research communications
Variable temperature studies of tetrapyridinesilver(I) hexafluorophosphate and tetrapyridinesilver(I) hexafluoroantimonate
aChemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
*Correspondence e-mail: amber.thompson@chem.ox.ac.uk
As part of a larger study into phase transitions, the structures of tetrapyridinesilver(I) hexafluorophosphate, [Ag(C5H5N)4](PF6) or AgPy4PF6, and tetrapyridinesilver(I) hexafluoroantimonate, [Ag(C5H5N)4](SbF6) or AgPy4SbF6, were determined at 300 and 100 K from single-crystal X-ray diffraction. The compounds are isostructural, crystallizing in the I with Z′ = 1/4. Over the temperature range studied no evidence of a phase change was found. The dihedral angles between the pyridine rings are compared with similar cations from the literature and discussed.
1. Chemical context
Barluenga's reagent, IPy2BF4, and some of its derivatives have been shown to exhibit phase transitions (Kim et al., 2014; Morgan et al., 2018). This study was recently extended to silver complexes of the form AgL2X where L is a pyridine-based ligand and X is an anion with a single charge (Fleming, 2021; Thompson et al., 2023).
While making and studying the parent compound AgPy2PF6 and the related AgPy2SbF6, the side-products AgPy4PF6 (I) and AgPy4SbF6 (II) crystallized. Although these have not been previously reported, a number of isostructural species are known including CuPy4PF6 (Coles et al., 2008), AgPy4ClO4, CuPy4ClO4 (Nilsson & Oskarsson, 1981, 1982), CuPy4I (Al Shamaileh & Al-Far, 2016), LiPy4PF6 (Jalil et al., 2017) and LiPy4ClO4 (Harvey et al., 1992). All of these crystallize in the I with both the cation and the anion occupying a position on a fourfold rotoinversion axis.
2. Structural commentary
Single-crystal X-ray diffraction data were collected initially at 300 K, before the crystals were cooled at 200 K h−1 to 100 K where a similar dataset was collected. In both cases, aside from the expected unit-cell contraction and some peak broadening (presumably caused by strain), there was no evidence of a change in phase over the temperature range studied (Figs. 1 and 2). Both I and II crystallize with Z′ = 1/4, with the silver atom at the centre of the cation and the phosphorus/antimony and one fluorine all lying on the fourfold rotoinversion axis with the other atoms on general positions (Figs. 3 and 4). In both cases, the structure forms a close-packed, body-centred arrangement of cations with the anions located in the voids. At 300 K, the voids in I are 118 Å3 contracting to 101 Å3 at 100 K; for II the void of 134 Å3 contracts to 120 Å3 showing a similar lattice contraction to I. Geometric parameters are given for I and II at 300 and 100 K in Tables 1–4.
|
|
|
3. Database survey
Searching the Cambridge Structural Database (CSD V. 5.45 with March 2024 and June 2024 updates; Groom et al., 2016) using CONQUEST (Bruno et al., 2002) for XPy4 structures in the I yields ten structures with three-dimensional coordinates deposited. For these, the X—N distance and the dihedral angles between the pyridine rings have been determined and plotted (Fig. 5). Since X occupies a special position, two pyridine–pyridine angles are the same and the third is related, such that as one decreases, the other increases. There is a general correlation between the X—N length and the dihedral angle; however, it is noticeable that the two compounds discussed herein exhibit larger dihedral angles than those previously reported and on cooling to 100 K, I (AgPy4PF6) shows a marked increase that is not seen for the SbF6 analogue.
It is also worth pointing out that the Cu—N distance for CuPy4I (YAGMAX, marked with an asterisk in Fig. 5; Al Shamaileh & Al-Far, 2016) is considerably shorter than the values for the other Cu structures plotted. Indeed, the value of 1.903 (4) Å is outside the interquartile range of 2.008–2.054 Å determined from a simple CSD search for a four-coordinate copper with four pyridine derived ligands. This structure was deposited in the CSD as a private communication, so while it is possible there is an error (e.g. the wrong atom type) more information is not readily available and the structure is included in the plot in Fig. 5 for completeness.
4. Synthesis and crystallization
For the synthesis of AgPy4PF6 (I), silver nitrate (1.5 g, 8.83 mmol, 1 eq.) and potassium hexafluorophosphate (1.63 g, 8.83 mmol, 1 eq.) were dissolved in deionized water (15 ml). Pyridine (2.0 ml, 24.7 mmol, 2.8 eq.) was added dropwise and the solution was stirred for 1 h. The precipitate was collected by suction filtration, washed with copious amounts of deionized water and dried for two days in a desiccator. Crystals were grown by vapour diffusion using DCM as the solvent and petroleum ether as the anti-solvent. Similar crystals (with a statistically indistinguishable unit cell) were also found using MeOH as the anti-solvent.
AgPy2SbF6 (II) was synthesized directly from AgSbF6 (0.8 g, 2.33 mmol, 1 eq.) which was dissolved in deionized water (10 ml). Pyridine (0.53 ml, 6.52 mmol, 2.8 eq.) was added dropwise and the solution was stirred for 1 h. The precipitate was collected by suction filtration, washed with copious amounts of deionized water and dried for two days in a desiccator. Crystals were grown by solvent evaporation of DCM. Similar crystals (with a statistically indistinguishable unit cell) were also grown by vapour diffusion using DCM as the solvent and EtOH as the anti-solvent.
5. Refinement
Crystal data, data collection and structure . Both I and II crystallized from a mixed phase mixture with the AgPy2X analogue. Suitable crystals were isolated and mounted on a MiTeGen loop using perfluoropolyether oil and placed in the N2 stream of an Oxford CryoSystems CryoStream unit (Cosier & Glazer, 1986) at 300 K. Diffraction data were measured using a (Rigaku) Oxford Diffraction SuperNova A diffractometer (Kα radiation, λ = 1.54184 Å). Raw frame images were processed using CrysAlis PRO (Rigaku OD, 2022). In both cases, the reflections were indexed using the same orientation matrix at both temperatures to enable comparison.
details are summarized in Table 5
|
Examination of the symmetry equivalents and I4, I and I4/m; however, structure solution with using SUPERFLIP (Palatinus & Chapuis, 2007) suggested the was I. Once the symmetry and unit-cell contents had been confirmed, the crystal faces were indexed and an absorption correction applied.
suggested possible space groups ofThe initial solution of the structure of I from the data collected at 300 K located all non-hydrogen atoms. Subsequent full-matrix least-squares was carried out using the CRYSTALS program suite (Betteridge et al., 2003). Coordinates and anisotropic displacement parameters of all non-hydrogen atoms were refined. The hydrogen atoms were all visible in the difference map, but were repositioned geometrically (Cooper et al., 2010). Initially they were refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H distance = 0.93 Å), and Uiso(H) (1.2 times Ueq of the parent atom), after which the positions were refined with riding constraints.
The structure of I from the 300 K data was then refined against the data collected at 100 K: initially the non-hydrogen atoms were refined, then the hydrogen atoms with restraints before including them in the model with riding constraints. Similarly and to give a comparable set of structures, the structure of I at 300 K was refined against the data collected on II at 300 K. The model was modified to replace phosphorus with antimony and it was refined as above. Finally, the model for II at 300 K was refined against the data collected at 100 K (also as above). It is of note that the R-indices for II refined against the 300 K data are higher than those for the structure refined against the 100 K data. This is thought to be due to the fact that the data are weaker at the higher temperature and therefore noisier, something that is reflected in the internal agreement factors (5.3% and 300 K and 2.8% at 100 K).
Towards the end of each ). In each case, the Flack x parameter (Flack, 1983) was included in the and the determined by analysis of the Bijvoet pairs (Thompson et al., 2009; Parsons et al., 2013). The void and dihedral angle calculations were carried out using PLATON (van der Sluis & Spek 1990; Spek, 2003, Spek 2009; Spek, 2015) and displacement ellipsoid plots were drawn with CAMERON (Watkin et al., 1996).
a modified Sheldrick weighting scheme was applied as per the details below (Watkin, 1994Supporting information
https://doi.org/10.1107/S2056989024006972/oo2005sup1.cif
contains datablocks I-300K, I-100K, II-300K, II-100K, global. DOI:Structure factors: contains datablock I-300K. DOI: https://doi.org/10.1107/S2056989024006972/oo2005I-300Ksup2.hkl
Structure factors: contains datablock I-100K. DOI: https://doi.org/10.1107/S2056989024006972/oo2005I-100Ksup3.hkl
Structure factors: contains datablock II-300K. DOI: https://doi.org/10.1107/S2056989024006972/oo2005II-300Ksup4.hkl
Structure factors: contains datablock II-100K. DOI: https://doi.org/10.1107/S2056989024006972/oo2005II-100Ksup5.hkl
[Ag(C5H5N)4](PF6) | Dx = 1.602 Mg m−3 |
Mr = 569.24 | Melting point: not measured K |
Tetragonal, I4 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: I -4 | Cell parameters from 3328 reflections |
a = 13.2831 (3) Å | θ = 4.7–73.0° |
c = 6.6894 (7) Å | µ = 8.06 mm−1 |
V = 1180.28 (13) Å3 | T = 300 K |
Z = 2 | Needle, clear_pale_colourless |
F(000) = 568 | 0.23 × 0.06 × 0.05 mm |
Oxford Diffraction SuperNova A diffractometer | 1154 reflections with I > 2.0σ(I) |
Focussing mirrors monochromator | Rint = 0.044 |
ω scans | θmax = 76.0°, θmin = 4.7° |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | h = −15→16 |
Tmin = 0.499, Tmax = 1.000 | k = −16→16 |
12427 measured reflections | l = −8→8 |
1240 independent reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.028 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.03P)2 + 1.19P] , where P = (max(Fo2,0) + 2Fc2)/3 |
wR(F2) = 0.065 | (Δ/σ)max = 0.0001 |
S = 0.86 | Δρmax = 0.15 e Å−3 |
1240 reflections | Δρmin = −0.30 e Å−3 |
73 parameters | Absolute structure: Parsons et al. (2013), 469 Friedel Pairs |
0 restraints | Absolute structure parameter: −0.020 (5) |
Primary atom site location: other |
Refinement. Reflections are selected by the following conditions :- Minimum value of SQRTW is 0.00 Minimum value of RATIO is -3.00 |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.5000 | 0.5000 | 0.5000 | 0.0932 | |
N1 | 0.3770 (2) | 0.5809 (2) | 0.6871 (5) | 0.0789 | |
C11 | 0.4011 (3) | 0.6450 (3) | 0.8296 (7) | 0.0917 | |
C12 | 0.3323 (4) | 0.6830 (3) | 0.9585 (8) | 0.1104 | |
C13 | 0.2339 (4) | 0.6548 (4) | 0.9433 (8) | 0.1110 | |
C14 | 0.2075 (3) | 0.5911 (3) | 0.7940 (8) | 0.1002 | |
C15 | 0.2804 (3) | 0.5557 (3) | 0.6692 (7) | 0.0875 | |
P1 | 0.0000 | 0.5000 | 0.2500 | 0.0703 | |
F1 | −0.0213 (2) | 0.38358 (17) | 0.2493 (5) | 0.1276 | |
F2 | 0.0000 | 0.5000 | 0.4827 (7) | 0.1263 | |
H111 | 0.4693 | 0.6662 | 0.8390 | 0.1101* | |
H121 | 0.3514 | 0.7252 | 1.0625 | 0.1420* | |
H131 | 0.1855 | 0.6797 | 1.0331 | 0.1380* | |
H141 | 0.1398 | 0.5717 | 0.7759 | 0.1199* | |
H151 | 0.2620 | 0.5117 | 0.5652 | 0.1029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0809 (2) | 0.0809 (2) | 0.1176 (4) | 0.0000 | 0.0000 | 0.0000 |
N1 | 0.0643 (15) | 0.0762 (17) | 0.096 (2) | −0.0041 (12) | 0.0023 (14) | −0.0071 (15) |
C11 | 0.074 (2) | 0.090 (2) | 0.110 (3) | −0.0056 (18) | −0.008 (2) | −0.020 (2) |
C12 | 0.117 (3) | 0.108 (3) | 0.106 (4) | 0.010 (2) | −0.003 (3) | −0.026 (3) |
C13 | 0.107 (3) | 0.103 (3) | 0.122 (4) | 0.023 (2) | 0.028 (3) | 0.005 (3) |
C14 | 0.068 (2) | 0.097 (3) | 0.135 (4) | −0.0037 (19) | 0.012 (2) | 0.011 (3) |
C15 | 0.069 (2) | 0.082 (2) | 0.111 (3) | −0.0105 (17) | −0.0020 (19) | −0.009 (2) |
P1 | 0.0686 (5) | 0.0686 (5) | 0.0738 (10) | 0.0000 | 0.0000 | 0.0000 |
F1 | 0.152 (2) | 0.0723 (14) | 0.158 (2) | −0.0152 (15) | −0.001 (2) | −0.0115 (15) |
F2 | 0.176 (3) | 0.132 (3) | 0.0702 (18) | 0.007 (2) | 0.0000 | 0.0000 |
Ag1—N1i | 2.322 (3) | C13—H131 | 0.940 |
Ag1—N1ii | 2.322 (3) | C14—C15 | 1.362 (6) |
Ag1—N1iii | 2.322 (3) | C14—H141 | 0.944 |
Ag1—N1 | 2.322 (3) | C15—H151 | 0.940 |
N1—C11 | 1.318 (5) | P1—F1iv | 1.572 (2) |
N1—C15 | 1.331 (4) | P1—F1v | 1.572 (2) |
C11—C12 | 1.354 (6) | P1—F1vi | 1.572 (2) |
C11—H111 | 0.951 | P1—F2iv | 1.556 (4) |
C12—C13 | 1.363 (6) | P1—F1 | 1.572 (2) |
C12—H121 | 0.929 | P1—F2 | 1.556 (4) |
C13—C14 | 1.356 (6) | ||
N1i—Ag1—N1ii | 106.90 (8) | C15—C14—H141 | 120.3 |
N1i—Ag1—N1iii | 114.75 (16) | C14—C15—N1 | 122.9 (4) |
N1ii—Ag1—N1iii | 106.90 (8) | C14—C15—H151 | 118.9 |
N1i—Ag1—N1 | 106.90 (8) | N1—C15—H151 | 118.2 |
N1ii—Ag1—N1 | 114.75 (16) | F1iv—P1—F1v | 90.00 |
N1iii—Ag1—N1 | 106.90 (8) | F1iv—P1—F1vi | 179.7 (2) |
Ag1—N1—C11 | 121.2 (2) | F1v—P1—F1vi | 90.00 |
Ag1—N1—C15 | 120.9 (3) | F1iv—P1—F2iv | 90.16 (12) |
C11—N1—C15 | 117.5 (3) | F1v—P1—F2iv | 89.84 (12) |
N1—C11—C12 | 122.5 (4) | F1vi—P1—F2iv | 90.16 (12) |
N1—C11—H111 | 118.1 | F1iv—P1—F1 | 90.00 |
C12—C11—H111 | 119.4 | F1v—P1—F1 | 179.7 (2) |
C11—C12—C13 | 119.8 (4) | F1vi—P1—F1 | 90.00 |
C11—C12—H121 | 121.2 | F2iv—P1—F1 | 89.84 (12) |
C13—C12—H121 | 118.9 | F1iv—P1—F2 | 89.84 (12) |
C12—C13—C14 | 118.3 (4) | F1v—P1—F2 | 90.16 (12) |
C12—C13—H131 | 120.8 | F1vi—P1—F2 | 89.84 (12) |
C14—C13—H131 | 120.9 | F2iv—P1—F2 | 179.99 |
C13—C14—C15 | 118.9 (4) | F1—P1—F2 | 90.16 (12) |
C13—C14—H141 | 120.8 |
Symmetry codes: (i) y, −x+1, −z+1; (ii) −x+1, −y+1, z; (iii) −y+1, x, −z+1; (iv) y−1/2, −x+1/2, −z+1/2; (v) −x, −y+1, z; (vi) −y+1/2, x+1/2, −z+1/2. |
[Ag(C5H5N)4](PF6) | Dx = 1.692 Mg m−3 |
Mr = 569.23 | Melting point: not measured K |
Tetragonal, I4 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: I -4 | Cell parameters from 8381 reflections |
a = 13.4408 (2) Å | θ = 4.6–75.8° |
c = 6.1851 (1) Å | µ = 8.52 mm−1 |
V = 1117.37 (4) Å3 | T = 100 K |
Z = 2 | Needle, clear_pale_colourless |
F(000) = 567.998 | 0.23 × 0.06 × 0.05 mm |
Oxford Diffraction SuperNova A diffractometer | 1153 reflections with I > 2.0σ(I) |
Focussing mirrors monochromator | Rint = 0.054 |
ω scans | θmax = 75.9°, θmin = 4.7° |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | h = −15→16 |
Tmin = 0.153, Tmax = 0.627 | k = −16→16 |
10819 measured reflections | l = −7→7 |
1162 independent reflections |
Refinement on F | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.021 | Method = Modified Sheldrick w = 1/[σ2(F) + ( 0.02P)2 + 0.0P] , where P = (max(Fo,0) + 2Fc)/3 |
wR(F2) = 0.028 | (Δ/σ)max = 0.0001 |
S = 1.01 | Δρmax = 0.58 e Å−3 |
1162 reflections | Δρmin = −0.75 e Å−3 |
73 parameters | Absolute structure: Parsons et al. (2013), 456 Friedel Pairs |
0 restraints | Absolute structure parameter: −0.028 (4) |
Primary atom site location: other |
Refinement. Reflections are selected by the following conditions :- Minimum value of SQRTW is 0.00 Minimum value of RATIO is -3.00 |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.5000 | 0.5000 | 0.5000 | 0.0318 | |
N1 | 0.37821 (15) | 0.58293 (16) | 0.6922 (3) | 0.0292 | |
C11 | 0.40105 (19) | 0.64517 (19) | 0.8554 (4) | 0.0310 | |
C12 | 0.33091 (17) | 0.68141 (16) | 0.9983 (8) | 0.0375 | |
C13 | 0.23219 (19) | 0.65286 (19) | 0.9749 (7) | 0.0393 | |
C14 | 0.2074 (2) | 0.5906 (2) | 0.8057 (5) | 0.0368 | |
C15 | 0.28217 (19) | 0.55778 (19) | 0.6672 (4) | 0.0328 | |
P1 | 0.0000 | 0.5000 | 0.2500 | 0.0269 | |
F1 | −0.02173 (13) | 0.38260 (11) | 0.2497 (3) | 0.0383 | |
F2 | 0.0000 | 0.5000 | 0.5060 (6) | 0.0413 | |
H111 | 0.4677 | 0.6654 | 0.8686 | 0.0365* | |
H121 | 0.3499 | 0.7242 | 1.1087 | 0.0446* | |
H131 | 0.1831 | 0.6757 | 1.0704 | 0.0470* | |
H141 | 0.1426 | 0.5711 | 0.7848 | 0.0442* | |
H151 | 0.2655 | 0.5165 | 0.5510 | 0.0385* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.03228 (12) | 0.03228 (12) | 0.03097 (15) | 0.0000 | 0.0000 | 0.0000 |
N1 | 0.0253 (9) | 0.0323 (10) | 0.0301 (10) | −0.0012 (7) | −0.0007 (7) | −0.0011 (8) |
C11 | 0.0294 (11) | 0.0327 (12) | 0.0307 (11) | −0.0001 (9) | −0.0018 (9) | −0.0023 (9) |
C12 | 0.0424 (11) | 0.0341 (9) | 0.0359 (10) | 0.0042 (8) | 0.0015 (19) | −0.0028 (19) |
C13 | 0.0393 (11) | 0.0373 (11) | 0.0414 (19) | 0.0091 (9) | 0.0107 (13) | 0.0070 (13) |
C14 | 0.0279 (11) | 0.0363 (12) | 0.0463 (15) | 0.0003 (9) | 0.0033 (10) | 0.0079 (10) |
C15 | 0.0304 (11) | 0.0317 (11) | 0.0364 (11) | −0.0029 (9) | −0.0020 (10) | 0.0013 (10) |
P1 | 0.0291 (3) | 0.0291 (3) | 0.0223 (6) | 0.0000 | 0.0000 | 0.0000 |
F1 | 0.0416 (8) | 0.0310 (7) | 0.0422 (8) | −0.0018 (6) | −0.0014 (7) | −0.0054 (6) |
F2 | 0.0609 (11) | 0.0387 (9) | 0.0243 (9) | −0.0006 (8) | −0.0000 | −0.0000 |
Ag1—N1i | 2.310 (2) | C13—H131 | 0.938 |
Ag1—N1ii | 2.310 (2) | C14—C15 | 1.392 (4) |
Ag1—N1iii | 2.310 (2) | C14—H141 | 0.919 |
Ag1—N1 | 2.310 (2) | C15—H151 | 0.935 |
N1—C11 | 1.346 (3) | P1—F1iv | 1.6047 (15) |
N1—C15 | 1.343 (3) | P1—F1v | 1.6047 (15) |
C11—C12 | 1.381 (4) | P1—F1vi | 1.6047 (15) |
C11—H111 | 0.939 | P1—F2iv | 1.584 (4) |
C12—C13 | 1.389 (4) | P1—F1 | 1.6047 (15) |
C12—H121 | 0.929 | P1—F2 | 1.584 (4) |
C13—C14 | 1.381 (5) | ||
N1i—Ag1—N1ii | 105.36 (5) | C15—C14—H141 | 120.5 |
N1i—Ag1—N1iii | 105.36 (5) | C14—C15—N1 | 122.9 (2) |
N1ii—Ag1—N1iii | 118.04 (10) | C14—C15—H151 | 119.2 |
N1i—Ag1—N1 | 118.04 (10) | N1—C15—H151 | 117.9 |
N1ii—Ag1—N1 | 105.36 (5) | F1iv—P1—F1v | 90.00 |
N1iii—Ag1—N1 | 105.36 (5) | F1iv—P1—F1vi | 179.88 (12) |
Ag1—N1—C11 | 121.60 (16) | F1v—P1—F1vi | 90.00 |
Ag1—N1—C15 | 120.02 (17) | F1iv—P1—F2iv | 90.06 (6) |
C11—N1—C15 | 117.5 (2) | F1v—P1—F2iv | 89.94 (6) |
N1—C11—C12 | 122.9 (2) | F1vi—P1—F2iv | 90.06 (6) |
N1—C11—H111 | 117.5 | F1iv—P1—F1 | 90.00 |
C12—C11—H111 | 119.6 | F1v—P1—F1 | 179.88 (12) |
C11—C12—C13 | 119.2 (3) | F1vi—P1—F1 | 90.00 |
C11—C12—H121 | 120.1 | F2iv—P1—F1 | 89.94 (6) |
C13—C12—H121 | 120.7 | F1iv—P1—F2 | 89.94 (6) |
C12—C13—C14 | 118.5 (3) | F1v—P1—F2 | 90.06 (6) |
C12—C13—H131 | 121.1 | F1vi—P1—F2 | 89.94 (6) |
C14—C13—H131 | 120.4 | F2iv—P1—F2 | 179.99 |
C13—C14—C15 | 119.0 (2) | F1—P1—F2 | 90.06 (6) |
C13—C14—H141 | 120.5 |
Symmetry codes: (i) −x+1, −y+1, z; (ii) y, −x+1, −z+1; (iii) −y+1, x, −z+1; (iv) y−1/2, −x+1/2, −z+1/2; (v) −x, −y+1, z; (vi) −y+1/2, x+1/2, −z+1/2. |
[Ag(C5H5N)4](SbF6) | Dx = 1.778 Mg m−3 |
Mr = 660.01 | Melting point: not measured K |
Tetragonal, I4 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: I -4 | Cell parameters from 4713 reflections |
a = 13.3825 (1) Å | θ = 4.7–75.2° |
c = 6.8847 (1) Å | µ = 15.60 mm−1 |
V = 1232.99 (3) Å3 | T = 300 K |
Z = 2 | Block, clear_pale_colourless |
F(000) = 640 | 0.25 × 0.20 × 0.05 mm |
Oxford Diffraction SuperNova A diffractometer | 1281 reflections with I > 2.0σ(I) |
Focussing mirrors monochromator | Rint = 0.053 |
ω scans | θmax = 75.4°, θmin = 4.7° |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | h = −16→16 |
Tmin = 0.012, Tmax = 0.394 | k = −16→16 |
5859 measured reflections | l = −6→8 |
1286 independent reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.048 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.11P)2 + 0.34P] , where P = (max(Fo2,0) + 2Fc2)/3 |
wR(F2) = 0.132 | (Δ/σ)max = 0.001 |
S = 1.00 | Δρmax = 0.27 e Å−3 |
1286 reflections | Δρmin = −0.73 e Å−3 |
73 parameters | Absolute structure: Parsons et al. (2013), 471 Friedel Pairs |
0 restraints | Absolute structure parameter: −0.022 (17) |
Primary atom site location: other |
Refinement. Reflections are selected by the following conditions :- Minimum value of SQRTW is 0.00 Minimum value of RATIO is -3.00 |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.5000 | 0.5000 | 0.5000 | 0.1126 | |
N1 | 0.3792 (5) | 0.5787 (5) | 0.6882 (11) | 0.0930 | |
C11 | 0.4043 (6) | 0.6419 (8) | 0.8286 (16) | 0.1051 | |
C12 | 0.3377 (9) | 0.6818 (10) | 0.9521 (19) | 0.1247 | |
C13 | 0.2384 (9) | 0.6589 (9) | 0.9356 (19) | 0.1200 | |
C14 | 0.2110 (7) | 0.5962 (8) | 0.788 (2) | 0.1162 | |
C15 | 0.2815 (6) | 0.5573 (7) | 0.6658 (17) | 0.1041 | |
Sb1 | 0.0000 | 0.5000 | 0.2500 | 0.0747 | |
F1 | −0.0202 (7) | 0.3634 (4) | 0.241 (2) | 0.1602 | |
F2 | 0.0000 | 0.5000 | 0.5220 (11) | 0.1412 | |
H111 | 0.4712 | 0.6581 | 0.8442 | 0.1228* | |
H121 | 0.3593 | 0.7260 | 1.0471 | 0.1460* | |
H131 | 0.1927 | 0.6855 | 1.0236 | 0.1440* | |
H141 | 0.1443 | 0.5789 | 0.7713 | 0.1399* | |
H151 | 0.2615 | 0.5158 | 0.5654 | 0.1219* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0990 (5) | 0.0990 (5) | 0.1398 (11) | 0.0000 | 0.0000 | 0.0000 |
N1 | 0.078 (3) | 0.091 (3) | 0.110 (5) | −0.006 (3) | −0.003 (2) | −0.003 (3) |
C11 | 0.086 (4) | 0.108 (5) | 0.122 (6) | −0.008 (4) | −0.009 (4) | −0.014 (4) |
C12 | 0.128 (7) | 0.133 (8) | 0.114 (7) | 0.001 (6) | −0.006 (6) | −0.024 (6) |
C13 | 0.118 (6) | 0.116 (6) | 0.125 (7) | 0.011 (5) | 0.024 (6) | 0.002 (5) |
C14 | 0.084 (4) | 0.128 (6) | 0.137 (12) | −0.005 (4) | 0.010 (5) | 0.018 (6) |
C15 | 0.086 (4) | 0.103 (5) | 0.123 (6) | −0.013 (4) | −0.010 (4) | −0.002 (4) |
Sb1 | 0.0768 (3) | 0.0768 (3) | 0.0707 (3) | 0.0000 | 0.0000 | 0.0000 |
F1 | 0.225 (8) | 0.083 (2) | 0.173 (6) | −0.021 (3) | 0.012 (9) | −0.013 (5) |
F2 | 0.188 (12) | 0.148 (10) | 0.088 (3) | 0.025 (10) | 0.0000 | 0.0000 |
Ag1—N1i | 2.324 (7) | C13—H131 | 0.932 |
Ag1—N1ii | 2.324 (7) | C14—C15 | 1.366 (15) |
Ag1—N1iii | 2.324 (7) | C14—H141 | 0.929 |
Ag1—N1 | 2.324 (7) | C15—H151 | 0.926 |
N1—C11 | 1.328 (12) | Sb1—F2iv | 1.872 (8) |
N1—C15 | 1.347 (10) | Sb1—F1v | 1.849 (5) |
C11—C12 | 1.342 (15) | Sb1—F1iv | 1.849 (5) |
C11—H111 | 0.927 | Sb1—F1vi | 1.849 (5) |
C12—C13 | 1.368 (17) | Sb1—F1 | 1.849 (5) |
C12—H121 | 0.928 | Sb1—F2 | 1.872 (8) |
C13—C14 | 1.370 (18) | ||
N1i—Ag1—N1ii | 108.10 (18) | C15—C14—H141 | 119.6 |
N1i—Ag1—N1iii | 108.10 (18) | C14—C15—N1 | 121.3 (9) |
N1ii—Ag1—N1iii | 112.2 (4) | C14—C15—H151 | 119.1 |
N1i—Ag1—N1 | 112.2 (4) | N1—C15—H151 | 119.6 |
N1ii—Ag1—N1 | 108.10 (18) | F2iv—Sb1—F1v | 92.0 (5) |
N1iii—Ag1—N1 | 108.10 (18) | F2iv—Sb1—F1iv | 92.0 (5) |
Ag1—N1—C11 | 121.3 (5) | F1v—Sb1—F1iv | 176.1 (10) |
Ag1—N1—C15 | 121.0 (6) | F2iv—Sb1—F1vi | 88.0 (5) |
C11—N1—C15 | 117.6 (8) | F1v—Sb1—F1vi | 90.07 (3) |
N1—C11—C12 | 123.2 (9) | F1iv—Sb1—F1vi | 90.07 (3) |
N1—C11—H111 | 118.5 | F2iv—Sb1—F1 | 88.0 (5) |
C12—C11—H111 | 118.3 | F1v—Sb1—F1 | 90.07 (3) |
C11—C12—C13 | 120.1 (11) | F1iv—Sb1—F1 | 90.07 (3) |
C11—C12—H121 | 119.6 | F1vi—Sb1—F1 | 176.1 (10) |
C13—C12—H121 | 120.3 | F2iv—Sb1—F2 | 179.99 |
C12—C13—C14 | 117.4 (10) | F1v—Sb1—F2 | 88.0 (5) |
C12—C13—H131 | 119.9 | F1iv—Sb1—F2 | 88.0 (5) |
C14—C13—H131 | 122.7 | F1vi—Sb1—F2 | 92.0 (5) |
C13—C14—C15 | 120.3 (9) | F1—Sb1—F2 | 92.0 (5) |
C13—C14—H141 | 120.1 |
Symmetry codes: (i) −x+1, −y+1, z; (ii) y, −x+1, −z+1; (iii) −y+1, x, −z+1; (iv) y−1/2, −x+1/2, −z+1/2; (v) −y+1/2, x+1/2, −z+1/2; (vi) −x, −y+1, z. |
[Ag(C5H5N)4](SbF6) | Dx = 1.870 Mg m−3 |
Mr = 660.01 | Melting point: not measured K |
Tetragonal, I4 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: I -4 | Cell parameters from 4749 reflections |
a = 13.3461 (1) Å | θ = 4.7–75.5° |
c = 6.5798 (1) Å | µ = 16.42 mm−1 |
V = 1171.98 (3) Å3 | T = 100 K |
Z = 2 | Block, clear_pale_colourless |
F(000) = 640 | 0.25 × 0.20 × 0.05 mm |
Oxford Diffraction SuperNova A diffractometer | 1215 reflections with I > 2.0σ(I) |
Focussing mirrors monochromator | Rint = 0.028 |
ω scans | θmax = 75.9°, θmin = 4.7° |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | h = −16→16 |
Tmin = 0.093, Tmax = 0.623 | k = −16→16 |
5473 measured reflections | l = −6→8 |
1219 independent reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.017 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 0.43P] , where P = (max(Fo2,0) + 2Fc2)/3 |
wR(F2) = 0.045 | (Δ/σ)max = 0.0001 |
S = 1.02 | Δρmax = 0.20 e Å−3 |
1219 reflections | Δρmin = −0.30 e Å−3 |
73 parameters | Absolute structure: Parsons et al. (2013), 469 Friedel Pairs |
0 restraints | Absolute structure parameter: −0.006 (5) |
Primary atom site location: other |
Refinement. ? Reflections are selected by the following conditions :- Minimum value of SQRTW is 0.00 Minimum value of RATIO is -3.00 |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.5000 | 0.5000 | 0.5000 | 0.0290 | |
N1 | 0.38043 (16) | 0.58038 (16) | 0.6931 (3) | 0.0259 | |
C11 | 0.40561 (19) | 0.64332 (19) | 0.8429 (4) | 0.0278 | |
C12 | 0.3366 (2) | 0.6848 (2) | 0.9760 (4) | 0.0330 | |
C13 | 0.2365 (2) | 0.6601 (2) | 0.9552 (5) | 0.0351 | |
C14 | 0.2089 (2) | 0.5962 (2) | 0.7993 (4) | 0.0338 | |
C15 | 0.2824 (2) | 0.5584 (2) | 0.6721 (4) | 0.0292 | |
Sb1 | 0.0000 | 0.5000 | 0.2500 | 0.0191 | |
F1 | −0.02296 (12) | 0.36121 (10) | 0.2469 (3) | 0.0356 | |
F2 | 0.0000 | 0.5000 | 0.5359 (3) | 0.0370 | |
H111 | 0.4727 | 0.6606 | 0.8569 | 0.0342* | |
H121 | 0.3572 | 0.7282 | 1.0784 | 0.0430* | |
H131 | 0.1887 | 0.6854 | 1.0453 | 0.0441* | |
H141 | 0.1420 | 0.5786 | 0.7805 | 0.0439* | |
H151 | 0.2632 | 0.5160 | 0.5661 | 0.0370* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.02868 (12) | 0.02868 (12) | 0.02968 (18) | 0.0000 | 0.0000 | 0.0000 |
N1 | 0.0238 (10) | 0.0259 (10) | 0.0279 (10) | −0.0013 (8) | 0.0004 (7) | 0.0000 (7) |
C11 | 0.0238 (11) | 0.0280 (12) | 0.0315 (12) | −0.0017 (9) | −0.0022 (9) | 0.0000 (10) |
C12 | 0.0371 (13) | 0.0308 (12) | 0.0311 (13) | 0.0035 (10) | 0.0002 (11) | −0.0049 (11) |
C13 | 0.0343 (13) | 0.0341 (13) | 0.0368 (16) | 0.0070 (10) | 0.0092 (10) | 0.0053 (10) |
C14 | 0.0224 (11) | 0.0371 (13) | 0.0419 (17) | −0.0015 (10) | 0.0019 (9) | 0.0095 (11) |
C15 | 0.0265 (12) | 0.0303 (12) | 0.0308 (11) | −0.0036 (9) | −0.0024 (10) | 0.0024 (10) |
Sb1 | 0.02040 (10) | 0.02040 (10) | 0.01656 (12) | 0.0000 | 0.0000 | 0.0000 |
F1 | 0.0408 (7) | 0.0227 (6) | 0.0433 (8) | −0.0020 (5) | 0.0021 (9) | −0.0044 (8) |
F2 | 0.0568 (16) | 0.0371 (13) | 0.0171 (9) | 0.0069 (13) | 0.0000 | 0.0000 |
Ag1—N1i | 2.305 (2) | C13—H131 | 0.934 |
Ag1—N1ii | 2.305 (2) | C14—C15 | 1.385 (4) |
Ag1—N1iii | 2.305 (2) | C14—H141 | 0.931 |
Ag1—N1 | 2.305 (2) | C15—H151 | 0.934 |
N1—C11 | 1.338 (3) | Sb1—F2iv | 1.8809 (17) |
N1—C15 | 1.348 (3) | Sb1—F1v | 1.8776 (13) |
C11—C12 | 1.386 (4) | Sb1—F1iv | 1.8776 (13) |
C11—H111 | 0.929 | Sb1—F1vi | 1.8776 (13) |
C12—C13 | 1.383 (4) | Sb1—F1 | 1.8776 (13) |
C12—H121 | 0.929 | Sb1—F2 | 1.8809 (17) |
C13—C14 | 1.384 (4) | ||
N1i—Ag1—N1ii | 107.70 (5) | C15—C14—H141 | 120.4 |
N1i—Ag1—N1iii | 107.70 (5) | C14—C15—N1 | 123.1 (3) |
N1ii—Ag1—N1iii | 113.08 (11) | C14—C15—H151 | 118.6 |
N1i—Ag1—N1 | 113.08 (11) | N1—C15—H151 | 118.3 |
N1ii—Ag1—N1 | 107.70 (5) | F2iv—Sb1—F1v | 90.62 (7) |
N1iii—Ag1—N1 | 107.70 (5) | F2iv—Sb1—F1iv | 90.62 (7) |
Ag1—N1—C11 | 121.63 (17) | F1v—Sb1—F1iv | 178.75 (14) |
Ag1—N1—C15 | 120.93 (17) | F2iv—Sb1—F1vi | 89.38 (7) |
C11—N1—C15 | 117.1 (2) | F1v—Sb1—F1vi | 90.01 |
N1—C11—C12 | 123.3 (2) | F1iv—Sb1—F1vi | 90.01 |
N1—C11—H111 | 118.1 | F2iv—Sb1—F1 | 89.38 (7) |
C12—C11—H111 | 118.6 | F1v—Sb1—F1 | 90.01 |
C11—C12—C13 | 118.9 (3) | F1iv—Sb1—F1 | 90.01 |
C11—C12—H121 | 120.7 | F1vi—Sb1—F1 | 178.75 (14) |
C13—C12—H121 | 120.4 | F2iv—Sb1—F2 | 179.99 |
C12—C13—C14 | 118.5 (2) | F1v—Sb1—F2 | 89.38 (7) |
C12—C13—H131 | 120.7 | F1iv—Sb1—F2 | 89.38 (7) |
C14—C13—H131 | 120.8 | F1vi—Sb1—F2 | 90.62 (7) |
C13—C14—C15 | 119.0 (2) | F1—Sb1—F2 | 90.62 (7) |
C13—C14—H141 | 120.6 |
Symmetry codes: (i) −x+1, −y+1, z; (ii) y, −x+1, −z+1; (iii) −y+1, x, −z+1; (iv) y−1/2, −x+1/2, −z+1/2; (v) −y+1/2, x+1/2, −z+1/2; (vi) −x, −y+1, z. |
References
Al Shamaileh, E. & Al-Far, E. (2016). CSD Communication (refcode YAGMAX). CCDC, Cambridge, England. Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Coles, S. J., Hursthouse, M. B., Sengul, A. & Kurt, O. (2008). University of Southampton, Crystal Structure Report Archive, 385. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fleming, V. M. A. (2021). Masters Thesis Towards a Better Understanding of Structural Modulation in Molecular Systems. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Harvey, S., Kildea, J. D., Skelton, B. W. & White, A. H. (1992). Aust. J. Chem. 45, 1135–1142. CrossRef CAS Google Scholar
Jalil, A. A., Clymer, R. N., Hamilton, C. R., Vaddypally, S., Gau, M. R. & Zdilla, M. J. (2017). Acta Cryst. C73, 264–269. CrossRef IUCr Journals Google Scholar
Kim, Y., Mckinley, E. J., Christensen, K. E., Rees, N. H. & Thompson, A. L. (2014). Cryst. Growth Des. 14, 6294–6301. Web of Science CSD CrossRef Google Scholar
Morgan, L. C. F., Kim, Y., Blandy, J. N., Murray, C. A., Christensen, K. E. & Thompson, A. L. (2018). Chem. Commun. 54, 9849–9852. Web of Science CSD CrossRef CAS Google Scholar
Nilsson, K. & Oskarsson, Å. (1981). Acta Cryst. A37, C227. CrossRef IUCr Journals Google Scholar
Nilsson, K. & Oskarsson, Å. (1982). Acta Chem. Scand. 36a, 605–610. CrossRef Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Holdings Corporation, Tokyo, Japan. Google Scholar
Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201. CrossRef Web of Science IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Thompson, A. L., Funnell, N. P., Fortes, A. D. & Christensen, K. E. (2023). Acta Cryst. A79, C187. CrossRef IUCr Journals Google Scholar
Thompson, A. L. & Watkin, D. J. (2009). Tetrahedron Asymmetry, 20, 712–717. Web of Science CrossRef CAS Google Scholar
Watkin, D. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.