research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,10-phenanthrolinium violurate violuric acid penta­hydrate

crossmark logo

aInstitut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bInstitute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev-Str. Bl. 21, Sofia 1113, Bulgaria
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 September 2024; accepted 3 November 2024; online 14 November 2024)

The title compound [systematic name: 1,10-phenanthrolinium 6-hy­droxy-5-(oxido­imino)-1,3-diazinane-2,4-dione–6-hy­droxy-5-(hy­droxy­imino)-1,3-diazin­ane-2,4-dione–water (1/1/5)], C12H9N2+·C4H2N3O4·C4H3N3O4·5H2O, is a co-crystal salt hydrate comprising 1,10-phenanthrolinium cations, violurate anions, free violuric acid as co-former and five water mol­ecules of crystallization per formula unit. The violurate and the violuric acid residues each form distinct N—H⋯O hydrogen-bonded tapes with a common R22(8) hydrogen-bond motif extending parallel to (103). Solvent water mol­ecules connect the tapes to form a tri-periodic hydrogen-bonded network with channels extending parallel to the a-axis direction, which accommodate the N—H⋯Owater hydrogen-bonded 1,10-phenanthrolinium cations. Direct N—H⋯O hydrogen bonds between the 1,10-phenanthrolinium and violurate ions are not encountered.

1. Chemical context

Violuric acid (systematic name: 6-hy­droxy-5-nitroso-1H-pyrimidine-2,4-dione) is a derivative of barbituric acid and was first described by the German chemist Adolf von Baeyer more than 150 years ago (Baeyer, 1863[Baeyer, A. (1863). Justus Liebigs Ann. Chem. 127, 199-236.]). While free violuric acid is colourless, violurate salts typically exhibit an intense colour (Liebing et al., 2019[Liebing, P., Stein, F., Hilfert, L., Lorenz, V., Oliynyk, K. & Edelmann, F. T. (2019). Z. Anorg. Allge Chem. 645, 36-43.], and references therein). Coloured organic salts of violuric acid were reported as early as in 1909 (Hantzsch & Issaias, 1909[Hantzsch, A. & Issaias, B. (1909). Ber. Dtsch. Chem. Ges. 42, 1000-1007.]; Zerewitinoff, 1909[Zerewitinoff, Th. (1909). Ber. Dtsch. Chem. Ges. 42, 4802-4808.]), but their crystal structures have only been investigated since 2006 (for more details, see: Section 4).

For the system violuric acid, 1,10-phenanthroline as an organic base and water as solvent, a pKa1 value of 4.35 can be assumed for violuric acid (Moratal et al., 1985[Moratal, J. M., Prades, A., Julve, M. & Faus, J. (1985). Thermochim. Acta, 89, 343-350.]) and a pKa value of 4.84 for the conjugate acid of 1,10-phenanthroline (Haynes, 2016[Haynes, W. M. (2016). CRC Handbook of Chemistry and Physics, 97th ed., p. 3.444. Boca Raton: CRC Press.]). Hence, we can estimate ΔpKa = pKa(protonated base) – pKa(acid) = 4.84 – 4.35 = 0.49. In the ΔpKa range between −1 and 4, the position of the acid proton, and thus the formation of a salt or a co-crystal (Aitipamula et al., 2012[Aitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A. S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C. M., Rodriguez-Hornedo, N., Rogers, R. D., Row, T. N. G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C. C., Swift, J. A., Thaimattam, R., Thakur, T. S., Kumar Thaper, R., Thomas, S. P., Tothadi, S., Vangala, V. R., Variankaval, N., Vishweshwar, P., Weyna, D. R. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 2147-2152.]), is difficult to predict (Cruz-Cabeza, 2012[Cruz-Cabeza, A. (2012). CrystEngComm, 14, 6362-7365.]). In fact, the title compound represents a multicomponent crystal that can be regarded as a co-crystal salt hydrate, C12H9N2+·C4H2N3O4·C4H3N3O4·5H2O.

[Scheme 1]

2. Structural commentary

The asymmetric unit (Fig. 1[link]) comprises a 1,10-phenanthrolinium cation, a violurate anion, a co-crystallized violuric acid mol­ecule and five water mol­ecules of crystallization (for two of the water mol­ecules, associated with O4 and O5, hydrogen atoms could not be located). Thus, the title compound represents a multicomponent crystal with eight independent residues (ZR = 8; Grothe et al., 2016[Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237-3243.]). The parameter ZR, i.e. the number of crystallographically independent mol­ecules of any type is also known as Z′′ (Steed & Steed, 2015[Steed, K. M. & Steed, J. W. (2015). Chem. Rev. 115, 2895-2933.]). Inspired by the work by Aitipamula et al. (2012[Aitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A. S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C. M., Rodriguez-Hornedo, N., Rogers, R. D., Row, T. N. G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C. C., Swift, J. A., Thaimattam, R., Thakur, T. S., Kumar Thaper, R., Thomas, S. P., Tothadi, S., Vangala, V. R., Variankaval, N., Vishweshwar, P., Weyna, D. R. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 2147-2152.]), Grothe et al. (2016[Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237-3243.]) proposed a classification system for multicomponent crystals comprising seven categories. Accordingly, the title compound belongs to the class co-crystal salt solvates, which necessarily exhibit ZR ≥ 4.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the mol­ecular entities with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius, and dashed lines represent hydrogen bonds. The water hydrogen atoms bound to O4 and O5 could not be located unambiguously and were therefore excluded from the structure model.

In the phenanthrolinium cation, the C2—N1—C1A angle is significantly larger by 6.4° than the C9—N10—C10A angle (Table 1[link]), which corroborates the assignment of the site of protonation at N1. Likewise, the N—O and C—N bond lengths in the oxime (C25=N25—O25—H25) and the oximate (C15=N15—O15) moieties of the violuric acid and the violurate residue (Fig. 1[link]; Table 1[link]), lend support to the assignments of the sites of protonation and deprotonation, respectively.

Table 1
Selected geometric parameters (Å, °)

C15—N15 1.342 (5) C25—N25 1.284 (5)
N15—O15 1.274 (4) N25—O25 1.345 (4)
       
C2—N1—C1A 122.8 (4) C9—N10—C10A 116.4 (4)

3. Supra­molecular features

The predominant supra­molecular features of the crystal structure are N—H⋯O and O—H⋯O hydrogen bonds (Fig. 2[link]). Table 2[link] lists the corresponding hydrogen-bond parameters, which are within expected ranges (Thakuria et al., 2017[Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, J. L., pp. 25-48. Oxford: Elsevier.]). The violurate and the violuric acid residues each form linear polymeric strands through N—H⋯O hydrogen bonds with a common R22(8) motif (Allen et al., 1999[Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25-34.]; Deepa et al., 2014[Deepa, P., Vijay Solomon, R., Angeline Vedha, S., Kolandaivel, P. & Venuvanalingam, P. (2014). Mol. Phys. 112, 3195-3205.]), extending parallel to the b-axis direction by application of the 21 screw axis symmetry. Thus, there are two distinct hydrogen-bonded tapes, one of which features inter-anionic hydrogen bonds (Martín-Fernández et al., 2024[Martín-Fernández, C., Montero-Campillo, M. M. & Alkorta, I. (2024). J. Phys. Chem. Lett. 15, 4105-4110.]). Neutral and anionic hydrogen-bonded tapes stack in an alternating fashion parallel to the a-axis direction, with the mol­ecular planes extending parallel to (10[\overline{3}]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 (2) 1.89 (2) 2.730 (5) 161 (4)
N11—H11⋯O14i 0.88 (2) 2.12 (2) 2.997 (4) 173 (4)
N13—H13⋯O16ii 0.85 (2) 1.98 (2) 2.835 (4) 177 (4)
N21—H21⋯O24iii 0.87 (2) 1.99 (2) 2.858 (4) 172 (4)
N23—H23⋯O26iv 0.88 (2) 2.03 (2) 2.900 (4) 173 (4)
O1—H1A⋯O4 0.80 (2) 2.05 (3) 2.809 (5) 157 (5)
O1—H1B⋯O15v 0.85 (2) 1.87 (2) 2.719 (4) 177 (5)
O2—H2A⋯O12i 0.84 (2) 2.02 (3) 2.825 (4) 160 (5)
O2—H2B⋯O15 0.86 (2) 2.08 (3) 2.811 (5) 143 (4)
O2—H2B⋯O16 0.86 (2) 2.15 (4) 2.832 (4) 136 (4)
O3—H3A⋯N25 0.84 (2) 2.32 (4) 3.007 (5) 139 (5)
O3—H3A⋯O24 0.84 (2) 2.33 (4) 3.006 (5) 137 (5)
O3—H3B⋯O1 0.81 (2) 2.04 (4) 2.784 (6) 153 (6)
O25—H25⋯O5 0.82 1.92 2.692 (5) 156
O4⋯O2     2.694 (5)  
O4⋯O5vi     2.816 (6)  
O4⋯O4v     2.844 (7)  
O5⋯O5vi     2.837 (8)  
O5⋯O3     2.850 (6)  
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, -y+1, -z+1]; (vi) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
Section of the crystal structure of the title compound (viewed approximately along the a-axis direction towards the origin), illustrating some of the key hydrogen-bonding features (dashed lines); symmetry codes refer to Table 2[link]. The water hydrogen atoms bound to O4 and O5 could not be located unambiguously and were therefore excluded from the structure model.

These stacks of hydrogen-bonded tapes are separated by c/2 at x, y, [{1\over 4}] and x, y, [{3\over 4}], and are joined by the water mol­ecules through hydrogen-bonding, which results in an intricate tri-periodic network. The water mol­ecules are clustered at x, 0, 0 and x, [{1\over 2}], [{1\over 2}] The water mol­ecule associated with O2 joins two violurate anions by a donating bifurcated hydrogen bond to the oximate oxygen atom O15 and the carbonyl oxygen O16, and a single O—H⋯O hydrogen bond to the carbonyl oxygen O12 of an adjacent mol­ecule. The water mol­ecule associated with O3 forms a donating bifurcated hydrogen bond to the carbonyl oxygen O24 and the oxime nitro­gen N25 of the neutral violuric acid mol­ecule, while the oxime hy­droxy group (O25) donates a hydrogen bond to the water oxygen atom O5. The donor functions of the latter and of O4 are unclear because their H atoms were not localized. However, the distances to possible acceptor O atoms indicate that there are several possibilities for hydrogen bonds of medium strength (Table 2[link]).

Within the hydrogen-bonded network, the phenanthrolinium cations reside face-to-face stacked in channels extending parallel to the a-axis direction (Fig. 3[link]), and each forms an N—H⋯O hydrogen bond to a water mol­ecule but neither to the violurate nor to violuric acid moieties. A view along the b-axis direction reveals a layered arrangement of the phenanthrolinium cations, violurate anions and violuric acid mol­ecules (Fig. 4[link]). Within a stack, the mean planes through the phenanthrolinium ions related by inversion symmetry are separated by 3.46 and 3.55 Å in an alternating fashion.

[Figure 3]
Figure 3
Packing diagram of the title compound viewed along the a-axis direction, showing the channel structure formed by the hydrogen-bonded network. Except for the phenanthrolinium cations (space-filling representation), hydrogen atoms were omitted for clarity. Colour scheme: C, grey; H, white; N, blue; O, red.
[Figure 4]
Figure 4
Packing diagram of the title compound viewed along the b-axis direction, showing the layer structure of phenanthrolinium cations, violurate anions and violuric acid mol­ecules. Representations and colour codes are as in Fig. 3[link].

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.45 with March 2024 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed more than 60 entries for violuric acid or its monoanion (excluding metal-containing structures), of which some are duplicates. For the polymorphs of violuric acid monohydrate, see: Nichol & Clegg (2005a[Nichol, G. S. & Clegg, W. (2005a). Acta Cryst. E61, o3788-o3790.]) and Guille et al. (2007[Guille, K., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. C63, o327-o329.]), and references cited therein. The structure of violuric acid methanol solvate was also reported by Nichol & Clegg (2005b[Nichol, G. S. & Clegg, W. (2005b). Acta Cryst. C61, o718-o721.]). The crystal structure of unsolvated free violuric acid is hitherto unknown, as far as we are able to ascertain. For the structure of ammonium violurate, see: Nichol & Clegg (2007[Nichol, G. S. & Clegg, W. (2007). Acta Cryst. C63, o609-o612.]), and for structures of multicomponent crystals of violuric acid and organic nitro­gen bases, see: Nichol & Clegg (2006[Nichol, G. S. & Clegg, W. (2006). Cryst. Growth Des. 6, 451-460.]), Kolev et al. (2009[Kolev, T., Koleva, B. B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Cryst. Growth Des. 9, 3348-3352.]), Ivanova & Spiteller (2010[Ivanova, B. B. & Spiteller, M. (2010). Cryst. Growth Des. 10, 2470-2474.]), Ivanova et al. (2010[Ivanova, B., Kolev, T., Lamshöft, M., Mayer-Figge, H., Seidel, R., Sheldrick, W. S. & Spiteller, M. (2010). J. Mol. Struct. 971, 8-11.]), Koleva et al. (2010[Koleva, B. B., Bakalska, R., Seidel, R. W., Kolev, T., Mayer-Figge, H., Sheldrick, W. S. & Spiteller, M. (2010). J. Mol. Struct. 965, 89-97.]), Ivanova & Spiteller (2014[Ivanova, B. & Spiteller, M. (2014). Food. Meas. 8, 343-355.]), Liebing et al. (2019[Liebing, P., Stein, F., Hilfert, L., Lorenz, V., Oliynyk, K. & Edelmann, F. T. (2019). Z. Anorg. Allge Chem. 645, 36-43.]) and Ivanova & Spiteller (2019[Ivanova, B. & Spiteller, M. (2019). Chem. Pap. 73, 2821-2844.]).

The structures most related to the title compound are piperidinium violurate sesquihydrate (CSD refcode: FUFPIG; Kolev et al., 2009[Kolev, T., Koleva, B. B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Cryst. Growth Des. 9, 3348-3352.]), 1,2,3,4-tetra­hydro­isoquinolinium violurate monohydrate (FUFPOM; Kolev et al., 2009[Kolev, T., Koleva, B. B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Cryst. Growth Des. 9, 3348-3352.]) and ephedrinium violurate dihydrate (WURCUI; Ivanova et al., 2010[Ivanova, B., Kolev, T., Lamshöft, M., Mayer-Figge, H., Seidel, R., Sheldrick, W. S. & Spiteller, M. (2010). J. Mol. Struct. 971, 8-11.]), which likewise feature hydrogen-bonded tapes of violurate residues with an R22(8) motif, propagating by 21 screw symmetry.

We note that the CSD also contains a variety of structures of violurate metal complexes, including alkali metal and alkaline earth metal salts. These are beyond the scope of this survey, and we direct the inter­ested reader to the review by Lorenz et al. (2019[Lorenz, V., Liebing, P., Engelhardt, F., Stein, F., Kühling, M., Schröder, L. & Edelmann, F. T. (2019). J. Coord. Chem. 72, 1-34.]) for the coordination chemistry of violurate anions.

5. Synthesis and crystallization

1,10-Phenanthroline (170 mg, 0.94 mmol) and violuric acid (175 mg, 1.11 mmol) were mixed in 20 ml of water under continuous stirring at elevated temperature (323–353 K) for 24 h. A red precipitate was obtained after leaving the resulting solution at 298 K for about two weeks. The product was filtered off and air-dried. Red crystals of the title compound suitable for X-ray diffraction analysis were grown from a solution of the sample in doubly distilled water at room temperature over a period of three weeks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Carbon-bound H atoms and the oxime hy­droxy H25 atom were placed in geometrically calculated positions with d(C—H) = 0.93 Å and d(O—H) = 0.82 Å, respectively, and refined with a riding model. Nitro­gen-bound H atoms were located in a difference-Fourier map and their positions refined with the N—H distances restrained to a target value of 0.86 (2) Å. The water H atoms bound to O1, O2 and O3 were located in difference-Fourier maps, and the corresponding O—H distances were restrained to a target value of 0.82 (2) Å. The 1,3-H,H distances of the water mol­ecules were restrained to be similar with a standard deviation of 0.04 Å. Uiso(H) was set 1.2Ueq(C,N,O) for all H atoms. The water H atoms bound to O4 and O5 could not be located with certainty and were therefore excluded from the structural model, but are included in the chemical formula for calculation of crystal data. Two reflections (011 and [\overline{2}]06) were obstructed by the beam stop and were omitted from the refinement.

Table 3
Experimental details

Crystal data
Chemical formula C12H9N2+·C4H2N3O4·C4H3N3O4·5H2O
Mr 584.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 294
a, b, c (Å) 8.247 (3), 12.0714 (16), 25.771 (4)
β (°) 98.572 (16)
V3) 2537.1 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.29 × 0.25 × 0.22
 
Data collection
Diffractometer Siemens P4
No. of measured, independent and observed [I > 2σ(I)] reflections 5990, 4453, 2259
Rint 0.050
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.187, 1.01
No. of reflections 4453
No. of parameters 404
No. of restraints 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.21
Computer programs: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

1,10-Phenanthrolinium 6-hydroxy-5-(oxidoimino)-1,3-diazinane-2,4-dione–\ 6-hydroxy-5-(hydroxyimino)-1,3-diazinane-2,4-dione–water (1/1/5) top
Crystal data top
C12H9N2+·C4H2N3O4·C4H3N3O4·5H2OF(000) = 1216
Mr = 584.47Dx = 1.530 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.247 (3) ÅCell parameters from 16 reflections
b = 12.0714 (16) Åθ = 12.0–26.1°
c = 25.771 (4) ŵ = 0.13 mm1
β = 98.572 (16)°T = 294 K
V = 2537.1 (12) Å3Prism, red
Z = 40.29 × 0.25 × 0.22 mm
Data collection top
Siemens P4
diffractometer
θmax = 25.0°, θmin = 2.3°
Radiation source: sealed X-ray tubeh = 91
ω scansk = 114
5990 measured reflectionsl = 3030
4453 independent reflections3 standard reflections every 15 min
2259 reflections with I > 2σ(I) intensity decay: none
Rint = 0.050
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: mixed
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.7605P]
where P = (Fo2 + 2Fc2)/3
4453 reflections(Δ/σ)max < 0.001
404 parametersΔρmax = 0.27 e Å3
14 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.1694 (5)0.0134 (4)0.46997 (15)0.0351 (10)
C20.0174 (5)0.0453 (4)0.39698 (16)0.0420 (11)
H20.0674210.1031320.3767620.050*
C30.0579 (6)0.0633 (4)0.38352 (18)0.0492 (12)
H30.1348850.0790780.3542760.059*
C40.0162 (6)0.1461 (4)0.41353 (17)0.0475 (12)
H40.0095830.2191400.4041860.057*
C4A0.1305 (5)0.1251 (3)0.45819 (17)0.0406 (11)
C50.2093 (6)0.2071 (4)0.49225 (19)0.0565 (14)
H50.1851460.2812810.4851870.068*
C60.3184 (6)0.1803 (4)0.5347 (2)0.0582 (14)
H60.3672230.2364010.5563200.070*
C6A0.3608 (5)0.0673 (4)0.54709 (17)0.0484 (12)
C70.4758 (6)0.0371 (5)0.58985 (18)0.0604 (15)
H70.5306750.0906780.6117390.072*
C80.5062 (6)0.0729 (6)0.59896 (19)0.0675 (16)
H80.5809710.0953920.6276660.081*
C90.4234 (6)0.1524 (5)0.56446 (19)0.0617 (15)
H90.4462660.2268690.5712350.074*
C10A0.2859 (5)0.0173 (4)0.51489 (17)0.0403 (11)
C120.5769 (5)0.7219 (3)0.78082 (16)0.0367 (10)
C140.3737 (5)0.8194 (3)0.71811 (15)0.0349 (10)
C150.3164 (5)0.7134 (3)0.69627 (15)0.0356 (10)
C160.3938 (5)0.6117 (3)0.71692 (16)0.0360 (10)
N110.5144 (4)0.6237 (3)0.76025 (14)0.0404 (9)
H110.560 (5)0.561 (2)0.7729 (15)0.048*
N130.5025 (5)0.8154 (3)0.75876 (14)0.0394 (9)
H130.546 (5)0.875 (2)0.7721 (15)0.047*
N150.1919 (4)0.7205 (3)0.65645 (13)0.0432 (9)
C220.1051 (6)0.5632 (4)0.22527 (16)0.0419 (11)
C240.1034 (5)0.4561 (3)0.28192 (16)0.0361 (10)
C250.1608 (5)0.5592 (3)0.30845 (16)0.0389 (11)
C260.0898 (6)0.6672 (3)0.28899 (17)0.0408 (11)
N10.0931 (4)0.0670 (3)0.43884 (14)0.0389 (9)
H10.117 (5)0.1369 (18)0.4449 (16)0.047*
N100.3159 (5)0.1267 (3)0.52332 (14)0.0494 (10)
N210.0407 (5)0.6588 (3)0.24939 (14)0.0428 (10)
H210.088 (5)0.719 (2)0.2359 (15)0.051*
N230.0273 (5)0.4667 (3)0.24254 (14)0.0437 (10)
H230.054 (5)0.403 (2)0.2268 (15)0.052*
N250.2728 (5)0.5426 (3)0.34791 (14)0.0478 (10)
O10.1190 (4)0.2924 (3)0.43698 (12)0.0570 (10)
H1A0.115 (6)0.317 (4)0.4657 (10)0.068*
H1B0.039 (4)0.314 (4)0.4145 (14)0.068*
O20.1342 (5)0.3996 (3)0.62720 (15)0.0669 (11)
H2A0.204 (5)0.353 (3)0.640 (2)0.080*
H2B0.176 (6)0.462 (2)0.638 (2)0.080*
O30.4014 (5)0.3233 (4)0.39153 (19)0.0802 (12)
H3A0.372 (7)0.364 (4)0.3655 (16)0.096*
H3B0.324 (5)0.293 (5)0.402 (2)0.096*
O40.1337 (5)0.4343 (3)0.52391 (14)0.0822 (12)
O50.5317 (5)0.5145 (3)0.44781 (14)0.0823 (12)
O120.6901 (4)0.7252 (2)0.81696 (12)0.0543 (9)
O140.3169 (4)0.9110 (2)0.70432 (11)0.0466 (8)
O150.1345 (4)0.6320 (2)0.63379 (12)0.0563 (9)
O160.3588 (4)0.5181 (2)0.70065 (12)0.0480 (8)
O220.2202 (4)0.5645 (3)0.19080 (12)0.0596 (10)
O240.1668 (4)0.3658 (2)0.29265 (12)0.0484 (8)
O250.3305 (5)0.6316 (3)0.37618 (14)0.0714 (11)
H250.4074150.6129600.3984000.086*
O260.1407 (4)0.7577 (2)0.30519 (12)0.0496 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.031 (2)0.038 (2)0.036 (2)0.001 (2)0.0031 (19)0.002 (2)
C20.039 (3)0.044 (3)0.040 (2)0.003 (2)0.004 (2)0.001 (2)
C30.046 (3)0.056 (3)0.043 (3)0.008 (2)0.004 (2)0.012 (2)
C40.051 (3)0.036 (3)0.055 (3)0.006 (2)0.007 (2)0.008 (2)
C4A0.036 (3)0.032 (2)0.053 (3)0.002 (2)0.006 (2)0.007 (2)
C50.058 (3)0.039 (3)0.072 (4)0.001 (3)0.010 (3)0.001 (3)
C60.057 (3)0.056 (3)0.063 (3)0.014 (3)0.013 (3)0.018 (3)
C6A0.039 (3)0.064 (3)0.041 (3)0.006 (3)0.003 (2)0.008 (2)
C70.050 (3)0.086 (4)0.043 (3)0.008 (3)0.000 (2)0.008 (3)
C80.046 (3)0.111 (5)0.041 (3)0.002 (3)0.006 (2)0.012 (3)
C90.053 (3)0.073 (4)0.057 (3)0.017 (3)0.001 (3)0.017 (3)
C10A0.033 (2)0.047 (3)0.040 (2)0.005 (2)0.002 (2)0.003 (2)
C120.036 (2)0.026 (2)0.044 (2)0.003 (2)0.005 (2)0.002 (2)
C140.038 (2)0.028 (2)0.037 (2)0.0017 (19)0.001 (2)0.0002 (19)
C150.035 (2)0.032 (2)0.038 (2)0.002 (2)0.001 (2)0.0001 (19)
C160.038 (2)0.030 (2)0.038 (2)0.002 (2)0.000 (2)0.002 (2)
N110.041 (2)0.025 (2)0.050 (2)0.0004 (17)0.0092 (18)0.0050 (17)
N130.044 (2)0.0263 (19)0.042 (2)0.0032 (17)0.0122 (18)0.0005 (16)
N150.046 (2)0.034 (2)0.044 (2)0.0012 (18)0.0115 (18)0.0002 (17)
C220.048 (3)0.035 (3)0.041 (3)0.000 (2)0.002 (2)0.001 (2)
C240.037 (2)0.029 (2)0.041 (2)0.000 (2)0.002 (2)0.001 (2)
C250.042 (3)0.031 (2)0.041 (2)0.001 (2)0.002 (2)0.002 (2)
C260.048 (3)0.029 (2)0.044 (3)0.002 (2)0.003 (2)0.000 (2)
N10.038 (2)0.033 (2)0.045 (2)0.0025 (18)0.0027 (18)0.0018 (18)
N100.046 (2)0.053 (3)0.046 (2)0.010 (2)0.003 (2)0.010 (2)
N210.048 (2)0.033 (2)0.044 (2)0.0075 (18)0.0046 (19)0.0037 (18)
N230.052 (2)0.030 (2)0.044 (2)0.0008 (19)0.0091 (19)0.0052 (17)
N250.056 (2)0.037 (2)0.047 (2)0.0108 (19)0.005 (2)0.0056 (18)
O10.064 (2)0.051 (2)0.048 (2)0.0016 (18)0.0149 (19)0.0008 (18)
O20.076 (3)0.039 (2)0.074 (3)0.0058 (19)0.028 (2)0.0016 (19)
O30.067 (3)0.072 (3)0.098 (3)0.015 (2)0.002 (2)0.032 (2)
O40.105 (3)0.064 (2)0.074 (3)0.003 (2)0.003 (2)0.008 (2)
O50.077 (3)0.086 (3)0.077 (3)0.000 (2)0.014 (2)0.014 (2)
O120.056 (2)0.0371 (18)0.059 (2)0.0008 (16)0.0269 (17)0.0014 (15)
O140.055 (2)0.0242 (16)0.0548 (19)0.0045 (15)0.0115 (16)0.0014 (14)
O150.063 (2)0.0365 (18)0.058 (2)0.0032 (17)0.0255 (17)0.0053 (16)
O160.057 (2)0.0224 (16)0.0574 (19)0.0007 (15)0.0162 (16)0.0039 (15)
O220.061 (2)0.050 (2)0.059 (2)0.0040 (18)0.0194 (19)0.0003 (17)
O240.055 (2)0.0269 (17)0.058 (2)0.0069 (15)0.0088 (16)0.0053 (15)
O250.084 (3)0.047 (2)0.069 (2)0.007 (2)0.033 (2)0.0034 (19)
O260.061 (2)0.0300 (17)0.0527 (19)0.0019 (16)0.0078 (16)0.0001 (15)
Geometric parameters (Å, º) top
C1A—N11.353 (5)C14—C151.449 (6)
C1A—C4A1.408 (6)C15—N151.342 (5)
C1A—C10A1.438 (5)C15—C161.448 (6)
C2—N11.330 (5)C16—O161.224 (5)
C2—C31.384 (6)C16—N111.388 (5)
C2—H20.9300N11—H110.884 (19)
C3—C41.353 (6)N13—H130.852 (19)
C3—H30.9300N15—O151.274 (4)
C4—C4A1.398 (6)C22—O221.200 (5)
C4—H40.9300C22—N231.372 (5)
C4A—C51.415 (6)C22—N211.378 (5)
C5—C61.347 (7)C24—O241.222 (5)
C5—H50.9300C24—N231.372 (5)
C6—C6A1.433 (7)C24—C251.465 (6)
C6—H60.9300C25—N251.284 (5)
C6A—C71.391 (6)C25—C261.485 (6)
C6A—C10A1.400 (6)C26—O261.222 (5)
C7—C81.366 (7)C26—N211.372 (5)
C7—H70.9300N1—H10.876 (19)
C8—C91.413 (7)N21—H210.873 (19)
C8—H80.9300N23—H230.879 (19)
C9—N101.314 (6)N25—O251.345 (4)
C9—H90.9300O1—H1A0.803 (19)
C10A—N101.355 (6)O1—H1B0.850 (19)
C12—O121.217 (4)O2—H2A0.837 (19)
C12—N131.367 (5)O2—H2B0.858 (19)
C12—N111.367 (5)O3—H3A0.841 (19)
C14—O141.232 (5)O3—H3B0.813 (19)
C14—N131.377 (5)O25—H250.8200
N1—C1A—C4A119.2 (4)N13—C14—C15115.7 (4)
N1—C1A—C10A119.2 (4)N15—C15—C16125.5 (4)
C4A—C1A—C10A121.6 (4)N15—C15—C14114.1 (4)
N1—C2—C3120.0 (4)C16—C15—C14120.4 (3)
N1—C2—H2120.0O16—C16—N11118.4 (4)
C3—C2—H2120.0O16—C16—C15126.0 (4)
C4—C3—C2119.0 (4)N11—C16—C15115.5 (4)
C4—C3—H3120.5C12—N11—C16125.9 (3)
C2—C3—H3120.5C12—N11—H11119 (3)
C3—C4—C4A121.9 (4)C16—N11—H11115 (3)
C3—C4—H4119.1C12—N13—C14126.4 (4)
C4A—C4—H4119.1C12—N13—H13113 (3)
C4—C4A—C1A117.1 (4)C14—N13—H13120 (3)
C4—C4A—C5125.1 (4)O15—N15—C15119.1 (3)
C1A—C4A—C5117.8 (4)O22—C22—N23122.1 (4)
C6—C5—C4A121.7 (5)O22—C22—N21122.1 (4)
C6—C5—H5119.2N23—C22—N21115.7 (4)
C4A—C5—H5119.2O24—C24—N23120.9 (4)
C5—C6—C6A121.4 (5)O24—C24—C25123.7 (4)
C5—C6—H6119.3N23—C24—C25115.4 (4)
C6A—C6—H6119.3N25—C25—C24112.4 (4)
C7—C6A—C10A117.9 (5)N25—C25—C26127.3 (4)
C7—C6A—C6122.8 (5)C24—C25—C26120.3 (4)
C10A—C6A—C6119.4 (4)O26—C26—N21120.8 (4)
C8—C7—C6A118.5 (5)O26—C26—C25124.9 (4)
C8—C7—H7120.8N21—C26—C25114.4 (4)
C6A—C7—H7120.8C2—N1—C1A122.8 (4)
C7—C8—C9119.5 (5)C2—N1—H1116 (3)
C7—C8—H8120.2C1A—N1—H1121 (3)
C9—C8—H8120.2C9—N10—C10A116.4 (4)
N10—C9—C8123.6 (5)C26—N21—C22127.2 (4)
N10—C9—H9118.2C26—N21—H21119 (3)
C8—C9—H9118.2C22—N21—H21113 (3)
N10—C10A—C6A124.2 (4)C22—N23—C24126.7 (4)
N10—C10A—C1A117.7 (4)C22—N23—H23121 (3)
C6A—C10A—C1A118.2 (4)C24—N23—H23112 (3)
O12—C12—N13122.5 (4)C25—N25—O25117.4 (4)
O12—C12—N11121.8 (4)H1A—O1—H1B112 (4)
N13—C12—N11115.7 (3)H2A—O2—H2B105 (4)
O14—C14—N13117.9 (4)H3A—O3—H3B112 (5)
O14—C14—C15126.3 (4)N25—O25—H25109.5
N1—C2—C3—C40.1 (7)N13—C12—N11—C165.8 (6)
C2—C3—C4—C4A1.0 (7)O16—C16—N11—C12174.6 (4)
C3—C4—C4A—C1A1.8 (7)C15—C16—N11—C127.6 (6)
C3—C4—C4A—C5178.1 (5)O12—C12—N13—C14179.7 (4)
N1—C1A—C4A—C41.5 (6)N11—C12—N13—C140.7 (7)
C10A—C1A—C4A—C4179.7 (4)O14—C14—N13—C12177.2 (4)
N1—C1A—C4A—C5178.4 (4)C15—C14—N13—C121.8 (6)
C10A—C1A—C4A—C50.3 (7)C16—C15—N15—O150.4 (7)
C4—C4A—C5—C6180.0 (5)C14—C15—N15—O15178.7 (4)
C1A—C4A—C5—C60.1 (7)O24—C24—C25—N257.2 (6)
C4A—C5—C6—C6A0.5 (8)N23—C24—C25—N25174.0 (4)
C5—C6—C6A—C7178.4 (5)O24—C24—C25—C26172.8 (4)
C5—C6—C6A—C10A0.8 (7)N23—C24—C25—C266.0 (6)
C10A—C6A—C7—C81.7 (7)N25—C25—C26—O267.6 (8)
C6—C6A—C7—C8179.0 (5)C24—C25—C26—O26172.4 (4)
C6A—C7—C8—C91.2 (8)N25—C25—C26—N21173.4 (4)
C7—C8—C9—N100.3 (8)C24—C25—C26—N216.6 (6)
C7—C6A—C10A—N101.3 (7)C3—C2—N1—C1A0.4 (7)
C6—C6A—C10A—N10179.4 (5)C4A—C1A—N1—C20.4 (6)
C7—C6A—C10A—C1A178.7 (4)C10A—C1A—N1—C2179.2 (4)
C6—C6A—C10A—C1A0.6 (6)C8—C9—N10—C10A0.1 (7)
N1—C1A—C10A—N101.2 (6)C6A—C10A—N10—C90.4 (7)
C4A—C1A—C10A—N10179.9 (4)C1A—C10A—N10—C9179.6 (4)
N1—C1A—C10A—C6A178.8 (4)O26—C26—N21—C22176.0 (4)
C4A—C1A—C10A—C6A0.0 (6)C25—C26—N21—C223.0 (7)
O14—C14—C15—N151.7 (7)O22—C22—N21—C26180.0 (5)
N13—C14—C15—N15179.4 (4)N23—C22—N21—C261.2 (7)
O14—C14—C15—C16179.1 (4)O22—C22—N23—C24179.2 (4)
N13—C14—C15—C160.3 (6)N21—C22—N23—C242.0 (7)
N15—C15—C16—O161.1 (7)O24—C24—N23—C22177.3 (4)
C14—C15—C16—O16177.9 (4)C25—C24—N23—C221.6 (6)
N15—C15—C16—N11176.5 (4)C24—C25—N25—O25177.9 (4)
C14—C15—C16—N114.5 (6)C26—C25—N25—O252.1 (7)
O12—C12—N11—C16175.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.88 (2)1.89 (2)2.730 (5)161 (4)
N11—H11···O14i0.88 (2)2.12 (2)2.997 (4)173 (4)
N13—H13···O16ii0.85 (2)1.98 (2)2.835 (4)177 (4)
N21—H21···O24iii0.87 (2)1.99 (2)2.858 (4)172 (4)
N23—H23···O26iv0.88 (2)2.03 (2)2.900 (4)173 (4)
O1—H1A···O40.80 (2)2.05 (3)2.809 (5)157 (5)
O1—H1B···O15v0.85 (2)1.87 (2)2.719 (4)177 (5)
O2—H2A···O12i0.84 (2)2.02 (3)2.825 (4)160 (5)
O2—H2B···O150.86 (2)2.08 (3)2.811 (5)143 (4)
O2—H2B···O160.86 (2)2.15 (4)2.832 (4)136 (4)
O3—H3A···N250.84 (2)2.32 (4)3.007 (5)139 (5)
O3—H3A···O240.84 (2)2.33 (4)3.006 (5)137 (5)
O3—H3B···O10.81 (2)2.04 (4)2.784 (6)153 (6)
O25—H25···O50.821.922.692 (5)156
O4···O22.694 (5)
O4···O5vi2.816 (6)
O4···O4v2.844 (7)
O5···O5vi2.837 (8)
O5···O32.850 (6)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x, y+1, z+1; (vi) x+1, y+1, z+1.
 

Acknowledgements

We are grateful to the late Professor William S. Sheldrick for his support of this research. RWS would like to thank Dr Richard Goddard for helpful discussions. We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-Universität Halle-Wittenberg.

References

First citationAitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A. S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C. M., Rodriguez-Hornedo, N., Rogers, R. D., Row, T. N. G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C. C., Swift, J. A., Thaimattam, R., Thakur, T. S., Kumar Thaper, R., Thomas, S. P., Tothadi, S., Vangala, V. R., Variankaval, N., Vishweshwar, P., Weyna, D. R. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 2147–2152.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25–34.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaeyer, A. (1863). Justus Liebigs Ann. Chem. 127, 199–236.  CrossRef Google Scholar
First citationBrandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCruz-Cabeza, A. (2012). CrystEngComm, 14, 6362–7365.  CAS Google Scholar
First citationDeepa, P., Vijay Solomon, R., Angeline Vedha, S., Kolandaivel, P. & Venuvanalingam, P. (2014). Mol. Phys. 112, 3195–3205.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237–3243.  Web of Science CrossRef CAS Google Scholar
First citationGuille, K., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. C63, o327–o329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHantzsch, A. & Issaias, B. (1909). Ber. Dtsch. Chem. Ges. 42, 1000–1007.  CrossRef CAS Google Scholar
First citationHaynes, W. M. (2016). CRC Handbook of Chemistry and Physics, 97th ed., p. 3.444. Boca Raton: CRC Press.  Google Scholar
First citationIvanova, B., Kolev, T., Lamshöft, M., Mayer-Figge, H., Seidel, R., Sheldrick, W. S. & Spiteller, M. (2010). J. Mol. Struct. 971, 8–11.  CrossRef CAS Google Scholar
First citationIvanova, B. & Spiteller, M. (2014). Food. Meas. 8, 343–355.  CrossRef Google Scholar
First citationIvanova, B. & Spiteller, M. (2019). Chem. Pap. 73, 2821–2844.  CrossRef CAS Google Scholar
First citationIvanova, B. B. & Spiteller, M. (2010). Cryst. Growth Des. 10, 2470–2474.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoleva, B. B., Bakalska, R., Seidel, R. W., Kolev, T., Mayer-Figge, H., Sheldrick, W. S. & Spiteller, M. (2010). J. Mol. Struct. 965, 89–97.  Web of Science CSD CrossRef CAS Google Scholar
First citationKolev, T., Koleva, B. B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Cryst. Growth Des. 9, 3348–3352.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiebing, P., Stein, F., Hilfert, L., Lorenz, V., Oliynyk, K. & Edelmann, F. T. (2019). Z. Anorg. Allge Chem. 645, 36–43.  CrossRef CAS Google Scholar
First citationLorenz, V., Liebing, P., Engelhardt, F., Stein, F., Kühling, M., Schröder, L. & Edelmann, F. T. (2019). J. Coord. Chem. 72, 1–34.  CrossRef CAS Google Scholar
First citationMartín-Fernández, C., Montero-Campillo, M. M. & Alkorta, I. (2024). J. Phys. Chem. Lett. 15, 4105–4110.  PubMed Google Scholar
First citationMoratal, J. M., Prades, A., Julve, M. & Faus, J. (1985). Thermochim. Acta, 89, 343–350.  CrossRef CAS Google Scholar
First citationNichol, G. S. & Clegg, W. (2005a). Acta Cryst. E61, o3788–o3790.  CrossRef IUCr Journals Google Scholar
First citationNichol, G. S. & Clegg, W. (2005b). Acta Cryst. C61, o718–o721.  CrossRef CAS IUCr Journals Google Scholar
First citationNichol, G. S. & Clegg, W. (2006). Cryst. Growth Des. 6, 451–460.  Web of Science CSD CrossRef CAS Google Scholar
First citationNichol, G. S. & Clegg, W. (2007). Acta Cryst. C63, o609–o612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteed, K. M. & Steed, J. W. (2015). Chem. Rev. 115, 2895–2933.  Web of Science CrossRef CAS PubMed Google Scholar
First citationThakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, J. L., pp. 25–48. Oxford: Elsevier.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZerewitinoff, Th. (1909). Ber. Dtsch. Chem. Ges. 42, 4802–4808.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds