research communications
of 1,10-phenanthrolinium violurate violuric acid pentahydrate
aInstitut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bInstitute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev-Str. Bl. 21, Sofia 1113, Bulgaria
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de
The title compound [systematic name: 1,10-phenanthrolinium 6-hydroxy-5-(oxidoimino)-1,3-diazinane-2,4-dione–6-hydroxy-5-(hydroxyimino)-1,3-diazinane-2,4-dione–water (1/1/5)], C12H9N2+·C4H2N3O4−·C4H3N3O4·5H2O, is a salt hydrate comprising 1,10-phenanthrolinium cations, violurate anions, free violuric acid as co-former and five water molecules of crystallization per formula unit. The violurate and the violuric acid residues each form distinct N—H⋯O hydrogen-bonded tapes with a common R22(8) hydrogen-bond motif extending parallel to (103). Solvent water molecules connect the tapes to form a tri-periodic hydrogen-bonded network with channels extending parallel to the a-axis direction, which accommodate the N—H⋯Owater hydrogen-bonded 1,10-phenanthrolinium cations. Direct N—H⋯O hydrogen bonds between the 1,10-phenanthrolinium and violurate ions are not encountered.
Keywords: 1,10-phenanthroline; violuric acid; proton-transfer compound; hydrogen bonding; co-crystal; crystal structure.
CCDC reference: 2396663
1. Chemical context
Violuric acid (systematic name: 6-hydroxy-5-nitroso-1H-pyrimidine-2,4-dione) is a derivative of barbituric acid and was first described by the German chemist Adolf von Baeyer more than 150 years ago (Baeyer, 1863). While free violuric acid is colourless, violurate salts typically exhibit an intense colour (Liebing et al., 2019, and references therein). Coloured organic salts of violuric acid were reported as early as in 1909 (Hantzsch & Issaias, 1909; Zerewitinoff, 1909), but their crystal structures have only been investigated since 2006 (for more details, see: Section 4).
For the system violuric acid, 1,10-phenanthroline as an organic base and water as solvent, a pKa1 value of 4.35 can be assumed for violuric acid (Moratal et al., 1985) and a pKa value of 4.84 for the conjugate acid of 1,10-phenanthroline (Haynes, 2016). Hence, we can estimate ΔpKa = pKa(protonated base) – pKa(acid) = 4.84 – 4.35 = 0.49. In the ΔpKa range between −1 and 4, the position of the acid proton, and thus the formation of a salt or a (Aitipamula et al., 2012), is difficult to predict (Cruz-Cabeza, 2012). In fact, the title compound represents a multicomponent crystal that can be regarded as a salt hydrate, C12H9N2+·C4H2N3O4−·C4H3N3O4·5H2O.
2. Structural commentary
The ) comprises a 1,10-phenanthrolinium cation, a violurate anion, a co-crystallized violuric acid molecule and five water molecules of crystallization (for two of the water molecules, associated with O4 and O5, hydrogen atoms could not be located). Thus, the title compound represents a multicomponent crystal with eight independent residues (ZR = 8; Grothe et al., 2016). The parameter ZR, i.e. the number of crystallographically independent molecules of any type is also known as Z′′ (Steed & Steed, 2015). Inspired by the work by Aitipamula et al. (2012), Grothe et al. (2016) proposed a classification system for multicomponent crystals comprising seven categories. Accordingly, the title compound belongs to the class co-crystal salt solvates, which necessarily exhibit ZR ≥ 4.
(Fig. 1In the phenanthrolinium cation, the C2—N1—C1A angle is significantly larger by 6.4° than the C9—N10—C10A angle (Table 1), which corroborates the assignment of the site of protonation at N1. Likewise, the N—O and C—N bond lengths in the oxime (C25=N25—O25—H25) and the oximate (C15=N15—O15) moieties of the violuric acid and the violurate residue (Fig. 1; Table 1), lend support to the assignments of the sites of protonation and deprotonation, respectively.
|
3. Supramolecular features
The predominant supramolecular features of the ). Table 2 lists the corresponding hydrogen-bond parameters, which are within expected ranges (Thakuria et al., 2017). The violurate and the violuric acid residues each form linear polymeric strands through N—H⋯O hydrogen bonds with a common R22(8) motif (Allen et al., 1999; Deepa et al., 2014), extending parallel to the b-axis direction by application of the 21 screw axis symmetry. Thus, there are two distinct hydrogen-bonded tapes, one of which features inter-anionic hydrogen bonds (Martín-Fernández et al., 2024). Neutral and anionic hydrogen-bonded tapes stack in an alternating fashion parallel to the a-axis direction, with the molecular planes extending parallel to (10).
are N—H⋯O and O—H⋯O hydrogen bonds (Fig. 2These stacks of hydrogen-bonded tapes are separated by c/2 at x, y, and x, y, , and are joined by the water molecules through hydrogen-bonding, which results in an intricate tri-periodic network. The water molecules are clustered at x, 0, 0 and x, , The water molecule associated with O2 joins two violurate anions by a donating bifurcated hydrogen bond to the oximate oxygen atom O15 and the carbonyl oxygen O16, and a single O—H⋯O hydrogen bond to the carbonyl oxygen O12 of an adjacent molecule. The water molecule associated with O3 forms a donating bifurcated hydrogen bond to the carbonyl oxygen O24 and the oxime nitrogen N25 of the neutral violuric acid molecule, while the oxime hydroxy group (O25) donates a hydrogen bond to the water oxygen atom O5. The donor functions of the latter and of O4 are unclear because their H atoms were not localized. However, the distances to possible acceptor O atoms indicate that there are several possibilities for hydrogen bonds of medium strength (Table 2).
Within the hydrogen-bonded network, the phenanthrolinium cations reside face-to-face stacked in channels extending parallel to the a-axis direction (Fig. 3), and each forms an N—H⋯O hydrogen bond to a water molecule but neither to the violurate nor to violuric acid moieties. A view along the b-axis direction reveals a layered arrangement of the phenanthrolinium cations, violurate anions and violuric acid molecules (Fig. 4). Within a stack, the mean planes through the phenanthrolinium ions related by inversion symmetry are separated by 3.46 and 3.55 Å in an alternating fashion.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.45 with March 2024 updates; Groom et al., 2016) revealed more than 60 entries for violuric acid or its monoanion (excluding metal-containing structures), of which some are duplicates. For the polymorphs of violuric acid monohydrate, see: Nichol & Clegg (2005a) and Guille et al. (2007), and references cited therein. The structure of violuric acid methanol solvate was also reported by Nichol & Clegg (2005b). The of unsolvated free violuric acid is hitherto unknown, as far as we are able to ascertain. For the structure of ammonium violurate, see: Nichol & Clegg (2007), and for structures of multicomponent crystals of violuric acid and organic nitrogen bases, see: Nichol & Clegg (2006), Kolev et al. (2009), Ivanova & Spiteller (2010), Ivanova et al. (2010), Koleva et al. (2010), Ivanova & Spiteller (2014), Liebing et al. (2019) and Ivanova & Spiteller (2019).
The structures most related to the title compound are piperidinium violurate sesquihydrate (CSD refcode: FUFPIG; Kolev et al., 2009), 1,2,3,4-tetrahydroisoquinolinium violurate monohydrate (FUFPOM; Kolev et al., 2009) and ephedrinium violurate dihydrate (WURCUI; Ivanova et al., 2010), which likewise feature hydrogen-bonded tapes of violurate residues with an R22(8) motif, propagating by 21 screw symmetry.
We note that the CSD also contains a variety of structures of violurate metal complexes, including alkali metal and alkaline earth metal salts. These are beyond the scope of this survey, and we direct the interested reader to the review by Lorenz et al. (2019) for the coordination chemistry of violurate anions.
5. Synthesis and crystallization
1,10-Phenanthroline (170 mg, 0.94 mmol) and violuric acid (175 mg, 1.11 mmol) were mixed in 20 ml of water under continuous stirring at elevated temperature (323–353 K) for 24 h. A red precipitate was obtained after leaving the resulting solution at 298 K for about two weeks. The product was filtered off and air-dried. Red crystals of the title compound suitable for X-ray
were grown from a solution of the sample in doubly distilled water at room temperature over a period of three weeks.6. Refinement
Crystal data, data collection and structure . Carbon-bound H atoms and the oxime hydroxy H25 atom were placed in geometrically calculated positions with d(C—H) = 0.93 Å and d(O—H) = 0.82 Å, respectively, and refined with a riding model. Nitrogen-bound H atoms were located in a difference-Fourier map and their positions refined with the N—H distances restrained to a target value of 0.86 (2) Å. The water H atoms bound to O1, O2 and O3 were located in difference-Fourier maps, and the corresponding O—H distances were restrained to a target value of 0.82 (2) Å. The 1,3-H,H distances of the water molecules were restrained to be similar with a standard deviation of 0.04 Å. Uiso(H) was set 1.2Ueq(C,N,O) for all H atoms. The water H atoms bound to O4 and O5 could not be located with certainty and were therefore excluded from the structural model, but are included in the chemical formula for calculation of crystal data. Two reflections (011 and 06) were obstructed by the beam stop and were omitted from the refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2396663
https://doi.org/10.1107/S205698902401065X/wm5737sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902401065X/wm5737Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902401065X/wm5737Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S205698902401065X/wm5737Isup4.cml
C12H9N2+·C4H2N3O4−·C4H3N3O4·5H2O | F(000) = 1216 |
Mr = 584.47 | Dx = 1.530 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.247 (3) Å | Cell parameters from 16 reflections |
b = 12.0714 (16) Å | θ = 12.0–26.1° |
c = 25.771 (4) Å | µ = 0.13 mm−1 |
β = 98.572 (16)° | T = 294 K |
V = 2537.1 (12) Å3 | Prism, red |
Z = 4 | 0.29 × 0.25 × 0.22 mm |
Siemens P4 diffractometer | θmax = 25.0°, θmin = 2.3° |
Radiation source: sealed X-ray tube | h = −9→1 |
ω scans | k = −1→14 |
5990 measured reflections | l = −30→30 |
4453 independent reflections | 3 standard reflections every 15 min |
2259 reflections with I > 2σ(I) | intensity decay: none |
Rint = 0.050 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: mixed |
wR(F2) = 0.187 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0775P)2 + 0.7605P] where P = (Fo2 + 2Fc2)/3 |
4453 reflections | (Δ/σ)max < 0.001 |
404 parameters | Δρmax = 0.27 e Å−3 |
14 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1A | 0.1694 (5) | −0.0134 (4) | 0.46997 (15) | 0.0351 (10) | |
C2 | −0.0174 (5) | 0.0453 (4) | 0.39698 (16) | 0.0420 (11) | |
H2 | −0.067421 | 0.103132 | 0.376762 | 0.050* | |
C3 | −0.0579 (6) | −0.0633 (4) | 0.38352 (18) | 0.0492 (12) | |
H3 | −0.134885 | −0.079078 | 0.354276 | 0.059* | |
C4 | 0.0162 (6) | −0.1461 (4) | 0.41353 (17) | 0.0475 (12) | |
H4 | −0.009583 | −0.219140 | 0.404186 | 0.057* | |
C4A | 0.1305 (5) | −0.1251 (3) | 0.45819 (17) | 0.0406 (11) | |
C5 | 0.2093 (6) | −0.2071 (4) | 0.49225 (19) | 0.0565 (14) | |
H5 | 0.185146 | −0.281281 | 0.485187 | 0.068* | |
C6 | 0.3184 (6) | −0.1803 (4) | 0.5347 (2) | 0.0582 (14) | |
H6 | 0.367223 | −0.236401 | 0.556320 | 0.070* | |
C6A | 0.3608 (5) | −0.0673 (4) | 0.54709 (17) | 0.0484 (12) | |
C7 | 0.4758 (6) | −0.0371 (5) | 0.58985 (18) | 0.0604 (15) | |
H7 | 0.530675 | −0.090678 | 0.611739 | 0.072* | |
C8 | 0.5062 (6) | 0.0729 (6) | 0.59896 (19) | 0.0675 (16) | |
H8 | 0.580971 | 0.095392 | 0.627666 | 0.081* | |
C9 | 0.4234 (6) | 0.1524 (5) | 0.56446 (19) | 0.0617 (15) | |
H9 | 0.446266 | 0.226869 | 0.571235 | 0.074* | |
C10A | 0.2859 (5) | 0.0173 (4) | 0.51489 (17) | 0.0403 (11) | |
C12 | 0.5769 (5) | 0.7219 (3) | 0.78082 (16) | 0.0367 (10) | |
C14 | 0.3737 (5) | 0.8194 (3) | 0.71811 (15) | 0.0349 (10) | |
C15 | 0.3164 (5) | 0.7134 (3) | 0.69627 (15) | 0.0356 (10) | |
C16 | 0.3938 (5) | 0.6117 (3) | 0.71692 (16) | 0.0360 (10) | |
N11 | 0.5144 (4) | 0.6237 (3) | 0.76025 (14) | 0.0404 (9) | |
H11 | 0.560 (5) | 0.561 (2) | 0.7729 (15) | 0.048* | |
N13 | 0.5025 (5) | 0.8154 (3) | 0.75876 (14) | 0.0394 (9) | |
H13 | 0.546 (5) | 0.875 (2) | 0.7721 (15) | 0.047* | |
N15 | 0.1919 (4) | 0.7205 (3) | 0.65645 (13) | 0.0432 (9) | |
C22 | −0.1051 (6) | 0.5632 (4) | 0.22527 (16) | 0.0419 (11) | |
C24 | 0.1034 (5) | 0.4561 (3) | 0.28192 (16) | 0.0361 (10) | |
C25 | 0.1608 (5) | 0.5592 (3) | 0.30845 (16) | 0.0389 (11) | |
C26 | 0.0898 (6) | 0.6672 (3) | 0.28899 (17) | 0.0408 (11) | |
N1 | 0.0931 (4) | 0.0670 (3) | 0.43884 (14) | 0.0389 (9) | |
H1 | 0.117 (5) | 0.1369 (18) | 0.4449 (16) | 0.047* | |
N10 | 0.3159 (5) | 0.1267 (3) | 0.52332 (14) | 0.0494 (10) | |
N21 | −0.0407 (5) | 0.6588 (3) | 0.24939 (14) | 0.0428 (10) | |
H21 | −0.088 (5) | 0.719 (2) | 0.2359 (15) | 0.051* | |
N23 | −0.0273 (5) | 0.4667 (3) | 0.24254 (14) | 0.0437 (10) | |
H23 | −0.054 (5) | 0.403 (2) | 0.2268 (15) | 0.052* | |
N25 | 0.2728 (5) | 0.5426 (3) | 0.34791 (14) | 0.0478 (10) | |
O1 | 0.1190 (4) | 0.2924 (3) | 0.43698 (12) | 0.0570 (10) | |
H1A | 0.115 (6) | 0.317 (4) | 0.4657 (10) | 0.068* | |
H1B | 0.039 (4) | 0.314 (4) | 0.4145 (14) | 0.068* | |
O2 | 0.1342 (5) | 0.3996 (3) | 0.62720 (15) | 0.0669 (11) | |
H2A | 0.204 (5) | 0.353 (3) | 0.640 (2) | 0.080* | |
H2B | 0.176 (6) | 0.462 (2) | 0.638 (2) | 0.080* | |
O3 | 0.4014 (5) | 0.3233 (4) | 0.39153 (19) | 0.0802 (12) | |
H3A | 0.372 (7) | 0.364 (4) | 0.3655 (16) | 0.096* | |
H3B | 0.324 (5) | 0.293 (5) | 0.402 (2) | 0.096* | |
O4 | 0.1337 (5) | 0.4343 (3) | 0.52391 (14) | 0.0822 (12) | |
O5 | 0.5317 (5) | 0.5145 (3) | 0.44781 (14) | 0.0823 (12) | |
O12 | 0.6901 (4) | 0.7252 (2) | 0.81696 (12) | 0.0543 (9) | |
O14 | 0.3169 (4) | 0.9110 (2) | 0.70432 (11) | 0.0466 (8) | |
O15 | 0.1345 (4) | 0.6320 (2) | 0.63379 (12) | 0.0563 (9) | |
O16 | 0.3588 (4) | 0.5181 (2) | 0.70065 (12) | 0.0480 (8) | |
O22 | −0.2202 (4) | 0.5645 (3) | 0.19080 (12) | 0.0596 (10) | |
O24 | 0.1668 (4) | 0.3658 (2) | 0.29265 (12) | 0.0484 (8) | |
O25 | 0.3305 (5) | 0.6316 (3) | 0.37618 (14) | 0.0714 (11) | |
H25 | 0.407415 | 0.612960 | 0.398400 | 0.086* | |
O26 | 0.1407 (4) | 0.7577 (2) | 0.30519 (12) | 0.0496 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1A | 0.031 (2) | 0.038 (2) | 0.036 (2) | 0.001 (2) | 0.0031 (19) | 0.002 (2) |
C2 | 0.039 (3) | 0.044 (3) | 0.040 (2) | 0.003 (2) | −0.004 (2) | 0.001 (2) |
C3 | 0.046 (3) | 0.056 (3) | 0.043 (3) | −0.008 (2) | −0.004 (2) | −0.012 (2) |
C4 | 0.051 (3) | 0.036 (3) | 0.055 (3) | −0.006 (2) | 0.007 (2) | −0.008 (2) |
C4A | 0.036 (3) | 0.032 (2) | 0.053 (3) | 0.002 (2) | 0.006 (2) | 0.007 (2) |
C5 | 0.058 (3) | 0.039 (3) | 0.072 (4) | −0.001 (3) | 0.010 (3) | 0.001 (3) |
C6 | 0.057 (3) | 0.056 (3) | 0.063 (3) | 0.014 (3) | 0.013 (3) | 0.018 (3) |
C6A | 0.039 (3) | 0.064 (3) | 0.041 (3) | 0.006 (3) | 0.003 (2) | 0.008 (2) |
C7 | 0.050 (3) | 0.086 (4) | 0.043 (3) | 0.008 (3) | 0.000 (2) | 0.008 (3) |
C8 | 0.046 (3) | 0.111 (5) | 0.041 (3) | −0.002 (3) | −0.006 (2) | −0.012 (3) |
C9 | 0.053 (3) | 0.073 (4) | 0.057 (3) | −0.017 (3) | 0.001 (3) | −0.017 (3) |
C10A | 0.033 (2) | 0.047 (3) | 0.040 (2) | −0.005 (2) | 0.002 (2) | −0.003 (2) |
C12 | 0.036 (2) | 0.026 (2) | 0.044 (2) | −0.003 (2) | −0.005 (2) | 0.002 (2) |
C14 | 0.038 (2) | 0.028 (2) | 0.037 (2) | 0.0017 (19) | 0.001 (2) | 0.0002 (19) |
C15 | 0.035 (2) | 0.032 (2) | 0.038 (2) | 0.002 (2) | 0.001 (2) | 0.0001 (19) |
C16 | 0.038 (2) | 0.030 (2) | 0.038 (2) | −0.002 (2) | 0.000 (2) | 0.002 (2) |
N11 | 0.041 (2) | 0.025 (2) | 0.050 (2) | −0.0004 (17) | −0.0092 (18) | 0.0050 (17) |
N13 | 0.044 (2) | 0.0263 (19) | 0.042 (2) | −0.0032 (17) | −0.0122 (18) | −0.0005 (16) |
N15 | 0.046 (2) | 0.034 (2) | 0.044 (2) | −0.0012 (18) | −0.0115 (18) | −0.0002 (17) |
C22 | 0.048 (3) | 0.035 (3) | 0.041 (3) | 0.000 (2) | 0.002 (2) | −0.001 (2) |
C24 | 0.037 (2) | 0.029 (2) | 0.041 (2) | 0.000 (2) | 0.002 (2) | 0.001 (2) |
C25 | 0.042 (3) | 0.031 (2) | 0.041 (2) | −0.001 (2) | −0.002 (2) | 0.002 (2) |
C26 | 0.048 (3) | 0.029 (2) | 0.044 (3) | 0.002 (2) | 0.003 (2) | 0.000 (2) |
N1 | 0.038 (2) | 0.033 (2) | 0.045 (2) | −0.0025 (18) | 0.0027 (18) | −0.0018 (18) |
N10 | 0.046 (2) | 0.053 (3) | 0.046 (2) | −0.010 (2) | −0.003 (2) | −0.010 (2) |
N21 | 0.048 (2) | 0.033 (2) | 0.044 (2) | 0.0075 (18) | −0.0046 (19) | 0.0037 (18) |
N23 | 0.052 (2) | 0.030 (2) | 0.044 (2) | −0.0008 (19) | −0.0091 (19) | −0.0052 (17) |
N25 | 0.056 (2) | 0.037 (2) | 0.047 (2) | −0.0108 (19) | −0.005 (2) | −0.0056 (18) |
O1 | 0.064 (2) | 0.051 (2) | 0.048 (2) | 0.0016 (18) | −0.0149 (19) | −0.0008 (18) |
O2 | 0.076 (3) | 0.039 (2) | 0.074 (3) | −0.0058 (19) | −0.028 (2) | −0.0016 (19) |
O3 | 0.067 (3) | 0.072 (3) | 0.098 (3) | 0.015 (2) | 0.002 (2) | 0.032 (2) |
O4 | 0.105 (3) | 0.064 (2) | 0.074 (3) | 0.003 (2) | 0.003 (2) | −0.008 (2) |
O5 | 0.077 (3) | 0.086 (3) | 0.077 (3) | 0.000 (2) | −0.014 (2) | 0.014 (2) |
O12 | 0.056 (2) | 0.0371 (18) | 0.059 (2) | −0.0008 (16) | −0.0269 (17) | 0.0014 (15) |
O14 | 0.055 (2) | 0.0242 (16) | 0.0548 (19) | 0.0045 (15) | −0.0115 (16) | 0.0014 (14) |
O15 | 0.063 (2) | 0.0365 (18) | 0.058 (2) | −0.0032 (17) | −0.0255 (17) | −0.0053 (16) |
O16 | 0.057 (2) | 0.0224 (16) | 0.0574 (19) | 0.0007 (15) | −0.0162 (16) | −0.0039 (15) |
O22 | 0.061 (2) | 0.050 (2) | 0.059 (2) | 0.0040 (18) | −0.0194 (19) | −0.0003 (17) |
O24 | 0.055 (2) | 0.0269 (17) | 0.058 (2) | 0.0069 (15) | −0.0088 (16) | −0.0053 (15) |
O25 | 0.084 (3) | 0.047 (2) | 0.069 (2) | −0.007 (2) | −0.033 (2) | −0.0034 (19) |
O26 | 0.061 (2) | 0.0300 (17) | 0.0527 (19) | −0.0019 (16) | −0.0078 (16) | −0.0001 (15) |
C1A—N1 | 1.353 (5) | C14—C15 | 1.449 (6) |
C1A—C4A | 1.408 (6) | C15—N15 | 1.342 (5) |
C1A—C10A | 1.438 (5) | C15—C16 | 1.448 (6) |
C2—N1 | 1.330 (5) | C16—O16 | 1.224 (5) |
C2—C3 | 1.384 (6) | C16—N11 | 1.388 (5) |
C2—H2 | 0.9300 | N11—H11 | 0.884 (19) |
C3—C4 | 1.353 (6) | N13—H13 | 0.852 (19) |
C3—H3 | 0.9300 | N15—O15 | 1.274 (4) |
C4—C4A | 1.398 (6) | C22—O22 | 1.200 (5) |
C4—H4 | 0.9300 | C22—N23 | 1.372 (5) |
C4A—C5 | 1.415 (6) | C22—N21 | 1.378 (5) |
C5—C6 | 1.347 (7) | C24—O24 | 1.222 (5) |
C5—H5 | 0.9300 | C24—N23 | 1.372 (5) |
C6—C6A | 1.433 (7) | C24—C25 | 1.465 (6) |
C6—H6 | 0.9300 | C25—N25 | 1.284 (5) |
C6A—C7 | 1.391 (6) | C25—C26 | 1.485 (6) |
C6A—C10A | 1.400 (6) | C26—O26 | 1.222 (5) |
C7—C8 | 1.366 (7) | C26—N21 | 1.372 (5) |
C7—H7 | 0.9300 | N1—H1 | 0.876 (19) |
C8—C9 | 1.413 (7) | N21—H21 | 0.873 (19) |
C8—H8 | 0.9300 | N23—H23 | 0.879 (19) |
C9—N10 | 1.314 (6) | N25—O25 | 1.345 (4) |
C9—H9 | 0.9300 | O1—H1A | 0.803 (19) |
C10A—N10 | 1.355 (6) | O1—H1B | 0.850 (19) |
C12—O12 | 1.217 (4) | O2—H2A | 0.837 (19) |
C12—N13 | 1.367 (5) | O2—H2B | 0.858 (19) |
C12—N11 | 1.367 (5) | O3—H3A | 0.841 (19) |
C14—O14 | 1.232 (5) | O3—H3B | 0.813 (19) |
C14—N13 | 1.377 (5) | O25—H25 | 0.8200 |
N1—C1A—C4A | 119.2 (4) | N13—C14—C15 | 115.7 (4) |
N1—C1A—C10A | 119.2 (4) | N15—C15—C16 | 125.5 (4) |
C4A—C1A—C10A | 121.6 (4) | N15—C15—C14 | 114.1 (4) |
N1—C2—C3 | 120.0 (4) | C16—C15—C14 | 120.4 (3) |
N1—C2—H2 | 120.0 | O16—C16—N11 | 118.4 (4) |
C3—C2—H2 | 120.0 | O16—C16—C15 | 126.0 (4) |
C4—C3—C2 | 119.0 (4) | N11—C16—C15 | 115.5 (4) |
C4—C3—H3 | 120.5 | C12—N11—C16 | 125.9 (3) |
C2—C3—H3 | 120.5 | C12—N11—H11 | 119 (3) |
C3—C4—C4A | 121.9 (4) | C16—N11—H11 | 115 (3) |
C3—C4—H4 | 119.1 | C12—N13—C14 | 126.4 (4) |
C4A—C4—H4 | 119.1 | C12—N13—H13 | 113 (3) |
C4—C4A—C1A | 117.1 (4) | C14—N13—H13 | 120 (3) |
C4—C4A—C5 | 125.1 (4) | O15—N15—C15 | 119.1 (3) |
C1A—C4A—C5 | 117.8 (4) | O22—C22—N23 | 122.1 (4) |
C6—C5—C4A | 121.7 (5) | O22—C22—N21 | 122.1 (4) |
C6—C5—H5 | 119.2 | N23—C22—N21 | 115.7 (4) |
C4A—C5—H5 | 119.2 | O24—C24—N23 | 120.9 (4) |
C5—C6—C6A | 121.4 (5) | O24—C24—C25 | 123.7 (4) |
C5—C6—H6 | 119.3 | N23—C24—C25 | 115.4 (4) |
C6A—C6—H6 | 119.3 | N25—C25—C24 | 112.4 (4) |
C7—C6A—C10A | 117.9 (5) | N25—C25—C26 | 127.3 (4) |
C7—C6A—C6 | 122.8 (5) | C24—C25—C26 | 120.3 (4) |
C10A—C6A—C6 | 119.4 (4) | O26—C26—N21 | 120.8 (4) |
C8—C7—C6A | 118.5 (5) | O26—C26—C25 | 124.9 (4) |
C8—C7—H7 | 120.8 | N21—C26—C25 | 114.4 (4) |
C6A—C7—H7 | 120.8 | C2—N1—C1A | 122.8 (4) |
C7—C8—C9 | 119.5 (5) | C2—N1—H1 | 116 (3) |
C7—C8—H8 | 120.2 | C1A—N1—H1 | 121 (3) |
C9—C8—H8 | 120.2 | C9—N10—C10A | 116.4 (4) |
N10—C9—C8 | 123.6 (5) | C26—N21—C22 | 127.2 (4) |
N10—C9—H9 | 118.2 | C26—N21—H21 | 119 (3) |
C8—C9—H9 | 118.2 | C22—N21—H21 | 113 (3) |
N10—C10A—C6A | 124.2 (4) | C22—N23—C24 | 126.7 (4) |
N10—C10A—C1A | 117.7 (4) | C22—N23—H23 | 121 (3) |
C6A—C10A—C1A | 118.2 (4) | C24—N23—H23 | 112 (3) |
O12—C12—N13 | 122.5 (4) | C25—N25—O25 | 117.4 (4) |
O12—C12—N11 | 121.8 (4) | H1A—O1—H1B | 112 (4) |
N13—C12—N11 | 115.7 (3) | H2A—O2—H2B | 105 (4) |
O14—C14—N13 | 117.9 (4) | H3A—O3—H3B | 112 (5) |
O14—C14—C15 | 126.3 (4) | N25—O25—H25 | 109.5 |
N1—C2—C3—C4 | 0.1 (7) | N13—C12—N11—C16 | 5.8 (6) |
C2—C3—C4—C4A | 1.0 (7) | O16—C16—N11—C12 | 174.6 (4) |
C3—C4—C4A—C1A | −1.8 (7) | C15—C16—N11—C12 | −7.6 (6) |
C3—C4—C4A—C5 | 178.1 (5) | O12—C12—N13—C14 | −179.7 (4) |
N1—C1A—C4A—C4 | 1.5 (6) | N11—C12—N13—C14 | −0.7 (7) |
C10A—C1A—C4A—C4 | −179.7 (4) | O14—C14—N13—C12 | 177.2 (4) |
N1—C1A—C4A—C5 | −178.4 (4) | C15—C14—N13—C12 | −1.8 (6) |
C10A—C1A—C4A—C5 | 0.3 (7) | C16—C15—N15—O15 | −0.4 (7) |
C4—C4A—C5—C6 | 180.0 (5) | C14—C15—N15—O15 | 178.7 (4) |
C1A—C4A—C5—C6 | −0.1 (7) | O24—C24—C25—N25 | −7.2 (6) |
C4A—C5—C6—C6A | −0.5 (8) | N23—C24—C25—N25 | 174.0 (4) |
C5—C6—C6A—C7 | −178.4 (5) | O24—C24—C25—C26 | 172.8 (4) |
C5—C6—C6A—C10A | 0.8 (7) | N23—C24—C25—C26 | −6.0 (6) |
C10A—C6A—C7—C8 | 1.7 (7) | N25—C25—C26—O26 | 7.6 (8) |
C6—C6A—C7—C8 | −179.0 (5) | C24—C25—C26—O26 | −172.4 (4) |
C6A—C7—C8—C9 | −1.2 (8) | N25—C25—C26—N21 | −173.4 (4) |
C7—C8—C9—N10 | 0.3 (8) | C24—C25—C26—N21 | 6.6 (6) |
C7—C6A—C10A—N10 | −1.3 (7) | C3—C2—N1—C1A | −0.4 (7) |
C6—C6A—C10A—N10 | 179.4 (5) | C4A—C1A—N1—C2 | −0.4 (6) |
C7—C6A—C10A—C1A | 178.7 (4) | C10A—C1A—N1—C2 | −179.2 (4) |
C6—C6A—C10A—C1A | −0.6 (6) | C8—C9—N10—C10A | 0.1 (7) |
N1—C1A—C10A—N10 | −1.2 (6) | C6A—C10A—N10—C9 | 0.4 (7) |
C4A—C1A—C10A—N10 | −179.9 (4) | C1A—C10A—N10—C9 | −179.6 (4) |
N1—C1A—C10A—C6A | 178.8 (4) | O26—C26—N21—C22 | 176.0 (4) |
C4A—C1A—C10A—C6A | 0.0 (6) | C25—C26—N21—C22 | −3.0 (7) |
O14—C14—C15—N15 | 1.7 (7) | O22—C22—N21—C26 | 180.0 (5) |
N13—C14—C15—N15 | −179.4 (4) | N23—C22—N21—C26 | −1.2 (7) |
O14—C14—C15—C16 | −179.1 (4) | O22—C22—N23—C24 | −179.2 (4) |
N13—C14—C15—C16 | −0.3 (6) | N21—C22—N23—C24 | 2.0 (7) |
N15—C15—C16—O16 | 1.1 (7) | O24—C24—N23—C22 | −177.3 (4) |
C14—C15—C16—O16 | −177.9 (4) | C25—C24—N23—C22 | 1.6 (6) |
N15—C15—C16—N11 | −176.5 (4) | C24—C25—N25—O25 | −177.9 (4) |
C14—C15—C16—N11 | 4.5 (6) | C26—C25—N25—O25 | 2.1 (7) |
O12—C12—N11—C16 | −175.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.88 (2) | 1.89 (2) | 2.730 (5) | 161 (4) |
N11—H11···O14i | 0.88 (2) | 2.12 (2) | 2.997 (4) | 173 (4) |
N13—H13···O16ii | 0.85 (2) | 1.98 (2) | 2.835 (4) | 177 (4) |
N21—H21···O24iii | 0.87 (2) | 1.99 (2) | 2.858 (4) | 172 (4) |
N23—H23···O26iv | 0.88 (2) | 2.03 (2) | 2.900 (4) | 173 (4) |
O1—H1A···O4 | 0.80 (2) | 2.05 (3) | 2.809 (5) | 157 (5) |
O1—H1B···O15v | 0.85 (2) | 1.87 (2) | 2.719 (4) | 177 (5) |
O2—H2A···O12i | 0.84 (2) | 2.02 (3) | 2.825 (4) | 160 (5) |
O2—H2B···O15 | 0.86 (2) | 2.08 (3) | 2.811 (5) | 143 (4) |
O2—H2B···O16 | 0.86 (2) | 2.15 (4) | 2.832 (4) | 136 (4) |
O3—H3A···N25 | 0.84 (2) | 2.32 (4) | 3.007 (5) | 139 (5) |
O3—H3A···O24 | 0.84 (2) | 2.33 (4) | 3.006 (5) | 137 (5) |
O3—H3B···O1 | 0.81 (2) | 2.04 (4) | 2.784 (6) | 153 (6) |
O25—H25···O5 | 0.82 | 1.92 | 2.692 (5) | 156 |
O4···O2 | 2.694 (5) | |||
O4···O5vi | 2.816 (6) | |||
O4···O4v | 2.844 (7) | |||
O5···O5vi | 2.837 (8) | |||
O5···O3 | 2.850 (6) |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2; (iii) −x, y+1/2, −z+1/2; (iv) −x, y−1/2, −z+1/2; (v) −x, −y+1, −z+1; (vi) −x+1, −y+1, −z+1. |
Acknowledgements
We are grateful to the late Professor William S. Sheldrick for his support of this research. RWS would like to thank Dr Richard Goddard for helpful discussions. We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-Universität Halle-Wittenberg.
References
Aitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A. S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C. M., Rodriguez-Hornedo, N., Rogers, R. D., Row, T. N. G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C. C., Swift, J. A., Thaimattam, R., Thakur, T. S., Kumar Thaper, R., Thomas, S. P., Tothadi, S., Vangala, V. R., Variankaval, N., Vishweshwar, P., Weyna, D. R. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 2147–2152. Web of Science CrossRef CAS Google Scholar
Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25–34. Web of Science CrossRef CAS Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Baeyer, A. (1863). Justus Liebigs Ann. Chem. 127, 199–236. CrossRef Google Scholar
Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cruz-Cabeza, A. (2012). CrystEngComm, 14, 6362–7365. CAS Google Scholar
Deepa, P., Vijay Solomon, R., Angeline Vedha, S., Kolandaivel, P. & Venuvanalingam, P. (2014). Mol. Phys. 112, 3195–3205. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237–3243. Web of Science CrossRef CAS Google Scholar
Guille, K., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. C63, o327–o329. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hantzsch, A. & Issaias, B. (1909). Ber. Dtsch. Chem. Ges. 42, 1000–1007. CrossRef CAS Google Scholar
Haynes, W. M. (2016). CRC Handbook of Chemistry and Physics, 97th ed., p. 3.444. Boca Raton: CRC Press. Google Scholar
Ivanova, B., Kolev, T., Lamshöft, M., Mayer-Figge, H., Seidel, R., Sheldrick, W. S. & Spiteller, M. (2010). J. Mol. Struct. 971, 8–11. Web of Science CSD CrossRef CAS Google Scholar
Ivanova, B. & Spiteller, M. (2014). Food. Meas. 8, 343–355. Web of Science CSD CrossRef Google Scholar
Ivanova, B. & Spiteller, M. (2019). Chem. Pap. 73, 2821–2844. Web of Science CSD CrossRef CAS Google Scholar
Ivanova, B. B. & Spiteller, M. (2010). Cryst. Growth Des. 10, 2470–2474. Web of Science CSD CrossRef CAS Google Scholar
Koleva, B. B., Bakalska, R., Seidel, R. W., Kolev, T., Mayer-Figge, H., Sheldrick, W. S. & Spiteller, M. (2010). J. Mol. Struct. 965, 89–97. Web of Science CSD CrossRef CAS Google Scholar
Kolev, T., Koleva, B. B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Cryst. Growth Des. 9, 3348–3352. Web of Science CSD CrossRef CAS Google Scholar
Liebing, P., Stein, F., Hilfert, L., Lorenz, V., Oliynyk, K. & Edelmann, F. T. (2019). Z. Anorg. Allge Chem. 645, 36–43. Web of Science CSD CrossRef CAS Google Scholar
Lorenz, V., Liebing, P., Engelhardt, F., Stein, F., Kühling, M., Schröder, L. & Edelmann, F. T. (2019). J. Coord. Chem. 72, 1–34. Web of Science CrossRef CAS Google Scholar
Martín-Fernández, C., Montero-Campillo, M. M. & Alkorta, I. (2024). J. Phys. Chem. Lett. 15, 4105–4110. Web of Science PubMed Google Scholar
Moratal, J. M., Prades, A., Julve, M. & Faus, J. (1985). Thermochim. Acta, 89, 343–350. CrossRef CAS Web of Science Google Scholar
Nichol, G. S. & Clegg, W. (2005a). Acta Cryst. E61, o3788–o3790. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nichol, G. S. & Clegg, W. (2005b). Acta Cryst. C61, o718–o721. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nichol, G. S. & Clegg, W. (2006). Cryst. Growth Des. 6, 451–460. Web of Science CSD CrossRef CAS Google Scholar
Nichol, G. S. & Clegg, W. (2007). Acta Cryst. C63, o609–o612. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Steed, K. M. & Steed, J. W. (2015). Chem. Rev. 115, 2895–2933. Web of Science CrossRef CAS PubMed Google Scholar
Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, J. L., pp. 25–48. Oxford: Elsevier. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zerewitinoff, Th. (1909). Ber. Dtsch. Chem. Ges. 42, 4802–4808. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.