research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and circular dichroism of {2,2′-[(1S,2S)-1,2-di­phenyl­ethane-1,2-diylbis(nitrilo­phenyl­methanylyl­­idene)]diphenolato}nickel(II) and its ethanol solvate

crossmark logo

aDepartment of Chemistry, Faculty of Science, Kanagawa University, Kanagawa-ku, Yokohama 221-8686, Japan
*Correspondence e-mail: mhiro@kanagawa-u.ac.jp

Edited by Y. Ozawa, University of Hyogo, Japan (Received 2 September 2024; accepted 30 October 2024; online 8 November 2024)

The title compound, [Ni(C40H30N2O2)] (1), with an optically active Schiff base ligand derived from 2-hy­droxy­benzo­phenone and (1S,2S)-1,2-di­phenyl­ethyl­enedi­amine, was crystallized as the solvent-free and ethanol solvate forms (1 and 1·2C2H5OH). In both structures, the two phenyl groups on the stereogenic centers of the O,N,N,O-tetra­dentate ligand are axially oriented, and the conformation of the central di­amine chelate ring is λ. The circular dichroism (CD) spectra of 1 and the analogous nickel(II) complex [Ni(C30H26N2O2)] (2) in solution show partially similar patterns in the 350–450 nm range, but are mirror images in the longer wavelength region (450–650 nm). In the latter region, the sign of CD for these complexes is sensitive to the substituents on the C=N carbon atoms (phenyl for 1 and methyl for 2) rather than the di­amine chelate ring conformation.

1. Chemical context

Metal complexes of chiral salen-type ligands derived from salicyl­aldehydes and di­amines have been employed as catalysts for asymmetric reactions in both homogeneous and heterogeneous systems (Canali & Sherrington, 1999[Canali, L. & Sherrington, D. C. (1999). Chem. Soc. Rev. 28, 85-93.]; Cozzi, 2004[Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.]; Zulauf et al., 2010[Zulauf, A., Mellah, M., Hong, X. & Schulz, E. (2010). Dalton Trans. 39, 6911-6935.]; Shaw & White, 2019[Shaw, S. & White, J. D. (2019). Chem. Rev. 119, 9381-9426.]; Abd El Sater et al., 2019[Abd El Sater, M., Jaber, N. & Schulz, E. (2019). ChemCatChem, 11, 3662-3687.]). In the chiral metallosalen complexes, the stereogenic centers are introduced to the N,N-chelate moiety of the O,N,N,O-tetra­dentate ligand by using chiral di­amines such as 1,2-cyclo­hexa­nedi­amine and 1,2-di­phenyl­ethyl­enedi­amine. It has been well established that the introduction of appropriate substituents at 3- and 5-positions of the salicyl­aldehyde effectively enhances the enanti­oselectivity (Nakajima et al., 1990[Nakajima, K., Kojima, K., Kojima, M. & Fujita, J. (1990). Bull. Chem. Soc. Jpn, 63, 2620-2630.]; Zhang et al., 1990[Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801-2803.]; Irie et al., 1990[Irie, R., Noda, K., Ito, Y., Matsumoto, N. & Katsuki, T. (1990). Tetrahedron Lett. 31, 7345-7348.]; Ito & Katsuki, 1999[Ito, Y. N. & Katsuki, T. (1999). Bull. Chem. Soc. Jpn, 72, 603-619.]). A modification of the C=N moiety can be achieved by the use of 2-hy­droxy­benzo­phenone, 3,5-di-tert-butyl-2-hy­droxy­aceto­phenone, or 3,5-di-tert-butyl-2-hy­droxy­valero­phenone in place of salicyl­aldehyde, and the catalytic properties of the C=N-modified complexes have been reported (Belokon et al., 2004[Belokon, Y. N., Fuentes, J., North, M. & Steed, J. W. (2004). Tetrahedron, 60, 3191-3204.]; Shaw & White, 2015[Shaw, S. & White, J. D. (2015). Org. Lett. 17, 4564-4567.]). In these catalytic reactions, the conformation of the tetra­dentate ligands, which is imposed by the N,N-chelate moiety, plays an essential role in determining the stereoselectivity; therefore, elucidation of the solution structures is required.

The circular dichroism (CD) spectra of the chiral salen-type metal complexes provide useful information on the solution structures in relation to the absolute configuration of the di­amines (Bosnich, 1968[Bosnich, B. (1968). J. Am. Chem. Soc. 90, 627-632.]; Downing & Urbach, 1969[Downing, R. S. & Urbach, F. L. (1969). J. Am. Chem. Soc. 91, 5977-5983.], 1970[Downing, R. S. & Urbach, F. L. (1970). J. Am. Chem. Soc. 92, 5861-5865.]; Pasini et al., 1977[Pasini, A., Gullotti, M. & Ugo, R. (1977). J. Chem. Soc. Dalton Trans. pp. 346-356.]). The λ and δ gauche conformations of the N,N-chelate ring derived from (1S,2S)-1,2-di­phenyl­ethyl­enedi­amine are inter­convertible in solution (Fig. 1[link]). In the four-coordinate salen-type copper(II) complexes, the exciton couplet is observed in the 350 nm region, and the λ conformation of the Cu–N–C–C–N chelate ring is reflected by the negative–positive (lower to higher energy) exciton couplet (Downing & Urbach, 1969[Downing, R. S. & Urbach, F. L. (1969). J. Am. Chem. Soc. 91, 5977-5983.]; Pasini et al., 1977[Pasini, A., Gullotti, M. & Ugo, R. (1977). J. Chem. Soc. Dalton Trans. pp. 346-356.]). The exciton couplet in this region, however, is not clear in analogous nickel(II) complexes, which is probably due to the overlapping of some other bands or the higher planarity (Downing & Urbach, 1970[Downing, R. S. & Urbach, F. L. (1970). J. Am. Chem. Soc. 92, 5861-5865.]; Pasini et al., 1977[Pasini, A., Gullotti, M. & Ugo, R. (1977). J. Chem. Soc. Dalton Trans. pp. 346-356.]). Therefore, the substituent effect of the salen-type complexes on the CD spectra must be carefully investigated in order to discuss the solution structures.

[Scheme 1]
[Figure 1]
Figure 1
Conformers of tetra­dentate Schiff base complexes.

In this study we synthesized an optically active nickel(II) complex, [Ni(C40H30N2O2)] (1), in which the O,N,N,O-tetra­dentate ligand is derived from 2-hy­droxy­benzo­phenone and (1S,2S)-1,2-di­phenyl­ethyl­enedi­amine. The crystal structures of complex 1 and its ethanol solvate (1·2C2H5OH) are discussed in terms of the N,N-chelate ring conformation. Furthermore, the influence of the substituents on the C=N carbon atoms on the CD spectra in solution was investigated by the comparison with the analogous nickel(II) complex [Ni(C30H26N2O2)] (2) derived from 2′-hy­droxy­aceto­phenone and (1S,2S)-1,2-di­phenyl­ethyl­enedi­amine.

2. Structural commentary

The solvent-free and ethanol solvate forms of complex 1 were obtained by changing the crystallization conditions: they crystallize in the non-centrosymmetric space groups P21 and P1, respectively. The absolute structure was chosen based on the S,S configuration of the optically pure di­amine used and confirmed by the refined Flack parameters. Both forms contain two independent mol­ecules of 1 in the asymmetric unit, which are depicted as mol­ecules A and A′ (containing Ni1) and B and B′ (containing Ni2) in Figs. 2[link] and 3[link]. Complex 1 consists of a Ni2+ ion and a dianionic O,N,N,O-tetra­dentate ligand, giving a pseudo-C2-symmetric square-planar geometry. The Ni atom sits in the N2O2 plane and is incorporated into two six-membered O,N-chelate rings and a five-membered N,N-chelate ring (Figs. 2[link] and 3[link]). In the ethanol solvate (1·2C2H5OH, Z = 2), three of the four ethanol mol­ecules are bound to the phenolate O atoms through a hydrogen bond: two for the Ni1 site and one for the Ni2 site (Fig. 3[link]).

[Figure 2]
Figure 2
Perspective view of (a) mol­ecule A and (b) mol­ecule B in 1 with displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Perspective view of (a) mol­ecule A′ and (b) mol­ecule B′ in the ethanol solvate of 1 with displacement ellipsoids at the 50% probability level. Hydrogen atoms and ethyl groups of the ethanol mol­ecules are omitted for clarity. Hydrogen bonds are shown as dashed lines.

The geometrical parameters around Ni for the solvent-free and ethanol solvate forms suggest that these hydrogen bonds do not affect the mol­ecular structures. The Ni—N and Ni—O bond distances are each within a small range for the four independent structures in these crystals (Tables 1[link] and 2[link]). The four donor atoms show a slight tetra­hedral distortion: the root-mean-square deviations of the N2O2 plane are 0.0033 Å for mol­ecule A and 0.0275 Å for mol­ecule B in the solvent-free form, and 0.0163 Å for mol­ecule A′ and 0.0301 Å for mol­ecule B′ in the ethanol solvate form. These deviations are much smaller than those observed in the corresponding cobalt(II) and copper(II) complexes (0.10 Å, 0.20 Å, respectively; (Hirotsu et al., 1996[Hirotsu, M., Kojima, M., Nakajima, K., Kashino, S. & Yoshikawa, Y. (1996). Bull. Chem. Soc. Jpn, 69, 2549-2557.], 2009[Hirotsu, M., Kuwamura, N., Kinoshita, I., Kojima, M., Yoshikawa, Y. & Ueno, K. (2009). Dalton Trans. pp. 7678-7683.]). The distortion from planarity of the ligand is caused by the conformation of the N,N-chelate ring. In these complexes, the two phenyl groups on the di­amine chelate are oriented axially with respect to the plane of the Schiff base ligand, which is due to the severe steric repulsion with the phenyl groups on the C=N carbon atoms (Hirotsu et al., 1996[Hirotsu, M., Kojima, M., Nakajima, K., Kashino, S. & Yoshikawa, Y. (1996). Bull. Chem. Soc. Jpn, 69, 2549-2557.]). Consequently, the S,S configuration of the di­amine moiety leads to the λ gauche conformation of the N,N-chelate ring. The N—C—C—N torsion angles of 1 are in the range of −46.9 (3) to −49.6 (3)° (Tables 1[link] and 2[link]), which are similar to those of the corresponding cobalt(II) and copper(II) complexes: Co, −45.1 (4)°; Cu, −51.70 (19)° (Hirotsu et al., 1996[Hirotsu, M., Kojima, M., Nakajima, K., Kashino, S. & Yoshikawa, Y. (1996). Bull. Chem. Soc. Jpn, 69, 2549-2557.], 2009[Hirotsu, M., Kuwamura, N., Kinoshita, I., Kojima, M., Yoshikawa, Y. & Ueno, K. (2009). Dalton Trans. pp. 7678-7683.]).

Table 1
Selected geometric parameters (Å, °) for 1[link]

Ni1—O1 1.833 (2) Ni2—O3 1.847 (2)
Ni1—O2 1.836 (3) Ni2—O4 1.825 (3)
Ni1—N1 1.861 (3) Ni2—N4 1.867 (3)
Ni1—N2 1.863 (3) Ni2—N3 1.861 (3)
       
O1—Ni1—N1 93.37 (13) O3—Ni2—N3 92.66 (12)
O2—Ni1—N2 93.97 (12) O4—Ni2—N4 94.30 (12)
N1—Ni1—N2 87.42 (12) N3—Ni2—N4 87.60 (13)
       
N1—C14—C34—N2 −49.6 (3) N3—C54—C74—N4 −47.8 (3)
N1—C7—C8—C13 61.6 (5) N3—C47—C48—C53 77.9 (4)
N2—C27—C28—C33 101.6 (4) N4—C67—C68—C73 102.4 (4)

Table 2
Selected geometric parameters (Å, °) for 1·2C2H5OH[link]

Ni1—O1 1.828 (3) Ni2—O3 1.838 (3)
Ni1—O2 1.833 (3) Ni2—O4 1.826 (3)
Ni1—N1 1.863 (3) Ni2—N3 1.852 (3)
Ni1—N2 1.852 (3) Ni2—N4 1.860 (3)
       
O1—Ni1—N1 94.47 (13) O3—Ni2—N3 94.70 (13)
O2—Ni1—N2 94.11 (13) O4—Ni2—N4 93.95 (13)
N2—Ni1—N1 87.42 (14) N3—Ni2—N4 87.52 (14)
       
N1—C14—C34—N2 −47.4 (4) N3—C54—C74—N4 −46.9 (3)
N1—C7—C8—C13 84.1 (4) N3—C47—C48—C53 79.2 (5)
N2—C27—C28—C33 80.3 (5) N4—C67—C68—C73 85.4 (4)

Overlaying mol­ecules A, A′, B, and B′ revealed two types of bent conformations of the salen skeleton. Mol­ecules A and A′ adopt a stepped conformation, while mol­ecules B and B′ have an L-shaped conformation (Fig. 4[link]). These conformations are described by the dihedral angles between the least square planes of the C6 ring (X, Z in Fig. 4[link]) and N2O2 moieties (Y in Fig. 4[link]): the inter­planar angles are 16.0 (1)° (X-Y), 18.8 (1)° (Y-Z) for A; 10.6 (1)° (X-Y), 11.8 (1)° (Y-Z) for A′; 2.3 (2)° (X-Y), 23.4 (1)° (Y-Z) for B; 6.2 (2)° (X-Y), 11.9 (1)° (Y-Z) for B′. The sum of the inter­planar angles of A or B is larger than that of A′ or B′, respectively. Therefore, the nickel(II) complex in the solvent-free form is more distorted than that in the ethanol solvate form. This suggests that the ethanol mol­ecules reduce the inter­molecular inter­actions between the complex mol­ecules.

[Figure 4]
Figure 4
Overlays of the structures of (a) mol­ecules A (orange) and A′ (blue) and (b) mol­ecules B (orange) and B′ (blue).

The orientation of the phenyl group originating from the 1,2-di­phenyl­ethyl­enedi­amine is affected by the substituents R on the C=N carbon atoms. The crystal structures of the analogous nickel(II) complexes 2 (R = Me) and 3 (R = H) have been reported (Wang et al., 2006[Wang, F., Zhang, H., Li, L., Hao, H.-Q., Wang, X.-Y. & Chen, J.-G. (2006). Tetrahedron Asymmetry, 17, 2059-2063.]; Ding, 2013[Ding, S. (2013). Z. Kristallogr. New Cryst. Struct. 228, 53-54.]). The phenyl groups in 2 are axially disposed relative to the ligand plane, while the phenyl groups in 3 occupy equatorial positions. In complex 2, the axial disposition of the phenyl groups would be caused by the steric repulsion with the R groups (R = Me), as observed for 1 (R = Ph) and the corresponding copper(II) complexes with (R,R/S,S)- or (R,S)-configurations (Hirotsu et al., 2009[Hirotsu, M., Kuwamura, N., Kinoshita, I., Kojima, M., Yoshikawa, Y. & Ueno, K. (2009). Dalton Trans. pp. 7678-7683.]). Inter­estingly, the analogues of 3, which have substituents on the phenolate rings, occupy the axial as well as the equatorial positions in the solid state (Averseng et al., 2000[Averseng, F., Lacroix, P. G., Malfant, I., Dahan, F. & Nakatani, K. (2000). J. Mater. Chem. 10, 1013-1018.]; Wu et al., 2003[Wu, J.-C., Tang, N. & Yu, K.-B. (2003). Acta Cryst. E59, m977-m979.]). The planer structure with equatorial phenyl groups observed for 3 may be advantageous in terms of the effect of crystal packing.

In the structure of 1, several C—H bonds of the axially disposed phenyl groups are close to Ni. The Ni⋯H distances are 2.72–2.96 Å for the solvent-free form and 2.66–2.91 Å for the ethanol solvate form. These structural features are indicative of anagostic inter­actions (Mitoraj et al., 2019[Mitoraj, M. P., Babashkina, M. G., Robeyns, K., Sagan, F., Szczepanik, D. W., Seredina, Y. V., Garcia, Y. & Safin, D. A. (2019). Organometallics, 38, 1973-1981.]).

3. Supra­molecular features

In the ethanol solvate, the pseudo-C2 axis of each complex mol­ecule is nearly parallel to the a axis of the crystal cell (Fig. 5[link]). The space around the phenolate O donor atoms is occupied by ethanol mol­ecules. As mentioned above, the three ethanol mol­ecules are bound to the phenolate O atoms through a hydrogen bond. The remaining ethanol mol­ecule, which is disordered, occupies the space between the two complex mol­ecules and forms a hydrogen bond with the ethanol mol­ecule. Weak CH(phen­yl)⋯O(ethanol) inter­actions are observed between the asymmetric units (Table 4[link][link]).

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C43—H43⋯O1i 0.95 2.60 3.500 (4) 159
C51—H51⋯O3ii 0.95 2.52 3.417 (5) 158
C71—H71⋯O1 0.95 2.63 3.308 (4) 128
C71—H71⋯O2 0.95 2.62 3.562 (4) 173
Symmetry codes: (i) [x, y, z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+2].

Table 4
Hydrogen-bond geometry (Å, °) for 1·2C2H5OH[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3 0.84 2.17 2.964 (5) 156
O6—H6⋯O1 0.84 2.13 2.928 (5) 158
O8—H8⋯O6 0.84 1.92 2.760 (6) 174
O7—H7⋯O2 0.84 2.16 2.988 (4) 170
C60—H60⋯O5i 0.95 2.38 3.312 (6) 166
C12—H12⋯O8i 0.95 2.44 3.388 (7) 175
C40—H40⋯O7i 0.95 2.48 3.328 (5) 148
Symmetry code: (i) [x-1, y, z].
[Figure 5]
Figure 5
The crystal packing of the ethanol solvate of 1. Hydrogen atoms are omitted for clarity. Hydrogen bonds are shown as blue dashed lines.

In the solvent-free form, there are short contacts such as CH(phen­yl)⋯O hydrogen bonds between the complex mol­ecules (Table 3[link]). The torsion angles between N=C and the phenyl group (R) [61.6 (5)–102.4 (4)°] deviate largely from those of the ethanol solvate [79.2 (5)–85.4 (4)°] (Tables 1[link] and 2[link], Fig. 4[link]). Unlike complex 3, the conformational change of the N,N-chelate ring in 1 is not effective in forming the inter­molecular inter­actions while avoiding inter­molecular repulsion because of the intra­molecular repulsion between the phenyl groups.

4. Database survey

Several transition-metal complexes of the Schiff base derived from 2-hy­droxy­benzo­phenone and 1,2-di­phenyl­ethyl­enedi­amine, including (1R,2R)-, (1S,2S)-, and (1R,2S)-isomers have been crystallographically characterized. As mentioned above, the racemic cobalt(II) and copper(II) complexes show a similar square-planar geometry with tetra­hedral distortion (Hirotsu et al., 1996[Hirotsu, M., Kojima, M., Nakajima, K., Kashino, S. & Yoshikawa, Y. (1996). Bull. Chem. Soc. Jpn, 69, 2549-2557.]; Hirotsu et al., 2009[Hirotsu, M., Kuwamura, N., Kinoshita, I., Kojima, M., Yoshikawa, Y. & Ueno, K. (2009). Dalton Trans. pp. 7678-7683.]). The meso copper(II) complex with (R,S)-configuration is also square-planar but less tetra­hedrally distorted (Hirotsu et al., 2009[Hirotsu, M., Kuwamura, N., Kinoshita, I., Kojima, M., Yoshikawa, Y. & Ueno, K. (2009). Dalton Trans. pp. 7678-7683.]). The chlorido manganese(III) complex [Mn(C40H30N2O2)Cl] has a square-pyramidal structure, in which the di­amine chelate moiety with the (S,S)-configuration gives a λ gauche conformation with axially disposed phenyl groups (Hirotsu et al., 1995[Hirotsu, M., Nakajima, K., Kojima, M. & Yoshikawa, Y. (1995). Inorg. Chem. 34, 6173-6178.])

5. Circular dichroism

In the nickel(II) complexes of the O,N,N,O-Schiff base ligands derived from (1S,2S)-1,2-di­phenyl­ethyl­enedi­amine, the predominant conformation of the N,N-chelate ring is dependent on the R substituents (Fig. 1[link]). For complex 3 (R = H), the δ conformation is found in the solid state if the di­amine chelate has the (S,S)-configuration (Ding, 2013[Ding, S. (2013). Z. Kristallogr. New Cryst. Struct. 228, 53-54.]). In solution, however, analysis of the CD spectra for a series of optically active Ni complexes suggests tentatively that complex 3 takes the λ conformation: although no exciton couplet is observed, 3 exhibits opposite behavior to the complex derived from (1S,2S)-1,2-cyclo­hexa­nedi­amine in the range 300–500 nm (Pasini et al., 1977[Pasini, A., Gullotti, M. & Ugo, R. (1977). J. Chem. Soc. Dalton Trans. pp. 346-356.]). In the case of complex 2 (R = Me), the solution structure is assigned to the λ conformation from the CD spectrum in methanol (Wang et al., 2006[Wang, F., Zhang, H., Li, L., Hao, H.-Q., Wang, X.-Y. & Chen, J.-G. (2006). Tetrahedron Asymmetry, 17, 2059-2063.]).

For complex 1, the 1H NMR spectrum (CDCl3) suggests free rotation of the phenyl groups on the N,N-chelate ring in solution, whereas restricted rotation of those on the C=N moieties. Furthermore, the methine proton signal of 1 (δ 4.05) appeared at a higher field than that of 2 (δ 4.73), due to the ring current effect of the additional phenyl groups. These findings are consistent with the λ conformation observed in the crystal structures.

To elucidate the effect of the R substituents on the CD spectral patterns, absorption and CD spectra of complexes 1 and 2 were measured in di­chloro­methane (Fig. 6[link]). The intense absorption bands at 370–500 nm are due to charge-transfer transitions, including ππ* transitions of the azomethine chromophore, and a red-shift is observed for 1. A weak shoulder at low energy is considered to originate from the dd transitions (Downing & Urbach, 1970[Downing, R. S. & Urbach, F. L. (1970). J. Am. Chem. Soc. 92, 5861-5865.]). In the CD spectra, a mirror image is observed in the range of 450–650 nm, but not in the higher energy region above 450 nm. Both 1 and 2 show a negative CD band at around 420 nm, suggesting that the preferred conformation is λ as expected from the crystal structures. Thus, in the salen-type nickel(II) complexes, the sign of CD in the 450–650 nm region is readily reversed when the R substituents on the C=N carbon atoms are different even if the conformation of the N,N-chelate ring is the same.

[Figure 6]
Figure 6
(Top) Electronic spectra of complexes 1 (red solid line) and 2 (blue dashed line) in di­chloro­methane. (Bottom) CD spectra of complexes 1 (red solid line) and 2 (blue dashed line) in di­chloro­methane.

6. Synthesis and crystallization

General Procedures. NMR spectra were recorded on a JEOL ECZ-600 spectrometer at room temperature. Elemental analysis was performed by A Rabbit Science Co., Ltd. UV-vis spectra were measured on a JASCO V-770 spectrometer. Circular dichroism spectra were measured on a JASCO J-820 spectropolarimeter. Complex 2 was prepared according to a literature procedure (Wang et al., 2006[Wang, F., Zhang, H., Li, L., Hao, H.-Q., Wang, X.-Y. & Chen, J.-G. (2006). Tetrahedron Asymmetry, 17, 2059-2063.]).

[Ni(C40H30N2O2)] (1). (1S,2S)-1,2-di­phenyl­ethyl­enedi­amine (0.42 g, 2.0 mmol) and 2-hy­droxy­benzo­phenone (0.79 g, 4.0 mmol) were refluxed in ethanol (10 mL) for 37 h. After cooling to room temperature, the resulting yellow precipitate was collected by filtration, washed with ethanol, and dried under reduced pressure to afford the Schiff base ligand (0.60 g, 52%). 1H NMR (600 MHz, CDCl3): δ 4.75 (s, 2H, N–CH–CH–N), 6.60 (ddd, J = 8.0, 7.0, 1.0 Hz, 2H), 6.66 (dd, J = 7.9, 1.6 Hz, 2H), 6.69 (d, J = 7.3 Hz, 2H), 6.76 (d, J = 6.9 Hz, 2H), 6.90–6.93 (m, 4H), 7.09–7.14 (m, 8H), 7.25–7.29 (m, 4H), 7.41 (t, J = 7.4 Hz, 2H), 7.45 (t, J = 7.4 Hz, 2H), 15.47 (s, 2H, OH). The ligand (115 mg, 0.20 mmol) and nickel(II) acetate tetra­hydrate (50 mg, 0.20 mmol) were suspended in ethanol (10 mL) and then refluxed for 3 h to give a red–brown suspension. The precipitate was collected by filtration, washed with ethanol, and dried under reduced pressure to yield complex 1 as a red–brown solid (106 mg, 82%). 1H NMR (600 MHz, CDCl3): δ 4.05 (s, 2H, N–CH–CH–N), 6.18 [d, J = 7.7 Hz, 2H, N=CPh(o)], 6.27 [ddd, J = 8.2, 6.2, 1.8 Hz, 2H, C(phenolato, 4)-H), 6.36 [dd, J = 8.2, 1.2 Hz, 2H, C(phenolato, 3)–H], 6.44 [d, J = 7.7 Hz, 2H, N=CPh(o)], 7.06 [t, J = 7.6 Hz, 2H, N=CPh(m)], 7.12–7.18 [m, 4H, C(phenolato, 5, 6)–H], 7.18 [t, J = 7.6 Hz, 2H, N=CPh(m)], 7.27 [t, J = 7.5 Hz, 2H, N=CPh(p)], 7.37 [t, J = 7.4 Hz, 2H, N–CPh(p)–CPh(p)–N], 7.44 [t, J = 7.5 Hz, 4H, N–CPh(m)–CPh(m)–N], 8.09 [d, J = 7.5 Hz, 4H, N–CPh(o)–CPh(o)–N]. Analysis calculated for C40H30N2NiO2·0.6H2O: C, 75.05; H, 4.91; N, 4.38. Found: C, 74.77; H, 4.58; N, 4.55. The solid was recrystallized by slow evaporation of a di­chloro­methane/ethanol solution to yield single crystals of the ethanol solvate, which were suitable for X-ray diffraction analysis. The solvent-free form was obtained by slow evaporation from a di­chloro­methane/2-propanol solution.

7. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 5[link]. All non-hydrogen atoms were refined anisotropically. In the ethanol solvate, one of the four ethanol mol­ecules was modeled as disordered over two positions at the terminal carbon atom, with occupancy factors refined to 0.64 (4) and 0.36 (4). Hydrogen atoms were placed in calculated positions with C—H(aromatic) = 0.95 Å, C—H(meth­yl) = 0.98 Å, C—H(methyl­ene) = 0.99 Å, C—H(methine) = 1.00 Å, and O—H = 0.84 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C), 1.5Ueq(C), 1.2Ueq(C), 1.2Ueq(C), and 1.5Ueq(C), respectively.

Table 5
Experimental details

  1 1·2C2H5OH
Crystal data
Chemical formula [Ni(C40H30N2O2)] [Ni(C40H30N2O2)]·2C2H6O
Mr 629.37 721.50
Crystal system, space group Monoclinic, P21 Triclinic, P1
Temperature (K) 120 120
a, b, c (Å) 9.5487 (2), 17.8992 (3), 18.0001 (3) 10.5830 (2), 12.4110 (2), 13.9837 (2)
α, β, γ (°) 90, 94.103 (2), 90 94.352 (1), 100.599 (1), 90.584 (1)
V3) 3068.59 (10) 1799.61 (5)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.67 0.59
Crystal size (mm) 0.28 × 0.22 × 0.04 0.26 × 0.20 × 0.09
 
Data collection
Diffractometer Rigaku Oxford Diffraction, Synergy Custom system, HyPix Rigaku Oxford Diffraction, Synergy Custom system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.890, 1.000 0.824, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 58868, 11251, 10665 24831, 13032, 12354
Rint 0.051 0.025
(sin θ/λ)max−1) 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.06 0.035, 0.083, 1.03
No. of reflections 11251 13032
No. of parameters 811 938
No. of restraints 1 9
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.35 0.32, −0.37
Absolute structure Flack x determined using 4774 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 5653 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.009 (6) −0.012 (5)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.], 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

{2,2'-[(1S,2S)-1,2-Diphenylethane-1,2-diylbis(nitrilophenylmethanylylidene)]diphenolato}nickel(II) (1) top
Crystal data top
[Ni(C40H30N2O2)]F(000) = 1312
Mr = 629.37Dx = 1.36 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.5487 (2) ÅCell parameters from 28038 reflections
b = 17.8992 (3) Åθ = 3.0–31.0°
c = 18.0001 (3) ŵ = 0.67 mm1
β = 94.103 (2)°T = 120 K
V = 3068.59 (10) Å3Platelet, orange
Z = 40.28 × 0.22 × 0.04 mm
Data collection top
Rigaku Oxford Diffraction, Synergy Custom system, HyPix
diffractometer
11251 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source10665 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
Detector resolution: 10.0000 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2024)
k = 2121
Tmin = 0.890, Tmax = 1.000l = 2121
58868 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.2247P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.48 e Å3
11251 reflectionsΔρmin = 0.35 e Å3
811 parametersAbsolute structure: Flack x determined using 4774 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.009 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.49842 (4)0.49807 (2)0.37750 (2)0.02359 (11)
Ni20.70992 (5)0.43794 (2)0.96494 (2)0.02393 (11)
O10.6338 (3)0.43286 (15)0.41469 (13)0.0290 (5)
O30.7515 (3)0.41402 (13)1.06389 (13)0.0284 (5)
O40.6209 (3)0.34771 (15)0.95874 (14)0.0325 (6)
N10.3703 (3)0.42227 (16)0.35244 (16)0.0251 (7)
O20.6272 (3)0.57118 (14)0.40411 (14)0.0294 (6)
N40.6659 (3)0.46219 (15)0.86511 (15)0.0230 (6)
N30.8105 (3)0.52698 (16)0.97331 (16)0.0241 (6)
N20.3612 (3)0.56557 (17)0.34175 (16)0.0242 (6)
C480.9121 (4)0.64063 (19)1.02533 (18)0.0241 (7)
C210.6011 (4)0.6425 (2)0.4124 (2)0.0280 (8)
C280.2295 (4)0.68120 (19)0.3231 (2)0.0259 (8)
C670.6076 (4)0.42011 (19)0.81279 (19)0.0250 (7)
C740.7081 (4)0.53926 (19)0.84882 (19)0.0245 (7)
H740.7294690.5427340.7953490.029*
C470.8456 (3)0.56564 (19)1.03267 (18)0.0229 (7)
C430.7816 (4)0.4867 (2)1.25053 (19)0.0302 (8)
H430.7667890.4694541.2992720.036*
C140.2269 (4)0.45374 (18)0.34426 (18)0.0246 (7)
H140.1633610.4188020.3144850.030*
C70.3957 (4)0.3511 (2)0.3419 (2)0.0271 (8)
C290.2159 (4)0.7029 (2)0.2492 (2)0.0300 (8)
H290.2853400.6891860.2165440.036*
C680.6060 (4)0.4465 (2)0.73284 (18)0.0256 (7)
C460.8208 (3)0.53767 (19)1.10636 (19)0.0235 (7)
C630.4332 (4)0.2070 (2)0.8513 (2)0.0367 (9)
H630.3963230.1586030.8592600.044*
C571.1432 (5)0.4161 (2)0.8683 (2)0.0392 (9)
H571.1845250.3725000.8905560.047*
C581.1931 (4)0.4442 (3)0.8055 (2)0.0408 (9)
H581.2742620.4230940.7862130.049*
C780.3875 (5)0.7025 (3)0.8871 (3)0.0457 (11)
H780.3188220.7390630.8963090.055*
C750.5930 (4)0.5952 (2)0.86369 (19)0.0268 (7)
C540.8436 (4)0.55343 (19)0.89849 (18)0.0233 (7)
H540.8631970.6082930.9005710.028*
C410.7777 (3)0.46268 (19)1.11764 (19)0.0245 (7)
C390.1681 (4)0.4656 (2)0.1013 (2)0.0308 (8)
H390.0892360.4480330.0710730.037*
C220.7125 (4)0.6881 (2)0.4423 (2)0.0353 (9)
H220.8019980.6662490.4542700.042*
C420.7620 (4)0.4387 (2)1.19146 (18)0.0291 (7)
H420.7372960.3881691.2002340.035*
C610.5601 (4)0.3158 (2)0.8999 (2)0.0285 (8)
C690.5173 (4)0.5028 (2)0.70400 (19)0.0317 (8)
H690.4497710.5243000.7338380.038*
C240.5635 (5)0.7967 (2)0.4387 (2)0.0372 (9)
H240.5506580.8481940.4487860.045*
C350.2667 (3)0.51123 (18)0.21998 (18)0.0236 (7)
C530.8279 (4)0.7015 (2)1.0041 (2)0.0305 (8)
H530.7287100.6961940.9997180.037*
C620.5015 (4)0.2442 (2)0.9094 (2)0.0350 (9)
H620.5097130.2214570.9571640.042*
C230.6942 (4)0.7628 (2)0.4544 (2)0.0393 (9)
H230.7713700.7920810.4737000.047*
C550.9678 (4)0.51311 (19)0.86888 (19)0.0264 (8)
C250.4541 (4)0.7542 (2)0.4084 (2)0.0316 (8)
H250.3651850.7771080.3976600.038*
C400.1533 (4)0.4856 (2)0.1743 (2)0.0290 (8)
H400.0637860.4816660.1938380.035*
C10.6418 (4)0.3616 (2)0.3995 (2)0.0302 (8)
C720.7107 (4)0.4394 (2)0.61553 (19)0.0342 (8)
H720.7762650.4170890.5849850.041*
C340.2420 (4)0.52701 (19)0.30101 (19)0.0242 (7)
H340.1548820.5575870.3036650.029*
C730.7031 (4)0.4146 (2)0.6877 (2)0.0294 (8)
H730.7638190.3760180.7066570.035*
C450.8448 (4)0.5850 (2)1.16922 (19)0.0263 (7)
H450.8766010.6346141.1621710.032*
C440.8233 (4)0.5609 (2)1.24019 (19)0.0299 (8)
H440.8363560.5939811.2813910.036*
C640.4167 (4)0.2389 (2)0.7802 (2)0.0344 (9)
H640.3658820.2133930.7405710.041*
C511.0327 (5)0.7779 (2)0.9963 (2)0.0383 (10)
H511.0741030.8245200.9852720.046*
C520.8878 (5)0.7695 (2)0.9893 (2)0.0379 (9)
H520.8297560.8107590.9743660.046*
C300.1001 (5)0.7451 (2)0.2228 (2)0.0383 (9)
H300.0907310.7599460.1720500.046*
C260.4698 (4)0.6771 (2)0.39265 (19)0.0271 (7)
C150.1683 (4)0.46846 (19)0.41981 (19)0.0243 (7)
C561.0316 (4)0.4508 (2)0.9003 (2)0.0376 (9)
H560.9989080.4308540.9448710.045*
C370.4110 (4)0.4983 (3)0.1163 (2)0.0430 (10)
H370.4997470.5032650.0960880.052*
C180.0456 (4)0.4993 (3)0.5526 (2)0.0372 (9)
H180.0040570.5097630.5978010.045*
C800.6078 (4)0.6682 (2)0.8405 (2)0.0384 (9)
H800.6883840.6818930.8155360.046*
C501.1160 (5)0.7185 (2)1.0193 (2)0.0374 (9)
H501.2149230.7247421.0252050.045*
C660.5497 (4)0.3476 (2)0.8271 (2)0.0264 (7)
C650.4750 (4)0.3076 (2)0.7687 (2)0.0303 (8)
H650.4652610.3290030.7203570.036*
C491.0578 (4)0.6495 (2)1.0341 (2)0.0308 (8)
H491.1163620.6087891.0499970.037*
C160.2464 (4)0.4628 (2)0.4875 (2)0.0340 (9)
H160.3425810.4489500.4887580.041*
C270.3551 (4)0.6373 (2)0.35330 (19)0.0258 (7)
C790.5074 (5)0.7219 (2)0.8530 (3)0.0420 (10)
H790.5209970.7721440.8379960.050*
C200.0292 (4)0.4909 (2)0.4199 (2)0.0349 (8)
H200.0247850.4962290.3737900.042*
C170.1843 (4)0.4775 (3)0.5538 (2)0.0418 (10)
H170.2378760.4725600.6001130.050*
C700.5280 (4)0.5274 (2)0.6315 (2)0.0359 (9)
H700.4683960.5663210.6121050.043*
C360.3967 (4)0.5186 (2)0.1900 (2)0.0345 (9)
H360.4751330.5373220.2197050.041*
C710.6249 (4)0.4957 (2)0.5871 (2)0.0349 (8)
H710.6319790.5127160.5374860.042*
C330.1266 (5)0.7018 (2)0.3705 (3)0.0416 (10)
H330.1345280.6870040.4213340.050*
C60.5339 (4)0.3195 (2)0.3607 (2)0.0297 (8)
C80.2790 (4)0.3010 (2)0.3128 (2)0.0322 (9)
C380.2981 (4)0.4712 (2)0.0719 (2)0.0366 (9)
H380.3094310.4565290.0219090.044*
C20.7682 (4)0.3242 (2)0.4240 (2)0.0377 (9)
H20.8399010.3512310.4517240.045*
C190.0327 (4)0.5057 (3)0.4853 (2)0.0375 (9)
H190.1285610.5202230.4840440.045*
C760.4718 (5)0.5757 (2)0.8972 (3)0.0413 (10)
H760.4589720.5257030.9130380.050*
C30.7889 (5)0.2509 (2)0.4087 (3)0.0442 (11)
H30.8738440.2272650.4264830.053*
C310.0005 (4)0.7652 (2)0.2698 (3)0.0439 (10)
H310.0792870.7939200.2515710.053*
C50.5607 (5)0.2433 (2)0.3439 (3)0.0409 (10)
H50.4905250.2152760.3161460.049*
C130.2118 (5)0.3147 (2)0.2426 (2)0.0390 (9)
H130.2492120.3511900.2112230.047*
C601.0152 (5)0.5377 (3)0.8013 (3)0.0524 (13)
H600.9701050.5789580.7764800.063*
C40.6850 (5)0.2095 (2)0.3666 (3)0.0471 (11)
H40.7012630.1587780.3542980.057*
C591.1261 (5)0.5034 (3)0.7699 (3)0.0528 (12)
H591.1559750.5207170.7237020.063*
C90.2289 (5)0.2437 (2)0.3556 (3)0.0454 (11)
H90.2753730.2310870.4023560.054*
C770.3692 (5)0.6289 (3)0.9078 (3)0.0554 (13)
H770.2854250.6146220.9294630.066*
C110.0388 (6)0.2231 (3)0.2615 (4)0.0629 (15)
H110.0465260.1986480.2457150.075*
C100.1071 (6)0.2044 (3)0.3282 (4)0.0640 (17)
H100.0725920.1645450.3565330.077*
C120.0916 (6)0.2760 (3)0.2178 (3)0.0585 (14)
H120.0465070.2866720.1701760.070*
C320.0128 (5)0.7439 (3)0.3430 (3)0.0493 (12)
H320.0569470.7581790.3752890.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0205 (2)0.0260 (2)0.0244 (2)0.00201 (18)0.00211 (16)0.00040 (17)
Ni20.0223 (2)0.0277 (2)0.0219 (2)0.00443 (18)0.00268 (16)0.00311 (18)
O10.0281 (13)0.0297 (12)0.0289 (12)0.0047 (11)0.0011 (10)0.0016 (11)
O30.0303 (14)0.0291 (12)0.0260 (12)0.0032 (10)0.0022 (10)0.0051 (10)
O40.0340 (15)0.0353 (14)0.0281 (13)0.0107 (11)0.0017 (11)0.0050 (11)
N10.0254 (16)0.0266 (17)0.0240 (14)0.0034 (12)0.0063 (12)0.0000 (11)
O20.0242 (14)0.0315 (14)0.0325 (14)0.0012 (10)0.0012 (11)0.0008 (11)
N40.0209 (15)0.0268 (14)0.0216 (14)0.0008 (11)0.0031 (11)0.0016 (11)
N30.0212 (15)0.0285 (14)0.0231 (15)0.0005 (12)0.0062 (12)0.0031 (12)
N20.0209 (15)0.0297 (16)0.0223 (14)0.0008 (12)0.0034 (12)0.0001 (12)
C480.0242 (19)0.0296 (18)0.0191 (16)0.0012 (14)0.0047 (13)0.0006 (13)
C210.030 (2)0.0315 (19)0.0227 (17)0.0023 (15)0.0041 (15)0.0012 (14)
C280.024 (2)0.0227 (17)0.0310 (19)0.0012 (14)0.0043 (15)0.0003 (14)
C670.0164 (16)0.0337 (19)0.0253 (17)0.0022 (13)0.0042 (13)0.0004 (13)
C740.0222 (18)0.0299 (18)0.0217 (16)0.0031 (14)0.0039 (13)0.0018 (13)
C470.0146 (16)0.0312 (17)0.0232 (17)0.0025 (13)0.0025 (13)0.0017 (14)
C430.0184 (17)0.049 (2)0.0237 (17)0.0017 (16)0.0031 (13)0.0044 (16)
C140.0219 (18)0.0269 (19)0.0250 (16)0.0008 (13)0.0022 (13)0.0006 (13)
C70.029 (2)0.0295 (18)0.0238 (17)0.0022 (15)0.0106 (15)0.0024 (14)
C290.027 (2)0.0273 (18)0.036 (2)0.0008 (15)0.0026 (16)0.0021 (15)
C680.0219 (17)0.0310 (18)0.0241 (16)0.0046 (14)0.0020 (13)0.0034 (14)
C460.0132 (16)0.0340 (18)0.0240 (17)0.0025 (13)0.0053 (13)0.0029 (14)
C630.025 (2)0.039 (2)0.047 (2)0.0084 (17)0.0072 (18)0.0008 (17)
C570.038 (2)0.038 (2)0.043 (2)0.0076 (17)0.0055 (18)0.0022 (17)
C580.027 (2)0.052 (2)0.045 (2)0.0071 (19)0.0119 (17)0.007 (2)
C780.048 (3)0.047 (2)0.043 (2)0.015 (2)0.014 (2)0.0007 (19)
C750.0258 (19)0.0325 (18)0.0223 (17)0.0002 (14)0.0028 (14)0.0001 (14)
C540.0227 (18)0.0270 (16)0.0206 (16)0.0035 (13)0.0049 (13)0.0035 (13)
C410.0148 (16)0.0360 (18)0.0230 (17)0.0022 (14)0.0034 (13)0.0025 (14)
C390.0261 (19)0.0376 (18)0.0281 (18)0.0004 (15)0.0023 (15)0.0023 (15)
C220.027 (2)0.039 (2)0.039 (2)0.0051 (17)0.0009 (17)0.0011 (18)
C420.0221 (17)0.0370 (18)0.0284 (17)0.0015 (17)0.0020 (14)0.0050 (17)
C610.0169 (18)0.0359 (19)0.0330 (19)0.0034 (15)0.0044 (15)0.0016 (15)
C690.0247 (18)0.043 (2)0.0277 (17)0.0032 (17)0.0018 (14)0.0036 (17)
C240.045 (3)0.0311 (19)0.035 (2)0.0026 (17)0.0019 (18)0.0043 (16)
C350.0187 (17)0.0260 (18)0.0261 (16)0.0036 (12)0.0021 (13)0.0029 (13)
C530.029 (2)0.0310 (19)0.0324 (19)0.0024 (15)0.0068 (16)0.0010 (15)
C620.027 (2)0.039 (2)0.040 (2)0.0097 (16)0.0058 (17)0.0043 (17)
C230.039 (2)0.039 (2)0.040 (2)0.0095 (18)0.0013 (18)0.0057 (18)
C550.0206 (18)0.033 (2)0.0264 (17)0.0024 (14)0.0050 (14)0.0026 (14)
C250.034 (2)0.0296 (18)0.0309 (19)0.0009 (16)0.0017 (16)0.0004 (15)
C400.0219 (18)0.034 (2)0.0313 (18)0.0025 (14)0.0048 (14)0.0017 (14)
C10.030 (2)0.036 (2)0.0260 (18)0.0066 (16)0.0104 (15)0.0054 (15)
C720.036 (2)0.0374 (18)0.0303 (18)0.0074 (18)0.0132 (15)0.0078 (17)
C340.0192 (17)0.0276 (16)0.0260 (17)0.0012 (13)0.0025 (13)0.0005 (13)
C730.0246 (19)0.0304 (18)0.0343 (19)0.0005 (14)0.0091 (15)0.0030 (14)
C450.0193 (18)0.0334 (18)0.0263 (17)0.0034 (14)0.0014 (14)0.0003 (14)
C440.0214 (18)0.044 (2)0.0244 (17)0.0060 (15)0.0023 (14)0.0008 (15)
C640.022 (2)0.042 (2)0.040 (2)0.0072 (16)0.0091 (17)0.0098 (17)
C510.050 (3)0.030 (2)0.036 (2)0.0114 (18)0.0140 (19)0.0041 (16)
C520.052 (3)0.0266 (19)0.036 (2)0.0052 (18)0.0055 (19)0.0023 (16)
C300.035 (2)0.036 (2)0.042 (2)0.0030 (17)0.0075 (18)0.0046 (17)
C260.030 (2)0.0296 (18)0.0220 (16)0.0015 (14)0.0049 (14)0.0023 (14)
C150.0213 (18)0.0246 (15)0.0277 (18)0.0004 (13)0.0067 (14)0.0014 (13)
C560.037 (2)0.041 (2)0.036 (2)0.0047 (18)0.0132 (17)0.0083 (17)
C370.0223 (19)0.073 (3)0.035 (2)0.002 (2)0.0083 (16)0.007 (2)
C180.030 (2)0.051 (2)0.0323 (19)0.002 (2)0.0132 (16)0.0087 (19)
C800.031 (2)0.038 (2)0.047 (2)0.0046 (17)0.0101 (18)0.0147 (18)
C500.034 (2)0.040 (2)0.040 (2)0.0106 (18)0.0140 (18)0.0076 (17)
C660.0173 (17)0.0321 (18)0.0306 (18)0.0004 (14)0.0076 (14)0.0026 (14)
C650.0216 (19)0.040 (2)0.0297 (18)0.0000 (15)0.0062 (15)0.0055 (15)
C490.0238 (19)0.0348 (19)0.0342 (19)0.0012 (15)0.0052 (15)0.0047 (15)
C160.0210 (19)0.051 (2)0.0301 (19)0.0073 (16)0.0052 (15)0.0043 (16)
C270.0256 (19)0.0310 (19)0.0215 (17)0.0012 (14)0.0069 (14)0.0006 (14)
C790.044 (3)0.036 (2)0.047 (2)0.0090 (18)0.008 (2)0.0118 (18)
C200.0221 (19)0.053 (2)0.0293 (18)0.0022 (18)0.0009 (14)0.0032 (18)
C170.031 (2)0.068 (3)0.0259 (19)0.0048 (19)0.0016 (16)0.0008 (18)
C700.032 (2)0.044 (2)0.030 (2)0.0014 (17)0.0036 (16)0.0028 (16)
C360.0217 (19)0.051 (2)0.0307 (19)0.0018 (15)0.0027 (15)0.0008 (16)
C710.040 (2)0.0411 (19)0.0242 (17)0.0113 (19)0.0044 (15)0.0008 (17)
C330.042 (3)0.040 (2)0.046 (2)0.0091 (18)0.019 (2)0.0067 (18)
C60.030 (2)0.0305 (18)0.0293 (18)0.0066 (15)0.0106 (16)0.0036 (14)
C80.034 (2)0.0282 (19)0.035 (2)0.0039 (16)0.0115 (17)0.0077 (16)
C380.031 (2)0.052 (2)0.0271 (19)0.0092 (17)0.0057 (16)0.0019 (16)
C20.027 (2)0.044 (2)0.043 (2)0.0090 (17)0.0089 (17)0.0063 (18)
C190.0233 (19)0.055 (2)0.036 (2)0.0060 (19)0.0099 (15)0.0016 (19)
C760.041 (2)0.035 (2)0.050 (2)0.0012 (18)0.025 (2)0.0033 (18)
C30.032 (2)0.044 (2)0.058 (3)0.0162 (19)0.014 (2)0.008 (2)
C310.024 (2)0.038 (2)0.069 (3)0.0045 (17)0.001 (2)0.005 (2)
C50.037 (2)0.033 (2)0.054 (3)0.0053 (17)0.012 (2)0.0010 (18)
C130.041 (2)0.032 (2)0.044 (2)0.0060 (17)0.0001 (19)0.0127 (17)
C600.052 (3)0.051 (3)0.058 (3)0.015 (2)0.027 (2)0.021 (2)
C40.041 (3)0.029 (2)0.073 (3)0.0122 (18)0.013 (2)0.000 (2)
C590.047 (3)0.065 (3)0.049 (3)0.015 (3)0.022 (2)0.015 (2)
C90.053 (3)0.035 (2)0.051 (2)0.0052 (19)0.021 (2)0.0066 (18)
C770.050 (3)0.052 (3)0.068 (3)0.005 (2)0.036 (3)0.001 (2)
C110.046 (3)0.056 (3)0.087 (4)0.004 (2)0.004 (3)0.030 (3)
C100.060 (4)0.038 (3)0.099 (5)0.015 (2)0.044 (4)0.012 (3)
C120.049 (3)0.054 (3)0.071 (3)0.010 (2)0.009 (3)0.033 (3)
C320.034 (3)0.046 (2)0.071 (3)0.0133 (19)0.023 (2)0.006 (2)
Geometric parameters (Å, º) top
Ni1—O11.833 (2)C23—H230.9500
Ni1—O21.836 (3)C55—C561.374 (5)
Ni1—N11.861 (3)C55—C601.399 (5)
Ni1—N21.863 (3)C25—H250.9500
Ni2—O31.847 (2)C25—C261.419 (5)
Ni2—O41.825 (3)C40—H400.9500
Ni2—N41.867 (3)C1—C61.420 (6)
Ni2—N31.861 (3)C1—C21.422 (6)
O1—C11.308 (5)C72—H720.9500
O3—C411.312 (4)C72—C731.378 (5)
O4—C611.303 (5)C72—C711.375 (6)
N1—C141.478 (4)C34—H341.0000
N1—C71.314 (5)C73—H730.9500
O2—C211.311 (5)C45—H450.9500
N4—C671.300 (5)C45—C441.378 (5)
N4—C741.472 (4)C44—H440.9500
N3—C471.297 (5)C64—H640.9500
N3—C541.483 (4)C64—C651.372 (5)
N2—C341.479 (5)C51—H510.9500
N2—C271.303 (5)C51—C521.389 (6)
C48—C471.495 (5)C51—C501.374 (6)
C48—C531.392 (5)C52—H520.9500
C48—C491.398 (5)C30—H300.9500
C21—C221.416 (6)C30—C311.373 (6)
C21—C261.420 (5)C26—C271.448 (5)
C28—C291.383 (5)C15—C161.386 (5)
C28—C271.502 (5)C15—C201.388 (5)
C28—C331.397 (5)C56—H560.9500
C67—C681.514 (5)C37—H370.9500
C67—C661.440 (5)C37—C361.391 (5)
C74—H741.0000C37—C381.384 (6)
C74—C751.524 (5)C18—H180.9500
C74—C541.540 (5)C18—C171.379 (6)
C47—C461.453 (5)C18—C191.382 (6)
C43—H430.9500C80—H800.9500
C43—C421.370 (5)C80—C791.388 (6)
C43—C441.403 (6)C50—H500.9500
C14—H141.0000C50—C491.387 (6)
C14—C341.537 (5)C66—C651.421 (5)
C14—C151.530 (4)C65—H650.9500
C7—C61.453 (5)C49—H490.9500
C7—C81.495 (5)C16—H160.9500
C29—H290.9500C16—C171.396 (5)
C29—C301.394 (6)C79—H790.9500
C68—C691.392 (5)C20—H200.9500
C68—C731.399 (5)C20—C191.380 (5)
C46—C411.423 (5)C17—H170.9500
C46—C451.419 (5)C70—H700.9500
C63—H630.9500C70—C711.387 (6)
C63—C621.365 (6)C36—H360.9500
C63—C641.400 (6)C71—H710.9500
C57—H570.9500C33—H330.9500
C57—C581.354 (6)C33—C321.385 (6)
C57—C561.394 (6)C6—C51.423 (5)
C58—H580.9500C8—C131.397 (6)
C58—C591.373 (7)C8—C91.389 (6)
C78—H780.9500C38—H380.9500
C78—C791.382 (6)C2—H20.9500
C78—C771.382 (7)C2—C31.358 (6)
C75—C801.382 (5)C19—H190.9500
C75—C761.387 (5)C76—H760.9500
C54—H541.0000C76—C771.390 (6)
C54—C551.517 (5)C3—H30.9500
C41—C421.415 (5)C3—C41.415 (7)
C39—H390.9500C31—H310.9500
C39—C401.380 (5)C31—C321.368 (7)
C39—C381.387 (5)C5—H50.9500
C22—H220.9500C5—C41.369 (6)
C22—C231.369 (6)C13—H130.9500
C42—H420.9500C13—C121.386 (7)
C61—C621.414 (5)C60—H600.9500
C61—C661.426 (5)C60—C591.379 (6)
C69—H690.9500C4—H40.9500
C69—C701.388 (5)C59—H590.9500
C24—H240.9500C9—H90.9500
C24—C231.397 (6)C9—C101.417 (8)
C24—C251.373 (6)C77—H770.9500
C35—C401.389 (5)C11—H110.9500
C35—C341.520 (5)C11—C101.366 (9)
C35—C361.396 (5)C11—C121.352 (9)
C53—H530.9500C10—H100.9500
C53—C521.379 (6)C12—H120.9500
C62—H620.9500C32—H320.9500
O1—Ni1—N193.37 (13)N2—C34—C35113.3 (3)
O1—Ni1—O285.23 (11)N2—C34—H34109.5
O1—Ni1—N2178.67 (12)C14—C34—H34109.5
O2—Ni1—N1178.46 (13)C35—C34—C14110.7 (3)
O2—Ni1—N293.97 (12)C35—C34—H34109.5
N1—Ni1—N287.42 (12)C68—C73—H73120.1
O3—Ni2—N4179.41 (13)C72—C73—C68119.9 (4)
O3—Ni2—N392.66 (12)C72—C73—H73120.1
O4—Ni2—O385.46 (11)C46—C45—H45119.1
O4—Ni2—N494.30 (12)C44—C45—C46121.8 (3)
O4—Ni2—N3176.57 (13)C44—C45—H45119.1
N3—Ni2—N487.60 (13)C43—C44—H44120.6
C1—O1—Ni1126.5 (2)C45—C44—C43118.8 (3)
C41—O3—Ni2125.0 (2)C45—C44—H44120.6
C61—O4—Ni2128.1 (2)C63—C64—H64120.6
C14—N1—Ni1109.6 (2)C65—C64—C63118.8 (4)
C7—N1—Ni1128.1 (3)C65—C64—H64120.6
C7—N1—C14122.3 (3)C52—C51—H51120.2
C21—O2—Ni1126.5 (2)C50—C51—H51120.2
C67—N4—Ni2128.2 (2)C50—C51—C52119.7 (4)
C67—N4—C74120.5 (3)C53—C52—C51120.1 (4)
C74—N4—Ni2111.3 (2)C53—C52—H52119.9
C47—N3—Ni2128.7 (2)C51—C52—H52119.9
C47—N3—C54121.2 (3)C29—C30—H30119.8
C54—N3—Ni2110.0 (2)C31—C30—C29120.3 (4)
C34—N2—Ni1111.4 (2)C31—C30—H30119.8
C27—N2—Ni1128.5 (3)C21—C26—C27122.1 (3)
C27—N2—C34119.9 (3)C25—C26—C21118.6 (3)
C53—C48—C47119.1 (3)C25—C26—C27119.2 (3)
C53—C48—C49119.5 (3)C16—C15—C14124.1 (3)
C49—C48—C47121.2 (3)C16—C15—C20118.4 (3)
O2—C21—C22117.4 (4)C20—C15—C14117.5 (3)
O2—C21—C26124.6 (3)C57—C56—H56119.3
C22—C21—C26118.0 (3)C55—C56—C57121.4 (4)
C29—C28—C27120.8 (3)C55—C56—H56119.3
C29—C28—C33119.4 (4)C36—C37—H37119.4
C33—C28—C27119.7 (3)C38—C37—H37119.4
N4—C67—C68118.8 (3)C38—C37—C36121.1 (3)
N4—C67—C66122.8 (3)C17—C18—H18120.1
C66—C67—C68118.3 (3)C17—C18—C19119.8 (3)
N4—C74—H74109.1C19—C18—H18120.1
N4—C74—C75111.7 (3)C75—C80—H80119.4
N4—C74—C54105.6 (3)C75—C80—C79121.3 (4)
C75—C74—H74109.1C79—C80—H80119.4
C75—C74—C54112.1 (3)C51—C50—H50119.5
C54—C74—H74109.1C51—C50—C49121.1 (4)
N3—C47—C48119.5 (3)C49—C50—H50119.5
N3—C47—C46121.2 (3)C61—C66—C67121.5 (3)
C46—C47—C48119.2 (3)C65—C66—C67120.0 (3)
C42—C43—H43119.5C65—C66—C61118.4 (3)
C42—C43—C44121.0 (3)C64—C65—C66121.9 (4)
C44—C43—H43119.5C64—C65—H65119.0
N1—C14—H14109.7C66—C65—H65119.0
N1—C14—C34104.8 (3)C48—C49—H49120.4
N1—C14—C15111.9 (3)C50—C49—C48119.2 (4)
C34—C14—H14109.7C50—C49—H49120.4
C15—C14—H14109.7C15—C16—H16119.9
C15—C14—C34110.9 (3)C15—C16—C17120.2 (4)
N1—C7—C6121.2 (3)C17—C16—H16119.9
N1—C7—C8119.4 (3)N2—C27—C28120.0 (3)
C6—C7—C8119.3 (3)N2—C27—C26121.5 (3)
C28—C29—H29120.1C26—C27—C28118.5 (3)
C28—C29—C30119.9 (4)C78—C79—C80120.1 (4)
C30—C29—H29120.1C78—C79—H79120.0
C69—C68—C67123.0 (3)C80—C79—H79120.0
C69—C68—C73119.3 (3)C15—C20—H20119.2
C73—C68—C67117.6 (3)C19—C20—C15121.7 (4)
C41—C46—C47121.5 (3)C19—C20—H20119.2
C45—C46—C47119.7 (3)C18—C17—C16120.4 (4)
C45—C46—C41118.8 (3)C18—C17—H17119.8
C62—C63—H63119.4C16—C17—H17119.8
C62—C63—C64121.2 (4)C69—C70—H70119.7
C64—C63—H63119.4C71—C70—C69120.6 (4)
C58—C57—H57119.8C71—C70—H70119.7
C58—C57—C56120.3 (4)C35—C36—H36120.2
C56—C57—H57119.8C37—C36—C35119.7 (4)
C57—C58—H58120.1C37—C36—H36120.2
C57—C58—C59119.8 (4)C72—C71—C70119.3 (3)
C59—C58—H58120.1C72—C71—H71120.3
C79—C78—H78120.5C70—C71—H71120.3
C77—C78—H78120.5C28—C33—H33120.2
C77—C78—C79119.0 (4)C32—C33—C28119.6 (4)
C80—C75—C74118.5 (3)C32—C33—H33120.2
C80—C75—C76118.4 (4)C1—C6—C7121.5 (3)
C76—C75—C74123.1 (3)C1—C6—C5118.6 (4)
N3—C54—C74104.5 (3)C5—C6—C7119.8 (4)
N3—C54—H54109.3C13—C8—C7119.7 (3)
N3—C54—C55113.0 (3)C9—C8—C7121.7 (4)
C74—C54—H54109.3C9—C8—C13118.5 (4)
C55—C54—C74111.3 (3)C39—C38—H38120.5
C55—C54—H54109.3C37—C38—C39119.1 (3)
O3—C41—C46124.3 (3)C37—C38—H38120.5
O3—C41—C42117.6 (3)C1—C2—H2119.2
C42—C41—C46118.2 (3)C3—C2—C1121.6 (4)
C40—C39—H39120.0C3—C2—H2119.2
C40—C39—C38120.0 (4)C18—C19—H19120.2
C38—C39—H39120.0C20—C19—C18119.5 (4)
C21—C22—H22119.3C20—C19—H19120.2
C23—C22—C21121.5 (4)C75—C76—H76119.8
C23—C22—H22119.3C75—C76—C77120.4 (4)
C43—C42—C41121.4 (4)C77—C76—H76119.8
C43—C42—H42119.3C2—C3—H3119.7
C41—C42—H42119.3C2—C3—C4120.6 (4)
O4—C61—C62117.2 (3)C4—C3—H3119.7
O4—C61—C66124.7 (3)C30—C31—H31120.0
C62—C61—C66118.1 (3)C32—C31—C30119.9 (4)
C68—C69—H69120.1C32—C31—H31120.0
C70—C69—C68119.8 (3)C6—C5—H5119.2
C70—C69—H69120.1C4—C5—C6121.7 (4)
C23—C24—H24120.5C4—C5—H5119.2
C25—C24—H24120.5C8—C13—H13119.3
C25—C24—C23118.9 (4)C12—C13—C8121.4 (5)
C40—C35—C34117.5 (3)C12—C13—H13119.3
C40—C35—C36118.6 (3)C55—C60—H60119.3
C36—C35—C34123.8 (3)C59—C60—C55121.5 (4)
C48—C53—H53119.8C59—C60—H60119.3
C52—C53—C48120.3 (4)C3—C4—H4120.4
C52—C53—H53119.8C5—C4—C3119.2 (4)
C63—C62—C61121.4 (4)C5—C4—H4120.4
C63—C62—H62119.3C58—C59—C60119.9 (4)
C61—C62—H62119.3C58—C59—H59120.1
C22—C23—C24121.0 (4)C60—C59—H59120.1
C22—C23—H23119.5C8—C9—H9120.7
C24—C23—H23119.5C8—C9—C10118.7 (5)
C56—C55—C54125.2 (3)C10—C9—H9120.7
C56—C55—C60116.9 (3)C78—C77—C76120.8 (4)
C60—C55—C54117.7 (3)C78—C77—H77119.6
C24—C25—H25119.0C76—C77—H77119.6
C24—C25—C26121.9 (4)C10—C11—H11119.7
C26—C25—H25119.0C12—C11—H11119.7
C39—C40—C35121.4 (3)C12—C11—C10120.6 (5)
C39—C40—H40119.3C9—C10—H10119.6
C35—C40—H40119.3C11—C10—C9120.9 (5)
O1—C1—C6124.7 (3)C11—C10—H10119.6
O1—C1—C2117.0 (4)C13—C12—H12120.1
C6—C1—C2118.2 (3)C11—C12—C13119.8 (5)
C73—C72—H72119.5C11—C12—H12120.1
C71—C72—H72119.5C33—C32—H32119.6
C71—C72—C73121.1 (3)C31—C32—C33120.9 (4)
N2—C34—C14104.1 (3)C31—C32—H32119.6
Ni1—O1—C1—C610.8 (5)C7—C8—C9—C10172.3 (4)
Ni1—O1—C1—C2169.2 (2)C29—C28—C27—N279.9 (4)
Ni1—N1—C14—C3442.8 (3)C29—C28—C27—C2697.9 (4)
Ni1—N1—C14—C1577.5 (3)C29—C28—C33—C320.3 (6)
Ni1—N1—C7—C69.8 (5)C29—C30—C31—C320.0 (7)
Ni1—N1—C7—C8172.4 (2)C68—C67—C66—C61173.6 (3)
Ni1—O2—C21—C22172.2 (3)C68—C67—C66—C659.1 (5)
Ni1—O2—C21—C268.7 (5)C68—C69—C70—C710.9 (6)
Ni1—N2—C34—C1436.2 (3)C46—C41—C42—C432.8 (5)
Ni1—N2—C34—C3584.1 (3)C46—C45—C44—C432.5 (5)
Ni1—N2—C27—C28176.0 (2)C63—C64—C65—C661.0 (6)
Ni1—N2—C27—C266.3 (5)C57—C58—C59—C605.2 (8)
Ni2—O3—C41—C4620.5 (5)C58—C57—C56—C551.1 (7)
Ni2—O3—C41—C42159.6 (2)C75—C74—C54—N374.0 (3)
Ni2—O4—C61—C62178.3 (3)C75—C74—C54—C55163.8 (3)
Ni2—O4—C61—C661.3 (5)C75—C80—C79—C782.0 (7)
Ni2—N4—C67—C68168.9 (2)C75—C76—C77—C781.9 (8)
Ni2—N4—C67—C668.2 (5)C54—N3—C47—C484.2 (5)
Ni2—N4—C74—C7587.7 (3)C54—N3—C47—C46176.2 (3)
Ni2—N4—C74—C5434.4 (3)C54—C74—C75—C8071.4 (4)
Ni2—N3—C47—C48172.7 (2)C54—C74—C75—C76110.8 (4)
Ni2—N3—C47—C466.9 (5)C54—C55—C56—C57178.3 (4)
Ni2—N3—C54—C7441.6 (3)C54—C55—C60—C59179.0 (5)
Ni2—N3—C54—C5579.5 (3)C41—C46—C45—C442.1 (5)
O1—Ni1—N1—C14160.0 (2)C22—C21—C26—C254.2 (5)
O1—Ni1—N1—C720.8 (3)C22—C21—C26—C27172.2 (3)
O1—Ni1—O2—C21162.1 (3)C42—C43—C44—C450.2 (5)
O1—C1—C6—C77.7 (5)C61—C66—C65—C641.8 (5)
O1—C1—C6—C5176.0 (3)C69—C68—C73—C720.3 (5)
O1—C1—C2—C3177.6 (4)C69—C70—C71—C720.1 (6)
O3—Ni2—O4—C61176.6 (3)C24—C25—C26—C213.2 (5)
O3—Ni2—N3—C4721.6 (3)C24—C25—C26—C27173.3 (3)
O3—Ni2—N3—C54161.2 (2)C53—C48—C47—C46101.7 (4)
O3—C41—C42—C43177.3 (3)C53—C48—C49—C501.9 (5)
O4—Ni2—O3—C41155.2 (3)C62—C63—C64—C652.4 (6)
O4—Ni2—N4—C677.6 (3)C62—C61—C66—C67179.6 (3)
O4—Ni2—N4—C74173.3 (2)C62—C61—C66—C653.1 (5)
O4—C61—C62—C63178.7 (4)C23—C24—C25—C260.0 (6)
O4—C61—C66—C670.1 (5)C55—C60—C59—C580.6 (9)
O4—C61—C66—C65177.4 (3)C25—C24—C23—C222.2 (6)
N1—Ni1—O1—C120.9 (3)C25—C26—C27—N2175.6 (3)
N1—Ni1—N2—C3411.0 (2)C25—C26—C27—C286.7 (5)
N1—Ni1—N2—C27163.4 (3)C40—C39—C38—C371.3 (6)
N1—C14—C34—N249.6 (3)C40—C35—C34—N2170.5 (3)
N1—C14—C34—C3572.5 (3)C40—C35—C34—C1472.9 (4)
N1—C14—C15—C168.3 (5)C40—C35—C36—C371.7 (6)
N1—C14—C15—C20173.6 (3)C1—C6—C5—C42.5 (6)
N1—C7—C6—C18.1 (5)C1—C2—C3—C41.0 (6)
N1—C7—C6—C5175.7 (3)C34—N2—C27—C282.0 (4)
N1—C7—C8—C1361.6 (5)C34—N2—C27—C26179.7 (3)
N1—C7—C8—C9114.3 (4)C34—C14—C15—C16108.3 (4)
N2—Ni1—N1—C1419.0 (2)C34—C14—C15—C2069.7 (4)
N2—Ni1—N1—C7160.3 (3)C34—C35—C40—C39176.1 (3)
N2—Ni1—O2—C2116.8 (3)C34—C35—C36—C37176.0 (4)
N2—C27—C28—C33101.6 (4)C73—C68—C69—C701.1 (6)
O2—Ni1—O1—C1159.8 (3)C73—C72—C71—C700.9 (6)
O2—Ni1—N2—C34169.7 (2)C45—C46—C41—O3179.5 (3)
O2—Ni1—N2—C2715.9 (3)C45—C46—C41—C420.5 (5)
O2—C21—C22—C23178.7 (4)C44—C43—C42—C412.4 (5)
O2—C21—C26—C25176.7 (3)C64—C63—C62—C611.0 (6)
O2—C21—C26—C276.9 (5)C51—C50—C49—C480.0 (6)
N3—Ni2—O3—C4127.7 (3)C52—C51—C50—C491.5 (6)
N3—Ni2—N4—C67169.6 (3)C30—C31—C32—C330.3 (7)
N3—Ni2—N4—C749.6 (2)C26—C21—C22—C232.2 (6)
N3—C47—C46—C4110.0 (5)C15—C14—C34—N271.3 (3)
N3—C47—C46—C45172.4 (3)C15—C14—C34—C35166.6 (3)
N3—C54—C74—N447.8 (3)C15—C16—C17—C181.4 (7)
N3—C54—C55—C569.9 (5)C15—C20—C19—C181.0 (7)
N3—C54—C55—C60175.0 (4)C56—C57—C58—C595.4 (7)
N3—C47—C48—C5377.9 (4)C56—C55—C60—C593.5 (7)
N4—Ni2—O4—C614.0 (3)C80—C75—C76—C770.7 (7)
N4—Ni2—N3—C47157.9 (3)C50—C51—C52—C531.2 (6)
N4—Ni2—N3—C5419.3 (2)C66—C67—C68—C69108.1 (4)
N4—C67—C68—C6974.6 (5)C66—C67—C68—C7374.8 (4)
N4—C67—C68—C73102.4 (4)C66—C61—C62—C631.8 (6)
N4—C67—C66—C613.5 (5)C49—C48—C47—N397.4 (4)
N4—C67—C66—C65173.7 (3)C49—C48—C47—C4683.0 (4)
N4—C74—C75—C80170.3 (3)C49—C48—C53—C522.2 (5)
N4—C74—C75—C767.5 (5)C16—C15—C20—C191.6 (6)
N4—C74—C54—C5574.4 (3)C27—N2—C34—C14138.7 (3)
C48—C47—C46—C41170.4 (3)C27—N2—C34—C35100.9 (3)
C48—C47—C46—C457.2 (5)C27—C28—C29—C30178.5 (4)
C48—C53—C52—C510.6 (6)C27—C28—C33—C32178.3 (4)
C21—C22—C23—C241.1 (6)C79—C78—C77—C762.6 (8)
C21—C26—C27—N28.1 (5)C20—C15—C16—C171.8 (6)
C21—C26—C27—C28169.7 (3)C17—C18—C19—C200.5 (7)
C28—C29—C30—C310.1 (6)C36—C35—C40—C391.7 (5)
C28—C33—C32—C310.4 (7)C36—C35—C34—N211.8 (5)
C67—N4—C74—C7593.1 (4)C36—C35—C34—C14104.8 (4)
C67—N4—C74—C54144.8 (3)C36—C37—C38—C391.3 (7)
C67—C68—C69—C70175.9 (3)C71—C72—C73—C680.7 (6)
C67—C68—C73—C72176.8 (3)C33—C28—C29—C300.0 (6)
C67—C66—C65—C64179.1 (3)C33—C28—C27—C2680.7 (4)
C74—N4—C67—C6810.2 (5)C6—C7—C8—C13120.6 (4)
C74—N4—C67—C66172.7 (3)C6—C7—C8—C963.5 (5)
C74—C75—C80—C79179.4 (4)C6—C1—C2—C32.4 (6)
C74—C75—C76—C77178.6 (4)C6—C5—C4—C30.8 (7)
C74—C54—C55—C56107.2 (4)C8—C7—C6—C1169.7 (3)
C74—C54—C55—C6067.8 (5)C8—C7—C6—C56.6 (5)
C47—N3—C54—C74135.8 (3)C8—C13—C12—C111.1 (7)
C47—N3—C54—C55103.1 (4)C8—C9—C10—C111.0 (7)
C47—C48—C53—C52173.2 (3)C38—C39—C40—C350.2 (6)
C47—C48—C49—C50173.4 (3)C38—C37—C36—C350.2 (7)
C47—C46—C41—O32.8 (5)C2—C1—C6—C7172.3 (3)
C47—C46—C41—C42177.1 (3)C2—C1—C6—C54.0 (5)
C47—C46—C45—C44179.8 (3)C2—C3—C4—C52.6 (7)
C14—N1—C7—C6171.0 (3)C19—C18—C17—C160.7 (7)
C14—N1—C7—C86.8 (5)C76—C75—C80—C792.7 (7)
C14—C15—C16—C17179.8 (4)C13—C8—C9—C103.6 (6)
C14—C15—C20—C19179.8 (4)C60—C55—C56—C573.3 (6)
C7—N1—C14—C34136.6 (3)C9—C8—C13—C124.7 (6)
C7—N1—C14—C15103.2 (3)C77—C78—C79—C800.7 (7)
C7—C6—C5—C4173.9 (4)C10—C11—C12—C133.7 (7)
C7—C8—C13—C12171.3 (4)C12—C11—C10—C94.7 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C43—H43···O1i0.952.603.500 (4)159
C51—H51···O3ii0.952.523.417 (5)158
C71—H71···O10.952.633.308 (4)128
C71—H71···O20.952.623.562 (4)173
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1/2, z+2.
{2,2'-[(1S,2S)-1,2-Diphenylethane-1,2-diylbis(nitrilophenylmethanylylidene)]diphenolato}nickel(II) ethanol disolvate (1_EtOH) top
Crystal data top
[Ni(C40H30N2O2)]·2C2H6OZ = 2
Mr = 721.50F(000) = 760
Triclinic, P1Dx = 1.331 Mg m3
a = 10.5830 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4110 (2) ÅCell parameters from 24617 reflections
c = 13.9837 (2) Åθ = 3.0–31.3°
α = 94.352 (1)°µ = 0.59 mm1
β = 100.599 (1)°T = 120 K
γ = 90.584 (1)°Platelet, brown
V = 1799.61 (5) Å30.26 × 0.20 × 0.09 mm
Data collection top
Rigaku Oxford Diffraction, Synergy Custom system, HyPix
diffractometer
13032 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source12354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1212
Tmin = 0.824, Tmax = 1.000k = 1414
24831 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.042P)2 + 0.5385P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.32 e Å3
13032 reflectionsΔρmin = 0.37 e Å3
938 parametersAbsolute structure: Flack x determined using 5653 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
9 restraintsAbsolute structure parameter: 0.012 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.37805 (4)0.27140 (3)0.25629 (3)0.02409 (12)
O10.4813 (2)0.3855 (2)0.2414 (2)0.0317 (7)
O20.5302 (3)0.2102 (2)0.3071 (2)0.0314 (7)
N10.2258 (3)0.3374 (3)0.2050 (2)0.0221 (7)
N20.2778 (3)0.1561 (3)0.2786 (2)0.0233 (7)
C10.4456 (4)0.4831 (3)0.2189 (3)0.0215 (8)
C20.5439 (4)0.5594 (3)0.2161 (3)0.0270 (8)
H20.6311500.5388640.2304510.032*
C30.5155 (4)0.6636 (3)0.1929 (3)0.0264 (8)
H30.5832290.7132990.1897910.032*
C40.3891 (4)0.6964 (3)0.1740 (3)0.0272 (8)
H40.3704600.7687250.1593540.033*
C50.2915 (4)0.6243 (3)0.1766 (3)0.0254 (8)
H50.2051930.6475620.1641900.030*
C60.3159 (4)0.5156 (3)0.1975 (3)0.0212 (8)
C70.2090 (3)0.4386 (3)0.1900 (3)0.0210 (8)
C80.0764 (3)0.4821 (3)0.1651 (3)0.0203 (7)
C90.0225 (4)0.4998 (3)0.0697 (3)0.0291 (8)
H90.0655280.4773530.0178900.035*
C100.0945 (4)0.5506 (4)0.0502 (3)0.0342 (9)
H100.1312630.5635760.0150300.041*
C110.1579 (4)0.5823 (3)0.1251 (3)0.0313 (10)
H110.2374960.6178250.1113240.038*
C120.1060 (4)0.5625 (3)0.2202 (3)0.0285 (9)
H120.1508190.5827190.2714570.034*
C130.0116 (3)0.5130 (3)0.2404 (3)0.0253 (8)
H130.0480850.5002140.3057190.030*
C140.1147 (3)0.2607 (3)0.1879 (3)0.0218 (7)
H140.0347100.3015030.1922070.026*
C150.0976 (3)0.1957 (3)0.0896 (3)0.0241 (8)
C160.1895 (4)0.1919 (3)0.0303 (3)0.0331 (9)
H160.2677520.2324590.0501530.040*
C170.1673 (5)0.1291 (4)0.0577 (3)0.0420 (11)
H170.2308190.1269270.0977340.050*
C180.0549 (5)0.0699 (4)0.0877 (3)0.0428 (11)
H180.0406940.0269990.1480920.051*
C190.0372 (4)0.0733 (4)0.0299 (3)0.0392 (10)
H190.1152810.0325650.0503270.047*
C200.0162 (4)0.1362 (3)0.0587 (3)0.0319 (9)
H200.0802600.1383430.0982670.038*
C210.5482 (4)0.1092 (3)0.3277 (3)0.0251 (8)
C220.6764 (4)0.0788 (3)0.3597 (3)0.0301 (9)
H220.7438800.1316440.3679300.036*
C230.7048 (4)0.0261 (3)0.3790 (3)0.0318 (9)
H230.7918330.0448420.3997770.038*
C240.6079 (4)0.1051 (3)0.3685 (3)0.0296 (9)
H240.6284260.1778230.3803960.036*
C250.4811 (4)0.0761 (3)0.3405 (3)0.0259 (8)
H250.4146330.1296210.3344230.031*
C260.4483 (4)0.0312 (3)0.3209 (3)0.0228 (8)
C270.3136 (4)0.0583 (3)0.2996 (3)0.0237 (9)
C280.2135 (4)0.0254 (3)0.3047 (3)0.0236 (8)
C290.1823 (5)0.0492 (4)0.3935 (3)0.0364 (10)
H290.2284230.0144930.4527350.044*
C300.0849 (5)0.1229 (4)0.3958 (4)0.0451 (11)
H300.0638590.1381610.4566660.054*
C310.0176 (4)0.1748 (3)0.3107 (3)0.0385 (10)
H310.0508830.2241760.3126530.046*
C320.0504 (4)0.1546 (3)0.2235 (3)0.0359 (10)
H320.0069850.1927660.1650620.043*
C330.1469 (4)0.0786 (3)0.2194 (3)0.0311 (9)
H330.1668330.0634350.1582400.043 (13)*
C340.1424 (3)0.1882 (3)0.2728 (3)0.0238 (8)
H340.0845080.1225670.2584560.029*
C350.1209 (4)0.2499 (3)0.3661 (3)0.0264 (8)
C360.2198 (4)0.2979 (3)0.4362 (3)0.0333 (9)
H360.3067670.2873890.4299230.040*
C370.1917 (5)0.3609 (4)0.5147 (3)0.0458 (12)
H370.2599050.3936680.5620480.055*
C380.0672 (5)0.3770 (5)0.5259 (3)0.0483 (12)
H380.0493340.4194750.5810710.058*
C390.0320 (4)0.3310 (4)0.4564 (3)0.0412 (11)
H390.1187630.3428510.4627260.049*
C400.0048 (4)0.2682 (4)0.3783 (3)0.0335 (9)
H400.0737360.2362870.3310460.040*
Ni20.76182 (4)0.73251 (4)0.75057 (4)0.03064 (13)
O30.8974 (3)0.8003 (3)0.7123 (3)0.0482 (9)
O40.8745 (3)0.6230 (3)0.7739 (3)0.0488 (9)
N30.6493 (3)0.8439 (3)0.7226 (2)0.0240 (7)
N40.6308 (3)0.6619 (3)0.7954 (2)0.0238 (7)
C410.9027 (4)0.8977 (3)0.6847 (3)0.0299 (9)
C421.0197 (4)0.9319 (3)0.6587 (3)0.0342 (9)
H421.0885420.8830830.6604010.041*
C431.0345 (4)1.0333 (4)0.6314 (3)0.0361 (10)
H431.1135481.0543490.6145160.043*
C440.9363 (4)1.1065 (4)0.6279 (3)0.0376 (10)
H440.9481391.1772840.6090170.045*
C450.8213 (4)1.0760 (3)0.6520 (3)0.0309 (9)
H450.7541961.1265740.6497770.037*
C460.8010 (4)0.9712 (3)0.6798 (3)0.0265 (9)
C470.6754 (4)0.9404 (3)0.6985 (3)0.0235 (8)
C480.5721 (4)1.0231 (3)0.6894 (3)0.0253 (8)
C490.5034 (4)1.0435 (3)0.5978 (3)0.0309 (9)
H490.5222211.0061710.5404040.037*
C500.4073 (4)1.1189 (3)0.5917 (4)0.0433 (12)
H500.3604941.1338690.5295530.052*
C510.3789 (4)1.1725 (3)0.6746 (4)0.0429 (11)
H510.3117551.2231560.6695240.051*
C520.4476 (4)1.1526 (3)0.7649 (3)0.0376 (10)
H520.4281171.1905810.8218000.045*
C530.5448 (4)1.0779 (3)0.7738 (3)0.0292 (8)
H530.5920421.0643700.8361460.035*
C540.5159 (3)0.8106 (3)0.7261 (3)0.0223 (7)
H540.4667080.8759240.7418050.027*
C550.4477 (4)0.7533 (3)0.6300 (3)0.0254 (8)
C560.5045 (4)0.7357 (3)0.5492 (3)0.0325 (9)
H560.5902450.7608530.5517130.039*
C570.4373 (5)0.6815 (4)0.4638 (3)0.0415 (11)
H570.4773140.6697500.4085510.050*
C580.3139 (5)0.6451 (4)0.4593 (3)0.0483 (12)
H580.2679340.6079890.4011570.058*
C590.2565 (5)0.6628 (5)0.5400 (4)0.0516 (13)
H590.1709730.6369690.5371800.062*
C600.3213 (4)0.7171 (4)0.6241 (3)0.0375 (10)
H600.2798050.7300520.6784470.045*
C610.8470 (4)0.5231 (3)0.7877 (3)0.0304 (9)
C620.9459 (4)0.4474 (3)0.7869 (3)0.0341 (9)
H621.0266620.4703100.7741430.041*
C630.9276 (4)0.3417 (3)0.8041 (3)0.0337 (9)
H630.9958310.2926140.8035430.040*
C640.8092 (4)0.3052 (3)0.8226 (3)0.0352 (10)
H640.7969540.2321510.8355200.042*
C650.7116 (4)0.3769 (3)0.8216 (3)0.0300 (9)
H650.6307130.3516920.8324030.036*
C660.7262 (4)0.4867 (3)0.8052 (3)0.0233 (8)
C670.6232 (3)0.5606 (3)0.8118 (3)0.0218 (8)
C680.5042 (3)0.5155 (3)0.8391 (3)0.0212 (7)
C690.4970 (4)0.5023 (3)0.9357 (3)0.0307 (9)
H690.5657640.5276730.9863550.037*
C700.3899 (4)0.4524 (4)0.9583 (3)0.0361 (10)
H700.3858470.4432781.0245540.043*
C710.2892 (4)0.4157 (3)0.8856 (3)0.0293 (9)
H710.2163610.3806850.9013790.035*
C720.2950 (4)0.4304 (3)0.7896 (3)0.0284 (9)
H720.2251850.4063690.7392590.034*
C730.4012 (4)0.4795 (3)0.7662 (3)0.0268 (8)
H730.4042230.4888710.6998740.032*
C740.5280 (3)0.7367 (3)0.8108 (3)0.0223 (7)
H740.4456040.6944730.8053120.027*
C750.5567 (4)0.8020 (3)0.9096 (3)0.0256 (8)
C760.6752 (4)0.8066 (3)0.9710 (3)0.0333 (9)
H760.7439090.7660050.9529990.040*
C770.6946 (4)0.8702 (4)1.0589 (3)0.0407 (10)
H770.7766780.8728221.1003390.049*
C780.5963 (5)0.9292 (4)1.0863 (3)0.0404 (11)
H780.6102920.9723161.1465230.048*
C790.4772 (4)0.9257 (3)1.0260 (3)0.0378 (10)
H790.4089630.9665891.0445920.045*
C800.4572 (4)0.8626 (3)0.9382 (3)0.0310 (9)
H800.3750010.8603970.8969710.037*
O51.1514 (3)0.7195 (4)0.8009 (2)0.0552 (10)
H5A1.0737350.7227170.7742260.083*
C811.1594 (4)0.6932 (4)0.8981 (3)0.0397 (10)
H81A1.2505770.6827020.9273150.048*
H81B1.1118450.6241470.8985730.048*
C821.1053 (5)0.7794 (4)0.9591 (4)0.0518 (13)
H82A1.0142790.7885220.9316380.078*
H82B1.1526570.8477270.9594890.078*
H82C1.1135200.7582441.0260660.078*
O60.6563 (3)0.4437 (3)0.4264 (3)0.0631 (10)
H60.6164680.4106070.3749020.095*
C830.5878 (6)0.4284 (5)0.5061 (5)0.0665 (16)
H83A0.6036800.4920210.5542580.080*
H83B0.4942650.4220620.4802400.080*
C840.6300 (7)0.3319 (5)0.5538 (4)0.0633 (15)
H84A0.6159170.2691090.5058710.095*
H84B0.5807570.3216100.6054800.095*
H84C0.7216700.3397120.5823260.095*
O80.7474 (5)0.6486 (4)0.4071 (3)0.0781 (13)
H80.7212270.5847990.4090370.117*
C870.8313 (9)0.6751 (7)0.4834 (5)0.094 (2)
H87A0.7813350.6976570.5345140.113*0.64 (4)
H87B0.8740040.7417190.4689230.113*0.64 (4)
H87C0.8042460.7441970.5127470.113*0.36 (4)
H87D0.9128000.6906840.4613430.113*0.36 (4)
C880.9232 (19)0.6179 (17)0.526 (2)0.136 (11)0.64 (4)
H88A0.9868990.6057750.4840410.204*0.64 (4)
H88B0.8879770.5482520.5390260.204*0.64 (4)
H88C0.9643190.6564650.5880680.204*0.64 (4)
C890.862 (3)0.6013 (15)0.5640 (17)0.074 (9)0.36 (4)
H89A0.7978070.6085730.6060470.110*0.36 (4)
H89B0.9475600.6206750.6025870.110*0.36 (4)
H89C0.8617240.5264430.5360420.110*0.36 (4)
O70.7395 (3)0.2614 (3)0.1992 (2)0.0543 (9)
H70.6754900.2531050.2258640.082*
C850.6989 (4)0.3014 (4)0.1065 (3)0.0400 (10)
H85A0.7752000.3166440.0775240.048*
H85B0.6539370.3701250.1145080.048*
C860.6110 (6)0.2224 (4)0.0389 (4)0.0546 (13)
H86A0.5846290.2527140.0242680.065*
H86B0.5347720.2080260.0669240.065*
H86C0.6559140.1548690.0296700.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0180 (2)0.0213 (2)0.0335 (3)0.00020 (18)0.00330 (19)0.00946 (19)
O10.0201 (14)0.0265 (16)0.0500 (18)0.0006 (11)0.0053 (13)0.0157 (13)
O20.0203 (14)0.0252 (15)0.0493 (18)0.0008 (11)0.0025 (13)0.0162 (13)
N10.0193 (16)0.0210 (17)0.0270 (17)0.0006 (13)0.0052 (13)0.0062 (13)
N20.0191 (16)0.0221 (18)0.0285 (17)0.0010 (13)0.0017 (13)0.0075 (14)
C10.0210 (19)0.019 (2)0.0261 (19)0.0004 (15)0.0056 (15)0.0076 (15)
C20.0232 (19)0.030 (2)0.029 (2)0.0013 (16)0.0060 (16)0.0045 (17)
C30.031 (2)0.0197 (19)0.029 (2)0.0054 (16)0.0082 (16)0.0019 (15)
C40.031 (2)0.0190 (19)0.033 (2)0.0001 (16)0.0090 (17)0.0038 (16)
C50.027 (2)0.023 (2)0.026 (2)0.0029 (16)0.0062 (16)0.0034 (16)
C60.023 (2)0.021 (2)0.0204 (19)0.0013 (15)0.0051 (15)0.0023 (15)
C70.0219 (19)0.025 (2)0.0170 (17)0.0017 (15)0.0056 (15)0.0024 (15)
C80.0211 (18)0.0125 (17)0.0278 (19)0.0021 (13)0.0038 (15)0.0057 (14)
C90.027 (2)0.033 (2)0.030 (2)0.0033 (16)0.0071 (16)0.0091 (17)
C100.029 (2)0.041 (2)0.034 (2)0.0030 (18)0.0031 (17)0.0135 (18)
C110.019 (2)0.023 (2)0.050 (3)0.0002 (16)0.0029 (18)0.0051 (19)
C120.022 (2)0.026 (2)0.039 (2)0.0034 (16)0.0092 (17)0.0000 (17)
C130.0233 (19)0.026 (2)0.0261 (19)0.0031 (15)0.0026 (15)0.0015 (15)
C140.0197 (17)0.0169 (18)0.0281 (19)0.0003 (13)0.0010 (14)0.0061 (15)
C150.0255 (19)0.0183 (18)0.0276 (19)0.0035 (14)0.0003 (15)0.0079 (15)
C160.035 (2)0.032 (2)0.031 (2)0.0052 (18)0.0058 (18)0.0017 (17)
C170.053 (3)0.043 (3)0.033 (2)0.002 (2)0.013 (2)0.002 (2)
C180.057 (3)0.033 (2)0.033 (2)0.000 (2)0.003 (2)0.0015 (19)
C190.038 (2)0.033 (2)0.041 (2)0.0050 (18)0.008 (2)0.0003 (19)
C200.027 (2)0.030 (2)0.037 (2)0.0005 (16)0.0012 (17)0.0049 (18)
C210.025 (2)0.024 (2)0.028 (2)0.0019 (16)0.0064 (16)0.0076 (16)
C220.023 (2)0.029 (2)0.040 (2)0.0005 (16)0.0058 (17)0.0072 (17)
C230.027 (2)0.034 (2)0.034 (2)0.0077 (17)0.0035 (17)0.0074 (18)
C240.032 (2)0.025 (2)0.033 (2)0.0066 (16)0.0078 (17)0.0051 (17)
C250.033 (2)0.0183 (19)0.027 (2)0.0001 (15)0.0058 (16)0.0014 (16)
C260.026 (2)0.024 (2)0.0185 (18)0.0013 (16)0.0027 (15)0.0014 (15)
C270.027 (2)0.024 (2)0.0190 (19)0.0038 (17)0.0024 (16)0.0019 (16)
C280.0219 (19)0.0190 (19)0.030 (2)0.0016 (14)0.0045 (16)0.0035 (15)
C290.047 (3)0.033 (2)0.028 (2)0.012 (2)0.0061 (19)0.0031 (18)
C300.057 (3)0.035 (3)0.045 (3)0.016 (2)0.016 (2)0.007 (2)
C310.034 (2)0.028 (2)0.055 (3)0.0101 (18)0.016 (2)0.003 (2)
C320.027 (2)0.031 (2)0.046 (3)0.0041 (17)0.0023 (18)0.0116 (19)
C330.028 (2)0.032 (2)0.033 (2)0.0008 (17)0.0050 (17)0.0021 (17)
C340.0160 (18)0.0213 (19)0.034 (2)0.0002 (14)0.0019 (15)0.0083 (16)
C350.0257 (19)0.0245 (19)0.029 (2)0.0012 (15)0.0018 (16)0.0118 (16)
C360.024 (2)0.042 (2)0.035 (2)0.0001 (17)0.0027 (17)0.0107 (19)
C370.040 (3)0.064 (3)0.030 (2)0.008 (2)0.0003 (19)0.003 (2)
C380.047 (3)0.071 (3)0.028 (2)0.003 (2)0.012 (2)0.001 (2)
C390.033 (2)0.058 (3)0.034 (2)0.005 (2)0.0096 (19)0.005 (2)
C400.028 (2)0.041 (2)0.032 (2)0.0027 (18)0.0067 (17)0.0045 (18)
Ni20.0225 (2)0.0252 (3)0.0502 (3)0.00671 (19)0.0166 (2)0.0165 (2)
O30.0309 (17)0.0362 (19)0.090 (3)0.0120 (14)0.0303 (17)0.0344 (18)
O40.0270 (17)0.0344 (18)0.096 (3)0.0105 (14)0.0277 (17)0.0312 (18)
N30.0229 (17)0.0217 (17)0.0297 (17)0.0026 (14)0.0094 (14)0.0064 (14)
N40.0224 (16)0.0213 (17)0.0298 (17)0.0037 (13)0.0080 (13)0.0068 (14)
C410.027 (2)0.030 (2)0.036 (2)0.0002 (16)0.0120 (17)0.0088 (17)
C420.029 (2)0.035 (2)0.042 (2)0.0009 (17)0.0146 (18)0.0077 (19)
C430.033 (2)0.039 (2)0.040 (2)0.0084 (19)0.0173 (19)0.0040 (19)
C440.041 (2)0.029 (2)0.046 (3)0.0069 (19)0.016 (2)0.0057 (19)
C450.033 (2)0.023 (2)0.039 (2)0.0030 (16)0.0100 (18)0.0047 (17)
C460.029 (2)0.028 (2)0.023 (2)0.0018 (17)0.0089 (16)0.0011 (16)
C470.026 (2)0.023 (2)0.0203 (18)0.0007 (16)0.0030 (15)0.0008 (15)
C480.0254 (19)0.0184 (19)0.033 (2)0.0006 (15)0.0072 (16)0.0043 (16)
C490.040 (2)0.020 (2)0.031 (2)0.0024 (17)0.0017 (18)0.0010 (17)
C500.042 (3)0.025 (2)0.054 (3)0.0051 (19)0.012 (2)0.001 (2)
C510.027 (2)0.025 (2)0.073 (3)0.0041 (17)0.002 (2)0.007 (2)
C520.034 (2)0.025 (2)0.055 (3)0.0009 (17)0.017 (2)0.0081 (19)
C530.030 (2)0.026 (2)0.032 (2)0.0007 (16)0.0095 (17)0.0003 (16)
C540.0216 (18)0.0197 (18)0.0284 (19)0.0027 (14)0.0092 (15)0.0075 (15)
C550.0269 (19)0.0215 (19)0.029 (2)0.0041 (15)0.0063 (16)0.0093 (15)
C560.034 (2)0.031 (2)0.036 (2)0.0003 (17)0.0131 (18)0.0053 (17)
C570.055 (3)0.036 (2)0.036 (2)0.001 (2)0.017 (2)0.000 (2)
C580.062 (3)0.045 (3)0.036 (3)0.015 (2)0.007 (2)0.002 (2)
C590.042 (3)0.069 (4)0.042 (3)0.021 (3)0.006 (2)0.006 (2)
C600.034 (2)0.048 (3)0.032 (2)0.0019 (19)0.0102 (18)0.0070 (19)
C610.025 (2)0.027 (2)0.042 (2)0.0091 (17)0.0096 (18)0.0133 (18)
C620.026 (2)0.036 (2)0.044 (2)0.0070 (17)0.0118 (18)0.0088 (19)
C630.030 (2)0.027 (2)0.043 (2)0.0095 (17)0.0040 (18)0.0022 (18)
C640.033 (2)0.019 (2)0.052 (3)0.0008 (17)0.004 (2)0.0036 (18)
C650.027 (2)0.022 (2)0.040 (2)0.0004 (16)0.0070 (17)0.0008 (17)
C660.024 (2)0.023 (2)0.0234 (19)0.0051 (16)0.0045 (15)0.0040 (16)
C670.0223 (19)0.0221 (19)0.0206 (18)0.0020 (15)0.0027 (14)0.0023 (15)
C680.0220 (18)0.0182 (18)0.0245 (18)0.0033 (14)0.0062 (15)0.0041 (14)
C690.027 (2)0.036 (2)0.027 (2)0.0041 (17)0.0025 (16)0.0038 (17)
C700.034 (2)0.048 (3)0.028 (2)0.0028 (19)0.0102 (18)0.0100 (19)
C710.025 (2)0.028 (2)0.038 (2)0.0019 (17)0.0117 (18)0.0056 (18)
C720.022 (2)0.031 (2)0.032 (2)0.0011 (16)0.0039 (16)0.0030 (17)
C730.027 (2)0.031 (2)0.0225 (19)0.0025 (16)0.0046 (15)0.0024 (16)
C740.0195 (17)0.0213 (18)0.0284 (19)0.0042 (14)0.0078 (15)0.0070 (15)
C750.031 (2)0.0195 (19)0.029 (2)0.0014 (15)0.0094 (16)0.0088 (15)
C760.032 (2)0.034 (2)0.034 (2)0.0052 (17)0.0051 (18)0.0056 (18)
C770.042 (3)0.040 (3)0.037 (2)0.001 (2)0.0050 (19)0.007 (2)
C780.061 (3)0.029 (2)0.032 (2)0.002 (2)0.011 (2)0.0014 (18)
C790.048 (3)0.031 (2)0.040 (2)0.0052 (19)0.019 (2)0.0023 (19)
C800.033 (2)0.030 (2)0.034 (2)0.0036 (17)0.0124 (18)0.0066 (17)
O50.0366 (18)0.092 (3)0.045 (2)0.0128 (19)0.0207 (16)0.0217 (19)
C810.043 (3)0.035 (2)0.045 (3)0.0078 (19)0.015 (2)0.012 (2)
C820.061 (3)0.046 (3)0.053 (3)0.011 (2)0.019 (3)0.008 (2)
O60.042 (2)0.092 (3)0.058 (2)0.0029 (19)0.0054 (17)0.035 (2)
C830.049 (3)0.068 (4)0.088 (5)0.008 (3)0.019 (3)0.024 (3)
C840.086 (4)0.051 (3)0.057 (3)0.003 (3)0.021 (3)0.010 (3)
O80.080 (3)0.082 (3)0.076 (3)0.005 (3)0.023 (3)0.002 (3)
C870.109 (6)0.099 (6)0.067 (5)0.025 (5)0.009 (4)0.026 (4)
C880.073 (11)0.152 (17)0.18 (2)0.035 (11)0.023 (13)0.023 (16)
C890.080 (18)0.047 (11)0.101 (16)0.000 (9)0.037 (12)0.003 (9)
O70.0346 (18)0.083 (3)0.045 (2)0.0034 (18)0.0019 (15)0.0185 (18)
C850.041 (2)0.038 (2)0.043 (3)0.0007 (19)0.012 (2)0.011 (2)
C860.071 (4)0.043 (3)0.047 (3)0.005 (3)0.002 (3)0.004 (2)
Geometric parameters (Å, º) top
Ni1—O11.828 (3)C45—C461.411 (6)
Ni1—O21.833 (3)C46—C471.454 (6)
Ni1—N11.863 (3)C47—C481.503 (5)
Ni1—N21.852 (3)C48—C491.394 (6)
O1—C11.315 (5)C48—C531.394 (5)
O2—C211.315 (5)C49—H490.9500
N1—C71.298 (5)C49—C501.385 (6)
N1—C141.478 (5)C50—H500.9500
N2—C271.314 (5)C50—C511.375 (7)
N2—C341.480 (5)C51—H510.9500
C1—C21.407 (5)C51—C521.378 (7)
C1—C61.420 (5)C52—H520.9500
C2—H20.9500C52—C531.387 (6)
C2—C31.380 (5)C53—H530.9500
C3—H30.9500C54—H541.0000
C3—C41.386 (6)C54—C551.523 (5)
C4—H40.9500C54—C741.540 (5)
C4—C51.368 (5)C55—C561.379 (5)
C5—H50.9500C55—C601.393 (6)
C5—C61.417 (5)C56—H560.9500
C6—C71.458 (5)C56—C571.393 (6)
C7—C81.499 (5)C57—H570.9500
C8—C91.386 (5)C57—C581.366 (7)
C8—C131.391 (5)C58—H580.9500
C9—H90.9500C58—C591.381 (7)
C9—C101.387 (5)C59—H590.9500
C10—H100.9500C59—C601.371 (6)
C10—C111.379 (6)C60—H600.9500
C11—H110.9500C61—C621.415 (5)
C11—C121.384 (6)C61—C661.421 (6)
C12—H120.9500C62—H620.9500
C12—C131.384 (5)C62—C631.370 (6)
C13—H130.9500C63—H630.9500
C14—H141.0000C63—C641.403 (6)
C14—C151.520 (5)C64—H640.9500
C14—C341.530 (5)C64—C651.369 (6)
C15—C161.388 (5)C65—H650.9500
C15—C201.387 (5)C65—C661.411 (6)
C16—H160.9500C66—C671.442 (5)
C16—C171.387 (6)C67—C681.497 (5)
C17—H170.9500C68—C691.389 (5)
C17—C181.372 (7)C68—C731.393 (5)
C18—H180.9500C69—H690.9500
C18—C191.375 (7)C69—C701.385 (6)
C19—H190.9500C70—H700.9500
C19—C201.394 (6)C70—C711.378 (6)
C20—H200.9500C71—H710.9500
C21—C221.412 (5)C71—C721.381 (6)
C21—C261.412 (5)C72—H720.9500
C22—H220.9500C72—C731.375 (6)
C22—C231.375 (6)C73—H730.9500
C23—H230.9500C74—H741.0000
C23—C241.392 (6)C74—C751.527 (5)
C24—H240.9500C75—C761.381 (6)
C24—C251.387 (6)C75—C801.400 (5)
C25—H250.9500C76—H760.9500
C25—C261.414 (5)C76—C771.390 (6)
C26—C271.450 (6)C77—H770.9500
C27—C281.491 (5)C77—C781.373 (6)
C28—C291.394 (6)C78—H780.9500
C28—C331.385 (5)C78—C791.380 (6)
C29—H290.9500C79—H790.9500
C29—C301.378 (6)C79—C801.386 (6)
C30—H300.9500C80—H800.9500
C30—C311.378 (7)O5—H5A0.8400
C31—H310.9500O5—C811.410 (5)
C31—C321.368 (6)C81—H81A0.9900
C32—H320.9500C81—H81B0.9900
C32—C331.394 (6)C81—C821.502 (6)
C33—H330.9500C82—H82A0.9800
C34—H341.0000C82—H82B0.9800
C34—C351.518 (5)C82—H82C0.9800
C35—C361.390 (5)O6—H60.8400
C35—C401.390 (6)O6—C831.460 (7)
C36—H360.9500C83—H83A0.9900
C36—C371.378 (6)C83—H83B0.9900
C37—H370.9500C83—C841.449 (8)
C37—C381.370 (7)C84—H84A0.9800
C38—H380.9500C84—H84B0.9800
C38—C391.378 (7)C84—H84C0.9800
C39—H390.9500O8—H80.8400
C39—C401.370 (6)O8—C871.275 (8)
C40—H400.9500C87—H87A0.9900
Ni2—O31.838 (3)C87—H87B0.9900
Ni2—O41.826 (3)C87—H87C0.9900
Ni2—N31.852 (3)C87—H87D0.9900
Ni2—N41.860 (3)C87—C881.293 (17)
O3—C411.300 (5)C87—C891.50 (2)
O4—C611.307 (5)C88—H88A0.9800
N3—C471.308 (5)C88—H88B0.9800
N3—C541.478 (5)C88—H88C0.9800
N4—C671.300 (5)C89—H89A0.9800
N4—C741.472 (5)C89—H89B0.9800
C41—C421.423 (6)C89—H89C0.9800
C41—C461.413 (6)O7—H70.8400
C42—H420.9500O7—C851.418 (5)
C42—C431.358 (6)C85—H85A0.9900
C43—H430.9500C85—H85B0.9900
C43—C441.383 (6)C85—C861.496 (7)
C44—H440.9500C86—H86A0.9800
C44—C451.378 (6)C86—H86B0.9800
C45—H450.9500C86—H86C0.9800
O1—Ni1—O283.98 (12)N3—C47—C46122.6 (4)
O1—Ni1—N194.47 (13)N3—C47—C48119.1 (3)
O1—Ni1—N2176.84 (15)C46—C47—C48118.3 (3)
O2—Ni1—N1178.39 (14)C49—C48—C47120.2 (3)
O2—Ni1—N294.11 (13)C49—C48—C53120.6 (4)
N2—Ni1—N187.42 (14)C53—C48—C47119.1 (3)
C1—O1—Ni1127.4 (2)C48—C49—H49120.5
C21—O2—Ni1127.3 (3)C50—C49—C48119.0 (4)
C7—N1—Ni1127.8 (3)C50—C49—H49120.5
C7—N1—C14120.3 (3)C49—C50—H50119.6
C14—N1—Ni1111.7 (2)C51—C50—C49120.7 (4)
C27—N2—Ni1128.5 (3)C51—C50—H50119.6
C27—N2—C34121.1 (3)C50—C51—H51120.0
C34—N2—Ni1110.4 (2)C50—C51—C52120.1 (4)
O1—C1—C2117.0 (3)C52—C51—H51120.0
O1—C1—C6124.5 (3)C51—C52—H52119.6
C2—C1—C6118.5 (3)C51—C52—C53120.8 (4)
C1—C2—H2119.5C53—C52—H52119.6
C3—C2—C1121.1 (4)C48—C53—H53120.6
C3—C2—H2119.5C52—C53—C48118.8 (4)
C2—C3—H3119.7C52—C53—H53120.6
C2—C3—C4120.6 (4)N3—C54—H54109.2
C4—C3—H3119.7N3—C54—C55112.2 (3)
C3—C4—H4120.2N3—C54—C74105.1 (3)
C5—C4—C3119.7 (4)C55—C54—H54109.2
C5—C4—H4120.2C55—C54—C74112.0 (3)
C4—C5—H5119.2C74—C54—H54109.2
C4—C5—C6121.6 (4)C56—C55—C54123.5 (3)
C6—C5—H5119.2C56—C55—C60118.7 (4)
C1—C6—C7121.5 (3)C60—C55—C54117.8 (3)
C5—C6—C1118.4 (3)C55—C56—H56119.7
C5—C6—C7119.9 (3)C55—C56—C57120.6 (4)
N1—C7—C6122.5 (3)C57—C56—H56119.7
N1—C7—C8120.8 (3)C56—C57—H57119.9
C6—C7—C8116.6 (3)C58—C57—C56120.2 (4)
C9—C8—C7121.0 (3)C58—C57—H57119.9
C9—C8—C13120.0 (3)C57—C58—H58120.3
C13—C8—C7118.8 (3)C57—C58—C59119.4 (4)
C8—C9—H9120.2C59—C58—H58120.3
C8—C9—C10119.6 (4)C58—C59—H59119.5
C10—C9—H9120.2C60—C59—C58120.9 (4)
C9—C10—H10119.8C60—C59—H59119.5
C11—C10—C9120.3 (4)C55—C60—H60119.9
C11—C10—H10119.8C59—C60—C55120.2 (4)
C10—C11—H11119.9C59—C60—H60119.9
C10—C11—C12120.3 (4)O4—C61—C62117.2 (4)
C12—C11—H11119.9O4—C61—C66124.4 (4)
C11—C12—H12120.1C62—C61—C66118.4 (4)
C11—C12—C13119.8 (4)C61—C62—H62119.3
C13—C12—H12120.1C63—C62—C61121.4 (4)
C8—C13—H13120.0C63—C62—H62119.3
C12—C13—C8120.1 (4)C62—C63—H63119.7
C12—C13—H13120.0C62—C63—C64120.7 (4)
N1—C14—H14109.2C64—C63—H63119.7
N1—C14—C15113.0 (3)C63—C64—H64120.6
N1—C14—C34104.3 (3)C65—C64—C63118.7 (4)
C15—C14—H14109.2C65—C64—H64120.6
C15—C14—C34111.9 (3)C64—C65—H65118.7
C34—C14—H14109.2C64—C65—C66122.7 (4)
C16—C15—C14123.7 (3)C66—C65—H65118.7
C20—C15—C14117.5 (3)C61—C66—C67121.3 (4)
C20—C15—C16118.8 (4)C65—C66—C61118.1 (4)
C15—C16—H16119.9C65—C66—C67120.5 (4)
C17—C16—C15120.2 (4)N4—C67—C66122.9 (3)
C17—C16—H16119.9N4—C67—C68120.3 (3)
C16—C17—H17119.6C66—C67—C68116.9 (3)
C18—C17—C16120.9 (4)C69—C68—C67121.3 (3)
C18—C17—H17119.6C69—C68—C73118.8 (3)
C17—C18—H18120.2C73—C68—C67119.7 (3)
C17—C18—C19119.6 (4)C68—C69—H69119.9
C19—C18—H18120.2C70—C69—C68120.2 (4)
C18—C19—H19119.9C70—C69—H69119.9
C18—C19—C20120.1 (4)C69—C70—H70119.7
C20—C19—H19119.9C71—C70—C69120.5 (4)
C15—C20—C19120.5 (4)C71—C70—H70119.7
C15—C20—H20119.8C70—C71—H71120.3
C19—C20—H20119.8C70—C71—C72119.4 (4)
O2—C21—C22116.9 (3)C72—C71—H71120.3
O2—C21—C26124.2 (3)C71—C72—H72119.7
C26—C21—C22118.8 (4)C73—C72—C71120.5 (4)
C21—C22—H22119.5C73—C72—H72119.7
C23—C22—C21121.0 (4)C68—C73—H73119.8
C23—C22—H22119.5C72—C73—C68120.5 (4)
C22—C23—H23119.6C72—C73—H73119.8
C22—C23—C24120.9 (4)N4—C74—C54104.9 (3)
C24—C23—H23119.6N4—C74—H74109.1
C23—C24—H24120.5N4—C74—C75113.0 (3)
C25—C24—C23119.0 (4)C54—C74—H74109.1
C25—C24—H24120.5C75—C74—C54111.4 (3)
C24—C25—H25119.2C75—C74—H74109.1
C24—C25—C26121.5 (4)C76—C75—C74124.0 (3)
C26—C25—H25119.2C76—C75—C80118.4 (4)
C21—C26—C25118.6 (4)C80—C75—C74117.6 (3)
C21—C26—C27122.4 (4)C75—C76—H76119.7
C25—C26—C27118.9 (4)C75—C76—C77120.6 (4)
N2—C27—C26121.4 (4)C77—C76—H76119.7
N2—C27—C28119.1 (4)C76—C77—H77119.7
C26—C27—C28119.5 (3)C78—C77—C76120.6 (4)
C29—C28—C27121.5 (3)C78—C77—H77119.7
C33—C28—C27119.6 (3)C77—C78—H78120.1
C33—C28—C29118.9 (4)C77—C78—C79119.8 (4)
C28—C29—H29119.8C79—C78—H78120.1
C30—C29—C28120.3 (4)C78—C79—H79120.1
C30—C29—H29119.8C78—C79—C80119.9 (4)
C29—C30—H30119.7C80—C79—H79120.1
C29—C30—C31120.7 (4)C75—C80—H80119.6
C31—C30—H30119.7C79—C80—C75120.8 (4)
C30—C31—H31120.3C79—C80—H80119.6
C32—C31—C30119.4 (4)C81—O5—H5A109.5
C32—C31—H31120.3O5—C81—H81A109.2
C31—C32—H32119.6O5—C81—H81B109.2
C31—C32—C33120.8 (4)O5—C81—C82112.2 (4)
C33—C32—H32119.6H81A—C81—H81B107.9
C28—C33—C32119.9 (4)C82—C81—H81A109.2
C28—C33—H33120.1C82—C81—H81B109.2
C32—C33—H33120.1C81—C82—H82A109.5
N2—C34—C14105.7 (3)C81—C82—H82B109.5
N2—C34—H34109.7C81—C82—H82C109.5
N2—C34—C35112.0 (3)H82A—C82—H82B109.5
C14—C34—H34109.7H82A—C82—H82C109.5
C35—C34—C14109.9 (3)H82B—C82—H82C109.5
C35—C34—H34109.7C83—O6—H6109.5
C36—C35—C34123.5 (3)O6—C83—H83A109.5
C36—C35—C40117.9 (4)O6—C83—H83B109.5
C40—C35—C34118.4 (3)H83A—C83—H83B108.1
C35—C36—H36120.0C84—C83—O6110.7 (5)
C37—C36—C35120.0 (4)C84—C83—H83A109.5
C37—C36—H36120.0C84—C83—H83B109.5
C36—C37—H37119.4C83—C84—H84A109.5
C38—C37—C36121.3 (4)C83—C84—H84B109.5
C38—C37—H37119.4C83—C84—H84C109.5
C37—C38—H38120.3H84A—C84—H84B109.5
C37—C38—C39119.4 (4)H84A—C84—H84C109.5
C39—C38—H38120.3H84B—C84—H84C109.5
C38—C39—H39120.2C87—O8—H8109.5
C40—C39—C38119.6 (4)O8—C87—H87A105.2
C40—C39—H39120.2O8—C87—H87B105.2
C35—C40—H40119.1O8—C87—H87C107.0
C39—C40—C35121.8 (4)O8—C87—H87D107.0
C39—C40—H40119.1O8—C87—C88128.4 (11)
O3—Ni2—N394.70 (13)O8—C87—C89121.4 (11)
O3—Ni2—N4176.86 (16)H87A—C87—H87B105.9
O4—Ni2—O383.89 (13)H87C—C87—H87D106.7
O4—Ni2—N3177.94 (16)C88—C87—H87A105.2
O4—Ni2—N493.95 (13)C88—C87—H87B105.2
N3—Ni2—N487.52 (14)C89—C87—H87C107.0
C41—O3—Ni2127.9 (3)C89—C87—H87D107.0
C61—O4—Ni2127.1 (3)C87—C88—H88A109.5
C47—N3—Ni2127.8 (3)C87—C88—H88B109.5
C47—N3—C54120.8 (3)C87—C88—H88C109.5
C54—N3—Ni2111.4 (2)H88A—C88—H88B109.5
C67—N4—Ni2127.8 (3)H88A—C88—H88C109.5
C67—N4—C74121.1 (3)H88B—C88—H88C109.5
C74—N4—Ni2111.1 (2)C87—C89—H89A109.5
O3—C41—C42117.2 (4)C87—C89—H89B109.5
O3—C41—C46124.4 (4)C87—C89—H89C109.5
C46—C41—C42118.4 (4)H89A—C89—H89B109.5
C41—C42—H42119.5H89A—C89—H89C109.5
C43—C42—C41120.9 (4)H89B—C89—H89C109.5
C43—C42—H42119.5C85—O7—H7109.5
C42—C43—H43119.4O7—C85—H85A109.3
C42—C43—C44121.1 (4)O7—C85—H85B109.3
C44—C43—H43119.4O7—C85—C86111.6 (4)
C43—C44—H44120.2H85A—C85—H85B108.0
C45—C44—C43119.5 (4)C86—C85—H85A109.3
C45—C44—H44120.2C86—C85—H85B109.3
C44—C45—H45119.3C85—C86—H86A109.5
C44—C45—C46121.3 (4)C85—C86—H86B109.5
C46—C45—H45119.3C85—C86—H86C109.5
C41—C46—C47121.9 (4)H86A—C86—H86B109.5
C45—C46—C41118.6 (4)H86A—C86—H86C109.5
C45—C46—C47119.4 (4)H86B—C86—H86C109.5
Ni1—O1—C1—C2177.0 (3)Ni2—O3—C41—C42179.8 (3)
Ni1—O1—C1—C63.1 (6)Ni2—O3—C41—C460.4 (7)
Ni1—O2—C21—C22175.4 (3)Ni2—O4—C61—C62168.8 (3)
Ni1—O2—C21—C265.3 (6)Ni2—O4—C61—C6612.6 (7)
Ni1—N1—C7—C610.3 (5)Ni2—N3—C47—C466.8 (5)
Ni1—N1—C7—C8168.9 (3)Ni2—N3—C47—C48173.3 (3)
Ni1—N1—C14—C1585.4 (3)Ni2—N3—C54—C5585.0 (3)
Ni1—N1—C14—C3436.3 (3)Ni2—N3—C54—C7436.9 (3)
Ni1—N2—C27—C268.2 (5)Ni2—N4—C67—C665.9 (5)
Ni1—N2—C27—C28173.9 (3)Ni2—N4—C67—C68174.3 (3)
Ni1—N2—C34—C1439.5 (3)Ni2—N4—C74—C5438.2 (3)
Ni1—N2—C34—C3580.1 (3)Ni2—N4—C74—C7583.4 (3)
O1—Ni1—O2—C21169.3 (3)O3—Ni2—O4—C61164.7 (4)
O1—Ni1—N1—C714.5 (3)O3—Ni2—N3—C478.7 (4)
O1—Ni1—N1—C14169.9 (2)O3—Ni2—N3—C54168.7 (3)
O1—C1—C2—C3179.8 (4)O3—C41—C42—C43178.3 (4)
O1—C1—C6—C5178.5 (4)O3—C41—C46—C45177.7 (4)
O1—C1—C6—C75.7 (6)O3—C41—C46—C474.9 (7)
O2—Ni1—O1—C1168.8 (3)O4—Ni2—O3—C41176.3 (4)
O2—Ni1—N2—C2714.8 (4)O4—Ni2—N4—C6714.4 (3)
O2—Ni1—N2—C34163.5 (2)O4—Ni2—N4—C74166.3 (3)
O2—C21—C22—C23177.3 (4)O4—C61—C62—C63177.6 (4)
O2—C21—C26—C25176.9 (4)O4—C61—C66—C65178.2 (4)
O2—C21—C26—C276.4 (6)O4—C61—C66—C671.6 (7)
N1—Ni1—O1—C110.8 (3)N3—Ni2—O3—C415.2 (4)
N1—Ni1—N2—C27165.7 (3)N3—Ni2—N4—C67164.2 (3)
N1—Ni1—N2—C3416.0 (2)N3—Ni2—N4—C7415.2 (3)
N1—C14—C15—C1612.3 (5)N3—C54—C55—C560.5 (5)
N1—C14—C15—C20168.5 (3)N3—C54—C55—C60179.6 (3)
N1—C14—C34—N247.4 (4)N3—C54—C74—N446.9 (3)
N1—C14—C34—C3573.7 (3)N3—C54—C74—C7575.7 (3)
N1—C7—C8—C9101.1 (4)N3—C47—C48—C4999.9 (5)
N1—C7—C8—C1384.1 (4)N3—C47—C48—C5379.2 (5)
N2—Ni1—O2—C2113.2 (3)N4—Ni2—O4—C6117.6 (4)
N2—Ni1—N1—C7162.9 (3)N4—Ni2—N3—C47169.0 (3)
N2—Ni1—N1—C1412.6 (3)N4—Ni2—N3—C5413.5 (2)
N2—C27—C28—C2997.7 (5)N4—C67—C68—C6998.7 (4)
N2—C27—C28—C3380.3 (5)N4—C67—C68—C7385.4 (4)
N2—C34—C35—C3617.7 (5)N4—C74—C75—C7611.4 (5)
N2—C34—C35—C40168.5 (3)N4—C74—C75—C80170.1 (3)
C1—C2—C3—C41.6 (6)C41—C42—C43—C440.1 (7)
C1—C6—C7—N11.9 (6)C41—C46—C47—N31.2 (6)
C1—C6—C7—C8178.8 (3)C41—C46—C47—C48178.6 (4)
C2—C1—C6—C51.6 (5)C42—C41—C46—C451.7 (6)
C2—C1—C6—C7174.2 (3)C42—C41—C46—C47175.6 (4)
C2—C3—C4—C51.3 (6)C42—C43—C44—C450.3 (7)
C3—C4—C5—C60.5 (6)C43—C44—C45—C460.3 (7)
C4—C5—C6—C11.9 (5)C44—C45—C46—C411.3 (6)
C4—C5—C6—C7173.9 (3)C44—C45—C46—C47176.1 (4)
C5—C6—C7—N1177.6 (3)C45—C46—C47—N3178.6 (4)
C5—C6—C7—C83.1 (5)C45—C46—C47—C481.3 (5)
C6—C1—C2—C30.2 (6)C46—C41—C42—C431.2 (6)
C6—C7—C8—C979.6 (4)C46—C47—C48—C4980.0 (5)
C6—C7—C8—C1395.2 (4)C46—C47—C48—C53100.9 (4)
C7—N1—C14—C1598.7 (4)C47—N3—C54—C5592.7 (4)
C7—N1—C14—C34139.6 (3)C47—N3—C54—C74145.4 (3)
C7—C8—C9—C10173.3 (3)C47—C48—C49—C50179.0 (4)
C7—C8—C13—C12174.2 (3)C47—C48—C53—C52178.7 (4)
C8—C9—C10—C110.7 (6)C48—C49—C50—C510.6 (7)
C9—C8—C13—C120.7 (6)C49—C48—C53—C520.4 (6)
C9—C10—C11—C120.8 (6)C49—C50—C51—C521.1 (7)
C10—C11—C12—C131.6 (6)C50—C51—C52—C530.8 (7)
C11—C12—C13—C80.9 (6)C51—C52—C53—C480.1 (6)
C13—C8—C9—C101.4 (6)C53—C48—C49—C500.1 (6)
C14—N1—C7—C6174.5 (3)C54—N3—C47—C46170.5 (3)
C14—N1—C7—C86.3 (5)C54—N3—C47—C489.4 (5)
C14—C15—C16—C17178.9 (4)C54—C55—C56—C57179.2 (4)
C14—C15—C20—C19178.8 (3)C54—C55—C60—C59178.5 (4)
C14—C34—C35—C3699.5 (4)C54—C74—C75—C76106.4 (4)
C14—C34—C35—C4074.3 (4)C54—C74—C75—C8072.1 (4)
C15—C14—C34—N275.1 (4)C55—C54—C74—N475.2 (4)
C15—C14—C34—C35163.8 (3)C55—C54—C74—C75162.2 (3)
C15—C16—C17—C180.1 (7)C55—C56—C57—C580.1 (7)
C16—C15—C20—C190.4 (6)C56—C55—C60—C591.6 (7)
C16—C17—C18—C190.2 (7)C56—C57—C58—C590.1 (8)
C17—C18—C19—C200.1 (7)C57—C58—C59—C600.6 (8)
C18—C19—C20—C150.2 (6)C58—C59—C60—C551.4 (8)
C20—C15—C16—C170.4 (6)C60—C55—C56—C570.9 (6)
C21—C22—C23—C240.7 (6)C61—C62—C63—C640.4 (7)
C21—C26—C27—N24.9 (6)C61—C66—C67—N45.0 (6)
C21—C26—C27—C28173.0 (3)C61—C66—C67—C68174.8 (3)
C22—C21—C26—C253.9 (5)C62—C61—C66—C650.4 (6)
C22—C21—C26—C27172.8 (4)C62—C61—C66—C67176.9 (4)
C22—C23—C24—C251.6 (6)C62—C63—C64—C651.0 (6)
C23—C24—C25—C261.1 (6)C63—C64—C65—C661.7 (6)
C24—C25—C26—C211.7 (6)C64—C65—C66—C611.0 (6)
C24—C25—C26—C27175.1 (3)C64—C65—C66—C67175.6 (4)
C25—C26—C27—N2178.4 (4)C65—C66—C67—N4178.5 (4)
C25—C26—C27—C283.6 (5)C65—C66—C67—C681.6 (5)
C26—C21—C22—C233.4 (6)C66—C61—C62—C631.0 (7)
C26—C27—C28—C2980.3 (5)C66—C67—C68—C6981.1 (5)
C26—C27—C28—C33101.7 (4)C66—C67—C68—C7394.8 (4)
C27—N2—C34—C14142.1 (3)C67—N4—C74—C54141.2 (3)
C27—N2—C34—C3598.3 (4)C67—N4—C74—C7597.2 (4)
C27—C28—C29—C30176.7 (4)C67—C68—C69—C70174.7 (4)
C27—C28—C33—C32178.1 (4)C67—C68—C73—C72175.1 (3)
C28—C29—C30—C310.6 (7)C68—C69—C70—C710.3 (6)
C29—C28—C33—C320.0 (6)C69—C68—C73—C720.9 (6)
C29—C30—C31—C321.6 (7)C69—C70—C71—C720.8 (7)
C30—C31—C32—C333.0 (7)C70—C71—C72—C731.1 (6)
C31—C32—C33—C282.2 (6)C71—C72—C73—C680.2 (6)
C33—C28—C29—C301.3 (6)C73—C68—C69—C701.2 (6)
C34—N2—C27—C26169.9 (3)C74—N4—C67—C66174.9 (3)
C34—N2—C27—C288.1 (5)C74—N4—C67—C685.0 (5)
C34—C14—C15—C16105.1 (4)C74—C54—C55—C56118.4 (4)
C34—C14—C15—C2074.1 (4)C74—C54—C55—C6061.7 (4)
C34—C35—C36—C37174.1 (4)C74—C75—C76—C77178.4 (4)
C34—C35—C40—C39174.3 (4)C74—C75—C80—C79178.5 (4)
C35—C36—C37—C380.4 (7)C75—C76—C77—C780.2 (7)
C36—C35—C40—C390.2 (6)C76—C75—C80—C790.1 (6)
C36—C37—C38—C391.2 (8)C76—C77—C78—C790.2 (7)
C37—C38—C39—C401.3 (8)C77—C78—C79—C800.1 (7)
C38—C39—C40—C350.6 (7)C78—C79—C80—C750.1 (6)
C40—C35—C36—C370.3 (6)C80—C75—C76—C770.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O30.842.172.964 (5)156
O6—H6···O10.842.132.928 (5)158
O8—H8···O60.841.922.760 (6)174
O7—H7···O20.842.162.988 (4)170
C60—H60···O5i0.952.383.312 (6)166
C12—H12···O8i0.952.443.388 (7)175
C40—H40···O7i0.952.483.328 (5)148
Symmetry code: (i) x1, y, z.
 

Funding information

This work was supported by JSPS KAKENHI Grant Number JP23K04895.

References

First citationAbd El Sater, M., Jaber, N. & Schulz, E. (2019). ChemCatChem, 11, 3662–3687.  CAS Google Scholar
First citationAverseng, F., Lacroix, P. G., Malfant, I., Dahan, F. & Nakatani, K. (2000). J. Mater. Chem. 10, 1013–1018.  CrossRef CAS Google Scholar
First citationBelokon, Y. N., Fuentes, J., North, M. & Steed, J. W. (2004). Tetrahedron, 60, 3191–3204.  CrossRef CAS Google Scholar
First citationBosnich, B. (1968). J. Am. Chem. Soc. 90, 627–632.  CrossRef CAS Web of Science Google Scholar
First citationCanali, L. & Sherrington, D. C. (1999). Chem. Soc. Rev. 28, 85–93.  Web of Science CrossRef CAS Google Scholar
First citationCozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDing, S. (2013). Z. Kristallogr. New Cryst. Struct. 228, 53–54.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDowning, R. S. & Urbach, F. L. (1969). J. Am. Chem. Soc. 91, 5977–5983.  CrossRef CAS Web of Science Google Scholar
First citationDowning, R. S. & Urbach, F. L. (1970). J. Am. Chem. Soc. 92, 5861–5865.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHirotsu, M., Kojima, M., Nakajima, K., Kashino, S. & Yoshikawa, Y. (1996). Bull. Chem. Soc. Jpn, 69, 2549–2557.  CSD CrossRef CAS Web of Science Google Scholar
First citationHirotsu, M., Kuwamura, N., Kinoshita, I., Kojima, M., Yoshikawa, Y. & Ueno, K. (2009). Dalton Trans. pp. 7678–7683.  CrossRef Google Scholar
First citationHirotsu, M., Nakajima, K., Kojima, M. & Yoshikawa, Y. (1995). Inorg. Chem. 34, 6173–6178.  CSD CrossRef CAS Web of Science Google Scholar
First citationIrie, R., Noda, K., Ito, Y., Matsumoto, N. & Katsuki, T. (1990). Tetrahedron Lett. 31, 7345–7348.  CrossRef CAS Web of Science Google Scholar
First citationIto, Y. N. & Katsuki, T. (1999). Bull. Chem. Soc. Jpn, 72, 603–619.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMitoraj, M. P., Babashkina, M. G., Robeyns, K., Sagan, F., Szczepanik, D. W., Seredina, Y. V., Garcia, Y. & Safin, D. A. (2019). Organometallics, 38, 1973–1981.  CrossRef CAS Google Scholar
First citationNakajima, K., Kojima, K., Kojima, M. & Fujita, J. (1990). Bull. Chem. Soc. Jpn, 63, 2620–2630.  CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPasini, A., Gullotti, M. & Ugo, R. (1977). J. Chem. Soc. Dalton Trans. pp. 346–356.  CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationShaw, S. & White, J. D. (2015). Org. Lett. 17, 4564–4567.  CrossRef CAS PubMed Google Scholar
First citationShaw, S. & White, J. D. (2019). Chem. Rev. 119, 9381–9426.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, F., Zhang, H., Li, L., Hao, H.-Q., Wang, X.-Y. & Chen, J.-G. (2006). Tetrahedron Asymmetry, 17, 2059–2063.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, J.-C., Tang, N. & Yu, K.-B. (2003). Acta Cryst. E59, m977–m979.  CrossRef IUCr Journals Google Scholar
First citationZhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801–2803.  CSD CrossRef CAS Web of Science Google Scholar
First citationZulauf, A., Mellah, M., Hong, X. & Schulz, E. (2010). Dalton Trans. 39, 6911–6935.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds