research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of six miscellaneous products arising from the oxidation of precursors R1R2R3PEAuX (R = tert-butyl or iso­propyl; E = S or Se; X = Cl, Br or I)

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 20 September 2024; accepted 7 November 2024; online 28 November 2024)

Phosphane chalcogenides and their metal complexes, Part 10. Part 9: Upmann et al. (2024d).

Compound 1, (disulfane-1,2-di­yl)bis­(tert-butyl­diiso­propyl­phospho­nium) bis­[tetra­chlorido­aurate(III)], (tBuiPr2P)2S2·[AuCl4]2, contains the first structurally characterized dication of the form {(R3P)2E}22+. The ions are linked by S⋯Cl contacts and C—Hmethine⋯Cl hydrogen bonds to form ribbons of residues parallel to the a axis. Compound 2 is bis­(di-tert-butyl­iso­propyl­phosphine sulfide-κS)gold(I) triiodide/di­iodido­aurate(I)(0.905/0.095), [Au(C11H25PS)2][AuI2]0.095(I3)0.905, or [(tBu2iPrPS)2Au]I3 with 9.5% of the triiodide replaced by di­iodido­aurate(I). Chains of alternating anions and cations parallel to [110] are formed by two S⋯I contacts. Compound 3 is bis­(tert-butyl­diiso­propyl­phosphine sulfide-κS)gold(I) triiodide/di­iodido­aurate(I)(0.875/0.125), [Au(C10H23PS)2][AuI2]0.125(I3)0.875 or [(tBuiPr2PS)2Au]I3 with 12.5% of the triiodide replaced by di­iodo­aurate(I). Chains parallel to [101] are formed by two S⋯I contacts. Compound 4, bis­(di-tert-butyl­iso­propyl­phosphine sulfide-κS)gold(I) hepta­iodide, [Au(C11H25PS)2]I7 or [(tBu2iPrPS)2Au]I3·2I2, is formally the bis-diiodine adduct of 3, uncontaminated by di­iodido­aurate(I). The cations and anions display crystallographic twofold symmetry. The unbranched I7 groups, I—I⋯I—I—I⋯I—I, are bent at the third and fifth atoms. The anions are linked by two S⋯I contacts to form a layer structure parallel to the bc plane. In all three structures 24, there are also weak C—Hmethine⋯I contacts. Compound 5, di­bromido­(di-tert-butyl­dithio­phosphato-κ2S,S′)gold(III), [AuBr2(C8H18PS2)] or [AuBr2(tBu2PS2)], contains a four-membered chelate ring. It crystallizes with imposed mirror symmetry. An S⋯Br contact links the mol­ecules to form corrugated layers parallel to the bc plane. In compound 6, di-tert-but­yl{[di-tert-but­yl(hy­droxy)phosphan­yl]diselan­yl}phosphine oxide tetra­bromido­aurate(III), (C16H37O2P2Se2)[AuBr4] or [(tBu2OPSe)2H][AuBr4], the cation has a central diselenide unit, and also displays an intra­cationic hydrogen bond O—H⋯O. Two Se⋯Br contacts link the residues to form zigzag chains parallel to [201]. The problem of determining whether an EX contact (E = chalcogen, X = halogen) represents a halogen bond or a chalcogen bond is discussed.

1. Chemical context

In parts 6–8 of this series, we presented the structures of gold(I) complexes [(R1R2R3PE)AuX] (Upmann et al., 2024a[Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34-49.]), gold(III) complexes [(R1R2R3PE)AuX3] (Upmann et al., 2024b[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024b). Acta Cryst. E80, 355-369.]) and the further oxidized phospho­nium gold(III) deriv­atives (R1R2R3PEX)+ [AuX4] (Upmann et al., 2024c[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024c). Acta Cryst. E80, 506-521.]), where the R groups are tert-butyl or isopropyl, the chalcogens E are S or Se, and the halogens X are Cl or Br. The iodido-AuI derivatives are not oxidizable in this way. The two steps [(R1R2R3PE)AuX] → [(R1R2R3PE)AuX3] → (R1R2R3PEX)+[AuX4] each correspond to the addition of two halogen atoms per gold atom. Mixed-valence compounds of the form [(R1R2R3PE)2Au]+[AuX4] were also isolated (Part 9; Up­mann et al., 2024d[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024d). Acta Cryst. E80, 1087-1096.]), corresponding to the addition of one halogen atom per gold atom of the AuI precursors. Some syntheses, however, failed completely, some led to ‘wrong’ products or decomposition products and some formed mixtures that were difficult to separate. Several of these miscellaneous products, some obtained only in low yields and/or as mixtures, were however characterized by X-ray structure analysis, and the structures of six of these are presented here.

[Scheme 1]

2. Structural commentary

All compounds crystallized solvent-free. Selected mol­ecular dimensions are given in Tables 1[link]–6[link][link][link][link][link]. The structures are shown in Figs. 1[link]–6[link][link][link][link][link], with ellipsoids at the 50% level. The short contacts shown in these figures are discussed in Supra­molecular features. For simplicity we write the P—E bonds in the text as single bonds, although they are often written as double bonds P=E in older literature (and indeed in the scheme). Primes (′) are used to denote generalized or previously defined symmetry operators.

Table 1
Selected geometric parameters (Å, °) for 1[link]

S1—P1 2.095 (2) S2—P2 2.097 (2)
S1—S2 2.121 (2)    
       
P1—S1—S2 99.30 (8) P2—S2—S1 100.59 (8)
       
P1—S1—S2—P2 165.51 (8) S1—S2—P2—C5 −38.6 (2)
S2—S1—P1—C2 39.1 (2) S1—S2—P2—C6 78.7 (2)
S2—S1—P1—C3 −78.5 (2) S1—S2—P2—C4 −162.7 (2)
S2—S1—P1—C1 162.1 (2)    

Table 2
Selected geometric parameters (Å, °) for 2[link]

Au1—S1 2.2928 (6) P2—S2 2.0444 (8)
Au1—S2 2.2990 (7) I1—I2 2.9238 (11)
P1—S1 2.0350 (8) I2—I3 2.9213 (11)
       
S1—Au1—S2 177.53 (2) P2—S2—Au1 104.09 (3)
P1—S1—Au1 104.94 (3) I3—I2—I1 178.44 (5)
       
C3—P1—S1—Au1 −51.13 (9) C6—P2—S2—Au1 36.45 (9)
C1—P1—S1—Au1 −171.42 (8) C4—P2—S2—Au1 157.30 (9)
C2—P1—S1—Au1 67.11 (9) C5—P2—S2—Au1 −80.90 (9)

Table 3
Selected geometric parameters (Å, °) for 3[link]

Au1—S1 2.2920 (9) S2—P2 2.0308 (13)
Au1—S2 2.2924 (9) I1—I2 2.8755 (7)
S1—P1 2.0251 (13) I2—I3 2.9347 (17)
       
S1—Au1—S2 177.07 (4) P2—S2—Au1 104.82 (5)
P1—S1—Au1 101.43 (4) I1—I2—I3 178.46 (4)
       
Au1—S1—P1—C2 −51.38 (13) Au1—S2—P2—C5 42.46 (13)
Au1—S1—P1—C3 66.44 (13) Au1—S2—P2—C6 −73.81 (13)
Au1—S1—P1—C1 −175.01 (13) Au1—S2—P2—C4 166.94 (12)

Table 4
Selected geometric parameters (Å, °) for 4[link]

Au1—S1 2.2818 (6) I2—I3 3.2674 (2)
P1—S1 2.0441 (9) I3—I4 2.7501 (3)
I1—I2 2.9204 (2)    
       
S1—Au1—S1i 176.40 (3) I1—I2—I3 112.048 (7)
P1—S1—Au1 107.14 (3) I4—I3—I2 173.271 (9)
I2ii—I1—I2 177.495 (11)    
       
C3—P1—S1—Au1 −58.76 (10) C1—P1—S1—Au1 59.64 (9)
C2—P1—S1—Au1 −178.28 (9)    
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z].

Table 5
Selected geometric parameters (Å, °) for 5[link]

Au1—S1 2.3336 (11) P1—S1 2.0594 (15)
Au1—Br1 2.4357 (5)    
       
S1—Au1—S1i 84.71 (5) Br1i—Au1—Br1 93.53 (2)
S1—Au1—Br1i 175.54 (3) S1i—P1—S1 99.53 (9)
S1—Au1—Br1 90.88 (3) P1—S1—Au1 87.68 (5)
       
C1—P1—S1—Au1 −120.49 (19) S1i—Au1—S1—P1 4.50 (7)
C2—P1—S1—Au1 108.93 (17) Br1—Au1—S1—P1 −176.12 (6)
S1i—P1—S1—Au1 −5.15 (8)    
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z].

Table 6
Selected geometric parameters (Å, °) for 6[link]

Au1—Br4 2.4185 (6) O2—P2 1.528 (3)
Au1—Br1 2.4235 (5) P1—Se1 2.2743 (12)
Au1—Br2 2.4291 (6) P2—Se2 2.2653 (13)
Au1—Br3 2.4301 (5) Se1—Se2 2.3314 (6)
O1—P1 1.528 (3)    
       
Br4—Au1—Br1 89.397 (19) Br2—Au1—Br3 90.99 (2)
Br4—Au1—Br2 177.20 (2) O1—P1—Se1 111.02 (13)
Br1—Au1—Br2 89.539 (19) O2—P2—Se2 111.23 (13)
Br4—Au1—Br3 90.15 (2) P1—Se1—Se2 100.44 (4)
Br1—Au1—Br3 178.07 (2) P2—Se2—Se1 102.12 (4)
       
O1—P1—Se1—Se2 32.74 (14) C4—P2—Se2—Se1 −78.79 (17)
C1—P1—Se1—Se2 −85.24 (17) C3—P2—Se2—Se1 158.03 (15)
C2—P1—Se1—Se2 150.45 (16) P1—Se1—Se2—P2 −71.86 (5)
O2—P2—Se2—Se1 39.99 (14)    
[Figure 1]
Figure 1
The structure of compound 1 in the crystal. The dashed lines indicate H⋯Cl contacts.
[Figure 2]
Figure 2
The structure of compound 2 in the crystal. The dashed line indicates an S⋯I contact. The minor disorder component (see text) is omitted.
[Figure 3]
Figure 3
The structure of compound 3 in the crystal. The dashed line indicates an S⋯I contact. The minor disorder component (see text) is omitted.
[Figure 4]
Figure 4
The structure of compound 4 in the crystal. The dashed lines indicate S⋯I contacts or the longer I—I bonds of the hepta­iodide.
[Figure 5]
Figure 5
The structure of compound 5 in the crystal.
[Figure 6]
Figure 6
The structure of compound 6 in the crystal. The dashed lines indicate an Se⋯Br contact (thick) or an H⋯O hydrogen bond (thin).

The structure of compound 1, bis­(tert-butyl­diiso­propyl­phospho­nium)­disulfane di-tetra­chloro­aurate(III) (an alternative name is used in the Abstract), (tBuiPr2P)2S2·[AuCl4]2, which crystallizes in space group P[\overline{1}] with Z = 2, is shown in Fig. 1[link]. It corresponds to the addition of three halogen atoms per gold atom of the gold(I) precursor and thus completes the set of 1–4 electron oxidations of the gold(I) complexes [(R1R2R3PE)AuX]. This is the first isolated compound containing a dication of the form {(R3P)2E}22+, but the compound {(Ph3P)2S}2(BF4)2 was identified in solution by Blankespoor et al. (1983[Blankespoor, R. L., Doyle, M. P., Smith, D. J., Van Dyke, D. A. & Waldyke, M. J. (1983). J. Org. Chem. 48, 1176-1179.]). Bond lengths and angles in the P—S—S—P moiety may be considered normal, with P—S = 2.095 (2) and 2.097 (2), S—S = 2.121 (2) Å, and P—S—S angles of 99.30 (8) and 100.59 (8)°. The phospho­nium groups are anti­periplanar across the S—S bond, with a torsion angle of 165.51 (8)°; the sequences C1—P1—S1—S2 and C4—P2—S2—S1 are also anti­periplanar. The steric crowding of the bulky alkyl groups forces a close approach of some hydrogen atoms to the sulfur atoms, with H⋯S as short as 2.57 Å. These contacts are included in the table of hydrogen bonds (Table 7[link]) for convenience, even if this does not reflect their true nature (similar considerations apply to short intra­molecular H⋯Au contacts for the gold derivatives discussed below).

Table 7
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯S1 1.00 2.85 3.358 (6) 112
C13—H13B⋯S1 0.98 2.66 3.099 (6) 108
C21—H21B⋯S1 0.98 2.85 3.468 (6) 122
C62—H62A⋯S1 0.98 2.86 3.535 (7) 127
C2—H2⋯S2 1.00 2.80 3.273 (6) 110
C43—H43B⋯S2 0.98 2.57 3.105 (6) 114
C41—H41A⋯Cl1i 0.98 2.95 3.879 (6) 159
C5—H5⋯Cl2 1.00 2.72 3.521 (6) 138
C51—H51A⋯Cl2 0.98 2.89 3.567 (6) 127
C3—H3⋯Cl3ii 1.00 2.75 3.640 (6) 149
C11—H11B⋯Cl4ii 0.98 2.85 3.619 (6) 136
C2—H2⋯Cl5 1.00 2.58 3.439 (6) 143
C6—H6⋯Cl8iii 1.00 2.73 3.600 (6) 146
C6—H6⋯Au2iii 1.00 3.25 3.851 (6) 121
Symmetry codes: (i) [x, y-1, z]; (ii) [x-1, y, z]; (iii) [x+1, y, z].

Elemental iodine is generally not a sufficiently strong oxidizing agent to oxidize iodido­gold(I) complexes to tri­iodido­gold(III) complexes. Nevertheless, diiodine reacted with [(tBu2iPrPS)AuI] to give a product that, based on the X-ray data (space group P[\overline{1}], Z = 2), initially appeared to be the triiodide [(tBu2iPrPS)2Au]I3; this is still formally an oxidation, but of the coordinated iodide (for which the oxidation number is increased from −1 to −1/3) rather than of the gold(I) centre. The refinement was at first unsatisfactory. A disorder model was then developed that involved replacement of 9.5% of the triiodide anion by the approximately isosteric di­iodo­aurate(I), corresponding to product 2. We noted similar effects in the structures of Ph3PSAuI and Ph3PSAuI·0.5I2, which were contaminated by Ph3PS·I2 and Ph3PS·1.5I2 respectively (Taouss et al., 2015[Taouss, C., Jones, P. G., Upmann, D. & Bockfeld, D. (2015). Z. Naturforsch. 70B, 911-927.]). Fig. 2[link] shows the structure without its minor disorder component. The corresponding reaction of elemental iodine with [(tBuiPr2PS)AuI] led to the supposed triiodide [(tBuiPr2PS)2Au]I3, but again a small amount of triiodide (12.5%) was replaced by di­iodo­aurate(I) in the product 3 (space group P21/n, Z = 4). Fig. 3[link] shows the structure without its minor disorder component. The bis-diiodine adduct of 3, [(tBu2iPrPS)2Au](I7) or [(tBu2iPrPS)2Au]I3·2I2 4 (Fig. 4[link]) was also obtained, which showed no contamination by di­iodo­aurate(I). It crystallizes in space group Pccn with Z = 4. The gold atom lies on a twofold axis (0.75, 0.25, z) and I1, the central atom of the hepta­iodide anion, on a twofold axis (0.75, 0.75, z).

The coordination geometry at the gold atoms of 24 is as expected linear. Bond lengths and angles between the heavier atoms (Å, °) are: Au—S = 2.2818 (5)–2.2990 (7), av. 2.2916; P—S = 2.0251 (13)–2.0444 (8), av. 2.0359; P—S—Au = 101.43 (4)–107.14 (3), av. 104.49. These compare well with the average values for analogous cations in the previous paper (Upmann et al., 2024d[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024d). Acta Cryst. E80, 1087-1096.]): Au—S = 2.2915, P—S = 2.0322 Å and P—S—Au = 104.05°, although the latter angle seems to be a ‘soft’ parameter that can vary appreciably. The ligands in 2 are almost ideally anti­periplanar across the S—Au—S moiety, with a torsion angle P—S⋯S—P of 179.21 (4)°. Structures 3 and 4 show appreciable deviation of this angle from 180°, with corres­ponding absolute torsion angles of 140.79 (5) and 143.88 (5)°, respectively. Dimensions of the linear triiodide components in 24 are normal, with bond lengths of 2.8754 (7)–2.9347 (2), av. 2.9151 Å.

The polyiodide region of compound 4 may be considered as an adduct of two diiodine mol­ecules with a triiodide ion, to form unbranched hepta­iodide (I7) units of the idealized form I—I⋯I—I—I⋯I—I, bent at the atom I2 and its symmetry-equivalent. The bond lengths are I3—I4 = 2.7501 (3), I1—I2 = 2.9204 (2) and the longer I2⋯I3 = 3.2674 (2) Å (this latter distance is however less than the upper ‘Coppens limit’ for I—I bonds, see Database survey). For comparison, the I—I bond length in solid diiodine at 100 K is 2.7179 (2) Å, as determined by Bertolotti et al. (2014[Bertolotti, F. V., Shishkina, A. V., Forni, A., Gervasio, G., Stash, A. I. & Tsirelson, V. G. (2014). Cryst. Growth Des. 14, 3587-3595.]) using a multipole refinement; this value is very close to the long-quoted 2.715 (6) Å of van Bolhuis et al. (1967[Bolhuis, F. van, Koster, P. B. & Migchelsen, T. (1967). Acta Cryst. 23, 90-91.]). The torsion angle I3—I2⋯I2′—I3′ (omitting the central iodine I1) is −44.04 (1)°.

Compound 5, di­bromido­(di-tert-butyl­dithio­phosphato-κ2S,S′)gold(III), [Au(tBu2PS2)Br2], which contains a four-membered chelate ring (Fig. 5[link]), was a minor product in the synthesis of tBu3PSAuBr (Upmann et al., 2024a[Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34-49.]). It crystallizes in space group Pnma with Z = 4. The gold and phospho­rus atoms, together with the carbon atoms C1, C2, C11 and C21, lie in the mirror plane at y = 0.25. One tert-butyl group per phospho­rus atom has been lost from the starting material. The atoms Au1, P1, S1, Br1, S1′ and Br1′ are approximately coplanar (r.m.s. deviation 0.04 Å).

Compound 6, (bis­{(di-tert-but­yl)phosphine oxide} diselen­ide)hydrogen(I) tetra­bromido­aurate(III), [(tBu2OPSe)2H][AuBr4], was a minor hydrolysis product in the synthesis of [(tBu3PSe)2Au][AuBr4] (Upmann et al., 2024d[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024d). Acta Cryst. E80, 1087-1096.]). It crystallizes in space group P21/n with Z = 4 (Fig. 6[link]). Again, one tert-butyl group per phospho­rus atom has been lost from the starting material. The cation has a central diselenide unit, with Se1—Se2 = 2.3314 (6) Å and torsion angles P1—Se1—Se2—P2 = −71.86 (5), O1—P1—Se1—Se2 = 32.74 (14) and O2—P2—Se2—Se1 = 39.99 (14) °. It is uncertain if the intra­cationic hydrogen bond is symmetric, disordered or localized (see Refinement), but the P—O bond lengths are exactly equal.

3. Supra­molecular features

Tables 7[link]–12[link][link][link][link][link] list short contacts that might be inter­preted as ‘weak’ hydrogen bonds; these include some borderline cases that are not further discussed. In the packing diagrams, the labelling denotes atoms of the asymmetric unit. Hydrogen atoms (and in some cases entire methyl groups) not involved in secondary inter­actions have been omitted for clarity.

Table 8
Hydrogen-bond geometry (Å, °) for 2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23B⋯Au1 0.98 2.72 3.616 (3) 152
C53—H53B⋯Au1 0.98 2.90 3.747 (3) 145
C22—H22C⋯S1 0.98 2.82 3.299 (3) 111
C11—H11C⋯S1 0.98 2.68 3.194 (3) 113
C52—H52B⋯S2 0.98 2.77 3.292 (3) 114
C41—H41B⋯S2 0.98 2.70 3.214 (3) 113
C3—H3⋯I3 1.00 3.29 4.202 (3) 152
C6—H6⋯I1i 1.00 3.21 3.993 (3) 136
C51—H51B⋯I2ii 0.98 3.25 4.055 (3) 140
C61—H61A⋯I2iii 0.98 3.26 4.003 (3) 134
Symmetry codes: (i) [x-1, y-1, z]; (ii) [-x+2, -y+1, -z+1]; (iii) [x, y-1, z].

Table 9
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯I1i 1.00 3.01 3.877 (4) 146
C11—H11B⋯I1ii 0.98 3.21 4.160 (4) 163
C43—H43C⋯I1iii 0.98 3.16 4.130 (4) 169
C3—H3⋯I2iv 1.00 3.21 3.979 (4) 135
C2—H2⋯I3 1.00 3.04 3.878 (4) 142
C13—H13A⋯I3v 0.98 3.19 4.154 (4) 170
C61—H61C⋯I3vi 0.98 3.19 4.123 (4) 159
C32—H32A⋯Au1 0.98 2.77 3.520 (4) 134
C62—H62C⋯Au1 0.98 2.88 3.675 (5) 139
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y, -z+1]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, -y+1, -z+1]; (v) [x+1, y, z]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 10
Hydrogen-bond geometry (Å, °) for 4[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯Au1 0.98 2.70 3.594 (3) 152
C21—H21C⋯S1 0.98 2.64 3.170 (3) 114
C31—H31B⋯I3iii 0.98 3.25 4.102 (3) 146
C3—H3⋯I3iv 1.00 3.18 4.059 (3) 148
C21—H21A⋯I3v 0.98 3.28 4.119 (3) 145
C22—H22C⋯I3v 0.98 3.18 3.962 (3) 138
Symmetry codes: (iii) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+1, -z+{\script{1\over 2}}].

Table 11
Hydrogen-bond geometry (Å, °) for 5[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯S1 0.96 2.90 3.417 (7) 115
C12—H12B⋯S1 0.98 2.99 3.573 (5) 119
C12—H12C⋯Br1ii 0.98 3.13 3.995 (6) 147
Symmetry code: (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Table 12
Hydrogen-bond geometry (Å, °) for 6[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C42—H42A⋯Au1i 0.98 2.85 3.666 (5) 141
C21—H21C⋯Br1ii 0.98 3.02 3.899 (5) 149
C22—H22B⋯Br2iii 0.98 3.04 3.717 (5) 128
C33—H33B⋯Br1 0.98 3.07 3.956 (5) 151
C42—H42B⋯Br4iv 0.98 2.89 3.532 (5) 124
O1—H01⋯O2 0.95 (8) 1.51 (8) 2.450 (4) 169 (8)
Symmetry codes: (i) [x+1, y, z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

In this series of publications, we have observed that the methine hydrogen atoms of isopropyl groups often act as donors in ‘weak’ hydrogen bonds of the type C—H⋯X. This is also the case for compound 1, in which the atoms H2, H3, H5 and H6 form short contacts to the chlorine atoms of the anions, with H⋯Cl distances as short as 2.59 Å (Table 7[link]); two of these, within the asymmetric unit, are shown in Fig. 1[link]. There are also two short S⋯Cl contacts within the asymmetric unit (not shown explicitly in Fig. 1[link]) namely S1⋯Cl2 = 3.757 (2) and S2⋯Cl5 = 3.691 (2) Å, with angles P1—S1⋯Cl2 = 120.15 (7), P2—S2⋯Cl5 = 132.16 (7), S1⋯Cl2—Au1 = 110.59 (6) and S2⋯Cl5—Au2 = 115.69 (6)°. These contacts combine to form infinite ribbons of residues parallel to the a axis (Fig. 7[link]). The contact H6⋯Cl8′(1 + x, y, z) is also supported by H6⋯Au2′ (3.25 Å, same operator), which might be inter­preted as a C—H⋯Au hydrogen bond (Schmidbaur, 2019[Schmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806-5809.]; Schmidbaur et al., 2014[Schmidbaur, H., Raubenheimer, H. G. & Dobrzańska, L. (2014). Chem. Soc. Rev. 43, 345-380.]).

[Figure 7]
Figure 7
The packing of compound 1 viewed perpendicular to the ab plane in the region z ≃ 0.25, showing two ribbons parallel to the a axis. Dashed lines indicate hydrogen bonds H⋯Cl (thick) or S⋯Cl contacts (thin). Methyl groups are omitted for clarity.

In the packing of compound 2, infinite chains of alternating anions and cations parallel to [110] are formed via the contacts S2⋯I3 = 3.9230 (7) and S1⋯I1(−1 + x, −1 + y, z) = 3.9765 (7) Å, with angles P2—S2⋯I3 = 161.05 (3), P1—S1⋯I1′ = 161.16 (3), S2⋯I3—I2 = 125.84 (3) and S2⋯I1′—I2′ = 130.88 (3)°. Further support is provided by two C—Hmethine⋯I contacts (Fig. 8[link]). The packing of compound 3 is similar, with chains parallel to [101] linked by S1⋯I1([{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z) = 3.9037 (11) and S2⋯I3 = 3.8366 (19) Å, with angles P1—S1⋯I1′ = 123.98 (4), P2—S2⋯I3 = 164.07 (5)°, S1⋯I1—I2′ = 120.95 (2) and S2⋯I3—I2 = 146.68 (5)°, also reinforced by two C—Hmethine⋯I contacts (Fig. 9[link]).

[Figure 8]
Figure 8
The packing of compound 2 viewed perpendicular to the ab plane in the region z ≃ 0.25, showing three chains of residues parallel to [110]. Dashed lines indicate S⋯I (thick) or H⋯I contacts (thin). Methyl groups are omitted for clarity.
[Figure 9]
Figure 9
The packing of compound 3 viewed parallel to the b axis in the region y ≃ 0.25, showing three chains of residues parallel to [101]. Dashed lines indicate S⋯I (thick) or H⋯I contacts (thin). Methyl groups are omitted for clarity.

The packing of compound 4 involves layers parallel to the bc plane (Fig. 10[link]). Cations and anions are linked by the contacts S1⋯I4 = 3.3795 (7) and S1⋯I2([{3\over 2}] − x, y, −[{1\over 2}] + z) = 3.6513 (7) Å, with angles P1—S1⋯I4 = 126.52 (3), P1—S1⋯I2′ = 136.64 (3), S1⋯I4—I3 = 168.85 (1), S1⋯I2′—I1′ = 165.01 (1), S1⋯I2′—I3′ = 78.91 (1)° and by one C—Hmethine⋯I contact.

[Figure 10]
Figure 10
The packing of compound 4 viewed parallel to the a axis in the region x ≃ 0.75. Dashed lines indicate S⋯I (thick) or H⋯I contacts (thin). All I⋯I contacts are drawn as full bonds. Methyl groups are omitted for clarity.

The classification of short EX contacts presents a problem: are they a particular type XDEA of the well-known ‘halogen bonds’ XDA (D = donor, A = acceptor; for a review see Metrangolo et al., 2008[Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.]), or a particular type EDXA of the less well-known ‘chalcogen bonds’ EDA (Aakeroy et al., 2019[Aakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P. & Resnati, G. (2019). Pure Appl. Chem. 91, 1889-1892.]; Vogel et al., 2019[Vogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed. 58, 1880-1891.])? The former involve halogens as donor atoms. The originally studied and perhaps best-known types are of the form CDXDXA—CA (Pedireddi et al., 1994[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]), but the acceptor does not have to be a halogen. They have been explained in terms of inter­action between a positive hole (associated with the σ* orbital) in the extension of the CDXD bond, and excess electron density at the acceptor A (which thus acts as a Lewis base); the CDXDA angles are ca. 180°. The latter involve chalcogens as donors, with a corresponding positive hole at the chalcogen atom, and, in the concrete case of phosphane chalcogenide adducts, should result in a P—EA angle of ca. 180°. Thus Hasija & Chopra (2020[Hasija, A. & Chopra, D. (2020). Cryst. Growth Des. 20, 6272-6282.]), in their analysis of five adducts/co-crystals of phosphane sulfides with iodo­benzenes, found that four of these displayed halogen bonds C—I⋯S—P (where the order of the atoms implies that the first group is the donor and the second group the acceptor), all with C—I⋯S angles approximately linear and I⋯S—P angles approximately tetra­hedral, whereas one contained two chalcogen bonds of the type P—S⋯I—C, with P—S⋯I angles approximately linear and S⋯I—C angles approximately tetra­hedral. It is inter­esting that the directionality of phosphine sulfides as halogen-bond acceptors corresponds roughly to the lone-pair directions at the sulfur atom in the simple Lewis formulae. Similarly, Ishigaki et al. (2022[Ishigaki, Y., Shimomura, K., Asai, K., Shimajiri, T., Akutagawa, T., Fukushima, T. & Suzuki, T. (2022). Bull. Chem. Soc. Jpn, 95, 522-531.]), in their studies of nine 4,7-dihalobenzo[c]chalcogena­diazo­les, divided these into halogen-bond- or chalcogen-bond-dominated structures. We used similar angle criteria, in particular the linearity at E, to suggest chalcogen bonding P—E⋯Cl—Au in three chloro­chalcogenyl­phospho­nium tetra­chloro­aurates(III) (R1R2R3PECl)+ [AuCl4] (Upmann et al., 2024c[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024c). Acta Cryst. E80, 506-521.]). The angle criteria for 1 are not clear-cut. For 2 and 3 three of four P—S⋯I are linear but S⋯I—I are not, suggesting chalcogen bonding, and for 4 the S⋯I—I angles are linear, suggesting halogen bonding. However, it should be noted that the contact distances are much greater for 2 and 3, so that it may not be appropriate to seek definite categories for these contacts.

Resnati and co-workers have introduced the term ‘coinage bond’ to describe inter­actions between classical donor atoms L, bearing lone pairs, and AuIII centres; these inter­actions involve short contacts L⋯Au to the gold atom at positions that complete a distorted octa­hedral geometry (i.e. the additional contacts lie above and below the gold atom, perpend­ic­ular to the ligand plane, at distances much longer than normal bonds). Previously these were often, somewhat simplistically, rationalized as contacts facilitated by the easy steric access in those directions. Daolio et al. (2021[Daolio, A., Pizzi, A., Terraneo, G., Ursini, M., Frontera, A. & Resnati, G. (2021). Angew. Chem. Int. Ed. 60, 14385-14389.]) and Pizzi et al. (2022[Pizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm, 24, 3846-3851.]) calculated the presence of π-holes at the gold atom at precisely these positions, which can then inter­act with excess negative charge at the atoms L, giving rise to the additional contacts. In this type of inter­action the gold atom is the coinage-bond donor, whereas the atom L is the coinage bond acceptor. The same model was used to explain the short Au⋯Cl contacts between neighbouring tetra­chloro­aurate(III) anions, as observed in numerous structures. This shows, however, that the behaviour of the halogen atoms X in [AuX4] ions, when these form short contacts involving their halogen atoms, could theoretically be of two alternative and opposite types: (i) a coinage or chalcogen bond (or other related types), in which the atom X is an electron donor and coinage/chalcogen bond acceptor, or (ii) a halogen bond, in which the atom X is a halogen bond donor and electron acceptor. Detailed calculations might be necessary to determine the nature of the inter­action(s) for any particular case.

In compound 5, the contact S1⋯Br1([{3\over 2}] − x, −y, −[{1\over 2}] + z) = 3.5555 (12) Å, with angles P1—S1⋯Br1′ = 120.15 (6) and S1⋯Br1′—Au1′ = 172.02 (3)°, links the mol­ecules to form corrugated layers of mol­ecules parallel to the bc plane (Fig. 11[link]). The angles strongly suggest that the contact is a halogen bond. The corrugation is shown clearly in the projection parallel to the c axis (Fig. 12[link]).

[Figure 11]
Figure 11
The packing of compound 5 viewed parallel to the a axis in the region x ≃ 0.75. Dashed lines indicate S⋯Br contacts.
[Figure 12]
Figure 12
The packing of compound 5 projected parallel to the c axis to show the corrugation of the layers. Dashed lines indicate S⋯Br contacts.

In compound 6, the contacts Se1⋯Br2(1 + x, [{3\over 2}] − y, [{1\over 2}] + z) = 3.6631 (7) and Se2⋯Br1 = 3.6047 (6) Å, with corresponding P—Se⋯Br angles of 115.34 (4) and 119.61 (3)° and Se⋯Br—Au angles of 167.06 (2) and 143.08 (2)°, combine to form zigzag chains of alternating cations and anions parallel to [201] (Fig. 13[link]).

[Figure 13]
Figure 13
The packing of compound 6 viewed parallel to the b axis in the region y ≃ 0.75. Dashed lines indicate Se⋯Br contacts. Methyl groups and intra­cationic hydrogen bonds are omitted for clarity. The four zigzag chains of alternating cations and anions run horizontally.

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2024.1.0 of the Cambridge Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

A search for bis-phospho­nium disulfanes analogous to 1 gave no hits, but one analogous tris­ulfane was found, namely 1,3-bis­(triiso­butyl­phospho­nium)­tris­ulfane bis­[nona­chloro­oxodiniobium(IV)] (Stumpf et al., 1999[Stumpf, K., Blachnik, R. & Roth, G. (1999). Z. Kristallogr. Cryst. Mater. 214, 251-254.]; refcode GOQZAN). This has bond lengths P—S = 2.123 (3) and 2.011 (3), S—S = 2.064 (3) and 2.107 (3) Å, with appreciable differences between chemically equivalent bond lengths, and bond angles P—S—S = 103.79 (11) and 105.00 (14), S—S—S = 107.19 (15)°.

One of the S⋯I contacts in compound 4 is markedly short at 3.3795 (7) Å. A search for short contacts P—S⋯I (with the S atom defined as 1-coordinate) found the shortest value to be 3.163 (2) Å for the 1:1 complex between Ph3PS and 1,3,5-tri­fluoro­tri­iodo­benzene (Hasija & Chopra, 2020[Hasija, A. & Chopra, D. (2020). Cryst. Growth Des. 20, 6272-6282.]; RUWVEN), whereas the shortest contact involving diiodine (or polyiodides) is 3.204 (6) Å for {(Ph2P(=S)}2CH2·I2 (Apperley et al., 2001[Apperley, D. C., Bricklebank, N., Hursthouse, M. B., Light, M. E. & Coles, S. J. (2001). Polyhedron, 20, 1907-1913.]; NENRON).

A search for the triiodide anion gave 1734 hits, with bond lengths (excluding one extreme outlier) 2.741–3.312 Å, av. 2.92 (5) Å. The review of polyiodides by Svensson & Kloo (2003[Svensson, P. H. & Kloo, L. (2003). Chem. Rev. 103, 1649-1684.]) can be consulted for a more extensive overview. More recently, Savastano et al. (2022[Savastano, M., Bazzicalupi, C. & Bianchi, A. (2022). Dalton Trans. 51, 10728-10739.]) have presented a detailed analysis of polyiodides in the database, and recommended extending the ‘Coppens limit’ of 3.3 Å (Coppens, 1982[Coppens, P. (1982). Extended Linear Chain Compounds, vol. 1, edited by J. S. Miller, pp. 333-356. Boston: Springer US.]), the long-accepted dividing value between I—I bonds and I⋯I contacts, to the range 3.4–3.5 Å. For comparison, the shortest non-bonded distance in elemental diiodine is 3.5010 (2) Å (Bertolotti et al., 2014[Bertolotti, F. V., Shishkina, A. V., Forni, A., Gervasio, G., Stash, A. I. & Tsirelson, V. G. (2014). Cryst. Growth Des. 14, 3587-3595.]).

There are several hepta­iodide structures in the literature, generally inter­pretable, as in compound 4, as associations of a triiodide ion with two diiodine mol­ecules; a typical example (Walbaum et al., 2010[Walbaum, C., Pantenburg, I. & Meyer, G. (2010). Z. Naturforsch. 65B, 1077-1083.]; refcode XAGJUM) involves a strontium crown ether complex as cation. Its hepta­iodide bond lengths and angles are similar to those of 4, but the absolute torsion angle corresponding to the 44.04 (1)° for I3—I2⋯I2′—I3′ in 4 is 89.6°. Furthermore, the hepta­iodides are further linked by I⋯I contacts of 3.5–3.6 Å, whereas those of 4 are isolated (except for H⋯I contacts).

A search for the grouping C2PE2AuX2 with the same general structure as 5 (involving a four-membered chelate ring) gave only two hits: the homologous, but non-isotypic, compounds di­iodido­{bis­(phenyl­eth­yl)di­thio­phosphato-κ2S,S′}gold(III) and di­iodido­{bis­(phenyl­eth­yl)di­seleno­phosphato-κ2Se,Se′}gold(III), produced by the action of elemental iodine on the dimeric gold(I) precursors (NIMMED01 and WIRGUB; Lee et al., 2014[Lee, Y.-C., Lin, Y.-R., Liou, B.-Y., Liao, J.-H., Gusarova, N. K., Trofimov, B. A., van Zyl, W. E. & Liu, C. W. (2014). Dalton Trans. 43, 663-670.]). Clearly the special nature of these gold(I) dimers in some way facilitates their oxidation by iodine. They are also well-known for their ready oxidation to dinuclear gold(II) derivatives, see e.g. BIBPIL (Fackler & Basil, 1982[Fackler, J. P. Jr & Basil, J. D. (1982). Organometallics, 1, 871-873.]) or EMPLAU (Schmidbaur et al., 1976[Schmidbaur, H., Mandl, J. R., Frank, A. & Huttner, G. (1976). Chem. Ber. 109, 466-472.]), some of the earliest examples of this type of compound. The packing of the selenium derivative involves one-dimensional association of the mol­ecules via Se⋯Se and Se⋯I contacts, and a corresponding packing diagram was presented. However, the packing of the sulfur derivative was not analysed, so we present it here. The compound crystallizes in C2/c with imposed twofold symmetry. The S⋯I′ contact of 3.714 Å (with angles P—S⋯I′ = 109.7 and S⋯I′—Au′ = 135.3°) links the mol­ecules to form layers parallel to the ab plane (Fig. 14[link]).

[Figure 14]
Figure 14
The packing of di­iodido­{bis­(phenyl­eth­yl)di­thio­phosphato-κ2S,S′}gold(III) (NIMMED01; Lee et al., 2014[Lee, Y.-C., Lin, Y.-R., Liou, B.-Y., Liao, J.-H., Gusarova, N. K., Trofimov, B. A., van Zyl, W. E. & Liu, C. W. (2014). Dalton Trans. 43, 663-670.]) viewed perpendicular to the ab plane in the region z ≃ 0.25. Dashed lines indicate S⋯I contacts. The diagram was drawn using the deposited coordinates, translated by (−0.5, −0.5, −0.5).

A search for compounds of the form (O,C,C)PSeSeP(C,C,O) analogous to 6 was unsuccessful. Allowing any chalcogen E′ rather than just oxygen gave six hits. Refcode ETPOSE (Husebye, 1966[Husebye, S. (1966). Acta Chem. Scand. 20, 51-56.]) has twofold symmetry, E′ = S and four ethyl groups; KIHGIT (a 1:1 adduct/co-crystal with the monoselenide) and XETSUM (the diselenide alone) with E′ = Se and four cyclo­hexyl groups (Artem'ev et al., 2013a[Artem'ev, A. V., Oparina, L. A., Gusarova, N. K., Kolyvanov, N. A., Vysotskaya, O. V., Bagryanskaya, I. Y. & Trofimov, B. A. (2013a). Inorg. Chem. Commun. 30, 124-127.],b[Artem'ev, A. V., Gusarova, N. K., Bagryanskaya, I. Y., Doronina, E. P., Verkhoturova, S. I., Sidorkin, V. F. & Trofimov, B. A. (2013b). Eur. J. Inorg. Chem. pp. 415-426.]); NEJNIA (Nguyen et al., 2006[Nguyen, C. Q., Adeogun, A., Afzaal, M., Malik, M. A. & O'Brien, P. (2006). Chem. Commun. pp. 2179-2181.]) with twofold symmetry, E′ = Se and four isopropyl groups; NOSVIA (Potrzebowski et al., 1997[Potrzebowski, M. J., Blaszczyk, J., Wieczorek, M. W. & Klinowski, J. (1997). J. Phys. Chem. A, 101, 8077-8084.]) with twofold symmetry, E′ = S, two phenyl and two tert-butyl groups (N.B. in the original paper, the intra­molecular symmetry operator is given incorrectly as an inversion; it should be 1 − x, y, [{1\over 2}] − z); and XETTAT with E′ = S and four phenyl­ethyl groups (Artem'ev et al., 2013b[Artem'ev, A. V., Gusarova, N. K., Bagryanskaya, I. Y., Doronina, E. P., Verkhoturova, S. I., Sidorkin, V. F. & Trofimov, B. A. (2013b). Eur. J. Inorg. Chem. pp. 415-426.]). For the selenium derivatives, the Se—Se bond lengths lie in the range 2.275–2.384 Å and the central absolute torsion angles in the wide range 91.99° (NOSVIA) to 146.34° (XETTAT).

5. Synthesis and crystallization

Most of the compounds arose as minor products. Compound 1 was identified as a few crystals of different habit during the synthesis of [(tBuiPr2PS)2Au][AuCl4] (Upmann et al., 2024d[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024d). Acta Cryst. E80, 1087-1096.]). The polyiodides 24 were synthesized in pilot experiments by the addition of small qu­anti­ties of elemental iodine to the iodido­gold(I) precursors in di­chloro­methane, followed by overlayering with n-pentane; unsurprisingly, no oxidation of the gold centres resulted, and the experiments were not followed up. Reactions did however take place, and the products were structurally inter­esting. Compound 5 arose as a crystalline impurity in the synthesis of tBu3PSAuBr (Upmann et al., 2024a[Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34-49.]). Compound 6, a hydrolysis product, was a crystalline impurity in the synthesis of [(tBu3PSe)2Au][AuBr4] (Upmann et al., 2024d[Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024d). Acta Cryst. E80, 1087-1096.]).

6. Refinement

Details of the measurements and refinements are given in Table 13[link]. Structures were refined anisotropically on F2. The OH hydrogen atom of compound 6 was refined freely, but it has a rather high U value of 0.10 (3). This, together with the equal P—O bond lengths (which should be significantly different for localized P—OH and P=O groups), may indicate some disorder of this hydrogen atom, possibly involving some contribution with the hydrogen atom equidistant between the two oxygen atoms. Methine hydrogens were included at calculated positions and refined using a riding model with C—H 1.00 Å and U(H) = 1.2 × Ueq(C). Methyl groups were refined, using the command ‘AFIX 137′, as idealized rigid groups allowed to rotate but not tip, with C—H = 0.98 Å, H—C—H = 109.5° and U(H) = 1.5 × Ueq(C). This procedure is less reliable for heavy-atom structures, so that any postulated hydrogen bonds involving methyl hydrogen atoms should be inter­preted with caution.

Table 13
Experimental details

  1 2 3
Crystal data
Chemical formula (C20H46P2S2)[AuCl4]2 [Au(C11H25PS)2][AuI2]0.095(I3)0.905 [Au(C10H23PS)2][AuI2]0.125(I3)0.875
Mr 1090.16 1025.00 999.05
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 100 100 100
a, b, c (Å) 10.0655 (5), 13.8440 (6), 14.1212 (6) 8.7116 (3), 12.2732 (4), 16.2730 (4) 11.6180 (2), 11.8894 (3), 22.5768 (5)
α, β, γ (°) 73.579 (4), 80.850 (4), 71.620 (4) 110.531 (3), 90.770 (3), 94.514 (3) 90, 90.090 (2), 90
V3) 1785.90 (15) 1622.76 (9) 3118.54 (12)
Z 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 9.02 7.96 8.39
Crystal size (mm) 0.2 × 0.03 × 0.01 0.4 × 0.2 × 0.04 0.15 × 0.08 × 0.05
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.36.28 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.36.28 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.36.28 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.])
Tmin, Tmax 0.764, 1.000 0.150, 0.750 0.565, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 68998, 9104, 6753 126632, 9377, 8340 142434, 7725, 7218
Rint 0.079 0.045 0.072
θ values (°) θmax = 29.4, θmin = 2.3 θmax = 30.0, θmin = 2.4 θmax = 28.3, θmin = 2.5
(sin θ/λ)max−1) 0.690 0.704 0.667
Range of h, k, l h = −13→13, k = −18→18, l = −18→19 h = −12→12, k = −17→17, l = −22→22 h = −15→15, k = −15→15, l = −30→30
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.079, 1.03 0.023, 0.042, 1.05 0.022, 0.041, 1.08
No. of reflections 9104 9377 7725
No. of parameters 321 298 281
No. of restraints 0 2 7
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.90, −2.15 1.32, −0.86 0.65, −0.79
  4 5 6
Crystal data
Chemical formula [Au(C11H25PS)2]I3·2I2 [AuBr2(C8H18PS2)] (C16H37O2P2Se2)[AuBr4]
Mr 1525.94 566.10 997.92
Crystal system, space group Orthorhombic, Pccn Orthorhombic, Pnma Monoclinic, P21/c
Temperature (K) 100 100 100
a, b, c (Å) 15.0435 (3), 15.2629 (3), 17.7574 (3) 16.0199 (6), 11.5880 (4), 8.0211 (3) 8.4102 (2), 22.2796 (7), 15.4285 (5)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 99.221 (3), 90
V3) 4077.24 (13) 1489.03 (9) 2853.57 (16)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 9.10 15.60 13.43
Crystal size (mm) 0.2 × 0.08 × 0.03 0.13 × 0.05 × 0.04 0.2 × 0.02 × 0.02
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.36.28 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.36.28 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.36.28 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.])
Tmin, Tmax 0.263, 0.772 0.635, 1.000 0.514, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 112897, 5958, 5144 35299, 2061, 1712 133232, 7081, 5668
Rint 0.053 0.076 0.116
θ values (°) θmax = 30.0, θmin = 2.2 θmax = 29.3, θmin = 2.5 θmax = 28.3, θmin = 2.3
(sin θ/λ)max−1) 0.704 0.689 0.667
Range of h, k, l h = −20→21, k = −21→21, l = −25→25 h = −21→21, k = −15→15, l = −10→11 h = −11→11, k = −29→29, l = −20→20
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.034, 1.11 0.029, 0.056, 1.06 0.036, 0.056, 1.05
No. of reflections 5958 2061 7081
No. of parameters 164 75 260
No. of restraints 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.95, −1.39 1.88, −1.03 0.98, −1.23
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Version 1.171.36.28 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Exceptions and special features: The structure of compound 2, initially thought to be a simple triiodide salt, could not at first be refined satisfactorily; the R values were high, and the triiodide region contained appreciable residual electron density. This was inter­preted as a small amount of di­iodido­aurate(I) overlaid on the (approximately isosteric) triiodide anion site, and a disorder model was accordingly refined. The occupation factor of the di­iodido­aurate(I) component refined to 0.0948 (15). The structure of compound 3 was treated as a pseudo-merohedral twin (by 180° rotation about the a axis); the relative volume of the smaller twin component refined to 0.1602 (3). A similar disorder to that of 2 was observed and was treated in the same way; the occupation factor of the di­iodido­aurate(I) component refined to 0.1252 (15). The dimensions of disordered groups should always be inter­preted with caution, and we do not discuss the minor disorder components further, nor are they included in the Figures. For compound 4, an extinction correction (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) was applied; the extinction parameter refined to 0.000131 (6). For compound 5, where the methyl carbon atoms C11 and C21 lie in mirror planes, the ‘AFIX 137’ command for these atoms placed one methyl hydrogen atom close to, but not in, the mirror plane, which would imply slightly disordered methyl groups (maxima for the hydrogens at C11 were clearly recognisable, but for C21 less so). For this reason, the program XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]) was used to generate idealized hydrogen positions at C11 and C21 with the ‘HADD 3’ command; these were close to the hydrogen positions found using ‘HFIX 137’. Two methyl hydrogens (one in the mirror plane, one general) at C11 and C21 were then refined with ‘AFIX 3’, riding on their methyl carbon atoms.

Supporting information


Computing details top

(Disulfane-1,2-diyl)bis(tert-butyldiisopropylphosphonium) bis[tetrachloridoaurate(III)] (1) top
Crystal data top
(C20H46P2S2)[AuCl4]2Z = 2
Mr = 1090.16F(000) = 1044
Triclinic, P1Dx = 2.027 Mg m3
a = 10.0655 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.8440 (6) ÅCell parameters from 9063 reflections
c = 14.1212 (6) Åθ = 2.3–29.3°
α = 73.579 (4)°µ = 9.02 mm1
β = 80.850 (4)°T = 100 K
γ = 71.620 (4)°Needle, yellow
V = 1785.90 (15) Å30.2 × 0.03 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
9104 independent reflections
Radiation source: fine-focus sealed tube6753 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.079
ω scanθmax = 29.4°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1313
Tmin = 0.764, Tmax = 1.000k = 1818
68998 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0245P)2 + 3.847P]
where P = (Fo2 + 2Fc2)/3
9104 reflections(Δ/σ)max = 0.001
321 parametersΔρmax = 1.90 e Å3
0 restraintsΔρmin = 2.15 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.52654 (16)0.31308 (12)0.28469 (11)0.0241 (3)
S20.53274 (16)0.16309 (12)0.27077 (11)0.0246 (3)
P10.31753 (15)0.36141 (11)0.34119 (10)0.0157 (3)
P20.71921 (16)0.12892 (12)0.18029 (10)0.0170 (3)
C10.3194 (6)0.4692 (5)0.3937 (4)0.0199 (13)
C20.2769 (6)0.2472 (4)0.4287 (4)0.0188 (12)
H20.2789790.1983150.3878680.023*
C30.1945 (6)0.4079 (5)0.2444 (4)0.0217 (13)
H30.0995000.4375780.2758340.026*
C40.7020 (6)0.0215 (4)0.1330 (4)0.0200 (13)
C50.7333 (6)0.2485 (4)0.0875 (4)0.0197 (13)
H50.7394700.2971570.1260790.024*
C60.8691 (6)0.0847 (5)0.2561 (4)0.0213 (13)
H60.9551320.0609000.2126450.026*
C110.1682 (6)0.5395 (5)0.4037 (5)0.0252 (14)
H11A0.1076210.4963790.4415810.038*
H11B0.1345830.5747420.3377200.038*
H11C0.1660320.5923430.4382290.038*
C120.3757 (7)0.4226 (5)0.4968 (4)0.0271 (14)
H12A0.3835010.4791670.5226180.041*
H12B0.4684860.3721000.4919880.041*
H12C0.3112270.3869620.5415260.041*
C130.4131 (6)0.5340 (5)0.3264 (4)0.0242 (13)
H13A0.3854620.5554830.2583320.036*
H13B0.5114460.4912170.3281210.036*
H13C0.4022130.5965150.3497320.036*
C210.3845 (6)0.1840 (5)0.5058 (4)0.0242 (14)
H21A0.3641320.2162490.5619840.036*
H21B0.4791750.1839500.4756120.036*
H21C0.3788070.1116120.5290330.036*
C220.1254 (6)0.2753 (5)0.4771 (4)0.0258 (14)
H22A0.0974710.2108430.5067940.039*
H22B0.0614620.3215180.4265830.039*
H22C0.1212080.3113340.5285280.039*
C310.2263 (7)0.4963 (5)0.1599 (4)0.0344 (17)
H31A0.3223470.4724220.1309030.052*
H31B0.2169880.5572570.1853560.052*
H31C0.1600590.5161740.1090560.052*
C320.1841 (7)0.3191 (5)0.2041 (4)0.0293 (15)
H32A0.1096270.3465010.1582820.044*
H32B0.1622410.2633870.2591140.044*
H32C0.2738200.2904490.1690430.044*
C410.8494 (6)0.0407 (5)0.0999 (4)0.0240 (14)
H41A0.8419760.0962480.0724970.036*
H41B0.9065530.0722440.1569270.036*
H41C0.8936730.0067680.0491670.036*
C420.6109 (7)0.0694 (5)0.0442 (4)0.0276 (14)
H42A0.6597770.1098500.0105360.041*
H42B0.5211020.1159720.0635470.041*
H42C0.5938060.0131090.0230300.041*
C430.6303 (7)0.0508 (5)0.2137 (4)0.0286 (15)
H43A0.6214800.1067470.1875810.043*
H43B0.5367670.0096550.2340000.043*
H43C0.6869620.0818720.2710250.043*
C510.6051 (6)0.3082 (5)0.0270 (4)0.0244 (14)
H51A0.6033330.3822060.0014950.037*
H51B0.5191440.3033690.0693430.037*
H51C0.6110190.2773300.0285510.037*
C520.8728 (6)0.2284 (5)0.0234 (4)0.0235 (14)
H52A0.8704400.1859750.0210440.035*
H52B0.9503060.1907410.0661560.035*
H52C0.8867660.2956650.0159490.035*
C610.8625 (7)0.0097 (5)0.3439 (4)0.0315 (16)
H61A0.9380220.0244300.3865090.047*
H61B0.8735780.0714060.3191320.047*
H61C0.7715390.0064790.3820900.047*
C620.8875 (7)0.1747 (5)0.2917 (5)0.0288 (15)
H62A0.8067790.1982390.3369630.043*
H62B0.8938010.2333500.2346130.043*
H62C0.9736680.1496610.3263200.043*
Au10.77846 (2)0.59195 (2)0.17918 (2)0.02045 (7)
Cl10.73799 (19)0.73588 (13)0.04884 (11)0.0345 (4)
Cl20.68846 (19)0.50729 (13)0.10043 (11)0.0350 (4)
Cl30.81987 (16)0.44619 (12)0.30933 (11)0.0279 (3)
Cl40.8680 (2)0.67693 (13)0.25853 (13)0.0388 (4)
Au20.24397 (2)0.09207 (2)0.30906 (2)0.01939 (7)
Cl50.28990 (18)0.00673 (12)0.39762 (11)0.0289 (4)
Cl60.25095 (17)0.22473 (12)0.44956 (10)0.0269 (3)
Cl70.1957 (2)0.18989 (13)0.22072 (12)0.0372 (4)
Cl80.23425 (17)0.04326 (12)0.16984 (11)0.0280 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0243 (8)0.0186 (8)0.0309 (8)0.0099 (6)0.0073 (7)0.0094 (6)
S20.0273 (9)0.0181 (8)0.0295 (8)0.0103 (7)0.0107 (7)0.0103 (6)
P10.0201 (8)0.0146 (7)0.0131 (7)0.0080 (6)0.0004 (6)0.0016 (6)
P20.0212 (8)0.0149 (7)0.0153 (7)0.0085 (6)0.0026 (6)0.0030 (6)
C10.019 (3)0.019 (3)0.024 (3)0.007 (3)0.003 (2)0.007 (2)
C20.024 (3)0.015 (3)0.016 (3)0.008 (2)0.003 (2)0.003 (2)
C30.030 (3)0.023 (3)0.015 (3)0.010 (3)0.004 (2)0.004 (2)
C40.024 (3)0.017 (3)0.021 (3)0.009 (3)0.001 (2)0.006 (2)
C50.023 (3)0.017 (3)0.019 (3)0.009 (3)0.001 (2)0.001 (2)
C60.024 (3)0.023 (3)0.017 (3)0.013 (3)0.000 (2)0.000 (2)
C110.021 (3)0.022 (3)0.031 (3)0.003 (3)0.001 (3)0.008 (3)
C120.031 (4)0.029 (4)0.024 (3)0.011 (3)0.002 (3)0.009 (3)
C130.027 (3)0.020 (3)0.027 (3)0.010 (3)0.001 (3)0.006 (3)
C210.032 (4)0.017 (3)0.022 (3)0.010 (3)0.002 (3)0.000 (2)
C220.028 (4)0.028 (4)0.020 (3)0.011 (3)0.001 (3)0.000 (3)
C310.050 (5)0.032 (4)0.016 (3)0.014 (3)0.011 (3)0.010 (3)
C320.038 (4)0.033 (4)0.019 (3)0.016 (3)0.010 (3)0.001 (3)
C410.029 (3)0.019 (3)0.027 (3)0.008 (3)0.007 (3)0.012 (3)
C420.033 (4)0.026 (4)0.032 (3)0.015 (3)0.003 (3)0.015 (3)
C430.040 (4)0.023 (3)0.029 (3)0.019 (3)0.009 (3)0.011 (3)
C510.033 (4)0.014 (3)0.024 (3)0.005 (3)0.004 (3)0.003 (2)
C520.026 (3)0.024 (3)0.019 (3)0.011 (3)0.000 (3)0.003 (2)
C610.035 (4)0.040 (4)0.019 (3)0.014 (3)0.005 (3)0.002 (3)
C620.028 (4)0.036 (4)0.029 (3)0.013 (3)0.000 (3)0.014 (3)
Au10.02575 (14)0.01772 (13)0.01936 (12)0.00711 (10)0.00538 (10)0.00388 (9)
Cl10.0566 (11)0.0248 (9)0.0261 (8)0.0202 (8)0.0147 (8)0.0034 (7)
Cl20.0605 (12)0.0284 (9)0.0250 (8)0.0225 (8)0.0144 (8)0.0035 (7)
Cl30.0315 (9)0.0219 (8)0.0266 (8)0.0068 (7)0.0087 (7)0.0023 (6)
Cl40.0550 (12)0.0266 (9)0.0423 (10)0.0133 (8)0.0273 (9)0.0055 (7)
Au20.02334 (13)0.01737 (13)0.01839 (12)0.00646 (10)0.00476 (9)0.00345 (9)
Cl50.0458 (10)0.0230 (8)0.0238 (7)0.0160 (7)0.0049 (7)0.0066 (6)
Cl60.0402 (9)0.0211 (8)0.0209 (7)0.0128 (7)0.0073 (7)0.0005 (6)
Cl70.0600 (12)0.0290 (9)0.0308 (8)0.0166 (8)0.0192 (8)0.0074 (7)
Cl80.0329 (9)0.0273 (8)0.0208 (7)0.0105 (7)0.0044 (6)0.0019 (6)
Geometric parameters (Å, º) top
S1—P12.095 (2)C22—H22A0.9800
S1—S22.121 (2)C22—H22B0.9800
S2—P22.097 (2)C22—H22C0.9800
P1—C21.826 (5)C31—H31A0.9800
P1—C31.832 (6)C31—H31B0.9800
P1—C11.851 (6)C31—H31C0.9800
P2—C51.827 (5)C32—H32A0.9800
P2—C61.832 (6)C32—H32B0.9800
P2—C41.858 (6)C32—H32C0.9800
C1—C121.535 (8)C41—H41A0.9800
C1—C111.536 (8)C41—H41B0.9800
C1—C131.538 (7)C41—H41C0.9800
C2—C211.537 (8)C42—H42A0.9800
C2—C221.545 (8)C42—H42B0.9800
C2—H21.0000C42—H42C0.9800
C3—C311.525 (7)C43—H43A0.9800
C3—C321.530 (8)C43—H43B0.9800
C3—H31.0000C43—H43C0.9800
C4—C411.537 (8)C51—H51A0.9800
C4—C421.537 (8)C51—H51B0.9800
C4—C431.540 (7)C51—H51C0.9800
C5—C511.535 (8)C52—H52A0.9800
C5—C521.537 (8)C52—H52B0.9800
C5—H51.0000C52—H52C0.9800
C6—C611.538 (7)C61—H61A0.9800
C6—C621.539 (8)C61—H61B0.9800
C6—H61.0000C61—H61C0.9800
C11—H11A0.9800C62—H62A0.9800
C11—H11B0.9800C62—H62B0.9800
C11—H11C0.9800C62—H62C0.9800
C12—H12A0.9800Au1—Cl22.2711 (16)
C12—H12B0.9800Au1—Cl12.2753 (15)
C12—H12C0.9800Au1—Cl42.2772 (16)
C13—H13A0.9800Au1—Cl32.2891 (14)
C13—H13B0.9800Au2—Cl72.2779 (16)
C13—H13C0.9800Au2—Cl52.2800 (15)
C21—H21A0.9800Au2—Cl62.2841 (14)
C21—H21B0.9800Au2—Cl82.2908 (14)
C21—H21C0.9800
P1—S1—S299.30 (8)H21B—C21—H21C109.5
P2—S2—S1100.59 (8)C2—C22—H22A109.5
C2—P1—C3107.1 (3)C2—C22—H22B109.5
C2—P1—C1116.4 (3)H22A—C22—H22B109.5
C3—P1—C1111.6 (3)C2—C22—H22C109.5
C2—P1—S1107.7 (2)H22A—C22—H22C109.5
C3—P1—S1112.1 (2)H22B—C22—H22C109.5
C1—P1—S1101.84 (19)C3—C31—H31A109.5
C5—P2—C6107.5 (3)C3—C31—H31B109.5
C5—P2—C4116.4 (3)H31A—C31—H31B109.5
C6—P2—C4111.8 (3)C3—C31—H31C109.5
C5—P2—S2109.4 (2)H31A—C31—H31C109.5
C6—P2—S2109.10 (19)H31B—C31—H31C109.5
C4—P2—S2102.46 (19)C3—C32—H32A109.5
C12—C1—C11109.0 (5)C3—C32—H32B109.5
C12—C1—C13109.4 (5)H32A—C32—H32B109.5
C11—C1—C13110.1 (5)C3—C32—H32C109.5
C12—C1—P1109.4 (4)H32A—C32—H32C109.5
C11—C1—P1108.5 (4)H32B—C32—H32C109.5
C13—C1—P1110.5 (4)C4—C41—H41A109.5
C21—C2—C22112.0 (4)C4—C41—H41B109.5
C21—C2—P1115.5 (4)H41A—C41—H41B109.5
C22—C2—P1111.8 (4)C4—C41—H41C109.5
C21—C2—H2105.5H41A—C41—H41C109.5
C22—C2—H2105.5H41B—C41—H41C109.5
P1—C2—H2105.5C4—C42—H42A109.5
C31—C3—C32110.4 (5)C4—C42—H42B109.5
C31—C3—P1112.8 (4)H42A—C42—H42B109.5
C32—C3—P1112.7 (4)C4—C42—H42C109.5
C31—C3—H3106.8H42A—C42—H42C109.5
C32—C3—H3106.8H42B—C42—H42C109.5
P1—C3—H3106.8C4—C43—H43A109.5
C41—C4—C42109.7 (5)C4—C43—H43B109.5
C41—C4—C43110.7 (5)H43A—C43—H43B109.5
C42—C4—C43108.4 (5)C4—C43—H43C109.5
C41—C4—P2108.4 (4)H43A—C43—H43C109.5
C42—C4—P2109.1 (4)H43B—C43—H43C109.5
C43—C4—P2110.4 (4)C5—C51—H51A109.5
C51—C5—C52113.4 (5)C5—C51—H51B109.5
C51—C5—P2115.7 (4)H51A—C51—H51B109.5
C52—C5—P2111.1 (4)C5—C51—H51C109.5
C51—C5—H5105.2H51A—C51—H51C109.5
C52—C5—H5105.2H51B—C51—H51C109.5
P2—C5—H5105.2C5—C52—H52A109.5
C61—C6—C62110.7 (5)C5—C52—H52B109.5
C61—C6—P2112.8 (4)H52A—C52—H52B109.5
C62—C6—P2112.0 (4)C5—C52—H52C109.5
C61—C6—H6107.0H52A—C52—H52C109.5
C62—C6—H6107.0H52B—C52—H52C109.5
P2—C6—H6107.0C6—C61—H61A109.5
C1—C11—H11A109.5C6—C61—H61B109.5
C1—C11—H11B109.5H61A—C61—H61B109.5
H11A—C11—H11B109.5C6—C61—H61C109.5
C1—C11—H11C109.5H61A—C61—H61C109.5
H11A—C11—H11C109.5H61B—C61—H61C109.5
H11B—C11—H11C109.5C6—C62—H62A109.5
C1—C12—H12A109.5C6—C62—H62B109.5
C1—C12—H12B109.5H62A—C62—H62B109.5
H12A—C12—H12B109.5C6—C62—H62C109.5
C1—C12—H12C109.5H62A—C62—H62C109.5
H12A—C12—H12C109.5H62B—C62—H62C109.5
H12B—C12—H12C109.5Cl2—Au1—Cl190.20 (6)
C1—C13—H13A109.5Cl2—Au1—Cl4179.79 (7)
C1—C13—H13B109.5Cl1—Au1—Cl489.86 (6)
H13A—C13—H13B109.5Cl2—Au1—Cl389.42 (6)
C1—C13—H13C109.5Cl1—Au1—Cl3179.48 (6)
H13A—C13—H13C109.5Cl4—Au1—Cl390.53 (6)
H13B—C13—H13C109.5Cl7—Au2—Cl5179.42 (6)
C2—C21—H21A109.5Cl7—Au2—Cl690.55 (6)
C2—C21—H21B109.5Cl5—Au2—Cl689.54 (5)
H21A—C21—H21B109.5Cl7—Au2—Cl890.21 (6)
C2—C21—H21C109.5Cl5—Au2—Cl889.69 (6)
H21A—C21—H21C109.5Cl6—Au2—Cl8178.88 (6)
P1—S1—S2—P2165.51 (8)C2—P1—C3—C3247.9 (5)
S2—S1—P1—C239.1 (2)C1—P1—C3—C32176.5 (4)
S2—S1—P1—C378.5 (2)S1—P1—C3—C3270.0 (4)
S2—S1—P1—C1162.1 (2)C5—P2—C4—C4182.6 (4)
S1—S2—P2—C538.6 (2)C6—P2—C4—C4141.4 (4)
S1—S2—P2—C678.7 (2)S2—P2—C4—C41158.1 (3)
S1—S2—P2—C4162.7 (2)C5—P2—C4—C4236.8 (5)
C2—P1—C1—C1235.0 (5)C6—P2—C4—C42160.9 (4)
C3—P1—C1—C12158.3 (4)S2—P2—C4—C4282.4 (4)
S1—P1—C1—C1281.9 (4)C5—P2—C4—C43155.9 (4)
C2—P1—C1—C1183.8 (4)C6—P2—C4—C4380.0 (5)
C3—P1—C1—C1139.6 (5)S2—P2—C4—C4336.7 (5)
S1—P1—C1—C11159.4 (3)C6—P2—C5—C51170.5 (4)
C2—P1—C1—C13155.4 (4)C4—P2—C5—C5163.3 (5)
C3—P1—C1—C1381.2 (5)S2—P2—C5—C5152.2 (5)
S1—P1—C1—C1338.6 (4)C6—P2—C5—C5258.3 (5)
C3—P1—C2—C21169.5 (4)C4—P2—C5—C5267.9 (5)
C1—P1—C2—C2164.8 (5)S2—P2—C5—C52176.6 (4)
S1—P1—C2—C2148.7 (5)C5—P2—C6—C61174.4 (4)
C3—P1—C2—C2260.8 (5)C4—P2—C6—C6156.7 (5)
C1—P1—C2—C2264.9 (5)S2—P2—C6—C6155.9 (5)
S1—P1—C2—C22178.4 (4)C5—P2—C6—C6248.7 (5)
C2—P1—C3—C31173.9 (4)C4—P2—C6—C62177.6 (4)
C1—P1—C3—C3157.6 (5)S2—P2—C6—C6269.8 (4)
S1—P1—C3—C3155.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S11.002.853.358 (6)112
C13—H13B···S10.982.663.099 (6)108
C21—H21B···S10.982.853.468 (6)122
C62—H62A···S10.982.863.535 (7)127
C2—H2···S21.002.803.273 (6)110
C43—H43B···S20.982.573.105 (6)114
C41—H41A···Cl1i0.982.953.879 (6)159
C5—H5···Cl21.002.723.521 (6)138
C51—H51A···Cl20.982.893.567 (6)127
C3—H3···Cl3ii1.002.753.640 (6)149
C11—H11B···Cl4ii0.982.853.619 (6)136
C2—H2···Cl51.002.583.439 (6)143
C6—H6···Cl8iii1.002.733.600 (6)146
C6—H6···Au2iii1.003.253.851 (6)121
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y, z.
Bis(di-tert-butylisopropylphosphine sulfide-κS)gold(I) triiodide/diiodidoaurate(I)(0.905/0.095) (2) top
Crystal data top
[Au(C11H25PS)2][AuI2]0.095(I3)0.905Z = 2
Mr = 1025.00F(000) = 969
Triclinic, P1Dx = 2.098 Mg m3
a = 8.7116 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.2732 (4) ÅCell parameters from 26959 reflections
c = 16.2730 (4) Åθ = 2.3–30.8°
α = 110.531 (3)°µ = 7.96 mm1
β = 90.770 (3)°T = 100 K
γ = 94.514 (3)°Plate, dichroic yellow/orange
V = 1622.76 (9) Å30.4 × 0.2 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
9377 independent reflections
Radiation source: fine-focus sealed tube8340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 16.1419 pixels mm-1θmax = 30.0°, θmin = 2.4°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1717
Tmin = 0.150, Tmax = 0.750l = 2222
126632 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0125P)2 + 2.2996P]
where P = (Fo2 + 2Fc2)/3
9377 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 1.32 e Å3
2 restraintsΔρmin = 0.86 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10.50373 (2)0.25698 (2)0.24984 (2)0.01671 (3)
P10.25872 (7)0.28505 (5)0.09266 (4)0.01014 (11)
P20.74234 (7)0.21812 (5)0.40465 (4)0.01133 (11)
S10.28030 (7)0.18234 (5)0.16611 (4)0.01590 (12)
S20.73098 (8)0.32379 (6)0.33205 (4)0.01921 (13)
C10.0611 (3)0.2381 (2)0.03802 (16)0.0140 (5)
C20.4164 (3)0.2634 (2)0.01171 (16)0.0140 (5)
C30.2788 (3)0.4396 (2)0.16651 (16)0.0156 (5)
H30.3824850.4515790.1970430.019*
C40.9522 (3)0.2253 (2)0.43563 (17)0.0159 (5)
C50.6188 (3)0.2727 (2)0.50218 (16)0.0168 (5)
C60.6627 (3)0.0689 (2)0.33718 (16)0.0166 (5)
H60.5546570.0775510.3204330.020*
C110.0546 (3)0.2196 (2)0.10396 (18)0.0206 (5)
H11A0.1572540.1950410.0748750.031*
H11B0.0581000.2928330.1537700.031*
H11C0.0219490.1590410.1250720.031*
C120.0041 (3)0.3307 (2)0.00355 (17)0.0195 (5)
H12A0.0838510.3525310.0311800.029*
H12B0.0174960.3999940.0533110.029*
H12C0.0900920.2984930.0333730.029*
C130.0634 (3)0.1205 (2)0.03795 (17)0.0196 (5)
H13A0.1091070.0643760.0166070.029*
H13B0.1247380.1314300.0849490.029*
H13C0.0422300.0906620.0607050.029*
C210.3751 (3)0.2972 (2)0.06809 (16)0.0166 (5)
H21A0.3529710.3793060.0478480.025*
H21B0.2841300.2477600.1001960.025*
H21C0.4620250.2860650.1069620.025*
C220.4547 (3)0.1350 (2)0.02038 (17)0.0196 (5)
H22A0.5369330.1241230.0623010.029*
H22B0.3626000.0839240.0491130.029*
H22C0.4889820.1152340.0298800.029*
C230.5632 (3)0.3387 (2)0.05888 (17)0.0188 (5)
H23A0.6488550.3218350.0191980.028*
H23B0.5883130.3205440.1112940.028*
H23C0.5458500.4214980.0761960.028*
C310.1634 (3)0.4645 (2)0.23959 (18)0.0236 (6)
H31A0.1908940.5423050.2834570.035*
H31B0.1658030.4057320.2675690.035*
H31C0.0594970.4613540.2144980.035*
C320.2801 (3)0.5325 (2)0.12362 (18)0.0211 (5)
H32A0.1762620.5336460.1001830.032*
H32B0.3517790.5141240.0757090.032*
H32C0.3131200.6093040.1675090.032*
C411.0466 (3)0.2156 (3)0.35397 (19)0.0278 (6)
H41A1.1563040.2164210.3685990.042*
H41B1.0307210.2818640.3353850.042*
H41C1.0127000.1425130.3061550.042*
C420.9882 (3)0.1252 (2)0.46698 (18)0.0195 (5)
H42A1.0962590.1364460.4880270.029*
H42B0.9699120.0505300.4180660.029*
H42C0.9213100.1247480.5148310.029*
C431.0022 (3)0.3436 (2)0.5072 (2)0.0270 (6)
H43A0.9549640.3471680.5623080.040*
H43B0.9689060.4065800.4891820.040*
H43C1.1146910.3525180.5158390.040*
C510.6605 (3)0.2279 (2)0.57614 (16)0.0183 (5)
H51A0.5899420.2557360.6240050.027*
H51B0.7665540.2571700.5982750.027*
H51C0.6515520.1423070.5532800.027*
C520.6331 (4)0.4070 (2)0.53822 (19)0.0274 (6)
H52A0.5649110.4348640.5872670.041*
H52B0.6036690.4356820.4916230.041*
H52C0.7399310.4361630.5587270.041*
C530.4496 (3)0.2314 (3)0.47060 (18)0.0266 (6)
H53A0.4357190.1458450.4492740.040*
H53B0.4231550.2588980.4229230.040*
H53C0.3822870.2631320.5195200.040*
C610.7416 (4)0.0194 (2)0.24994 (17)0.0262 (6)
H61A0.8444670.0010930.2609230.039*
H61B0.7509220.0781310.2217620.039*
H61C0.6800210.0505820.2113080.039*
C620.6471 (3)0.0223 (2)0.38232 (18)0.0231 (6)
H62A0.5961510.0956290.3413250.035*
H62B0.5854720.0065450.4342840.035*
H62C0.7496630.0358140.4001150.035*
I11.24962 (4)0.90557 (3)0.24034 (3)0.02342 (7)0.9052 (15)
I20.98122 (13)0.75765 (10)0.25759 (8)0.01456 (8)0.9052 (15)
I30.71555 (5)0.60471 (3)0.27064 (2)0.02255 (7)0.9052 (15)
I1'1.2208 (6)0.8932 (4)0.2456 (3)0.0290 (6)*0.0948 (15)
Au20.9862 (10)0.7607 (7)0.2573 (6)0.0290 (6)*0.0948 (15)
I3'0.7616 (5)0.6281 (3)0.26689 (19)0.0290 (6)*0.0948 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01840 (5)0.02176 (5)0.01299 (5)0.00597 (4)0.00120 (3)0.00906 (4)
P10.0110 (3)0.0108 (3)0.0092 (3)0.0018 (2)0.0004 (2)0.0040 (2)
P20.0110 (3)0.0137 (3)0.0106 (3)0.0011 (2)0.0003 (2)0.0059 (2)
S10.0183 (3)0.0178 (3)0.0156 (3)0.0018 (2)0.0006 (2)0.0107 (2)
S20.0204 (3)0.0219 (3)0.0207 (3)0.0000 (2)0.0036 (2)0.0148 (3)
C10.0121 (11)0.0169 (11)0.0138 (12)0.0004 (9)0.0014 (9)0.0065 (10)
C20.0146 (11)0.0165 (11)0.0126 (11)0.0041 (9)0.0044 (9)0.0065 (10)
C30.0189 (12)0.0130 (11)0.0131 (12)0.0009 (9)0.0017 (9)0.0023 (9)
C40.0106 (11)0.0205 (12)0.0191 (13)0.0003 (9)0.0024 (9)0.0105 (10)
C50.0143 (11)0.0240 (13)0.0126 (12)0.0064 (10)0.0016 (9)0.0060 (10)
C60.0184 (12)0.0175 (12)0.0120 (12)0.0015 (9)0.0023 (9)0.0037 (10)
C110.0161 (12)0.0262 (14)0.0203 (13)0.0012 (10)0.0027 (10)0.0097 (11)
C120.0171 (12)0.0249 (13)0.0192 (13)0.0043 (10)0.0003 (10)0.0105 (11)
C130.0185 (12)0.0207 (13)0.0168 (13)0.0034 (10)0.0020 (10)0.0042 (11)
C210.0181 (12)0.0194 (12)0.0142 (12)0.0031 (10)0.0027 (9)0.0080 (10)
C220.0239 (13)0.0184 (12)0.0174 (13)0.0079 (10)0.0045 (10)0.0060 (10)
C230.0130 (11)0.0246 (13)0.0202 (13)0.0019 (10)0.0025 (10)0.0094 (11)
C310.0331 (15)0.0180 (13)0.0170 (13)0.0048 (11)0.0087 (11)0.0019 (11)
C320.0269 (14)0.0145 (12)0.0217 (14)0.0028 (10)0.0033 (11)0.0058 (11)
C410.0158 (13)0.0470 (18)0.0287 (16)0.0034 (12)0.0048 (11)0.0232 (14)
C420.0176 (12)0.0228 (13)0.0203 (13)0.0065 (10)0.0007 (10)0.0093 (11)
C430.0204 (14)0.0230 (14)0.0372 (17)0.0049 (11)0.0094 (12)0.0121 (13)
C510.0174 (12)0.0273 (13)0.0116 (12)0.0039 (10)0.0010 (9)0.0080 (11)
C520.0372 (17)0.0251 (14)0.0205 (14)0.0170 (12)0.0006 (12)0.0058 (12)
C530.0153 (13)0.0469 (18)0.0176 (14)0.0074 (12)0.0020 (10)0.0104 (13)
C610.0390 (17)0.0222 (14)0.0138 (13)0.0059 (12)0.0021 (12)0.0010 (11)
C620.0299 (15)0.0169 (12)0.0224 (14)0.0052 (11)0.0029 (11)0.0085 (11)
I10.02075 (16)0.02565 (14)0.02560 (13)0.00244 (11)0.00245 (11)0.01228 (10)
I20.01842 (14)0.01515 (13)0.00992 (10)0.00573 (9)0.00115 (8)0.00336 (8)
I30.02188 (15)0.02522 (12)0.01982 (11)0.00236 (10)0.00075 (9)0.00805 (9)
Geometric parameters (Å, º) top
Au1—S12.2928 (6)C22—H22A0.9800
Au1—S22.2990 (7)C22—H22B0.9800
P1—C31.848 (2)C22—H22C0.9800
P1—C11.879 (2)C23—H23A0.9800
P1—C21.885 (2)C23—H23B0.9800
P1—S12.0350 (8)C23—H23C0.9800
P2—C61.846 (3)C31—H31A0.9800
P2—C41.877 (2)C31—H31B0.9800
P2—C51.881 (2)C31—H31C0.9800
P2—S22.0444 (8)C32—H32A0.9800
C1—C131.538 (4)C32—H32B0.9800
C1—C121.544 (3)C32—H32C0.9800
C1—C111.544 (3)C41—H41A0.9800
C2—C231.539 (3)C41—H41B0.9800
C2—C211.542 (3)C41—H41C0.9800
C2—C221.543 (3)C42—H42A0.9800
C3—C321.531 (3)C42—H42B0.9800
C3—C311.531 (3)C42—H42C0.9800
C3—H31.0000C43—H43A0.9800
C4—C431.535 (4)C43—H43B0.9800
C4—C421.537 (3)C43—H43C0.9800
C4—C411.546 (4)C51—H51A0.9800
C5—C511.538 (3)C51—H51B0.9800
C5—C521.538 (4)C51—H51C0.9800
C5—C531.541 (4)C52—H52A0.9800
C6—C611.531 (4)C52—H52B0.9800
C6—C621.538 (3)C52—H52C0.9800
C6—H61.0000C53—H53A0.9800
C11—H11A0.9800C53—H53B0.9800
C11—H11B0.9800C53—H53C0.9800
C11—H11C0.9800C61—H61A0.9800
C12—H12A0.9800C61—H61B0.9800
C12—H12B0.9800C61—H61C0.9800
C12—H12C0.9800C62—H62A0.9800
C13—H13A0.9800C62—H62B0.9800
C13—H13B0.9800C62—H62C0.9800
C13—H13C0.9800I1—I22.9238 (11)
C21—H21A0.9800I2—I32.9213 (11)
C21—H21B0.9800I1'—Au22.561 (9)
C21—H21C0.9800Au2—I3'2.488 (9)
S1—Au1—S2177.53 (2)C2—C22—H22A109.5
C3—P1—C1112.59 (11)C2—C22—H22B109.5
C3—P1—C2108.03 (11)H22A—C22—H22B109.5
C1—P1—C2112.88 (11)C2—C22—H22C109.5
C3—P1—S1108.65 (8)H22A—C22—H22C109.5
C1—P1—S1104.29 (8)H22B—C22—H22C109.5
C2—P1—S1110.30 (8)C2—C23—H23A109.5
C6—P2—C4112.49 (12)C2—C23—H23B109.5
C6—P2—C5107.84 (12)H23A—C23—H23B109.5
C4—P2—C5113.30 (11)C2—C23—H23C109.5
C6—P2—S2108.92 (8)H23A—C23—H23C109.5
C4—P2—S2105.29 (8)H23B—C23—H23C109.5
C5—P2—S2108.89 (8)C3—C31—H31A109.5
P1—S1—Au1104.94 (3)C3—C31—H31B109.5
P2—S2—Au1104.09 (3)H31A—C31—H31B109.5
C13—C1—C12110.1 (2)C3—C31—H31C109.5
C13—C1—C11107.3 (2)H31A—C31—H31C109.5
C12—C1—C11108.4 (2)H31B—C31—H31C109.5
C13—C1—P1109.70 (17)C3—C32—H32A109.5
C12—C1—P1111.27 (17)C3—C32—H32B109.5
C11—C1—P1110.06 (17)H32A—C32—H32B109.5
C23—C2—C21108.54 (19)C3—C32—H32C109.5
C23—C2—C22107.1 (2)H32A—C32—H32C109.5
C21—C2—C22109.4 (2)H32B—C32—H32C109.5
C23—C2—P1108.77 (17)C4—C41—H41A109.5
C21—C2—P1113.15 (16)C4—C41—H41B109.5
C22—C2—P1109.72 (16)H41A—C41—H41B109.5
C32—C3—C31110.3 (2)C4—C41—H41C109.5
C32—C3—P1117.22 (18)H41A—C41—H41C109.5
C31—C3—P1112.25 (17)H41B—C41—H41C109.5
C32—C3—H3105.3C4—C42—H42A109.5
C31—C3—H3105.3C4—C42—H42B109.5
P1—C3—H3105.3H42A—C42—H42B109.5
C43—C4—C42110.2 (2)C4—C42—H42C109.5
C43—C4—C41108.0 (2)H42A—C42—H42C109.5
C42—C4—C41108.2 (2)H42B—C42—H42C109.5
C43—C4—P2109.77 (18)C4—C43—H43A109.5
C42—C4—P2112.05 (17)C4—C43—H43B109.5
C41—C4—P2108.55 (17)H43A—C43—H43B109.5
C51—C5—C52109.4 (2)C4—C43—H43C109.5
C51—C5—C53109.3 (2)H43A—C43—H43C109.5
C52—C5—C53107.4 (2)H43B—C43—H43C109.5
C51—C5—P2112.75 (17)C5—C51—H51A109.5
C52—C5—P2109.88 (18)C5—C51—H51B109.5
C53—C5—P2107.95 (17)H51A—C51—H51B109.5
C61—C6—C62110.2 (2)C5—C51—H51C109.5
C61—C6—P2113.15 (18)H51A—C51—H51C109.5
C62—C6—P2117.28 (18)H51B—C51—H51C109.5
C61—C6—H6105.0C5—C52—H52A109.5
C62—C6—H6105.0C5—C52—H52B109.5
P2—C6—H6105.0H52A—C52—H52B109.5
C1—C11—H11A109.5C5—C52—H52C109.5
C1—C11—H11B109.5H52A—C52—H52C109.5
H11A—C11—H11B109.5H52B—C52—H52C109.5
C1—C11—H11C109.5C5—C53—H53A109.5
H11A—C11—H11C109.5C5—C53—H53B109.5
H11B—C11—H11C109.5H53A—C53—H53B109.5
C1—C12—H12A109.5C5—C53—H53C109.5
C1—C12—H12B109.5H53A—C53—H53C109.5
H12A—C12—H12B109.5H53B—C53—H53C109.5
C1—C12—H12C109.5C6—C61—H61A109.5
H12A—C12—H12C109.5C6—C61—H61B109.5
H12B—C12—H12C109.5H61A—C61—H61B109.5
C1—C13—H13A109.5C6—C61—H61C109.5
C1—C13—H13B109.5H61A—C61—H61C109.5
H13A—C13—H13B109.5H61B—C61—H61C109.5
C1—C13—H13C109.5C6—C62—H62A109.5
H13A—C13—H13C109.5C6—C62—H62B109.5
H13B—C13—H13C109.5H62A—C62—H62B109.5
C2—C21—H21A109.5C6—C62—H62C109.5
C2—C21—H21B109.5H62A—C62—H62C109.5
H21A—C21—H21B109.5H62B—C62—H62C109.5
C2—C21—H21C109.5I3—I2—I1178.44 (5)
H21A—C21—H21C109.5I3'—Au2—I1'178.7 (5)
H21B—C21—H21C109.5
C3—P1—S1—Au151.13 (9)C1—P1—C3—C3159.1 (2)
C1—P1—S1—Au1171.42 (8)C2—P1—C3—C31175.59 (18)
C2—P1—S1—Au167.11 (9)S1—P1—C3—C3155.9 (2)
C6—P2—S2—Au136.45 (9)C6—P2—C4—C43167.64 (17)
C4—P2—S2—Au1157.30 (9)C5—P2—C4—C4345.0 (2)
C5—P2—S2—Au180.90 (9)S2—P2—C4—C4373.87 (18)
C3—P1—C1—C13166.40 (16)C6—P2—C4—C4244.9 (2)
C2—P1—C1—C1343.75 (19)C5—P2—C4—C4277.7 (2)
S1—P1—C1—C1375.99 (16)S2—P2—C4—C42163.40 (16)
C3—P1—C1—C1244.3 (2)C6—P2—C4—C4174.6 (2)
C2—P1—C1—C1278.30 (19)C5—P2—C4—C41162.80 (18)
S1—P1—C1—C12161.96 (15)S2—P2—C4—C4143.91 (19)
C3—P1—C1—C1175.81 (19)C6—P2—C5—C5181.5 (2)
C2—P1—C1—C11161.54 (16)C4—P2—C5—C5143.7 (2)
S1—P1—C1—C1141.80 (18)S2—P2—C5—C51160.47 (16)
C3—P1—C2—C2336.60 (19)C6—P2—C5—C52156.24 (18)
C1—P1—C2—C23161.77 (16)C4—P2—C5—C5278.59 (19)
S1—P1—C2—C2382.01 (16)S2—P2—C5—C5238.20 (19)
C3—P1—C2—C2184.10 (19)C6—P2—C5—C5339.4 (2)
C1—P1—C2—C2141.1 (2)C4—P2—C5—C53164.53 (18)
S1—P1—C2—C21157.29 (15)S2—P2—C5—C5378.68 (19)
C3—P1—C2—C22153.42 (17)C4—P2—C6—C6161.0 (2)
C1—P1—C2—C2281.42 (19)C5—P2—C6—C61173.38 (18)
S1—P1—C2—C2234.80 (19)S2—P2—C6—C6155.4 (2)
C1—P1—C3—C3270.1 (2)C4—P2—C6—C6269.0 (2)
C2—P1—C3—C3255.2 (2)C5—P2—C6—C6256.7 (2)
S1—P1—C3—C32174.88 (17)S2—P2—C6—C62174.68 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23B···Au10.982.723.616 (3)152
C53—H53B···Au10.982.903.747 (3)145
C22—H22C···S10.982.823.299 (3)111
C11—H11C···S10.982.683.194 (3)113
C52—H52B···S20.982.773.292 (3)114
C41—H41B···S20.982.703.214 (3)113
C3—H3···I31.003.294.202 (3)152
C6—H6···I1i1.003.213.993 (3)136
C51—H51B···I2ii0.983.254.055 (3)140
C61—H61A···I2iii0.983.264.003 (3)134
Symmetry codes: (i) x1, y1, z; (ii) x+2, y+1, z+1; (iii) x, y1, z.
Bis(tert-butyldiisopropylphosphine sulfide-κS)gold(I) triiodide/diiodidoaurate(I)(0.875/0.125) (3) top
Crystal data top
[Au(C10H23PS)2][AuI2]0.125(I3)0.875F(000) = 1877
Mr = 999.05Dx = 2.128 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.6180 (2) ÅCell parameters from 25881 reflections
b = 11.8894 (3) Åθ = 2.4–29.3°
c = 22.5768 (5) ŵ = 8.39 mm1
β = 90.090 (2)°T = 100 K
V = 3118.54 (12) Å3Plate, orange
Z = 40.15 × 0.08 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
7725 independent reflections
Radiation source: fine-focus sealed tube7218 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 16.1419 pixels mm-1θmax = 28.3°, θmin = 2.5°
ω scanh = 1515
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1515
Tmin = 0.565, Tmax = 1.000l = 3030
142434 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.012P)2 + 2.6204P]
where P = (Fo2 + 2Fc2)/3
7725 reflections(Δ/σ)max = 0.002
281 parametersΔρmax = 0.65 e Å3
7 restraintsΔρmin = 0.79 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10.50279 (2)0.31391 (2)0.72024 (2)0.01620 (4)
S10.69445 (8)0.29078 (8)0.69963 (4)0.01842 (19)
S20.30896 (8)0.33250 (8)0.73637 (4)0.01784 (19)
P10.70782 (7)0.37066 (7)0.62071 (4)0.01298 (18)
P20.29453 (7)0.36368 (7)0.82448 (4)0.01231 (18)
C10.8580 (3)0.3484 (3)0.59402 (18)0.0183 (8)
C20.5977 (3)0.3180 (3)0.56939 (16)0.0157 (7)
H20.5230700.3443370.5864920.019*
C30.6831 (3)0.5237 (3)0.62619 (17)0.0184 (8)
H30.7088860.5577660.5879470.022*
C40.1440 (3)0.4127 (3)0.83670 (17)0.0173 (8)
C50.4047 (3)0.4637 (3)0.84895 (17)0.0186 (8)
H50.4792070.4227390.8436950.022*
C60.3210 (3)0.2363 (3)0.86908 (18)0.0182 (8)
H60.3013260.2551560.9110360.022*
C110.8678 (3)0.2328 (3)0.56431 (19)0.0242 (9)
H11A0.8216070.2320350.5279570.036*
H11B0.8395270.1746630.5914280.036*
H11C0.9485140.2177220.5545710.036*
C120.8917 (3)0.4385 (3)0.54867 (18)0.0223 (8)
H12A0.9689540.4224960.5334430.033*
H12B0.8913740.5125700.5677410.033*
H12C0.8364220.4381130.5158570.033*
C130.9421 (3)0.3517 (3)0.64673 (19)0.0249 (9)
H13A1.0206330.3388810.6325320.037*
H13B0.9213620.2929960.6752420.037*
H13C0.9377130.4254830.6659890.037*
C210.5861 (3)0.1897 (3)0.56617 (19)0.0223 (8)
H21A0.5112410.1700830.5489660.033*
H21B0.5919260.1579600.6061260.033*
H21C0.6476960.1589900.5413590.033*
C220.6022 (3)0.3709 (3)0.50792 (17)0.0221 (8)
H22A0.6678780.3401860.4860280.033*
H22B0.6108840.4525830.5116890.033*
H22C0.5308580.3539380.4865240.033*
C310.7548 (3)0.5775 (3)0.67531 (18)0.0274 (9)
H31A0.7350800.6573900.6785710.041*
H31B0.8367290.5698240.6659310.041*
H31C0.7385430.5397530.7129780.041*
C320.5570 (3)0.5551 (3)0.63429 (18)0.0217 (8)
H32A0.5296760.5264960.6724730.033*
H32B0.5112410.5219090.6022530.033*
H32C0.5489120.6371480.6333610.033*
C410.1075 (3)0.3948 (3)0.90104 (18)0.0231 (9)
H41A0.1613970.4337910.9274010.035*
H41B0.1078790.3141670.9101080.035*
H41C0.0298070.4248980.9068700.035*
C420.1359 (3)0.5382 (3)0.8217 (2)0.0286 (10)
H42A0.0549170.5612360.8210540.043*
H42B0.1703080.5517800.7827580.043*
H42C0.1773520.5818920.8517560.043*
C430.0618 (3)0.3484 (4)0.79507 (19)0.0276 (9)
H43A0.0691430.2674500.8021880.041*
H43B0.0817010.3650460.7538120.041*
H43C0.0176120.3719950.8027140.041*
C510.4171 (3)0.5701 (3)0.81099 (19)0.0257 (9)
H51A0.3595870.6256800.8232510.039*
H51B0.4052730.5510270.7691940.039*
H51C0.4944110.6015950.8162900.039*
C520.4001 (4)0.4915 (4)0.91501 (19)0.0302 (10)
H52A0.4721080.5279420.9269860.045*
H52B0.3897260.4220490.9377590.045*
H52C0.3354050.5423840.9226390.045*
C610.2431 (3)0.1387 (3)0.85035 (18)0.0229 (8)
H61A0.2535930.1236280.8080220.034*
H61B0.1625900.1584790.8578950.034*
H61C0.2633430.0713340.8731530.034*
C620.4462 (3)0.1986 (3)0.8684 (2)0.0315 (10)
H62A0.4539480.1281660.8905570.047*
H62B0.4943770.2566350.8867690.047*
H62C0.4709130.1868040.8273670.047*
I10.23728 (2)0.06220 (3)0.35268 (2)0.02167 (11)0.8748 (15)
I20.25192 (5)0.19148 (6)0.46007 (3)0.01730 (9)0.8748 (15)
I30.26412 (15)0.32860 (13)0.56798 (7)0.0260 (4)0.8748 (15)
I1'0.2398 (2)0.0894 (2)0.37747 (17)0.0243 (7)*0.1252 (15)
Au2'0.2515 (3)0.2104 (2)0.47095 (13)0.0190 (6)*0.1252 (15)
I3'0.2642 (8)0.3284 (6)0.5696 (4)0.0051 (17)*0.1252 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01582 (6)0.01614 (6)0.01666 (7)0.00100 (5)0.00516 (6)0.00075 (5)
S10.0160 (4)0.0230 (5)0.0162 (5)0.0022 (3)0.0027 (4)0.0053 (4)
S20.0158 (4)0.0231 (5)0.0147 (5)0.0014 (3)0.0022 (3)0.0016 (4)
P10.0108 (4)0.0132 (4)0.0150 (5)0.0011 (3)0.0009 (3)0.0014 (3)
P20.0117 (4)0.0112 (4)0.0140 (5)0.0004 (3)0.0011 (3)0.0010 (3)
C10.0133 (16)0.0181 (18)0.023 (2)0.0007 (14)0.0072 (15)0.0050 (15)
C20.0131 (16)0.0184 (18)0.0155 (19)0.0008 (13)0.0006 (14)0.0015 (15)
C30.0197 (18)0.0144 (17)0.021 (2)0.0025 (14)0.0019 (15)0.0002 (15)
C40.0134 (17)0.0187 (18)0.020 (2)0.0044 (13)0.0033 (14)0.0037 (15)
C50.0164 (17)0.0152 (17)0.024 (2)0.0033 (14)0.0005 (15)0.0031 (15)
C60.0172 (17)0.0167 (18)0.021 (2)0.0014 (14)0.0006 (15)0.0047 (15)
C110.0215 (19)0.022 (2)0.029 (2)0.0075 (15)0.0080 (17)0.0015 (17)
C120.0166 (18)0.024 (2)0.026 (2)0.0021 (15)0.0065 (16)0.0071 (17)
C130.0100 (17)0.036 (2)0.029 (2)0.0033 (15)0.0007 (16)0.0076 (18)
C210.0220 (19)0.0195 (19)0.025 (2)0.0034 (15)0.0042 (16)0.0013 (16)
C220.0208 (19)0.025 (2)0.021 (2)0.0048 (15)0.0015 (16)0.0039 (16)
C310.030 (2)0.0191 (19)0.033 (2)0.0008 (17)0.0072 (19)0.0061 (16)
C320.0229 (19)0.0154 (18)0.027 (2)0.0075 (15)0.0035 (16)0.0016 (16)
C410.0203 (19)0.027 (2)0.022 (2)0.0048 (16)0.0061 (16)0.0044 (17)
C420.028 (2)0.024 (2)0.034 (3)0.0096 (17)0.0079 (19)0.0078 (18)
C430.0157 (18)0.040 (2)0.027 (2)0.0017 (17)0.0030 (16)0.0026 (19)
C510.024 (2)0.0173 (19)0.036 (3)0.0071 (15)0.0073 (18)0.0012 (17)
C520.037 (2)0.028 (2)0.025 (2)0.0099 (18)0.0016 (19)0.0089 (18)
C610.0241 (19)0.0152 (17)0.030 (2)0.0045 (15)0.0015 (18)0.0031 (15)
C620.022 (2)0.026 (2)0.046 (3)0.0082 (16)0.0012 (19)0.014 (2)
I10.01827 (14)0.02527 (17)0.0215 (2)0.00122 (12)0.00043 (13)0.00139 (16)
I20.01559 (17)0.0190 (2)0.0173 (2)0.00070 (16)0.00028 (17)0.00326 (19)
I30.0210 (4)0.0270 (4)0.0300 (5)0.00035 (12)0.00129 (14)0.00101 (14)
Geometric parameters (Å, º) top
Au1—S12.2920 (9)C21—H21A0.9800
Au1—S22.2924 (9)C21—H21B0.9800
S1—P12.0251 (13)C21—H21C0.9800
S2—P22.0308 (13)C22—H22A0.9800
P1—C21.835 (4)C22—H22B0.9800
P1—C31.847 (4)C22—H22C0.9800
P1—C11.866 (3)C31—H31A0.9800
P2—C51.832 (4)C31—H31B0.9800
P2—C61.844 (4)C31—H31C0.9800
P2—C41.865 (3)C32—H32A0.9800
C1—C121.534 (5)C32—H32B0.9800
C1—C111.534 (5)C32—H32C0.9800
C1—C131.539 (5)C41—H41A0.9800
C2—C221.525 (5)C41—H41B0.9800
C2—C211.533 (5)C41—H41C0.9800
C2—H21.0000C42—H42A0.9800
C3—C321.523 (5)C42—H42B0.9800
C3—C311.526 (5)C42—H42C0.9800
C3—H31.0000C43—H43A0.9800
C4—C411.529 (5)C43—H43B0.9800
C4—C421.533 (5)C43—H43C0.9800
C4—C431.541 (5)C51—H51A0.9800
C5—C521.529 (6)C51—H51B0.9800
C5—C511.535 (5)C51—H51C0.9800
C5—H51.0000C52—H52A0.9800
C6—C621.522 (5)C52—H52B0.9800
C6—C611.531 (5)C52—H52C0.9800
C6—H61.0000C61—H61A0.9800
C11—H11A0.9800C61—H61B0.9800
C11—H11B0.9800C61—H61C0.9800
C11—H11C0.9800C62—H62A0.9800
C12—H12A0.9800C62—H62B0.9800
C12—H12B0.9800C62—H62C0.9800
C12—H12C0.9800I1—I22.8755 (7)
C13—H13A0.9800I2—I32.9347 (17)
C13—H13B0.9800I1'—Au2'2.557 (4)
C13—H13C0.9800Au2'—I3'2.636 (8)
S1—Au1—S2177.07 (4)C2—C21—H21A109.5
P1—S1—Au1101.43 (4)C2—C21—H21B109.5
P2—S2—Au1104.82 (5)H21A—C21—H21B109.5
C2—P1—C3105.67 (17)C2—C21—H21C109.5
C2—P1—C1113.52 (17)H21A—C21—H21C109.5
C3—P1—C1107.89 (16)H21B—C21—H21C109.5
C2—P1—S1109.95 (12)C2—C22—H22A109.5
C3—P1—S1113.02 (13)C2—C22—H22B109.5
C1—P1—S1106.89 (13)H22A—C22—H22B109.5
C5—P2—C6104.62 (17)C2—C22—H22C109.5
C5—P2—C4114.09 (16)H22A—C22—H22C109.5
C6—P2—C4109.35 (16)H22B—C22—H22C109.5
C5—P2—S2110.80 (13)C3—C31—H31A109.5
C6—P2—S2111.79 (13)C3—C31—H31B109.5
C4—P2—S2106.31 (13)H31A—C31—H31B109.5
C12—C1—C11108.4 (3)C3—C31—H31C109.5
C12—C1—C13109.6 (3)H31A—C31—H31C109.5
C11—C1—C13108.3 (3)H31B—C31—H31C109.5
C12—C1—P1110.9 (2)C3—C32—H32A109.5
C11—C1—P1109.8 (2)C3—C32—H32B109.5
C13—C1—P1109.8 (3)H32A—C32—H32B109.5
C22—C2—C21111.7 (3)C3—C32—H32C109.5
C22—C2—P1114.1 (3)H32A—C32—H32C109.5
C21—C2—P1115.5 (3)H32B—C32—H32C109.5
C22—C2—H2104.7C4—C41—H41A109.5
C21—C2—H2104.7C4—C41—H41B109.5
P1—C2—H2104.7H41A—C41—H41B109.5
C32—C3—C31109.5 (3)C4—C41—H41C109.5
C32—C3—P1113.5 (3)H41A—C41—H41C109.5
C31—C3—P1112.1 (3)H41B—C41—H41C109.5
C32—C3—H3107.1C4—C42—H42A109.5
C31—C3—H3107.1C4—C42—H42B109.5
P1—C3—H3107.1H42A—C42—H42B109.5
C41—C4—C42109.2 (3)C4—C42—H42C109.5
C41—C4—C43109.8 (3)H42A—C42—H42C109.5
C42—C4—C43108.1 (3)H42B—C42—H42C109.5
C41—C4—P2111.0 (3)C4—C43—H43A109.5
C42—C4—P2109.2 (2)C4—C43—H43B109.5
C43—C4—P2109.6 (3)H43A—C43—H43B109.5
C52—C5—C51111.7 (3)C4—C43—H43C109.5
C52—C5—P2114.1 (3)H43A—C43—H43C109.5
C51—C5—P2115.6 (3)H43B—C43—H43C109.5
C52—C5—H5104.7C5—C51—H51A109.5
C51—C5—H5104.7C5—C51—H51B109.5
P2—C5—H5104.7H51A—C51—H51B109.5
C62—C6—C61109.7 (3)C5—C51—H51C109.5
C62—C6—P2113.2 (3)H51A—C51—H51C109.5
C61—C6—P2112.0 (3)H51B—C51—H51C109.5
C62—C6—H6107.2C5—C52—H52A109.5
C61—C6—H6107.2C5—C52—H52B109.5
P2—C6—H6107.2H52A—C52—H52B109.5
C1—C11—H11A109.5C5—C52—H52C109.5
C1—C11—H11B109.5H52A—C52—H52C109.5
H11A—C11—H11B109.5H52B—C52—H52C109.5
C1—C11—H11C109.5C6—C61—H61A109.5
H11A—C11—H11C109.5C6—C61—H61B109.5
H11B—C11—H11C109.5H61A—C61—H61B109.5
C1—C12—H12A109.5C6—C61—H61C109.5
C1—C12—H12B109.5H61A—C61—H61C109.5
H12A—C12—H12B109.5H61B—C61—H61C109.5
C1—C12—H12C109.5C6—C62—H62A109.5
H12A—C12—H12C109.5C6—C62—H62B109.5
H12B—C12—H12C109.5H62A—C62—H62B109.5
C1—C13—H13A109.5C6—C62—H62C109.5
C1—C13—H13B109.5H62A—C62—H62C109.5
H13A—C13—H13B109.5H62B—C62—H62C109.5
C1—C13—H13C109.5I1—I2—I3178.46 (4)
H13A—C13—H13C109.5I1'—Au2'—I3'177.9 (2)
H13B—C13—H13C109.5
Au1—S1—P1—C251.38 (13)C2—P1—C3—C31170.3 (3)
Au1—S1—P1—C366.44 (13)C1—P1—C3—C3167.9 (3)
Au1—S1—P1—C1175.01 (13)S1—P1—C3—C3150.0 (3)
Au1—S2—P2—C542.46 (13)C5—P2—C4—C4180.0 (3)
Au1—S2—P2—C673.81 (13)C6—P2—C4—C4136.7 (3)
Au1—S2—P2—C4166.94 (12)S2—P2—C4—C41157.6 (2)
C2—P1—C1—C1280.1 (3)C5—P2—C4—C4240.4 (3)
C3—P1—C1—C1236.6 (3)C6—P2—C4—C42157.1 (3)
S1—P1—C1—C12158.5 (2)S2—P2—C4—C4282.0 (3)
C2—P1—C1—C1139.6 (3)C5—P2—C4—C43158.6 (3)
C3—P1—C1—C11156.3 (3)C6—P2—C4—C4384.7 (3)
S1—P1—C1—C1181.8 (3)S2—P2—C4—C4336.1 (3)
C2—P1—C1—C13158.6 (2)C6—P2—C5—C5259.2 (3)
C3—P1—C1—C1384.7 (3)C4—P2—C5—C5260.2 (3)
S1—P1—C1—C1337.2 (3)S2—P2—C5—C52179.8 (2)
C3—P1—C2—C2259.2 (3)C6—P2—C5—C51169.2 (3)
C1—P1—C2—C2258.9 (3)C4—P2—C5—C5171.4 (3)
S1—P1—C2—C22178.6 (2)S2—P2—C5—C5148.5 (3)
C3—P1—C2—C21169.3 (3)C5—P2—C6—C6249.9 (3)
C1—P1—C2—C2172.7 (3)C4—P2—C6—C62172.5 (3)
S1—P1—C2—C2147.0 (3)S2—P2—C6—C6270.1 (3)
C2—P1—C3—C3245.5 (3)C5—P2—C6—C61174.6 (3)
C1—P1—C3—C32167.3 (3)C4—P2—C6—C6162.8 (3)
S1—P1—C3—C3274.7 (3)S2—P2—C6—C6154.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···I1i1.003.013.877 (4)146
C11—H11B···I1ii0.983.214.160 (4)163
C43—H43C···I1iii0.983.164.130 (4)169
C3—H3···I2iv1.003.213.979 (4)135
C2—H2···I31.003.043.878 (4)142
C13—H13A···I3v0.983.194.154 (4)170
C61—H61C···I3vi0.983.194.123 (4)159
C32—H32A···Au10.982.773.520 (4)134
C62—H62C···Au10.982.883.675 (5)139
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x+1/2, y1/2, z+3/2.
Bis(di-tert-butylisopropylphosphine sulfide-κS)gold(I) triiodide bis(iodine) (4) top
Crystal data top
[Au(C11H25PS)2]I3·2I2Dx = 2.486 Mg m3
Mr = 1525.94Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 25916 reflections
a = 15.0435 (3) Åθ = 2.2–30.9°
b = 15.2629 (3) ŵ = 9.10 mm1
c = 17.7574 (3) ÅT = 100 K
V = 4077.24 (13) Å3Plate, red
Z = 40.2 × 0.08 × 0.03 mm
F(000) = 2776
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5958 independent reflections
Radiation source: fine-focus sealed tube5144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 16.1419 pixels mm-1θmax = 30.0°, θmin = 2.2°
ω–scanh = 2021
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 2121
Tmin = 0.263, Tmax = 0.772l = 2525
112897 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.034 w = 1/[σ2(Fo2) + (0.0083P)2 + 4.2635P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.002
5958 reflectionsΔρmax = 0.95 e Å3
164 parametersΔρmin = 1.39 e Å3
0 restraintsExtinction correction: SHELXL2019/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000131 (6)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.7500000.2500000.15374 (2)0.01526 (3)
P10.52206 (4)0.26998 (4)0.12378 (3)0.01213 (12)
S10.62991 (4)0.34121 (4)0.15778 (4)0.01652 (13)
C10.50319 (17)0.17284 (17)0.18685 (14)0.0174 (5)
C20.42991 (17)0.35226 (18)0.12664 (16)0.0215 (6)
C30.54510 (17)0.22913 (17)0.02766 (14)0.0177 (5)
H30.6013480.1946430.0323160.021*
C110.40722 (18)0.13816 (19)0.18186 (16)0.0240 (6)
H11A0.4018600.0844540.2117600.036*
H11B0.3925830.1254810.1291970.036*
H11C0.3661410.1824860.2014430.036*
C120.5237 (2)0.1960 (2)0.26893 (15)0.0281 (7)
H12A0.4856850.2446950.2849410.042*
H12B0.5862570.2132540.2734360.042*
H12C0.5123930.1449260.3009510.042*
C130.56738 (19)0.09862 (18)0.16356 (16)0.0234 (6)
H13A0.6286590.1203450.1649080.035*
H13B0.5529930.0790650.1124290.035*
H13C0.5611960.0493690.1985810.035*
C210.46094 (19)0.43973 (19)0.09287 (18)0.0292 (7)
H21A0.4120480.4821130.0946140.044*
H21B0.4791920.4306790.0404670.044*
H21C0.5113670.4621910.1219860.044*
C220.34980 (19)0.3190 (2)0.0810 (2)0.0360 (8)
H22A0.3353410.2590950.0964610.054*
H22B0.3645060.3197080.0271980.054*
H22C0.2985200.3571880.0901200.054*
C230.4025 (2)0.3707 (2)0.20844 (18)0.0347 (8)
H23A0.4549400.3879660.2376310.052*
H23B0.3763990.3177430.2304460.052*
H23C0.3586670.4181980.2094400.052*
C310.5667 (2)0.3027 (2)0.02837 (16)0.0321 (7)
H31A0.5955650.2777470.0729410.048*
H31B0.6066280.3451320.0045330.048*
H31C0.5115610.3321310.0434030.048*
C320.47744 (19)0.1653 (2)0.00743 (15)0.0268 (7)
H32A0.4210080.1958520.0158650.040*
H32B0.4678280.1158630.0268190.040*
H32C0.5004420.1436100.0555810.040*
I10.7500000.7500000.62866 (2)0.01579 (5)
I20.77863 (2)0.56080 (2)0.63226 (2)0.02354 (4)
I30.71724 (2)0.46647 (2)0.47548 (2)0.02059 (4)
I40.68484 (2)0.39241 (2)0.33699 (2)0.03232 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01159 (6)0.01993 (7)0.01425 (7)0.00277 (6)0.0000.000
P10.0117 (3)0.0120 (3)0.0126 (3)0.0012 (2)0.0003 (2)0.0004 (2)
S10.0141 (3)0.0157 (3)0.0197 (3)0.0036 (2)0.0016 (2)0.0028 (3)
C10.0226 (13)0.0140 (13)0.0154 (12)0.0050 (10)0.0018 (10)0.0024 (10)
C20.0140 (12)0.0152 (14)0.0354 (16)0.0011 (10)0.0010 (11)0.0025 (12)
C30.0204 (13)0.0181 (14)0.0147 (12)0.0035 (10)0.0009 (10)0.0025 (10)
C110.0275 (15)0.0192 (15)0.0253 (14)0.0075 (12)0.0058 (11)0.0015 (12)
C120.0463 (18)0.0230 (16)0.0150 (13)0.0090 (14)0.0007 (12)0.0045 (11)
C130.0272 (15)0.0144 (14)0.0286 (15)0.0010 (11)0.0019 (12)0.0048 (11)
C210.0229 (15)0.0171 (15)0.0477 (19)0.0013 (12)0.0015 (13)0.0085 (14)
C220.0168 (14)0.0230 (17)0.068 (2)0.0005 (12)0.0104 (14)0.0018 (16)
C230.0338 (17)0.0247 (17)0.0457 (19)0.0022 (14)0.0198 (15)0.0070 (14)
C310.0461 (19)0.0333 (18)0.0170 (14)0.0106 (15)0.0044 (13)0.0017 (13)
C320.0290 (15)0.0313 (17)0.0201 (14)0.0068 (13)0.0038 (12)0.0050 (12)
I10.01799 (11)0.01698 (12)0.01240 (10)0.00082 (9)0.0000.000
I20.03629 (10)0.01414 (9)0.02018 (9)0.00234 (8)0.00729 (7)0.00293 (7)
I30.02308 (9)0.01690 (9)0.02180 (9)0.00011 (7)0.00347 (7)0.00215 (7)
I40.05127 (13)0.02262 (10)0.02306 (9)0.00318 (9)0.00405 (9)0.00407 (8)
Geometric parameters (Å, º) top
Au1—S12.2818 (6)C13—H13B0.9800
Au1—S1i2.2818 (6)C13—H13C0.9800
P1—C31.850 (3)C21—H21A0.9800
P1—C21.871 (3)C21—H21B0.9800
P1—C11.880 (3)C21—H21C0.9800
P1—S12.0441 (9)C22—H22A0.9800
C1—C121.531 (4)C22—H22B0.9800
C1—C111.540 (4)C22—H22C0.9800
C1—C131.545 (4)C23—H23A0.9800
C2—C231.536 (4)C23—H23B0.9800
C2—C211.536 (4)C23—H23C0.9800
C2—C221.539 (4)C31—H31A0.9800
C3—C311.535 (4)C31—H31B0.9800
C3—C321.540 (4)C31—H31C0.9800
C3—H31.0000C32—H32A0.9800
C11—H11A0.9800C32—H32B0.9800
C11—H11B0.9800C32—H32C0.9800
C11—H11C0.9800I1—I2ii2.9204 (2)
C12—H12A0.9800I1—I22.9204 (2)
C12—H12B0.9800I2—I33.2674 (2)
C12—H12C0.9800I3—I42.7501 (3)
C13—H13A0.9800
S1—Au1—S1i176.40 (3)C1—C13—H13B109.5
C3—P1—C2112.96 (13)H13A—C13—H13B109.5
C3—P1—C1108.19 (12)C1—C13—H13C109.5
C2—P1—C1113.66 (12)H13A—C13—H13C109.5
C3—P1—S1107.64 (9)H13B—C13—H13C109.5
C2—P1—S1102.89 (9)C2—C21—H21A109.5
C1—P1—S1111.31 (9)C2—C21—H21B109.5
P1—S1—Au1107.14 (3)H21A—C21—H21B109.5
C12—C1—C11108.9 (2)C2—C21—H21C109.5
C12—C1—C13107.3 (2)H21A—C21—H21C109.5
C11—C1—C13108.6 (2)H21B—C21—H21C109.5
C12—C1—P1110.76 (18)C2—C22—H22A109.5
C11—C1—P1112.23 (18)C2—C22—H22B109.5
C13—C1—P1108.94 (17)H22A—C22—H22B109.5
C23—C2—C21106.9 (2)C2—C22—H22C109.5
C23—C2—C22110.4 (2)H22A—C22—H22C109.5
C21—C2—C22108.6 (2)H22B—C22—H22C109.5
C23—C2—P1110.3 (2)C2—C23—H23A109.5
C21—C2—P1110.34 (18)C2—C23—H23B109.5
C22—C2—P1110.2 (2)H23A—C23—H23B109.5
C31—C3—C32109.9 (2)C2—C23—H23C109.5
C31—C3—P1113.03 (19)H23A—C23—H23C109.5
C32—C3—P1117.56 (18)H23B—C23—H23C109.5
C31—C3—H3105.1C3—C31—H31A109.5
C32—C3—H3105.1C3—C31—H31B109.5
P1—C3—H3105.1H31A—C31—H31B109.5
C1—C11—H11A109.5C3—C31—H31C109.5
C1—C11—H11B109.5H31A—C31—H31C109.5
H11A—C11—H11B109.5H31B—C31—H31C109.5
C1—C11—H11C109.5C3—C32—H32A109.5
H11A—C11—H11C109.5C3—C32—H32B109.5
H11B—C11—H11C109.5H32A—C32—H32B109.5
C1—C12—H12A109.5C3—C32—H32C109.5
C1—C12—H12B109.5H32A—C32—H32C109.5
H12A—C12—H12B109.5H32B—C32—H32C109.5
C1—C12—H12C109.5I2ii—I1—I2177.495 (11)
H12A—C12—H12C109.5I1—I2—I3112.048 (7)
H12B—C12—H12C109.5I4—I3—I2173.271 (9)
C1—C13—H13A109.5
C3—P1—S1—Au158.76 (10)S1—P1—C2—C2374.7 (2)
C2—P1—S1—Au1178.28 (9)C3—P1—C2—C2172.5 (2)
C1—P1—S1—Au159.64 (9)C1—P1—C2—C21163.74 (19)
C3—P1—C1—C12155.4 (2)S1—P1—C2—C2143.3 (2)
C2—P1—C1—C1278.3 (2)C3—P1—C2—C2247.4 (2)
S1—P1—C1—C1237.3 (2)C1—P1—C2—C2276.4 (2)
C3—P1—C1—C1182.7 (2)S1—P1—C2—C22163.14 (19)
C2—P1—C1—C1143.6 (2)C2—P1—C3—C3156.4 (2)
S1—P1—C1—C11159.21 (16)C1—P1—C3—C31176.9 (2)
C3—P1—C1—C1337.5 (2)S1—P1—C3—C3156.5 (2)
C2—P1—C1—C13163.85 (18)C2—P1—C3—C3273.3 (2)
S1—P1—C1—C1380.53 (18)C1—P1—C3—C3253.4 (2)
C3—P1—C2—C23169.55 (19)S1—P1—C3—C32173.81 (19)
C1—P1—C2—C2345.8 (2)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+3/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···Au10.982.703.594 (3)152
C21—H21C···S10.982.643.170 (3)114
C31—H31B···I3iii0.983.254.102 (3)146
C3—H3···I3iv1.003.184.059 (3)148
C21—H21A···I3v0.983.284.119 (3)145
C22—H22C···I3v0.983.183.962 (3)138
Symmetry codes: (iii) x+3/2, y, z1/2; (iv) x, y+1/2, z1/2; (v) x1/2, y+1, z+1/2.
Dibromido(di-tert-butyldithiophosphato-κ2S,S')gold(III) (5) top
Crystal data top
[AuBr2(C8H18PS2)]Dx = 2.525 Mg m3
Mr = 566.10Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 5608 reflections
a = 16.0199 (6) Åθ = 2.2–29.2°
b = 11.5880 (4) ŵ = 15.60 mm1
c = 8.0211 (3) ÅT = 100 K
V = 1489.03 (9) Å3Block, orange
Z = 40.13 × 0.05 × 0.04 mm
F(000) = 1048
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
2061 independent reflections
Radiation source: fine-focus sealed tube1712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
Detector resolution: 16.1419 pixels mm-1θmax = 29.3°, θmin = 2.5°
ω scanh = 2121
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1515
Tmin = 0.635, Tmax = 1.000l = 1011
35299 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: mixed
wR(F2) = 0.056H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0213P)2 + 4.1938P]
where P = (Fo2 + 2Fc2)/3
2061 reflections(Δ/σ)max = 0.001
75 parametersΔρmax = 1.88 e Å3
0 restraintsΔρmin = 1.03 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.69861 (2)0.2500000.53055 (3)0.01406 (8)
Br10.78044 (3)0.09686 (4)0.65922 (6)0.02188 (12)
P10.55355 (10)0.2500000.2844 (2)0.0134 (3)
S10.61299 (7)0.11433 (9)0.40022 (15)0.0177 (2)
C10.4409 (4)0.2500000.3401 (8)0.0183 (14)
C20.5817 (4)0.2500000.0578 (7)0.0140 (13)
C110.4353 (5)0.2500000.5312 (9)0.0327 (18)
H11A0.3777420.2500000.5645590.049*
H11B0.4623520.1823800.5742890.049*
C120.3999 (3)0.1394 (4)0.2736 (7)0.0306 (12)
H12A0.3451710.1292150.3260560.046*
H12B0.4354430.0729330.2998050.046*
H12C0.3930550.1453480.1525150.046*
C210.6774 (4)0.2500000.0489 (9)0.0239 (16)
H21A0.6948890.2500000.0657300.036*
H21B0.6988190.3176400.1033400.036*
C220.5488 (3)0.1413 (4)0.0271 (6)0.0250 (11)
H22A0.5743170.1337280.1376380.037*
H22B0.4880330.1466970.0388550.037*
H22C0.5629060.0736420.0405510.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01107 (12)0.01622 (12)0.01489 (13)0.0000.00084 (10)0.000
Br10.0198 (2)0.0214 (2)0.0244 (3)0.00509 (18)0.00556 (19)0.00058 (19)
P10.0107 (8)0.0134 (8)0.0161 (8)0.0000.0006 (7)0.000
S10.0180 (6)0.0139 (5)0.0212 (6)0.0003 (4)0.0047 (5)0.0007 (5)
C10.007 (3)0.023 (3)0.025 (4)0.0000.004 (3)0.000
C20.015 (3)0.014 (3)0.013 (3)0.0000.000 (2)0.000
C110.029 (4)0.046 (5)0.023 (4)0.0000.014 (3)0.000
C120.014 (2)0.033 (3)0.045 (3)0.008 (2)0.009 (2)0.007 (3)
C210.016 (3)0.029 (4)0.027 (4)0.0000.009 (3)0.000
C220.031 (3)0.025 (3)0.020 (2)0.008 (2)0.000 (2)0.006 (2)
Geometric parameters (Å, º) top
Au1—S12.3336 (11)C2—C211.535 (9)
Au1—S1i2.3336 (11)C11—H11A0.9599
Au1—Br1i2.4357 (5)C11—H11B0.9598
Au1—Br12.4357 (5)C11—H11Bi0.9598
P1—C11.859 (6)C12—H12A0.9800
P1—C21.873 (6)C12—H12B0.9800
P1—S1i2.0594 (15)C12—H12C0.9800
P1—S12.0594 (15)C21—H21A0.9609
C1—C111.535 (10)C21—H21B0.9605
C1—C12i1.536 (6)C21—H21Bi0.9605
C1—C121.536 (6)C22—H22A0.9800
C2—C221.526 (6)C22—H22B0.9800
C2—C22i1.526 (6)C22—H22C0.9800
S1—Au1—S1i84.71 (5)C1—C11—H11A109.5
S1—Au1—Br1i175.54 (3)C1—C11—H11B109.5
S1i—Au1—Br1i90.88 (3)H11A—C11—H11B109.5
S1—Au1—Br190.88 (3)C1—C11—H11Bi109.45 (19)
S1i—Au1—Br1175.54 (3)H11A—C11—H11Bi109.5
Br1i—Au1—Br193.53 (2)H11B—C11—H11Bi109.4
C1—P1—C2117.8 (3)C1—C12—H12A109.5
C1—P1—S1i109.91 (14)C1—C12—H12B109.5
C2—P1—S1i109.04 (13)H12A—C12—H12B109.5
C1—P1—S1109.91 (14)C1—C12—H12C109.5
C2—P1—S1109.04 (13)H12A—C12—H12C109.5
S1i—P1—S199.53 (9)H12B—C12—H12C109.5
P1—S1—Au187.68 (5)C2—C21—H21A109.6
C11—C1—C12i108.8 (4)C2—C21—H21B109.6
C11—C1—C12108.8 (4)H21A—C21—H21B109.3
C12i—C1—C12113.2 (6)C2—C21—H21Bi109.58 (18)
C11—C1—P1107.2 (5)H21A—C21—H21Bi109.3
C12i—C1—P1109.3 (3)H21B—C21—H21Bi109.4
C12—C1—P1109.3 (3)C2—C22—H22A109.5
C22—C2—C22i111.3 (5)C2—C22—H22B109.5
C22—C2—C21108.9 (4)H22A—C22—H22B109.5
C22i—C2—C21108.9 (4)C2—C22—H22C109.5
C22—C2—P1110.5 (3)H22A—C22—H22C109.5
C22i—C2—P1110.5 (3)H22B—C22—H22C109.5
C21—C2—P1106.6 (4)
C1—P1—S1—Au1120.49 (19)S1i—P1—C1—C12172.1 (3)
C2—P1—S1—Au1108.93 (17)S1—P1—C1—C1263.5 (4)
S1i—P1—S1—Au15.15 (8)C1—P1—C2—C2261.8 (4)
S1i—Au1—S1—P14.50 (7)S1i—P1—C2—C22172.1 (3)
Br1—Au1—S1—P1176.12 (6)S1—P1—C2—C2264.4 (4)
C2—P1—C1—C11180.0C1—P1—C2—C22i61.8 (4)
S1i—P1—C1—C1154.28 (9)S1i—P1—C2—C22i64.4 (4)
S1—P1—C1—C1154.28 (9)S1—P1—C2—C22i172.1 (3)
C2—P1—C1—C12i62.2 (4)C1—P1—C2—C21180.0
S1i—P1—C1—C12i63.5 (4)S1i—P1—C2—C2153.86 (8)
S1—P1—C1—C12i172.1 (3)S1—P1—C2—C2153.86 (8)
C2—P1—C1—C1262.2 (4)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···S10.962.903.417 (7)115
C12—H12B···S10.982.993.573 (5)119
C12—H12C···Br1ii0.983.133.995 (6)147
Symmetry code: (ii) x1/2, y, z+1/2.
Di-tert-butyl{[di-tert-butyl(hydroxy)phosphanyl]diselanyl}phosphine oxide tetrabromidoaurate(III) (6) top
Crystal data top
(C16H37O2P2Se2)[AuBr4]F(000) = 1864
Mr = 997.92Dx = 2.323 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.4102 (2) ÅCell parameters from 11700 reflections
b = 22.2796 (7) Åθ = 2.3–30.8°
c = 15.4285 (5) ŵ = 13.43 mm1
β = 99.221 (3)°T = 100 K
V = 2853.57 (16) Å3Needle, red
Z = 40.2 × 0.02 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
7081 independent reflections
Radiation source: fine-focus sealed tube5668 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.116
Detector resolution: 16.1419 pixels mm-1θmax = 28.3°, θmin = 2.3°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 2929
Tmin = 0.514, Tmax = 1.000l = 2020
133232 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0158P)2 + 4.8488P]
where P = (Fo2 + 2Fc2)/3
7081 reflections(Δ/σ)max = 0.001
260 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 1.23 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.05652 (2)0.81535 (2)0.63141 (2)0.01639 (5)
Br10.32579 (6)0.77573 (2)0.63472 (4)0.02534 (12)
Br20.05468 (7)0.84795 (2)0.48100 (4)0.02980 (13)
Br30.20963 (6)0.85787 (3)0.63120 (4)0.03423 (14)
Br40.05827 (6)0.77788 (3)0.77868 (3)0.03090 (13)
O10.5129 (4)0.54434 (14)0.6781 (2)0.0171 (7)
O20.6712 (4)0.55674 (14)0.5591 (2)0.0170 (7)
H010.570 (9)0.544 (3)0.630 (5)0.10 (3)*
P10.59386 (14)0.55943 (5)0.77147 (8)0.0137 (2)
P20.71014 (13)0.62122 (5)0.53602 (8)0.0131 (2)
Se10.79131 (5)0.62905 (2)0.77042 (3)0.01654 (10)
Se20.68353 (5)0.68495 (2)0.64720 (3)0.01594 (10)
C10.4362 (5)0.5899 (2)0.8296 (3)0.0179 (10)
C20.7096 (5)0.4945 (2)0.8223 (3)0.0171 (10)
C30.5561 (5)0.6514 (2)0.4476 (3)0.0181 (10)
C40.9198 (5)0.6217 (2)0.5140 (3)0.0184 (10)
C110.5020 (6)0.6009 (2)0.9269 (3)0.0288 (12)
H11A0.6028790.6235910.9319920.043*
H11B0.5220350.5623030.9570860.043*
H11C0.4230430.6238330.9536430.043*
C120.2893 (5)0.5468 (2)0.8181 (4)0.0273 (12)
H12A0.3181660.5099490.8515390.041*
H12B0.2581680.5369860.7557850.041*
H12C0.1988990.5663730.8397210.041*
C130.3808 (6)0.6501 (2)0.7856 (3)0.0226 (11)
H13A0.2917600.6662830.8123510.034*
H13B0.3446180.6436500.7227240.034*
H13C0.4708050.6785270.7938510.034*
C210.5922 (6)0.4479 (2)0.8498 (3)0.0230 (11)
H21A0.5083110.4389230.7997660.034*
H21B0.5423580.4641260.8981280.034*
H21C0.6510950.4111190.8691990.034*
C220.8337 (6)0.5129 (2)0.9026 (3)0.0266 (12)
H22A0.7779840.5319990.9464450.040*
H22B0.9110660.5411360.8841950.040*
H22C0.8908100.4771120.9281690.040*
C230.7979 (6)0.4679 (2)0.7520 (3)0.0240 (11)
H23A0.8638550.4338730.7766740.036*
H23B0.8673120.4986140.7320840.036*
H23C0.7191000.4542140.7021450.036*
C310.3933 (5)0.6296 (2)0.4700 (3)0.0270 (12)
H31A0.3052980.6463710.4275450.041*
H31B0.3822880.6429820.5292380.041*
H31C0.3890100.5857030.4673390.041*
C320.5779 (6)0.6264 (2)0.3577 (3)0.0269 (12)
H32A0.5883140.5826710.3612470.040*
H32B0.6751770.6436550.3402120.040*
H32C0.4840120.6370450.3141340.040*
C330.5555 (6)0.7204 (2)0.4448 (3)0.0247 (12)
H33A0.6581130.7347630.4301860.037*
H33B0.5409830.7362000.5023130.037*
H33C0.4669500.7342750.4001140.037*
C411.0289 (5)0.6047 (2)0.5996 (3)0.0245 (12)
H41A0.9936720.5662630.6209210.037*
H41B1.0225440.6358720.6437770.037*
H41C1.1403430.6011340.5890660.037*
C420.9628 (6)0.6851 (2)0.4869 (3)0.0253 (11)
H42A0.9323980.7142900.5289640.038*
H42B0.9044220.6940380.4281470.038*
H42C1.0789650.6876500.4864510.038*
C430.9384 (6)0.5757 (2)0.4427 (4)0.0269 (12)
H43A1.0530550.5690000.4411980.040*
H43B0.8860970.5909180.3855390.040*
H43C0.8878280.5378190.4555370.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01627 (9)0.01422 (9)0.01811 (10)0.00158 (7)0.00101 (7)0.00194 (8)
Br10.0205 (2)0.0253 (3)0.0315 (3)0.0076 (2)0.0079 (2)0.0037 (2)
Br20.0392 (3)0.0253 (3)0.0236 (3)0.0003 (2)0.0008 (2)0.0092 (2)
Br30.0199 (3)0.0354 (3)0.0466 (4)0.0098 (2)0.0030 (2)0.0010 (3)
Br40.0302 (3)0.0465 (3)0.0167 (3)0.0043 (2)0.0061 (2)0.0009 (2)
O10.0168 (17)0.0209 (17)0.0135 (18)0.0023 (14)0.0026 (14)0.0038 (14)
O20.0164 (16)0.0176 (17)0.0177 (18)0.0028 (13)0.0050 (14)0.0008 (14)
P10.0137 (6)0.0148 (6)0.0126 (6)0.0015 (5)0.0019 (5)0.0019 (5)
P20.0127 (6)0.0140 (6)0.0130 (6)0.0010 (5)0.0034 (5)0.0000 (5)
Se10.0163 (2)0.0180 (2)0.0145 (2)0.00416 (18)0.00021 (18)0.00199 (19)
Se20.0209 (2)0.0134 (2)0.0140 (2)0.00058 (19)0.00425 (18)0.0006 (2)
C10.022 (2)0.018 (2)0.016 (3)0.0031 (19)0.010 (2)0.004 (2)
C20.016 (2)0.017 (2)0.017 (3)0.0004 (19)0.0003 (19)0.005 (2)
C30.017 (2)0.023 (3)0.014 (2)0.001 (2)0.0011 (19)0.000 (2)
C40.012 (2)0.024 (3)0.021 (3)0.0001 (19)0.0074 (19)0.002 (2)
C110.036 (3)0.038 (3)0.015 (3)0.005 (3)0.010 (2)0.002 (2)
C120.018 (3)0.028 (3)0.039 (3)0.002 (2)0.012 (2)0.006 (3)
C130.022 (3)0.019 (3)0.028 (3)0.004 (2)0.009 (2)0.000 (2)
C210.026 (3)0.017 (2)0.026 (3)0.003 (2)0.005 (2)0.003 (2)
C220.029 (3)0.025 (3)0.023 (3)0.002 (2)0.003 (2)0.011 (2)
C230.022 (3)0.019 (3)0.030 (3)0.004 (2)0.004 (2)0.002 (2)
C310.012 (2)0.043 (3)0.024 (3)0.001 (2)0.001 (2)0.004 (3)
C320.027 (3)0.036 (3)0.016 (3)0.000 (2)0.000 (2)0.000 (2)
C330.029 (3)0.027 (3)0.019 (3)0.006 (2)0.005 (2)0.003 (2)
C410.013 (2)0.037 (3)0.024 (3)0.003 (2)0.003 (2)0.001 (2)
C420.022 (2)0.028 (3)0.030 (3)0.006 (2)0.016 (2)0.002 (2)
C430.019 (3)0.032 (3)0.032 (3)0.005 (2)0.009 (2)0.004 (2)
Geometric parameters (Å, º) top
Au1—Br42.4185 (6)C12—H12C0.9800
Au1—Br12.4235 (5)C13—H13A0.9800
Au1—Br22.4291 (6)C13—H13B0.9800
Au1—Br32.4301 (5)C13—H13C0.9800
O1—P11.528 (3)C21—H21A0.9800
O1—H010.95 (8)C21—H21B0.9800
O2—P21.528 (3)C21—H21C0.9800
P1—C11.845 (5)C22—H22A0.9800
P1—C21.846 (5)C22—H22B0.9800
P1—Se12.2743 (12)C22—H22C0.9800
P2—C41.848 (4)C23—H23A0.9800
P2—C31.851 (5)C23—H23B0.9800
P2—Se22.2653 (13)C23—H23C0.9800
Se1—Se22.3314 (6)C31—H31A0.9800
C1—C111.534 (7)C31—H31B0.9800
C1—C131.540 (6)C31—H31C0.9800
C1—C121.552 (6)C32—H32A0.9800
C2—C231.529 (7)C32—H32B0.9800
C2—C211.538 (6)C32—H32C0.9800
C2—C221.541 (6)C33—H33A0.9800
C3—C321.533 (6)C33—H33B0.9800
C3—C331.538 (6)C33—H33C0.9800
C3—C311.543 (6)C41—H41A0.9800
C4—C431.529 (7)C41—H41B0.9800
C4—C411.530 (7)C41—H41C0.9800
C4—C421.534 (6)C42—H42A0.9800
C11—H11A0.9800C42—H42B0.9800
C11—H11B0.9800C42—H42C0.9800
C11—H11C0.9800C43—H43A0.9800
C12—H12A0.9800C43—H43B0.9800
C12—H12B0.9800C43—H43C0.9800
Br4—Au1—Br189.397 (19)H13A—C13—H13B109.5
Br4—Au1—Br2177.20 (2)C1—C13—H13C109.5
Br1—Au1—Br289.539 (19)H13A—C13—H13C109.5
Br4—Au1—Br390.15 (2)H13B—C13—H13C109.5
Br1—Au1—Br3178.07 (2)C2—C21—H21A109.5
Br2—Au1—Br390.99 (2)C2—C21—H21B109.5
P1—O1—H01122 (5)H21A—C21—H21B109.5
O1—P1—C1107.0 (2)C2—C21—H21C109.5
O1—P1—C2110.7 (2)H21A—C21—H21C109.5
C1—P1—C2116.9 (2)H21B—C21—H21C109.5
O1—P1—Se1111.02 (13)C2—C22—H22A109.5
C1—P1—Se1109.55 (16)C2—C22—H22B109.5
C2—P1—Se1101.62 (15)H22A—C22—H22B109.5
O2—P2—C4107.1 (2)C2—C22—H22C109.5
O2—P2—C3111.2 (2)H22A—C22—H22C109.5
C4—P2—C3116.0 (2)H22B—C22—H22C109.5
O2—P2—Se2111.23 (13)C2—C23—H23A109.5
C4—P2—Se2110.42 (16)C2—C23—H23B109.5
C3—P2—Se2100.82 (16)H23A—C23—H23B109.5
P1—Se1—Se2100.44 (4)C2—C23—H23C109.5
P2—Se2—Se1102.12 (4)H23A—C23—H23C109.5
C11—C1—C13109.2 (4)H23B—C23—H23C109.5
C11—C1—C12111.5 (4)C3—C31—H31A109.5
C13—C1—C12108.0 (4)C3—C31—H31B109.5
C11—C1—P1111.1 (3)H31A—C31—H31B109.5
C13—C1—P1107.3 (3)C3—C31—H31C109.5
C12—C1—P1109.7 (3)H31A—C31—H31C109.5
C23—C2—C21109.9 (4)H31B—C31—H31C109.5
C23—C2—C22109.2 (4)C3—C32—H32A109.5
C21—C2—C22109.8 (4)C3—C32—H32B109.5
C23—C2—P1106.6 (3)H32A—C32—H32B109.5
C21—C2—P1109.1 (3)C3—C32—H32C109.5
C22—C2—P1112.1 (3)H32A—C32—H32C109.5
C32—C3—C33109.7 (4)H32B—C32—H32C109.5
C32—C3—C31109.1 (4)C3—C33—H33A109.5
C33—C3—C31108.8 (4)C3—C33—H33B109.5
C32—C3—P2111.3 (3)H33A—C33—H33B109.5
C33—C3—P2112.5 (3)C3—C33—H33C109.5
C31—C3—P2105.2 (3)H33A—C33—H33C109.5
C43—C4—C41109.9 (4)H33B—C33—H33C109.5
C43—C4—C42111.5 (4)C4—C41—H41A109.5
C41—C4—C42109.1 (4)C4—C41—H41B109.5
C43—C4—P2109.8 (3)H41A—C41—H41B109.5
C41—C4—P2107.3 (3)C4—C41—H41C109.5
C42—C4—P2109.1 (3)H41A—C41—H41C109.5
C1—C11—H11A109.5H41B—C41—H41C109.5
C1—C11—H11B109.5C4—C42—H42A109.5
H11A—C11—H11B109.5C4—C42—H42B109.5
C1—C11—H11C109.5H42A—C42—H42B109.5
H11A—C11—H11C109.5C4—C42—H42C109.5
H11B—C11—H11C109.5H42A—C42—H42C109.5
C1—C12—H12A109.5H42B—C42—H42C109.5
C1—C12—H12B109.5C4—C43—H43A109.5
H12A—C12—H12B109.5C4—C43—H43B109.5
C1—C12—H12C109.5H43A—C43—H43B109.5
H12A—C12—H12C109.5C4—C43—H43C109.5
H12B—C12—H12C109.5H43A—C43—H43C109.5
C1—C13—H13A109.5H43B—C43—H43C109.5
C1—C13—H13B109.5
O1—P1—Se1—Se232.74 (14)O1—P1—C2—C22162.0 (3)
C1—P1—Se1—Se285.24 (17)C1—P1—C2—C2275.1 (4)
C2—P1—Se1—Se2150.45 (16)Se1—P1—C2—C2244.1 (3)
O2—P2—Se2—Se139.99 (14)O2—P2—C3—C3276.6 (4)
C4—P2—Se2—Se178.79 (17)C4—P2—C3—C3246.1 (4)
C3—P2—Se2—Se1158.03 (15)Se2—P2—C3—C32165.4 (3)
P1—Se1—Se2—P271.86 (5)O2—P2—C3—C33159.7 (3)
O1—P1—C1—C11174.5 (3)C4—P2—C3—C3377.5 (4)
C2—P1—C1—C1149.8 (4)Se2—P2—C3—C3341.7 (3)
Se1—P1—C1—C1165.0 (4)O2—P2—C3—C3141.5 (4)
O1—P1—C1—C1366.2 (4)C4—P2—C3—C31164.2 (3)
C2—P1—C1—C13169.1 (3)Se2—P2—C3—C3176.6 (3)
Se1—P1—C1—C1354.2 (3)O2—P2—C4—C4355.4 (4)
O1—P1—C1—C1250.8 (4)C3—P2—C4—C4369.5 (4)
C2—P1—C1—C1273.9 (4)Se2—P2—C4—C43176.6 (3)
Se1—P1—C1—C12171.3 (3)O2—P2—C4—C4164.1 (4)
O1—P1—C2—C2342.5 (4)C3—P2—C4—C41171.1 (3)
C1—P1—C2—C23165.4 (3)Se2—P2—C4—C4157.2 (3)
Se1—P1—C2—C2375.4 (3)O2—P2—C4—C42177.8 (3)
O1—P1—C2—C2176.1 (4)C3—P2—C4—C4252.9 (4)
C1—P1—C2—C2146.7 (4)Se2—P2—C4—C4260.9 (4)
Se1—P1—C2—C21165.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C42—H42A···Au1i0.982.853.666 (5)141
C21—H21C···Br1ii0.983.023.899 (5)149
C22—H22B···Br2iii0.983.043.717 (5)128
C33—H33B···Br10.983.073.956 (5)151
C42—H42B···Br4iv0.982.893.532 (5)124
O1—H01···O20.95 (8)1.51 (8)2.450 (4)169 (8)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+3/2, z1/2.
 

Acknowledgements

We thank the Open Access Publication Funds of the Technical University of Braunschweig for financial support.

References

First citationAakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P. & Resnati, G. (2019). Pure Appl. Chem. 91, 1889–1892.  Web of Science CrossRef CAS Google Scholar
First citationApperley, D. C., Bricklebank, N., Hursthouse, M. B., Light, M. E. & Coles, S. J. (2001). Polyhedron, 20, 1907–1913.  CrossRef CAS Google Scholar
First citationArtem'ev, A. V., Gusarova, N. K., Bagryanskaya, I. Y., Doronina, E. P., Verkhoturova, S. I., Sidorkin, V. F. & Trofimov, B. A. (2013b). Eur. J. Inorg. Chem. pp. 415–426.  Google Scholar
First citationArtem'ev, A. V., Oparina, L. A., Gusarova, N. K., Kolyvanov, N. A., Vysotskaya, O. V., Bagryanskaya, I. Y. & Trofimov, B. A. (2013a). Inorg. Chem. Commun. 30, 124–127.  CAS Google Scholar
First citationBertolotti, F. V., Shishkina, A. V., Forni, A., Gervasio, G., Stash, A. I. & Tsirelson, V. G. (2014). Cryst. Growth Des. 14, 3587–3595.  CrossRef CAS Google Scholar
First citationBlankespoor, R. L., Doyle, M. P., Smith, D. J., Van Dyke, D. A. & Waldyke, M. J. (1983). J. Org. Chem. 48, 1176–1179.  CrossRef CAS Google Scholar
First citationBolhuis, F. van, Koster, P. B. & Migchelsen, T. (1967). Acta Cryst. 23, 90–91.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationBruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCoppens, P. (1982). Extended Linear Chain Compounds, vol. 1, edited by J. S. Miller, pp. 333–356. Boston: Springer US.  Google Scholar
First citationDaolio, A., Pizzi, A., Terraneo, G., Ursini, M., Frontera, A. & Resnati, G. (2021). Angew. Chem. Int. Ed. 60, 14385–14389.  CrossRef CAS Google Scholar
First citationFackler, J. P. Jr & Basil, J. D. (1982). Organometallics, 1, 871–873.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHasija, A. & Chopra, D. (2020). Cryst. Growth Des. 20, 6272–6282.  Web of Science CSD CrossRef CAS Google Scholar
First citationHusebye, S. (1966). Acta Chem. Scand. 20, 51–56.  CrossRef CAS Google Scholar
First citationIshigaki, Y., Shimomura, K., Asai, K., Shimajiri, T., Akutagawa, T., Fukushima, T. & Suzuki, T. (2022). Bull. Chem. Soc. Jpn, 95, 522–531.  CrossRef CAS Google Scholar
First citationLee, Y.-C., Lin, Y.-R., Liou, B.-Y., Liao, J.-H., Gusarova, N. K., Trofimov, B. A., van Zyl, W. E. & Liu, C. W. (2014). Dalton Trans. 43, 663–670.  CrossRef CAS PubMed Google Scholar
First citationMetrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114–6127.  Web of Science CrossRef CAS Google Scholar
First citationNguyen, C. Q., Adeogun, A., Afzaal, M., Malik, M. A. & O'Brien, P. (2006). Chem. Commun. pp. 2179–2181.  CrossRef Google Scholar
First citationPedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.  CSD CrossRef Web of Science Google Scholar
First citationPizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm, 24, 3846–3851.  Web of Science CSD CrossRef CAS Google Scholar
First citationPotrzebowski, M. J., Blaszczyk, J., Wieczorek, M. W. & Klinowski, J. (1997). J. Phys. Chem. A, 101, 8077–8084.  CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO, Version 1.171.36.28 (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.  Google Scholar
First citationSavastano, M., Bazzicalupi, C. & Bianchi, A. (2022). Dalton Trans. 51, 10728–10739.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806–5809.  Web of Science CrossRef CAS Google Scholar
First citationSchmidbaur, H., Mandl, J. R., Frank, A. & Huttner, G. (1976). Chem. Ber. 109, 466–472.  CrossRef CAS Google Scholar
First citationSchmidbaur, H., Raubenheimer, H. G. & Dobrzańska, L. (2014). Chem. Soc. Rev. 43, 345–380.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStumpf, K., Blachnik, R. & Roth, G. (1999). Z. Kristallogr. Cryst. Mater. 214, 251–254.  CrossRef CAS Google Scholar
First citationSvensson, P. H. & Kloo, L. (2003). Chem. Rev. 103, 1649–1684.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTaouss, C., Jones, P. G., Upmann, D. & Bockfeld, D. (2015). Z. Naturforsch. 70B, 911–927.  CrossRef Google Scholar
First citationUpmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024b). Acta Cryst. E80, 355–369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUpmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024c). Acta Cryst. E80, 506–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUpmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024d). Acta Cryst. E80, 1087–1096.  CrossRef IUCr Journals Google Scholar
First citationUpmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024a). Acta Cryst. E80, 34–49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed. 58, 1880–1891.  Web of Science CrossRef CAS Google Scholar
First citationWalbaum, C., Pantenburg, I. & Meyer, G. (2010). Z. Naturforsch. 65B, 1077–1083.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds