research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of the imides 4-(2-phenyl­eth­yl)- and 4-[2-(4-hy­dr­oxy­phen­yl)eth­yl]-4-aza­tetra­cyclo­[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione

crossmark logo

aDepartment of Chemistry, Grand Valley State University, Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: biross@gvsu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 November 2024; accepted 19 November 2024; online 28 November 2024)

The syntheses and characterization (NMR and XRD) of two substituted [2.2.2]bi­cyclo­octene ring systems are described here. The cyclo­hexene rings of these systems adopt a nearly perfect boat conformation according to analysis using Cremer–Pople parameters. Both structures contain a nearly planar imide ring that is oriented endo relative to a bridgehead cyclo­propyl ring. 4-(2-Phenyl­eth­yl)-4-aza­tetra­cyclo­[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione, C19H19NO2, is substituted with a phenylethyl group that hosts C—H⋯π inter­actions in the crystal. 4-[2-(4-Hy­droxy­phen­yl)eth­yl]-4-aza­tetra­cyclo­[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione, C19H19NO3, bears a 4-hy­droxy­phenylethyl group on the imide ring and contains O—H⋯O and C—H⋯O hydrogen bonds.

1. Chemical context

Diels–Alder adduct a was first reported in 1939 (Fig. 1[link]; Kohler et al., 1939[Kohler, E. P., Tishler, M., Potter, H. & Thompson, H. (1939). J. Am. Chem. Soc. 61, 1057-1061.]), however its structure was not unambiguously determined until nearly 15 years later (Alder & Jacobs, 1953[Alder, K. & Jacobs, G. (1953). Chem. Ber. 86, 1528-1539.]). In 2020, Winchester and co-workers reported the crystal structure of a in this journal (Hulsman et al., 2020[Hulsman, A., Lorenzana, I., Schultz, T., Squires, B., Stenfors, B. A., Tolonen, M., Staples, R. J., Biros, S. M. & Winchester, W. R. (2020). Acta Cryst. E76, 1311-1315.]). Anhydride a can be easily modified to give the corresponding imides b by heating with a primary amine. Previous work has shown that this rigid, tricyclic structure can serve as a scaffold for the design of new compounds with anti­viral activity. One inter­esting imide derivative is compound c, Tecovirimat (Bailey et al., 2007[Bailey, T. R., Rippin, S. R., Opsitnick, E., Burns, C. J., Pevear, D. C., Collett, M. S., Rhodes, G., Tohan, S., Huggins, J. W., Baker, R. O., Kern, E. R., Keith, K. A., Dai, D., Yang, G., Hruby, D. & Jordan, R. (2007). J. Med. Chem. 50, 1442-1444.]; Hughes 2019[Hughes, D. L. (2019). Org. Process Res. Dev. 23, 1298-1307.]), which has been approved as a treatment for smallpox.

[Figure 1]
Figure 1
Structures of compounds ac related to this work.

Our inter­est in this chemistry is the use of this series of reactions in an upper-level undergraduate advanced organic chemistry laboratory course (Kurtz & Johnson, 1989[Kurtz, D. W. & Johnson, R. P. (1989). J. Chem. Educ. 66, 873-874.]). The tricyclic Diels–Alder adduct a is pedagogically useful for in-depth analysis by NMR spectroscopy, and the imides b are easily prepared and have turned out to be crystalline. In this context, we report here the syntheses, NMR characterizations and crystal structures of two of these imides, I, C19H19NO2, and II, C19H19NO3.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound I is shown in Fig. 2[link] along with its atom-labeling scheme. The imide ring (–N1–C1–C3–C4–C2–) is nearly planar with a Cremer–Pople τ value of 1.8 (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and is oriented endo relative to the bridgehead cyclo­propyl ring (–C9—C10—C11–). The carbonyl groups of the imide rings have bond lengths of 1.216 (2) and 1.214 (2) Å, with C—N bond lengths of 1.383 (2) and 1.390 (2) Å in the ring. The phenyl­ethyl substituent on the imide nitro­gen N1 is oriented in a nearly perfect anti conformation around the C12—C13 bond with an N1—C12—C13—C14 torsion angle of −177.61 (13)°. The N1—C12 bond is slightly longer than the N—C(O) bond at 1.458 (2) Å. The cyclo­propane ring has C—C bond lengths ranging from 1.507 (3) to 1.515 (2) Å with C—C—C bond angles ranging from 59.71 (12) to 60.29 (12)°. The cyclo­hexene ring system (-C3–C8–C7–C6–C5–C4-) has Cremer–Pople puckering parameters of 90.46 (13) and 299.31 (13)° for θ and φ, respectively, indicating that this ring is in a nearly perfect boat conformation. The alkene group (C6=C7) of this cyclo­hexene ring has a bond length of 1.329 (2) Å.

[Figure 2]
Figure 2
The mol­ecular structure of compound I along with the atom-labeling scheme. Displacement ellipsoids are shown at the 50% probability level using standard CPK colors. Hydrogen atoms are shown as spheres of arbitrary size.

The mol­ecular structure of compound II (Fig. 3[link]) is, unsurprisingly, very similar to that of compound I. The imide ring (–N1–C1–C3–C4–C2–) again is planar and oriented endo relative to the cyclo­propyl bridgehead carbon atoms C9 and C10. The key bond lengths and angles of this compound are nearly identical (within error) to those described above for compound I. The 2-ethyl-(4-hy­droxy­phen­yl) substituent bonded to the imide nitro­gen atom N1 again adopts an anti conformation around the ethyl C12—C13 bond with an N1—C12—C13—C14 torsion angle of −176.50 (10)°. The hydrogen atom of the phenol group (H3) is nearly coplanar with the atoms of the aromatic ring C14–C19 with a H3—O3—C17–C18 torsion angle of −1.4 (15)°.

[Figure 3]
Figure 3
The mol­ecular structure of compound II along with the atom-labeling scheme. Displacement ellipsoids are shown at the 50% probability level using standard CPK colors. Hydrogen atoms are shown as spheres of arbitrary size.

3. Supra­molecular features

The predominant inter­molecular forces present in the crystal of compound I are C—H⋯π inter­actions between C11(H11A) and C12(H12B) and the centroid (Cg) of aromatic ring C14–C19 (Fig. 4[link], Table 1[link]). Mol­ecules of compound I are arranged into supra­molecular sheets that lie in the ab plane.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

Cg denotes the centroid of the C14-C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11i—H11ACg 0.99 2.98 3.744 (2) 135
C12ii—H12BCg 0.99 2.92 3.4608 (19) 115
Symmetry codes: (i) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1].
[Figure 4]
Figure 4
Depiction of C—H⋯π inter­actions (blue dashed lines) present in the crystal of compound I using standard CPK colors and a ball-and-stick model. For clarity, only those hydrogen atoms that are involved in a C—H⋯π inter­action are shown. [Symmetry codes: (i) x − [{3\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ii) −x + 1, −y + 1, −z + 1; (iii) x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}].]

The crystal of compound II contains classical O—H⋯O and non-classical C—H⋯O hydrogen bonds (Sutor, 1962[Sutor, D. J. (1962). Nature, 195, 68-69.], 1963[Sutor, D. J. (1963). J. Chem. Soc. pp. 1105-1110.]; Steiner, 1996[Steiner, T. (1996). Crystallogr. Rev. 6, 1-51.]) with the carbonyl oxygen atoms O1 and O2 as acceptors (Table 2[link]). The classical O—H⋯O hydrogen bond has expectedly shorter H—A and DA distances than the C—H⋯O hydrogen bonds. The hydrogen bonds between atoms H3 and O1 form centrosymmetric dimers in the crystal of compound II. These dimers are linked into columns via the H13A⋯O2 inter­actions that run along the a-axis direction (Fig. 5[link]). These columns are then connected into a complex tri-periodic network via C—H⋯O inter­actions between H6 and O1.

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.92 (2) 1.98 (2) 2.8955 (13) 172 (2)
C13—H13A⋯O2ii 0.99 2.52 3.4396 (16) 154
C6—H6⋯O1iii 0.95 2.50 3.4473 (15) 176
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [x-1, y, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
A depiction of the hydrogen-bonded columns present in the crystal of compound II using a ball-and-stick model with standard CPK colors. Hydrogen bonds are shown with blue dashed lines; only those hydrogen atoms involved in a hydrogen bond are shown for clarity. [Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) x - 1, y, z.]

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.45, updates through June 2024, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures containing the tricyclic ring system shared by compounds I and II and substituted with carbonyl groups at the appropriate positions returned 16 hits. These hits include anhydride a (HOKRIK and HOKRIK01; White & Goh, 2014[White, J. M. & Goh, R. Y. W. (2014). CSD Communication (refcode HOKRIK). CCDC, Cambridge, England.]; Hulsman et al., 2020[Hulsman, A., Lorenzana, I., Schultz, T., Squires, B., Stenfors, B. A., Tolonen, M., Staples, R. J., Biros, S. M. & Winchester, W. R. (2020). Acta Cryst. E76, 1311-1315.]) along with two imides b where the substituents are a p-bromo­phenyl ring (NUTTEE; Hulsman et al., 2020[Hulsman, A., Lorenzana, I., Schultz, T., Squires, B., Stenfors, B. A., Tolonen, M., Staples, R. J., Biros, S. M. & Winchester, W. R. (2020). Acta Cryst. E76, 1311-1315.]) and an isoxazolidine ring (LULVUM; Efremova et al., 2020[Efremova, M. M., Molchanov, A. P., Novikov, A. S., Starova, G. L., Muryleva, A. A., Slita, A. V. & Zarubaev, V. V. (2020). Tetrahedron, 76, 131104.]). Also found in this subgroup of crystal structures is tecovirimat c (UPUDOZ; Zhou et al., 2010[Zhou, X.-B., Zie, Y.-D., Zhong, W., Fan, S.-Y. & Li, S. (2010). Chin. J. Struct. Chem. 29, 1043-1046.]) along with a derivative of c where the –CF3 group has been replaced with a –Br atom (SOKVIY; Bailey et al., 2007[Bailey, T. R., Rippin, S. R., Opsitnick, E., Burns, C. J., Pevear, D. C., Collett, M. S., Rhodes, G., Tohan, S., Huggins, J. W., Baker, R. O., Kern, E. R., Keith, K. A., Dai, D., Yang, G., Hruby, D. & Jordan, R. (2007). J. Med. Chem. 50, 1442-1444.]). An inter­esting hit is VONCEG (Menzek et al., 1991[Menzek, A., Krawiec, M., Watson, W. H. & Balci, M. (1991). J. Org. Chem. 56, 6755-6758.]), which bears a substituted cyclo­hepta­triene ring fused to the tricyclic core of anhydride a.

5. Synthesis and crystallization

Synthesis of imides I and II: Diels–Alder anhydride adduct a (50 mg, 0.26 mmol) was dissolved in 0.5 ml of xylenes in a small vial at ambient temperature. In a separate small vial at ambient temperature, an equimolar amount of either phenethyl­amine (for I) or tyramine (for II) was dissolved in 0.5 ml of xylenes and then transferred dropwise to the solution of the anhydride. The reaction mixture was heated to reflux with stirring for 30 minutes and then allowed to cool to room temperature. The stir bar was removed, and the reaction mixture was diluted with slow addition of 5 ml of hexa­nes. The product imide crystallized out of solution upon standing overnight.

I: 1H-NMR (400 MHz, chloro­form-d) δ 7.26 (m, 2H), 7.19 (m, 3H), 5.59 (m, 2H), 3.62 (m, 2H), 3.33 (m, 2H), 2.90 (m, 2H), 2.76 (t, J = 8.0 Hz, 2H), 1.05 (m, 2H), 0.24 (m, 1H), 0.19 (m, 1H); 13C-NMR (100 MHz, chloro­form-d) δ 178.5, 137.9, 129.0, 128.5, 127.6, 126.6, 45.3, 39.5, 33.6, 33.5, 9.9, 4.8.

II: 1H-NMR (400 MHz, DMSO-d6) δ 9.19 (s, 1H, –OH), 6.88 (d, J = 8.4 Hz, 2H), 6.60 (d, J = 8.4 Hz, 2H), 5.55 (m, 2H), 3.37 (m, 2H), 3.13 (m, 2H), 2.94 (m, 2H), 2.49 (m, 2H), 1.06 (m, 2H), 0.17 (m, 1H), −0.02 (m, 1H); 13C-NMR (100 MHz, DMSO-d6) δ 178.5, 156.3, 130.1, 128.5, 127.8, 115.6, 45.1, 40.6, 33.4, 32.6, 10.0, 4.9.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) for methyl­ene, methine, aromatic and alkene groups. In the structure of compound II, hydrogen atom H3 (which is part of the hy­droxy group) was located using electron-density difference maps and refined freely.

Table 3
Experimental details

  I II
Crystal data
Chemical formula C19H19NO2 C19H19NO3
Mr 293.35 309.35
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 6.1340 (2), 21.2794 (8), 11.4373 (3) 6.19482 (10), 20.3854 (3), 12.4574 (2)
β (°) 95.625 (3) 103.3334 (16)
V3) 1485.70 (8) 1530.76 (4)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.67 0.73
Crystal size (mm) 0.28 × 0.07 × 0.03 0.25 × 0.05 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.816, 1.000 0.831, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11251, 3094, 2481 24225, 3219, 2738
Rint 0.068 0.053
(sin θ/λ)max−1) 0.633 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.149, 1.05 0.037, 0.099, 1.03
No. of reflections 3094 3219
No. of parameters 199 212
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.32 0.24, −0.19
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Supporting information


Computing details top

4-(2-Phenylethyl)-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (I) top
Crystal data top
C19H19NO2F(000) = 624
Mr = 293.35Dx = 1.311 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 6.1340 (2) ÅCell parameters from 5833 reflections
b = 21.2794 (8) Åθ = 4.1–76.8°
c = 11.4373 (3) ŵ = 0.67 mm1
β = 95.625 (3)°T = 100 K
V = 1485.70 (8) Å3Irregular, colourless
Z = 40.28 × 0.07 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3094 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2481 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.068
Detector resolution: 10.0000 pixels mm-1θmax = 77.2°, θmin = 4.2°
ω scansh = 77
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2023)
k = 2626
Tmin = 0.816, Tmax = 1.000l = 1413
11251 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.6093P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3094 reflectionsΔρmax = 0.28 e Å3
199 parametersΔρmin = 0.32 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1032 (2)0.67788 (7)0.42612 (11)0.0319 (3)
O20.7405 (2)0.66698 (6)0.66530 (11)0.0330 (3)
N10.4237 (2)0.65809 (7)0.54138 (12)0.0245 (3)
C10.2421 (3)0.69384 (8)0.50360 (14)0.0241 (4)
C20.5649 (3)0.68831 (8)0.62579 (15)0.0256 (4)
C30.2536 (3)0.75512 (8)0.56981 (14)0.0236 (4)
H30.1238020.7597930.6156130.028*
C40.4672 (3)0.75100 (8)0.65382 (14)0.0231 (4)
H40.4334520.7522500.7375750.028*
C50.6221 (3)0.80617 (8)0.62777 (15)0.0246 (4)
H50.7634790.8042140.6791970.030*
C60.6582 (3)0.80049 (9)0.49988 (15)0.0261 (4)
H60.7994030.7951150.4738820.031*
C70.4770 (3)0.80360 (8)0.42621 (15)0.0243 (4)
H70.4780060.8005930.3433950.029*
C80.2696 (3)0.81229 (8)0.48505 (15)0.0236 (4)
H80.1381890.8150290.4262110.028*
C90.2871 (3)0.86951 (8)0.56640 (15)0.0273 (4)
H90.1501560.8829460.6002050.033*
C100.4937 (3)0.86586 (8)0.65038 (15)0.0269 (4)
H100.4802180.8771170.7342590.032*
C110.4636 (3)0.91838 (9)0.56136 (16)0.0306 (4)
H11A0.4343270.9610570.5905450.037*
H11B0.5528110.9171140.4938040.037*
C120.4735 (3)0.59815 (8)0.48821 (15)0.0266 (4)
H12A0.3354050.5750700.4662260.032*
H12B0.5645500.5724400.5462950.032*
C130.5946 (3)0.60743 (9)0.37955 (16)0.0281 (4)
H13A0.5064930.6345530.3226420.034*
H13B0.7359190.6288140.4019420.034*
C140.6365 (3)0.54518 (8)0.32266 (14)0.0243 (4)
C150.8332 (3)0.51322 (9)0.34909 (16)0.0307 (4)
H150.9453590.5315130.4014660.037*
C160.8672 (3)0.45473 (10)0.29953 (19)0.0388 (5)
H161.0018620.4332290.3182700.047*
C170.7048 (4)0.42793 (10)0.22293 (19)0.0410 (5)
H170.7279290.3879990.1891220.049*
C180.5090 (4)0.45915 (10)0.19556 (17)0.0381 (5)
H180.3976710.4408000.1427840.046*
C190.4755 (3)0.51726 (9)0.24523 (16)0.0305 (4)
H190.3403230.5384530.2262010.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0239 (6)0.0413 (8)0.0283 (7)0.0053 (5)0.0082 (5)0.0036 (5)
O20.0311 (7)0.0350 (7)0.0298 (7)0.0080 (5)0.0131 (5)0.0025 (5)
N10.0244 (7)0.0273 (8)0.0207 (7)0.0002 (5)0.0035 (5)0.0007 (5)
C10.0200 (7)0.0305 (9)0.0212 (8)0.0020 (6)0.0005 (6)0.0025 (6)
C20.0266 (8)0.0297 (9)0.0189 (7)0.0011 (6)0.0061 (6)0.0003 (6)
C30.0183 (7)0.0309 (9)0.0208 (7)0.0002 (6)0.0029 (6)0.0008 (6)
C40.0222 (8)0.0279 (9)0.0180 (7)0.0015 (6)0.0043 (6)0.0000 (6)
C50.0193 (7)0.0299 (9)0.0227 (8)0.0011 (6)0.0078 (6)0.0010 (6)
C60.0201 (8)0.0313 (9)0.0266 (8)0.0003 (6)0.0002 (6)0.0007 (7)
C70.0238 (8)0.0294 (9)0.0194 (7)0.0011 (6)0.0002 (6)0.0010 (6)
C80.0177 (7)0.0295 (9)0.0223 (8)0.0012 (6)0.0043 (6)0.0018 (6)
C90.0255 (8)0.0305 (9)0.0251 (8)0.0042 (7)0.0021 (7)0.0009 (7)
C100.0276 (8)0.0291 (9)0.0226 (8)0.0004 (7)0.0046 (7)0.0021 (6)
C110.0347 (9)0.0272 (9)0.0284 (9)0.0006 (7)0.0040 (7)0.0001 (7)
C120.0294 (8)0.0267 (8)0.0226 (8)0.0009 (7)0.0029 (7)0.0011 (6)
C130.0298 (8)0.0282 (9)0.0261 (8)0.0021 (7)0.0008 (7)0.0004 (7)
C140.0243 (8)0.0278 (9)0.0206 (7)0.0008 (6)0.0005 (6)0.0021 (6)
C150.0242 (8)0.0378 (10)0.0296 (9)0.0004 (7)0.0009 (7)0.0070 (7)
C160.0360 (10)0.0377 (11)0.0448 (11)0.0111 (8)0.0145 (8)0.0110 (9)
C170.0576 (13)0.0301 (10)0.0381 (10)0.0008 (9)0.0196 (9)0.0033 (8)
C180.0474 (11)0.0378 (11)0.0284 (9)0.0086 (9)0.0001 (8)0.0063 (8)
C190.0286 (9)0.0348 (10)0.0266 (8)0.0008 (7)0.0043 (7)0.0007 (7)
Geometric parameters (Å, º) top
O1—C11.216 (2)C9—C111.507 (3)
O2—C21.214 (2)C10—H101.0000
N1—C11.383 (2)C10—C111.511 (2)
N1—C21.390 (2)C11—H11A0.9900
N1—C121.458 (2)C11—H11B0.9900
C1—C31.506 (2)C12—H12A0.9900
C2—C41.510 (2)C12—H12B0.9900
C3—H31.0000C12—C131.522 (3)
C3—C41.550 (2)C13—H13A0.9900
C3—C81.565 (2)C13—H13B0.9900
C4—H41.0000C13—C141.509 (3)
C4—C51.557 (2)C14—C151.392 (2)
C5—H51.0000C14—C191.393 (2)
C5—C61.506 (2)C15—H150.9500
C5—C101.530 (2)C15—C161.392 (3)
C6—H60.9500C16—H160.9500
C6—C71.329 (2)C16—C171.384 (3)
C7—H70.9500C17—H170.9500
C7—C81.507 (2)C17—C181.381 (3)
C8—H81.0000C18—H180.9500
C8—C91.530 (2)C18—C191.385 (3)
C9—H91.0000C19—H190.9500
C9—C101.515 (2)
C1—N1—C2113.00 (15)C11—C9—C1060.00 (11)
C1—N1—C12123.10 (14)C5—C10—H10117.0
C2—N1—C12123.54 (14)C9—C10—C5110.36 (14)
O1—C1—N1124.01 (17)C9—C10—H10117.0
O1—C1—C3127.11 (16)C11—C10—C5122.08 (15)
N1—C1—C3108.82 (13)C11—C10—C959.71 (11)
O2—C2—N1123.73 (16)C11—C10—H10117.0
O2—C2—C4127.40 (15)C9—C11—C1060.29 (12)
N1—C2—C4108.83 (14)C9—C11—H11A117.7
C1—C3—H3110.4C9—C11—H11B117.7
C1—C3—C4104.95 (13)C10—C11—H11A117.7
C1—C3—C8111.37 (14)C10—C11—H11B117.7
C4—C3—H3110.4H11A—C11—H11B114.9
C4—C3—C8109.12 (13)N1—C12—H12A109.3
C8—C3—H3110.4N1—C12—H12B109.3
C2—C4—C3104.33 (13)N1—C12—C13111.47 (15)
C2—C4—H4110.5H12A—C12—H12B108.0
C2—C4—C5111.29 (14)C13—C12—H12A109.3
C3—C4—H4110.5C13—C12—H12B109.3
C3—C4—C5109.47 (13)C12—C13—H13A109.5
C5—C4—H4110.5C12—C13—H13B109.5
C4—C5—H5111.5H13A—C13—H13B108.1
C6—C5—C4106.02 (13)C14—C13—C12110.83 (15)
C6—C5—H5111.5C14—C13—H13A109.5
C6—C5—C10110.98 (14)C14—C13—H13B109.5
C10—C5—C4105.06 (14)C15—C14—C13121.05 (16)
C10—C5—H5111.5C15—C14—C19118.36 (17)
C5—C6—H6122.6C19—C14—C13120.55 (16)
C7—C6—C5114.74 (15)C14—C15—H15119.7
C7—C6—H6122.6C16—C15—C14120.64 (17)
C6—C7—H7122.8C16—C15—H15119.7
C6—C7—C8114.39 (15)C15—C16—H16120.0
C8—C7—H7122.8C17—C16—C15119.94 (18)
C3—C8—H8111.5C17—C16—H16120.0
C7—C8—C3106.75 (13)C16—C17—H17120.0
C7—C8—H8111.5C18—C17—C16120.10 (19)
C7—C8—C9110.95 (14)C18—C17—H17120.0
C9—C8—C3104.29 (14)C17—C18—H18120.1
C9—C8—H8111.5C17—C18—C19119.83 (18)
C8—C9—H9116.8C19—C18—H18120.1
C10—C9—C8110.42 (14)C14—C19—H19119.4
C10—C9—H9116.8C18—C19—C14121.12 (17)
C11—C9—C8122.26 (16)C18—C19—H19119.4
C11—C9—H9116.8
O1—C1—C3—C4177.86 (17)C5—C6—C7—C80.1 (2)
O1—C1—C3—C859.9 (2)C5—C10—C11—C996.28 (17)
O2—C2—C4—C3174.98 (18)C6—C5—C10—C951.69 (19)
O2—C2—C4—C557.0 (2)C6—C5—C10—C1114.6 (2)
N1—C1—C3—C40.50 (18)C6—C7—C8—C358.86 (19)
N1—C1—C3—C8117.44 (15)C6—C7—C8—C954.2 (2)
N1—C2—C4—C32.65 (18)C7—C8—C9—C1052.07 (19)
N1—C2—C4—C5120.61 (15)C7—C8—C9—C1114.6 (2)
N1—C12—C13—C14177.61 (13)C8—C3—C4—C2117.59 (15)
C1—N1—C2—O2175.20 (17)C8—C3—C4—C51.61 (18)
C1—N1—C2—C42.5 (2)C8—C9—C10—C50.2 (2)
C1—N1—C12—C1383.9 (2)C8—C9—C10—C11116.27 (17)
C1—C3—C4—C21.86 (17)C8—C9—C11—C1096.44 (17)
C1—C3—C4—C5121.06 (15)C10—C5—C6—C754.2 (2)
C1—C3—C8—C760.75 (16)C11—C9—C10—C5116.06 (17)
C1—C3—C8—C9178.27 (13)C12—N1—C1—O12.8 (3)
C2—N1—C1—O1176.20 (17)C12—N1—C1—C3174.62 (15)
C2—N1—C1—C31.3 (2)C12—N1—C2—O21.9 (3)
C2—N1—C12—C1388.81 (19)C12—N1—C2—C4175.86 (15)
C2—C4—C5—C657.84 (17)C12—C13—C14—C1594.16 (19)
C2—C4—C5—C10175.42 (13)C12—C13—C14—C1983.6 (2)
C3—C4—C5—C656.97 (17)C13—C14—C15—C16177.59 (17)
C3—C4—C5—C1060.61 (16)C13—C14—C19—C18177.77 (18)
C3—C8—C9—C1062.51 (17)C14—C15—C16—C170.2 (3)
C3—C8—C9—C11129.18 (16)C15—C14—C19—C180.1 (3)
C4—C3—C8—C754.64 (17)C15—C16—C17—C180.0 (3)
C4—C3—C8—C962.88 (16)C16—C17—C18—C190.2 (3)
C4—C5—C6—C759.37 (19)C17—C18—C19—C140.1 (3)
C4—C5—C10—C962.47 (17)C19—C14—C15—C160.2 (3)
C4—C5—C10—C11128.74 (16)
Hydrogen-bond geometry (Å, º) top
Cg denotes the centroid of the C14-C19 ring.
D—H···AD—HH···AD···AD—H···A
C11i—H11A···Cg0.992.983.744 (2)135
C12ii—H12B···Cg0.992.923.4608 (19)115
Symmetry codes: (i) x3/2, y+1/2, z1/2; (ii) x+1, y+1, z+1.
4-[2-(4-Hydroxyphenyl)ethyl]-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-ene-3,5-dione (II) top
Crystal data top
C19H19NO3F(000) = 656
Mr = 309.35Dx = 1.342 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 6.19482 (10) ÅCell parameters from 11000 reflections
b = 20.3854 (3) Åθ = 4.2–77.3°
c = 12.4574 (2) ŵ = 0.73 mm1
β = 103.3334 (16)°T = 100 K
V = 1530.76 (4) Å3Needle, colourless
Z = 40.25 × 0.05 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3219 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2738 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.053
Detector resolution: 10.0000 pixels mm-1θmax = 77.7°, θmin = 4.2°
ω scansh = 77
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2023)
k = 2522
Tmin = 0.831, Tmax = 1.000l = 1515
24225 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.4204P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3219 reflectionsΔρmax = 0.24 e Å3
212 parametersΔρmin = 0.19 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22461 (14)0.32415 (4)0.34473 (7)0.0282 (2)
O20.92166 (14)0.32894 (5)0.56437 (8)0.0312 (2)
O30.22408 (16)0.63973 (4)0.76502 (7)0.0283 (2)
N10.56517 (16)0.33992 (5)0.46177 (8)0.0233 (2)
C10.4153 (2)0.30627 (6)0.38185 (9)0.0226 (2)
C20.7694 (2)0.30848 (6)0.49296 (10)0.0235 (3)
C30.52553 (19)0.24518 (6)0.35103 (9)0.0220 (2)
H3A0.5321430.2468990.2716280.026*
C40.76183 (19)0.24663 (6)0.42573 (10)0.0218 (2)
H40.8745530.2486480.3798540.026*
C50.79950 (19)0.18446 (6)0.50036 (10)0.0226 (3)
H50.9487410.1849600.5525290.027*
C60.6156 (2)0.18277 (6)0.56081 (10)0.0238 (3)
H60.6424290.1830690.6390310.029*
C70.4127 (2)0.18083 (6)0.49618 (10)0.0253 (3)
H70.2828830.1791310.5244350.030*
C80.4050 (2)0.18152 (6)0.37461 (10)0.0244 (3)
H80.2490380.1797310.3295270.029*
C90.5462 (2)0.12572 (6)0.34451 (10)0.0261 (3)
H90.5348910.1176430.2642260.031*
C100.7766 (2)0.12710 (6)0.41887 (10)0.0252 (3)
H100.9031120.1196950.3828930.030*
C110.6262 (2)0.06955 (6)0.42227 (11)0.0303 (3)
H11A0.5620290.0649600.4876800.036*
H11B0.6615040.0276210.3900320.036*
C120.5151 (2)0.40098 (6)0.51242 (10)0.0246 (3)
H12A0.3906000.4233310.4614380.030*
H12B0.6460430.4302320.5237760.030*
C130.4537 (2)0.38991 (6)0.62283 (10)0.0246 (3)
H13A0.3277910.3588460.6129910.030*
H13B0.5813090.3704800.6760670.030*
C140.39024 (19)0.45416 (6)0.66741 (9)0.0218 (2)
C150.5441 (2)0.49292 (6)0.73957 (10)0.0252 (3)
H150.6909450.4771360.7662750.030*
C160.4865 (2)0.55417 (6)0.77310 (10)0.0257 (3)
H160.5931830.5797720.8226880.031*
C170.2723 (2)0.57793 (6)0.73392 (9)0.0231 (3)
C180.11533 (19)0.53920 (6)0.66448 (10)0.0242 (3)
H180.0325400.5545380.6393920.029*
C190.17502 (19)0.47814 (6)0.63190 (10)0.0235 (3)
H190.0666540.4520240.5842570.028*
H30.077 (4)0.6475 (12)0.7333 (18)0.068 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0251 (4)0.0331 (5)0.0243 (4)0.0062 (4)0.0013 (3)0.0008 (3)
O20.0250 (5)0.0298 (5)0.0357 (5)0.0029 (4)0.0006 (4)0.0067 (4)
O30.0302 (5)0.0249 (5)0.0298 (5)0.0027 (4)0.0071 (4)0.0037 (3)
N10.0247 (5)0.0229 (5)0.0217 (5)0.0018 (4)0.0041 (4)0.0009 (4)
C10.0242 (6)0.0260 (6)0.0175 (5)0.0013 (5)0.0045 (4)0.0021 (4)
C20.0223 (6)0.0239 (6)0.0244 (6)0.0012 (4)0.0058 (4)0.0003 (5)
C30.0224 (6)0.0249 (6)0.0183 (5)0.0011 (4)0.0036 (4)0.0015 (4)
C40.0198 (5)0.0243 (6)0.0221 (6)0.0004 (4)0.0062 (4)0.0008 (4)
C50.0196 (5)0.0247 (6)0.0229 (6)0.0009 (4)0.0037 (4)0.0001 (4)
C60.0255 (6)0.0250 (6)0.0213 (6)0.0004 (5)0.0062 (5)0.0010 (4)
C70.0226 (6)0.0268 (6)0.0280 (6)0.0005 (5)0.0091 (5)0.0004 (5)
C80.0202 (6)0.0271 (6)0.0244 (6)0.0016 (5)0.0020 (4)0.0030 (5)
C90.0266 (6)0.0258 (6)0.0248 (6)0.0012 (5)0.0039 (5)0.0044 (5)
C100.0242 (6)0.0242 (6)0.0276 (6)0.0010 (5)0.0068 (5)0.0013 (5)
C110.0333 (7)0.0236 (6)0.0330 (7)0.0012 (5)0.0059 (5)0.0020 (5)
C120.0294 (6)0.0207 (6)0.0237 (6)0.0040 (5)0.0060 (5)0.0003 (4)
C130.0272 (6)0.0226 (6)0.0237 (6)0.0018 (5)0.0054 (5)0.0016 (5)
C140.0242 (6)0.0224 (6)0.0194 (5)0.0009 (4)0.0059 (4)0.0023 (4)
C150.0215 (6)0.0279 (6)0.0248 (6)0.0013 (5)0.0027 (4)0.0007 (5)
C160.0241 (6)0.0269 (6)0.0242 (6)0.0028 (5)0.0017 (4)0.0025 (5)
C170.0272 (6)0.0221 (6)0.0213 (5)0.0004 (5)0.0080 (5)0.0001 (4)
C180.0211 (5)0.0264 (6)0.0244 (6)0.0012 (5)0.0041 (4)0.0016 (5)
C190.0233 (6)0.0248 (6)0.0216 (5)0.0018 (4)0.0033 (4)0.0001 (4)
Geometric parameters (Å, º) top
O1—C11.2208 (15)C9—H91.0000
O2—C21.2115 (15)C9—C101.5119 (17)
O3—C171.3713 (15)C9—C111.5079 (18)
O3—H30.92 (2)C10—H101.0000
N1—C11.3774 (15)C10—C111.5047 (18)
N1—C21.3916 (15)C11—H11A0.9900
N1—C121.4607 (15)C11—H11B0.9900
C1—C31.5118 (16)C12—H12A0.9900
C2—C41.5083 (16)C12—H12B0.9900
C3—H3A1.0000C12—C131.5263 (17)
C3—C41.5432 (16)C13—H13A0.9900
C3—C81.5585 (17)C13—H13B0.9900
C4—H41.0000C13—C141.5096 (16)
C4—C51.5572 (16)C14—C151.3947 (17)
C5—H51.0000C14—C191.3929 (17)
C5—C61.5041 (16)C15—H150.9500
C5—C101.5336 (17)C15—C161.3890 (17)
C6—H60.9500C16—H160.9500
C6—C71.3275 (17)C16—C171.3907 (17)
C7—H70.9500C17—C181.3891 (17)
C7—C81.5042 (17)C18—H180.9500
C8—H81.0000C18—C191.3857 (17)
C8—C91.5333 (17)C19—H190.9500
C17—O3—H3107.2 (15)C11—C9—H9117.0
C1—N1—C2112.97 (10)C11—C9—C1059.77 (8)
C1—N1—C12124.18 (10)C5—C10—H10116.7
C2—N1—C12122.81 (10)C9—C10—C5110.48 (10)
O1—C1—N1123.86 (11)C9—C10—H10116.7
O1—C1—C3127.16 (11)C11—C10—C5122.63 (10)
N1—C1—C3108.98 (10)C11—C10—C959.98 (8)
O2—C2—N1123.37 (11)C11—C10—H10116.7
O2—C2—C4127.95 (11)C9—C11—H11A117.7
N1—C2—C4108.67 (10)C9—C11—H11B117.7
C1—C3—H3A110.3C10—C11—C960.25 (8)
C1—C3—C4104.61 (9)C10—C11—H11A117.7
C1—C3—C8111.96 (10)C10—C11—H11B117.7
C4—C3—H3A110.3H11A—C11—H11B114.9
C4—C3—C8109.35 (9)N1—C12—H12A109.1
C8—C3—H3A110.3N1—C12—H12B109.1
C2—C4—C3104.76 (9)N1—C12—C13112.65 (10)
C2—C4—H4110.3H12A—C12—H12B107.8
C2—C4—C5111.57 (10)C13—C12—H12A109.1
C3—C4—H4110.3C13—C12—H12B109.1
C3—C4—C5109.58 (9)C12—C13—H13A109.6
C5—C4—H4110.3C12—C13—H13B109.6
C4—C5—H5111.6H13A—C13—H13B108.2
C6—C5—C4106.92 (9)C14—C13—C12110.09 (10)
C6—C5—H5111.6C14—C13—H13A109.6
C6—C5—C10110.41 (10)C14—C13—H13B109.6
C10—C5—C4104.31 (9)C15—C14—C13122.11 (11)
C10—C5—H5111.6C19—C14—C13119.93 (11)
C5—C6—H6122.7C19—C14—C15117.88 (11)
C7—C6—C5114.68 (11)C14—C15—H15119.4
C7—C6—H6122.7C16—C15—C14121.23 (11)
C6—C7—H7122.7C16—C15—H15119.4
C6—C7—C8114.59 (11)C15—C16—H16120.1
C8—C7—H7122.7C15—C16—C17119.86 (11)
C3—C8—H8111.6C17—C16—H16120.1
C7—C8—C3106.99 (10)O3—C17—C16118.25 (11)
C7—C8—H8111.6O3—C17—C18122.08 (11)
C7—C8—C9110.59 (10)C18—C17—C16119.66 (11)
C9—C8—C3104.27 (10)C17—C18—H18120.1
C9—C8—H8111.6C19—C18—C17119.81 (11)
C8—C9—H9117.0C19—C18—H18120.1
C10—C9—C8110.33 (10)C14—C19—H19119.2
C10—C9—H9117.0C18—C19—C14121.51 (11)
C11—C9—C8121.86 (11)C18—C19—H19119.2
O1—C1—C3—C4178.30 (11)C5—C6—C7—C80.72 (16)
O1—C1—C3—C859.98 (15)C5—C10—C11—C996.31 (12)
O2—C2—C4—C3178.33 (12)C6—C5—C10—C952.63 (13)
O2—C2—C4—C559.86 (16)C6—C5—C10—C1114.10 (16)
O3—C17—C18—C19177.36 (10)C6—C7—C8—C358.08 (14)
N1—C1—C3—C40.97 (12)C6—C7—C8—C954.89 (14)
N1—C1—C3—C8119.29 (10)C7—C8—C9—C1051.60 (13)
N1—C2—C4—C30.39 (12)C7—C8—C9—C1114.71 (16)
N1—C2—C4—C5118.87 (10)C8—C3—C4—C2120.42 (10)
N1—C12—C13—C14176.50 (10)C8—C3—C4—C50.61 (12)
C1—N1—C2—O2177.71 (11)C8—C9—C10—C50.86 (14)
C1—N1—C2—C41.08 (13)C8—C9—C10—C11115.82 (12)
C1—N1—C12—C1397.13 (13)C8—C9—C11—C1096.40 (12)
C1—C3—C4—C20.34 (12)C10—C5—C6—C754.04 (14)
C1—C3—C4—C5119.47 (10)C11—C9—C10—C5116.68 (11)
C1—C3—C8—C759.82 (12)C12—N1—C1—O10.18 (18)
C1—C3—C8—C9177.03 (9)C12—N1—C1—C3179.12 (10)
C2—N1—C1—O1177.99 (11)C12—N1—C2—O20.13 (19)
C2—N1—C1—C31.31 (13)C12—N1—C2—C4178.92 (10)
C2—N1—C12—C1380.46 (14)C12—C13—C14—C1592.81 (13)
C2—C4—C5—C660.69 (12)C12—C13—C14—C1983.66 (13)
C2—C4—C5—C10177.68 (9)C13—C14—C15—C16175.06 (11)
C3—C4—C5—C654.85 (12)C13—C14—C19—C18175.00 (11)
C3—C4—C5—C1062.13 (11)C14—C15—C16—C170.43 (18)
C3—C8—C9—C1063.09 (12)C15—C14—C19—C181.62 (17)
C3—C8—C9—C11129.40 (12)C15—C16—C17—O3177.24 (10)
C4—C3—C8—C755.64 (12)C15—C16—C17—C182.23 (18)
C4—C3—C8—C961.57 (11)C16—C17—C18—C192.10 (18)
C4—C5—C6—C758.84 (14)C17—C18—C19—C140.15 (18)
C4—C5—C10—C961.91 (12)C19—C14—C15—C161.48 (18)
C4—C5—C10—C11128.65 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.92 (2)1.98 (2)2.8955 (13)172 (2)
C13—H13A···O2ii0.992.523.4396 (16)154
C6—H6···O1iii0.952.503.4473 (15)176
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to GVSU's Weldon Fund for financial support of this work. We thank Dr Randy Winchester (GVSU) for sharing these experiments with the Fall 2023 CHM 480 course and Dr Matt Hart (GVSU) for use of the amine starting materials.

References

First citationAlder, K. & Jacobs, G. (1953). Chem. Ber. 86, 1528–1539.  CrossRef CAS Google Scholar
First citationBailey, T. R., Rippin, S. R., Opsitnick, E., Burns, C. J., Pevear, D. C., Collett, M. S., Rhodes, G., Tohan, S., Huggins, J. W., Baker, R. O., Kern, E. R., Keith, K. A., Dai, D., Yang, G., Hruby, D. & Jordan, R. (2007). J. Med. Chem. 50, 1442–1444.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEfremova, M. M., Molchanov, A. P., Novikov, A. S., Starova, G. L., Muryleva, A. A., Slita, A. V. & Zarubaev, V. V. (2020). Tetrahedron, 76, 131104.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHughes, D. L. (2019). Org. Process Res. Dev. 23, 1298–1307.  Web of Science CrossRef CAS Google Scholar
First citationHulsman, A., Lorenzana, I., Schultz, T., Squires, B., Stenfors, B. A., Tolonen, M., Staples, R. J., Biros, S. M. & Winchester, W. R. (2020). Acta Cryst. E76, 1311–1315.  CrossRef IUCr Journals Google Scholar
First citationKohler, E. P., Tishler, M., Potter, H. & Thompson, H. (1939). J. Am. Chem. Soc. 61, 1057–1061.  CrossRef CAS Google Scholar
First citationKurtz, D. W. & Johnson, R. P. (1989). J. Chem. Educ. 66, 873–874.  CrossRef CAS Google Scholar
First citationMenzek, A., Krawiec, M., Watson, W. H. & Balci, M. (1991). J. Org. Chem. 56, 6755–6758.  CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.  Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (1996). Crystallogr. Rev. 6, 1–51.  CrossRef CAS Google Scholar
First citationSutor, D. J. (1962). Nature, 195, 68–69.  CAS Google Scholar
First citationSutor, D. J. (1963). J. Chem. Soc. pp. 1105–1110.  CrossRef Web of Science Google Scholar
First citationWhite, J. M. & Goh, R. Y. W. (2014). CSD Communication (refcode HOKRIK). CCDC, Cambridge, England.  Google Scholar
First citationZhou, X.-B., Zie, Y.-D., Zhong, W., Fan, S.-Y. & Li, S. (2010). Chin. J. Struct. Chem. 29, 1043–1046.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds