1/2, z+1/2; (v) x, y+1, z; (vi) y+1/2, x+1/2, z+1/2.
Tetrapyridinesilver(I) hexafluorophosphate (I-100K) top
Crystal data top
[Ag(C5H5N)4](PF6)Dx = 1.692 Mg m3
Mr = 569.23Melting point: not measured K
Tetragonal, I4Cu Kα radiation, λ = 1.54184 Å
Hall symbol: I -4Cell parameters from 8381 reflections
a = 13.4408 (2) Åθ = 4.6–75.8°
c = 6.1851 (1) ŵ = 8.52 mm1
V = 1117.37 (4) Å3T = 100 K
Z = 2Needle, clear_pale_colourless
F(000) = 567.9980.23 × 0.06 × 0.05 mm
Data collection top
Oxford Diffraction SuperNova A
diffractometer
1153 reflections with I > 2.0σ(I)
Focussing mirrors monochromatorRint = 0.054
ω scansθmax = 75.9°, θmin = 4.7°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
h = 1516
Tmin = 0.153, Tmax = 0.627k = 1616
10819 measured reflectionsl = 77
1162 independent reflections
Refinement top
Refinement on FHydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 Method = Modified Sheldrick w = 1/[σ2(F) + ( 0.02P)2 + 0.0P] ,
where P = (max(Fo,0) + 2Fc)/3
wR(F2) = 0.028(Δ/σ)max = 0.0001
S = 1.01Δρmax = 0.58 e Å3
1162 reflectionsΔρmin = 0.75 e Å3
73 parametersAbsolute structure: Parsons et al. (2013), 456 Friedel Pairs
0 restraintsAbsolute structure parameter: 0.028 (4)
Primary atom site location: other
Special details top

Refinement. Reflections are selected by the following conditions :- Minimum value of SQRTW is 0.00 Minimum value of RATIO is -3.00

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.50000.50000.50000.0318
N10.37821 (15)0.58293 (16)0.6922 (3)0.0292
C110.40105 (19)0.64517 (19)0.8554 (4)0.0310
C120.33091 (17)0.68141 (16)0.9983 (8)0.0375
C130.23219 (19)0.65286 (19)0.9749 (7)0.0393
C140.2074 (2)0.5906 (2)0.8057 (5)0.0368
C150.28217 (19)0.55778 (19)0.6672 (4)0.0328
P10.00000.50000.25000.0269
F10.02173 (13)0.38260 (11)0.2497 (3)0.0383
F20.00000.50000.5060 (6)0.0413
H1110.46770.66540.86860.0365*
H1210.34990.72421.10870.0446*
H1310.18310.67571.07040.0470*
H1410.14260.57110.78480.0442*
H1510.26550.51650.55100.0385*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03228 (12)0.03228 (12)0.03097 (15)0.00000.00000.0000
N10.0253 (9)0.0323 (10)0.0301 (10)0.0012 (7)0.0007 (7)0.0011 (8)
C110.0294 (11)0.0327 (12)0.0307 (11)0.0001 (9)0.0018 (9)0.0023 (9)
C120.0424 (11)0.0341 (9)0.0359 (10)0.0042 (8)0.0015 (19)0.0028 (19)
C130.0393 (11)0.0373 (11)0.0414 (19)0.0091 (9)0.0107 (13)0.0070 (13)
C140.0279 (11)0.0363 (12)0.0463 (15)0.0003 (9)0.0033 (10)0.0079 (10)
C150.0304 (11)0.0317 (11)0.0364 (11)0.0029 (9)0.0020 (10)0.0013 (10)
P10.0291 (3)0.0291 (3)0.0223 (6)0.00000.00000.0000
F10.0416 (8)0.0310 (7)0.0422 (8)0.0018 (6)0.0014 (7)0.0054 (6)
F20.0609 (11)0.0387 (9)0.0243 (9)0.0006 (8)0.00000.0000
Geometric parameters (Å, º) top
Ag1—N1i2.310 (2)C13—H1310.938
Ag1—N1ii2.310 (2)C14—C151.392 (4)
Ag1—N1iii2.310 (2)C14—H1410.919
Ag1—N12.310 (2)C15—H1510.935
N1—C111.346 (3)P1—F1iv1.6047 (15)
N1—C151.343 (3)P1—F1v1.6047 (15)
C11—C121.381 (4)P1—F1vi1.6047 (15)
C11—H1110.939P1—F2iv1.584 (4)
C12—C131.389 (4)P1—F11.6047 (15)
C12—H1210.929P1—F21.584 (4)
C13—C141.381 (5)
N1i—Ag1—N1ii105.36 (5)C15—C14—H141120.5
N1i—Ag1—N1iii105.36 (5)C14—C15—N1122.9 (2)
N1ii—Ag1—N1iii118.04 (10)C14—C15—H151119.2
N1i—Ag1—N1118.04 (10)N1—C15—H151117.9
N1ii—Ag1—N1105.36 (5)F1iv—P1—F1v90.00
N1iii—Ag1—N1105.36 (5)F1iv—P1—F1vi179.88 (12)
Ag1—N1—C11121.60 (16)F1v—P1—F1vi90.00
Ag1—N1—C15120.02 (17)F1iv—P1—F2iv90.06 (6)
C11—N1—C15117.5 (2)F1v—P1—F2iv89.94 (6)
N1—C11—C12122.9 (2)F1vi—P1—F2iv90.06 (6)
N1—C11—H111117.5F1iv—P1—F190.00
C12—C11—H111119.6F1v—P1—F1179.88 (12)
C11—C12—C13119.2 (3)F1vi—P1—F190.00
C11—C12—H121120.1F2iv—P1—F189.94 (6)
C13—C12—H121120.7F1iv—P1—F289.94 (6)
C12—C13—C14118.5 (3)F1v—P1—F290.06 (6)
C12—C13—H131121.1F1vi—P1—F289.94 (6)
C14—C13—H131120.4F2iv—P1—F2179.99
C13—C14—C15119.0 (2)F1—P1—F290.06 (6)
C13—C14—H141120.5
Symmetry codes: (i) x+1, y+1, z; (ii) y, x+1, z+1; (iii) y+1, x, z+1; (iv) y1/2, x+1/2, z+1/2; (v) x, y+1, z; (vi) y+1/2, x+1/2, z+1/2.
Tetrapyridinesilver(I) hexafluoroantimonate (II-300K) top
Crystal data top
[Ag(C5H5N)4](SbF6)Dx = 1.778 Mg m3
Mr = 660.01Melting point: not measured K
Tetragonal, I4Cu Kα radiation, λ = 1.54184 Å
Hall symbol: I -4Cell parameters from 4713 reflections
a = 13.3825 (1) Åθ = 4.7–75.2°
c = 6.8847 (1) ŵ = 15.60 mm1
V = 1232.99 (3) Å3T = 300 K
Z = 2Block, clear_pale_colourless
F(000) = 6400.25 × 0.20 × 0.05 mm
Data collection top
Oxford Diffraction SuperNova A
diffractometer
1281 reflections with I > 2.0σ(I)
Focussing mirrors monochromatorRint = 0.053
ω scansθmax = 75.4°, θmin = 4.7°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
h = 1616
Tmin = 0.012, Tmax = 0.394k = 1616
5859 measured reflectionsl = 68
1286 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.11P)2 + 0.34P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.132(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.27 e Å3
1286 reflectionsΔρmin = 0.73 e Å3
73 parametersAbsolute structure: Parsons et al. (2013), 471 Friedel Pairs
0 restraintsAbsolute structure parameter: 0.022 (17)
Primary atom site location: other
Special details top

Refinement. Reflections are selected by the following conditions :- Minimum value of SQRTW is 0.00 Minimum value of RATIO is -3.00

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.50000.50000.50000.1126
N10.3792 (5)0.5787 (5)0.6882 (11)0.0930
C110.4043 (6)0.6419 (8)0.8286 (16)0.1051
C120.3377 (9)0.6818 (10)0.9521 (19)0.1247
C130.2384 (9)0.6589 (9)0.9356 (19)0.1200
C140.2110 (7)0.5962 (8)0.788 (2)0.1162
C150.2815 (6)0.5573 (7)0.6658 (17)0.1041
Sb10.00000.50000.25000.0747
F10.0202 (7)0.3634 (4)0.241 (2)0.1602
F20.00000.50000.5220 (11)0.1412
H1110.47120.65810.84420.1228*
H1210.35930.72601.04710.1460*
H1310.19270.68551.02360.1440*
H1410.14430.57890.77130.1399*
H1510.26150.51580.56540.1219*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0990 (5)0.0990 (5)0.1398 (11)0.00000.00000.0000
N10.078 (3)0.091 (3)0.110 (5)0.006 (3)0.003 (2)0.003 (3)
C110.086 (4)0.108 (5)0.122 (6)0.008 (4)0.009 (4)0.014 (4)
C120.128 (7)0.133 (8)0.114 (7)0.001 (6)0.006 (6)0.024 (6)
C130.118 (6)0.116 (6)0.125 (7)0.011 (5)0.024 (6)0.002 (5)
C140.084 (4)0.128 (6)0.137 (12)0.005 (4)0.010 (5)0.018 (6)
C150.086 (4)0.103 (5)0.123 (6)0.013 (4)0.010 (4)0.002 (4)
Sb10.0768 (3)0.0768 (3)0.0707 (3)0.00000.00000.0000
F10.225 (8)0.083 (2)0.173 (6)0.021 (3)0.012 (9)0.013 (5)
F20.188 (12)0.148 (10)0.088 (3)0.025 (10)0.00000.0000
Geometric parameters (Å, º) top
Ag1—N1i2.324 (7)C13—H1310.932
Ag1—N1ii2.324 (7)C14—C151.366 (15)
Ag1—N1iii2.324 (7)C14—H1410.929
Ag1—N12.324 (7)C15—H1510.926
N1—C111.328 (12)Sb1—F2iv1.872 (8)
N1—C151.347 (10)Sb1—F1v1.849 (5)
C11—C121.342 (15)Sb1—F1iv1.849 (5)
C11—H1110.927Sb1—F1vi1.849 (5)
C12—C131.368 (17)Sb1—F11.849 (5)
C12—H1210.928Sb1—F21.872 (8)
C13—C141.370 (18)
N1i—Ag1—N1ii108.10 (18)C15—C14—H141119.6
N1i—Ag1—N1iii108.10 (18)C14—C15—N1121.3 (9)
N1ii—Ag1—N1iii112.2 (4)C14—C15—H151119.1
N1i—Ag1—N1112.2 (4)N1—C15—H151119.6
N1ii—Ag1—N1108.10 (18)F2iv—Sb1—F1v92.0 (5)
N1iii—Ag1—N1108.10 (18)F2iv—Sb1—F1iv92.0 (5)
Ag1—N1—C11121.3 (5)F1v—Sb1—F1iv176.1 (10)
Ag1—N1—C15121.0 (6)F2iv—Sb1—F1vi88.0 (5)
C11—N1—C15117.6 (8)F1v—Sb1—F1vi90.07 (3)
N1—C11—C12123.2 (9)F1iv—Sb1—F1vi90.07 (3)
N1—C11—H111118.5F2iv—Sb1—F188.0 (5)
C12—C11—H111118.3F1v—Sb1—F190.07 (3)
C11—C12—C13120.1 (11)F1iv—Sb1—F190.07 (3)
C11—C12—H121119.6F1vi—Sb1—F1176.1 (10)
C13—C12—H121120.3F2iv—Sb1—F2179.99
C12—C13—C14117.4 (10)F1v—Sb1—F288.0 (5)
C12—C13—H131119.9F1iv—Sb1—F288.0 (5)
C14—C13—H131122.7F1vi—Sb1—F292.0 (5)
C13—C14—C15120.3 (9)F1—Sb1—F292.0 (5)
C13—C14—H141120.1
Symmetry codes: (i) x+1, y+1, z; (ii) y, x+1, z+1; (iii) y+1, x, z+1; (iv) y1/2, x+1/2, z+1/2; (v) y+1/2, x+1/2, z+1/2; (vi) x, y+1, z.
Tetrapyridinesilver(I) hexafluoroantimonate (II-100K) top
Crystal data top
[Ag(C5H5N)4](SbF6)Dx = 1.870 Mg m3
Mr = 660.01Melting point: not measured K
Tetragonal, I4Cu Kα radiation, λ = 1.54184 Å
Hall symbol: I -4Cell parameters from 4749 reflections
a = 13.3461 (1) Åθ = 4.7–75.5°
c = 6.5798 (1) ŵ = 16.42 mm1
V = 1171.98 (3) Å3T = 100 K
Z = 2Block, clear_pale_colourless
F(000) = 6400.25 × 0.20 × 0.05 mm
Data collection top
Oxford Diffraction SuperNova A
diffractometer
1215 reflections with I > 2.0σ(I)
Focussing mirrors monochromatorRint = 0.028
ω scansθmax = 75.9°, θmin = 4.7°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
h = 1616
Tmin = 0.093, Tmax = 0.623k = 1616
5473 measured reflectionsl = 68
1219 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.017 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 0.43P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max = 0.0001
S = 1.02Δρmax = 0.20 e Å3
1219 reflectionsΔρmin = 0.30 e Å3
73 parametersAbsolute structure: Parsons et al. (2013), 469 Friedel Pairs
0 restraintsAbsolute structure parameter: 0.006 (5)
Primary atom site location: other
Special details top

Refinement. ? Reflections are selected by the following conditions :- Minimum value of SQRTW is 0.00 Minimum value of RATIO is -3.00

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.50000.50000.50000.0290
N10.38043 (16)0.58038 (16)0.6931 (3)0.0259
C110.40561 (19)0.64332 (19)0.8429 (4)0.0278
C120.3366 (2)0.6848 (2)0.9760 (4)0.0330
C130.2365 (2)0.6601 (2)0.9552 (5)0.0351
C140.2089 (2)0.5962 (2)0.7993 (4)0.0338
C150.2824 (2)0.5584 (2)0.6721 (4)0.0292
Sb10.00000.50000.25000.0191
F10.02296 (12)0.36121 (10)0.2469 (3)0.0356
F20.00000.50000.5359 (3)0.0370
H1110.47270.66060.85690.0342*
H1210.35720.72821.07840.0430*
H1310.18870.68541.04530.0441*
H1410.14200.57860.78050.0439*
H1510.26320.51600.56610.0370*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02868 (12)0.02868 (12)0.02968 (18)0.00000.00000.0000
N10.0238 (10)0.0259 (10)0.0279 (10)0.0013 (8)0.0004 (7)0.0000 (7)
C110.0238 (11)0.0280 (12)0.0315 (12)0.0017 (9)0.0022 (9)0.0000 (10)
C120.0371 (13)0.0308 (12)0.0311 (13)0.0035 (10)0.0002 (11)0.0049 (11)
C130.0343 (13)0.0341 (13)0.0368 (16)0.0070 (10)0.0092 (10)0.0053 (10)
C140.0224 (11)0.0371 (13)0.0419 (17)0.0015 (10)0.0019 (9)0.0095 (11)
C150.0265 (12)0.0303 (12)0.0308 (11)0.0036 (9)0.0024 (10)0.0024 (10)
Sb10.02040 (10)0.02040 (10)0.01656 (12)0.00000.00000.0000
F10.0408 (7)0.0227 (6)0.0433 (8)0.0020 (5)0.0021 (9)0.0044 (8)
F20.0568 (16)0.0371 (13)0.0171 (9)0.0069 (13)0.00000.0000
Geometric parameters (Å, º) top
Ag1—N1i2.305 (2)C13—H1310.934
Ag1—N1ii2.305 (2)C14—C151.385 (4)
Ag1—N1iii2.305 (2)C14—H1410.931
Ag1—N12.305 (2)C15—H1510.934
N1—C111.338 (3)Sb1—F2iv1.8809 (17)
N1—C151.348 (3)Sb1—F1v1.8776 (13)
C11—C121.386 (4)Sb1—F1iv1.8776 (13)
C11—H1110.929Sb1—F1vi1.8776 (13)
C12—C131.383 (4)Sb1—F11.8776 (13)
C12—H1210.929Sb1—F21.8809 (17)
C13—C141.384 (4)
N1i—Ag1—N1ii107.70 (5)C15—C14—H141120.4
N1i—Ag1—N1iii107.70 (5)C14—C15—N1123.1 (3)
N1ii—Ag1—N1iii113.08 (11)C14—C15—H151118.6
N1i—Ag1—N1113.08 (11)N1—C15—H151118.3
N1ii—Ag1—N1107.70 (5)F2iv—Sb1—F1v90.62 (7)
N1iii—Ag1—N1107.70 (5)F2iv—Sb1—F1iv90.62 (7)
Ag1—N1—C11121.63 (17)F1v—Sb1—F1iv178.75 (14)
Ag1—N1—C15120.93 (17)F2iv—Sb1—F1vi89.38 (7)
C11—N1—C15117.1 (2)F1v—Sb1—F1vi90.01
N1—C11—C12123.3 (2)F1iv—Sb1—F1vi90.01
N1—C11—H111118.1F2iv—Sb1—F189.38 (7)
C12—C11—H111118.6F1v—Sb1—F190.01
C11—C12—C13118.9 (3)F1iv—Sb1—F190.01
C11—C12—H121120.7F1vi—Sb1—F1178.75 (14)
C13—C12—H121120.4F2iv—Sb1—F2179.99
C12—C13—C14118.5 (2)F1v—Sb1—F289.38 (7)
C12—C13—H131120.7F1iv—Sb1—F289.38 (7)
C14—C13—H131120.8F1vi—Sb1—F290.62 (7)
C13—C14—C15119.0 (2)F1—Sb1—F290.62 (7)
C13—C14—H141120.6
Symmetry codes: (i) x+1, y+1, z; (ii) y, x+1, z+1; (iii) y+1, x, z+1; (iv) y1/2, x+1/2, z+1/2; (v) y+1/2, x+1/2, z+1/2; (vi) x, y+1, z.
 

References

First citationAl Shamaileh, E. & Al-Far, E. (2016). CSD Communication (refcode YAGMAX). CCDC, Cambridge, England.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationColes, S. J., Hursthouse, M. B., Sengul, A. & Kurt, O. (2008). University of Southampton, Crystal Structure Report Archive, 385.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFleming, V. M. A. (2021). Masters Thesis Towards a Better Understanding of Structural Modulation in Molecular SystemsGoogle Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarvey, S., Kildea, J. D., Skelton, B. W. & White, A. H. (1992). Aust. J. Chem. 45, 1135–1142.  CrossRef CAS Google Scholar
First citationJalil, A. A., Clymer, R. N., Hamilton, C. R., Vaddypally, S., Gau, M. R. & Zdilla, M. J. (2017). Acta Cryst. C73, 264–269.  CrossRef IUCr Journals Google Scholar
First citationKim, Y., Mckinley, E. J., Christensen, K. E., Rees, N. H. & Thompson, A. L. (2014). Cryst. Growth Des. 14, 6294–6301.  Web of Science CSD CrossRef Google Scholar
First citationMorgan, L. C. F., Kim, Y., Blandy, J. N., Murray, C. A., Christensen, K. E. & Thompson, A. L. (2018). Chem. Commun. 54, 9849–9852.  Web of Science CSD CrossRef CAS Google Scholar
First citationNilsson, K. & Oskarsson, Å. (1981). Acta Cryst. A37, C227.  CrossRef IUCr Journals Google Scholar
First citationNilsson, K. & Oskarsson, Å. (1982). Acta Chem. Scand. 36a, 605–610.  CrossRef Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Holdings Corporation, Tokyo, Japan.  Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, A. L., Funnell, N. P., Fortes, A. D. & Christensen, K. E. (2023). Acta Cryst. A79, C187.  CrossRef IUCr Journals Google Scholar
First citationThompson, A. L. & Watkin, D. J. (2009). Tetrahedron Asymmetry, 20, 712–717.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds