research communications
Binary solvent participation in crystals of a multi-aromatic 1,2,3-triazole
aOligometrics, Inc., 2510 47th Street, Suite 208, Boulder, CO, 80301, USA
*Correspondence e-mail: jfilley@oligometrics.com
The X-ray H-1,2,3-triazol-4-yl]methoxy}-3-methoxyphenyl)methyl]amino}benzoic acid–acetonitrile–water (1/2/2), C37H38N6O8·2C2H3N·2H2O, features amine-linked aromatic groups that have a variety functionality including a carboxylic acid, an acetamido group, and methoxy All X—H groups, and seven out of ten heteroatoms with available lone-pair electrons, participate in hydrogen bonding, with the aid of dimer-bridging water molecules and acetonitrile molecules whose methyl groups form close contacts with oxygen atoms. The triazole itself is a dimer made using click chemistry from readily available and inexpensive starting materials and is a precursor to larger oligomers, as well as to compounds with a wide array of readily manipulated functionality.
of a multi-aromatic substituted 1,2,3-triazole is presented, which shows an extensive three-dimensional hydrogen-bonding network involving two water molecules and two acetonitrile molecules. The structure of 4-{[(4-{[1-({[(3,4-dimethoxyphenyl)methyl](3-acetamidophenyl)carbamoyl}methyl)-1Keywords: crystal structure; click chemistry; three-center hydrogen bond.
CCDC reference: 2408502
1. Chemical context
Foldamers, or folding oligomers, are synthetic organic molecules that have a propensity to form weak intramolecular interactions and have secondary structure analogous to biomacromolecules (Hill et al., 2001; Gellman, 1998). With the goal of preparing functional foldamers, we prepared an unusual dimer molecule that crystallized easily from a mixture of acetonitrile and water (compound 1). An X-ray was undertaken to understand whether or not its aromatic components stack intramolecularly (i.e., fold). While the molecule adopts an extended conformation in the crystal, and therefore may be unlikely to form a folding nucleus for larger oligomers based upon it, certain features of the molecule and its interactions with solvent molecules are reported here.
The linking chemistry used to make the title compound is the copper-catalyzed alkyne–azide cycloaddition reaction, also known as the CuAAC click reaction (Kolb et al., 2001). It is composed of an aromatic 1,2,3-triazole substituted at the 1 and 4 positions with groups that each feature two aromatic rings bearing a variety of functionality. The main criteria for linking these groups are the ready availability and low cost of the starting materials, which are transformed into the moieties indicated with brackets, and are: A: 3-acetamidoaniline, B: 3,4-dimethoxybenzaldehye, C: vanillin, and D: ethyl 4-aminobenzoate. The starting materials were also chosen for their functionality, and the ease with which they can be modified. For instance, the acetamido group in A could be changed to a longer chain amide (or an amide containing additional functionality), the 4-methoxy group in B can be changed to other (including ones featuring alkynes) using vanillin as the starting material, the methoxy group in C can easily be obtained as an ethoxy group, which could be a useful spectroscopic handle, and leaving the carboxylic acid in D as an ester decreases its polarity. While the main objective for making the title compound was to use it as a starting point for making larger oligomers, it is also possible to envision it for preparing a large variety of molecules with a wide range of functionality.
2. Structural commentary
The extended conformation is shown in Fig. 1, which also shows two water molecules and two acetonitrile molecules as solvents of crystallization. The molecular structure confirms the cycloaddition reaction proceeds with the expected regiochemistry to give a 1,4-substituted 1,2,3-triazole. The amine nitrogen atom is essentially planar [C6—C5—N1—C8 torsion angle = 0.0 (2)°], indicating the lone pair electrons are conjugated with the aromatic ring, facilitated by the electron withdrawing carboxylic acid, while the aromatic ring attached at the amide nitrogen atom is essentially non-planar [C20—N5—C30—C31 torsion angle = 107.1 (2)°] indicating the amide lone pair is not conjugated to the aromatic ring.
3. Supramolecular features
The crystal packing in Fig. 2 shows four molecules with solvent molecules included on the right side of the image. It can be seen that an acetonitrile molecule helps fill the void space between two alkoxy benzenes, the water molecules are hydrogen bonded together [2.01 (2) Å, see Table 1], and one molecule of this pair is hydrogen bonded to an acetamide carbonyl [1.90 (3) Å]. The amide hydrogen atom of this acetamide is hydrogen bonded [1.98 (2) Å] to the linking amide adjacent to the triazole of the next molecule in the crystal. The dimethoxy benzenes are π-stacked in a face-to-face manner on a pairwise basis, with the local dipoles oriented antiparallel, and with the methylene carbon atom (C21) positioned almost directly over an ether oxygen atom (O7). The second pair of stacked dimethoxy benzenes is offset several bond lengths such that a methyl group (C29) is located almost directly over a benzene ring carbon (C27).
Fig. 3 shows four molecules focusing on the hydrogen bonding to the triazole, as well as the bridge hydrogen bonding facilitated by the two water molecules. The carboxylic acid hydrogen bonds to the 3-position of the triazole [1.87 (3) Å] and the amine NH forms a hydrogen bond to the 2-position of the triazole [2.29 (2) Å]. The carboxylic acid serves as an hydrogen-bond acceptor from a water molecule [1.80 (3) Å]. This water molecule forms the hydrogen bond noted above to the other water molecule, which forms a three-center hydrogen bond to the dimethoxy benzene of the fourth molecule displayed [2.12 (3), 2.17 (3) Å]. In total, seven of the ten heteroatoms of the title compound with available lone-pair electrons behave as hydrogen-bond acceptors, creating an extensive three-dimensional hydrogen-bonded network. The dimethoxy benzene π-stacking in Fig. 2 suggests molecules with multi-aromatic side chains bearing dimethoxy benzene units could encourage folding.
The close contacts between the C38 hydrogen atoms of an acetonitrile molecule and oxygen atoms are highlighted in Fig. 4. The oxygen atoms are O6 of the dialkoxy benzene unit [2.50 (3) Å], and O2 of the carboxylic acid [2.59 (3) Å]. Two molecules are intertwined about the dialkoxy benzene units with symmetrically disposed acetonitrile molecules. Fig. 5 shows the superimposed on amide-to-amide hydrogen bonded tetramers with the solvent molecules omitted, with the top unit oriented with N1, N2, and N3 of the triazoles facing the viewer, and the same atoms of the bottom unit facing away from the viewer. Images of molecular structures were manipulated using Mercury (Macrae et al., 2020).
4. Database survey
Since crystalline carboxylic acids have a tendency to form dimers analogous to the well-known acetic acid dimer, as in the case of 5-bromo-2-(phenylamino)benzoic acid (Kang & Long, 2024), it is notable that the carboxylic acid of the title compound forms a hydrogen bond to the triazole. Carboxylic acids hydrogen bonded to heterocyclic nitrogen atoms (Ladraa et al., 2010) and to the 3-position of 1,2,3-triazoles (Lin, 2010) have been examined. A 1,2,3-triazole click reaction product has also been structurally characterized (Zukerman-Schpector et al., 2017). A similar arrangement to the π-stacking with dipoles aligned anti-parallel seen for the dimethoxy benzene units has been observed in 2-methoxy-5-nitroaniline (Filley, 2024).
5. Synthesis and crystallization
The azide and alkyne in the scheme were prepared in seven steps as detailed in the supporting information. Reductive aminations were performed according to Touchette (2006). The title compound was made as follows: A 50 ml round-bottomed flask was charged with 0.767 g (2.00 mmole) of N-(3-acetamidophenyl)-N-(3,4-dimethoxybenzyl)azidoacetamide, 0.623 g (2.00 mmole) of 4-(4-propargyloxy-3-methoxybenzylamino)benzoic acid, 0.28 ml (2.0 mmole) of triethylamine and 20 ml of acetone. The solids were dissolved with stirring and treated with 2.0 ml of an aqueous solution containing a mixture of 0.1 M ascorbic acid and 0.1 M sodium acetate, the buffered mixture was then treated with 0.4 ml of aqueous 0.1 M CuSO4. The flask was flushed with N2, capped with a septum, and stirred overnight. The resulting inhomogeneous mixture was poured into 100 ml of water containing 15 mg of Na2EDTA and 300 mg of NaOH, giving a clear solution. When this solution was acidified with 5 ml of 6M HCl, a gooey precipitate resulted, which was isolated by decanting off the aqueous solution, boiling in 10 ml of ethanol, and pouring the hot ethanol solution into 100 ml of water followed by about 15 ml of saturated NaCl. The resultant precipitate was filtered off and allowed to air dry, 1.23 g (88%) snow white powder. 1H NMR (400 MHz, CD3CN/1% D20): 2.04 (s, 3H), 3.70 (s, 3H), 3.73 (s, 3H), 3.74 (s, 3H), 4.27 (s, 2H), 4.80 (s, 2H), 4.96 (s, 2H), 5.02 (s, 2H), 6.60–7.75 (m, 14H), 7.84 (s, 1H). 13C NMR (CD3CN/1% D20): 23.3, 46.2, 51.5, 52.6, 55.1, 55.2, 55.3, 61.9, 111.2, 111.4, 111.6, 112.0, 113.6, 117.3, 117.5, 119.1, 119.2, 119.3, 121.0, 123.4, 125.9, 129.2, 130.1, 131.5, 132.5, 140.2, 140.6, 143.1, 146.7, 148.5, 149.0, 149.5, 152.5, 165.4, 167.7, 169.3. X-ray quality crystals can be obtained by dissolving 20 mg of the product in 0.8 ml of acetonitrile + 1 drop water, followed by the addition of 0.8 ml additional water, and setting aside for several days at room temperature. The solvents of crystallization should be preserved by not allowing the crystals to dry out.
6. Refinement
Crystal data, data collection and structure
details are summarized in Table 2 All H-atom parameters were refined.
|
Supporting information
CCDC reference: 2408502
https://doi.org/10.1107/S2056989024011915/ev2012sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989024011915/ev2012sup3.doc
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024011915/ev2012Isup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024011915/ev2012Isup4.cml
C37H38N6O8·2C2H3N·2H2O | Z = 2 |
Mr = 812.87 | F(000) = 860 |
Triclinic, P1 | Dx = 1.291 Mg m−3 |
a = 9.1493 (2) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 12.3058 (3) Å | Cell parameters from 15358 reflections |
c = 20.1432 (5) Å | θ = 3.8–75.8° |
α = 76.076 (2)° | µ = 0.78 mm−1 |
β = 84.791 (2)° | T = 100 K |
γ = 71.829 (2)° | Plate, clear colourless |
V = 2091.19 (10) Å3 | 0.9 × 0.3 × 0.05 mm |
Xcalibur, Onyx, Ultra diffractometer | 7480 reflections with I > 2σ(I) |
Detector resolution: 8.2603 pixels mm-1 | Rint = 0.048 |
ω scans | θmax = 76.4°, θmin = 3.9° |
Absorption correction: multi-scan (CrysAlisPro, Agilent, 2014) | h = −11→11 |
Tmin = 0.728, Tmax = 1.000 | k = −15→15 |
32961 measured reflections | l = −25→25 |
8593 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | All H-atom parameters refined |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0749P)2 + 0.6126P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
8593 reflections | Δρmax = 0.32 e Å−3 |
724 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.17136 (13) | 0.88775 (10) | −0.09107 (6) | 0.0306 (2) | |
O2 | 1.09733 (13) | 0.79667 (11) | −0.15897 (6) | 0.0352 (3) | |
O3 | 0.27550 (12) | 0.47527 (9) | 0.04633 (5) | 0.0271 (2) | |
O4 | 0.43548 (12) | 0.35313 (8) | 0.15043 (5) | 0.0260 (2) | |
O5 | 0.52857 (11) | −0.19991 (9) | 0.30496 (5) | 0.0246 (2) | |
O6 | 0.33685 (14) | −0.32839 (10) | 0.56423 (6) | 0.0334 (2) | |
O7 | 0.19717 (14) | −0.48177 (10) | 0.60142 (6) | 0.0337 (2) | |
O8 | −0.13498 (12) | −0.02355 (11) | 0.38717 (6) | 0.0329 (3) | |
O9 | −0.00690 (15) | 0.13658 (12) | 0.29127 (7) | 0.0398 (3) | |
H9A | −0.045 (3) | 0.144 (2) | 0.2472 (14) | 0.059 (7)* | |
H9B | −0.049 (3) | 0.074 (3) | 0.3171 (15) | 0.069 (8)* | |
O10 | 0.76143 (15) | 0.36388 (12) | 0.29092 (6) | 0.0416 (3) | |
H10A | 0.745 (3) | 0.382 (2) | 0.3354 (14) | 0.060 (7)* | |
H10B | 0.840 (3) | 0.291 (2) | 0.2981 (13) | 0.055 (7)* | |
N1 | 0.54927 (14) | 0.86351 (10) | 0.06410 (7) | 0.0253 (3) | |
H1A | 0.548 (2) | 0.8990 (19) | 0.0983 (11) | 0.035 (5)* | |
N2 | 0.57880 (13) | 0.09002 (10) | 0.17503 (6) | 0.0220 (2) | |
N3 | 0.52279 (13) | 0.00184 (10) | 0.18158 (6) | 0.0224 (2) | |
N4 | 0.40357 (12) | 0.01865 (10) | 0.22590 (6) | 0.0211 (2) | |
N5 | 0.33120 (12) | −0.26564 (10) | 0.29033 (6) | 0.0197 (2) | |
N6 | −0.22795 (13) | −0.11497 (10) | 0.32250 (6) | 0.0220 (2) | |
H6 | −0.309 (2) | −0.1305 (17) | 0.3157 (10) | 0.030 (5)* | |
N7 | 0.1766 (2) | 0.37004 (18) | 0.29711 (11) | 0.0564 (5) | |
N8 | 0.23890 (19) | −0.01332 (18) | 0.40928 (10) | 0.0548 (5) | |
C1 | 1.07409 (16) | 0.83931 (13) | −0.10892 (7) | 0.0249 (3) | |
C2 | 0.94033 (16) | 0.84063 (12) | −0.06241 (7) | 0.0237 (3) | |
C3 | 0.92719 (17) | 0.88189 (12) | −0.00259 (7) | 0.0242 (3) | |
H3 | 1.007 (2) | 0.9052 (16) | 0.0086 (9) | 0.027 (4)* | |
C4 | 0.79857 (16) | 0.88776 (12) | 0.03891 (7) | 0.0234 (3) | |
H4 | 0.790 (2) | 0.9183 (16) | 0.0795 (10) | 0.027 (4)* | |
C5 | 0.67743 (16) | 0.85103 (11) | 0.02278 (7) | 0.0218 (3) | |
C6 | 0.69374 (16) | 0.80324 (12) | −0.03534 (7) | 0.0243 (3) | |
H6A | 0.618 (2) | 0.7733 (16) | −0.0472 (9) | 0.024 (4)* | |
C7 | 0.82255 (17) | 0.80019 (13) | −0.07722 (7) | 0.0248 (3) | |
H7 | 0.833 (2) | 0.7680 (16) | −0.1162 (9) | 0.025 (4)* | |
C8 | 0.41784 (16) | 0.82927 (12) | 0.05275 (8) | 0.0258 (3) | |
H8A | 0.396 (2) | 0.8517 (17) | 0.0036 (11) | 0.033 (5)* | |
H8B | 0.325 (2) | 0.8750 (17) | 0.0789 (10) | 0.033 (5)* | |
C9 | 0.43676 (15) | 0.69880 (12) | 0.07817 (7) | 0.0221 (3) | |
C10 | 0.52712 (15) | 0.63117 (12) | 0.13346 (7) | 0.0225 (3) | |
H10 | 0.590 (2) | 0.6636 (16) | 0.1549 (9) | 0.027 (4)* | |
C11 | 0.53054 (15) | 0.51384 (12) | 0.16017 (7) | 0.0219 (3) | |
H11 | 0.593 (2) | 0.4681 (17) | 0.1983 (10) | 0.028 (4)* | |
C12 | 0.44282 (15) | 0.46574 (12) | 0.13011 (7) | 0.0214 (3) | |
C13 | 0.35354 (15) | 0.53324 (12) | 0.07247 (7) | 0.0219 (3) | |
C14 | 0.35076 (16) | 0.64869 (12) | 0.04727 (7) | 0.0228 (3) | |
H14 | 0.290 (2) | 0.6954 (17) | 0.0081 (10) | 0.028 (4)* | |
C15 | 0.19367 (19) | 0.53567 (14) | −0.01514 (8) | 0.0301 (3) | |
H15A | 0.153 (2) | 0.4791 (19) | −0.0284 (11) | 0.040 (5)* | |
H15B | 0.262 (2) | 0.5605 (18) | −0.0502 (11) | 0.036 (5)* | |
H15C | 0.106 (2) | 0.6029 (18) | −0.0067 (10) | 0.032 (5)* | |
C16 | 0.51982 (16) | 0.27934 (12) | 0.20980 (7) | 0.0227 (3) | |
H16A | 0.629 (2) | 0.2738 (16) | 0.2041 (9) | 0.025 (4)* | |
H16B | 0.480 (2) | 0.3104 (16) | 0.2517 (10) | 0.027 (4)* | |
C17 | 0.49516 (15) | 0.16367 (12) | 0.21461 (7) | 0.0212 (3) | |
C18 | 0.38211 (15) | 0.11808 (12) | 0.24765 (7) | 0.0222 (3) | |
H18 | 0.303 (2) | 0.1451 (17) | 0.2770 (10) | 0.028 (4)* | |
C19 | 0.31026 (15) | −0.06093 (12) | 0.24188 (8) | 0.0236 (3) | |
H19A | 0.218 (2) | −0.0224 (18) | 0.2680 (10) | 0.036 (5)* | |
H19B | 0.276 (2) | −0.0694 (16) | 0.1975 (10) | 0.028 (4)* | |
C20 | 0.40083 (14) | −0.18197 (12) | 0.28243 (7) | 0.0201 (3) | |
C21 | 0.40887 (15) | −0.38716 (12) | 0.32711 (7) | 0.0223 (3) | |
H21A | 0.3859 (19) | −0.4391 (15) | 0.3010 (9) | 0.020 (4)* | |
H21B | 0.519 (2) | −0.3942 (15) | 0.3252 (9) | 0.020 (4)* | |
C22 | 0.34860 (15) | −0.41398 (12) | 0.39953 (7) | 0.0218 (3) | |
C23 | 0.37111 (15) | −0.35337 (12) | 0.44665 (7) | 0.0235 (3) | |
H23 | 0.425 (2) | −0.2960 (17) | 0.4345 (10) | 0.031 (5)* | |
C24 | 0.31919 (16) | −0.37859 (12) | 0.51336 (8) | 0.0252 (3) | |
C25 | 0.24218 (16) | −0.46476 (13) | 0.53414 (8) | 0.0269 (3) | |
C26 | 0.21904 (17) | −0.52333 (13) | 0.48759 (8) | 0.0283 (3) | |
H26 | 0.164 (2) | −0.5831 (19) | 0.5014 (11) | 0.039 (5)* | |
C27 | 0.27249 (16) | −0.49770 (13) | 0.42003 (8) | 0.0265 (3) | |
H27 | 0.255 (2) | −0.5410 (17) | 0.3872 (10) | 0.029 (4)* | |
C28 | 0.4173 (2) | −0.24290 (15) | 0.54789 (9) | 0.0375 (4) | |
H28A | 0.362 (2) | −0.1763 (19) | 0.5127 (11) | 0.038 (5)* | |
H28B | 0.420 (3) | −0.219 (2) | 0.5891 (13) | 0.052 (6)* | |
H28C | 0.526 (3) | −0.277 (2) | 0.5303 (12) | 0.050 (6)* | |
C29 | 0.14031 (19) | −0.57922 (15) | 0.62854 (9) | 0.0339 (3) | |
H29A | 0.043 (3) | −0.5705 (19) | 0.6095 (11) | 0.041 (5)* | |
H29B | 0.129 (2) | −0.5808 (18) | 0.6776 (11) | 0.036 (5)* | |
H29C | 0.221 (2) | −0.6525 (19) | 0.6222 (10) | 0.035 (5)* | |
C30 | 0.17665 (14) | −0.24101 (11) | 0.26830 (7) | 0.0190 (3) | |
C31 | 0.15460 (15) | −0.27707 (12) | 0.21066 (7) | 0.0217 (3) | |
H31 | 0.238 (2) | −0.3187 (16) | 0.1868 (9) | 0.026 (4)* | |
C32 | 0.00458 (16) | −0.25343 (13) | 0.18981 (7) | 0.0237 (3) | |
H32 | −0.013 (2) | −0.2783 (15) | 0.1487 (9) | 0.023 (4)* | |
C33 | −0.11947 (15) | −0.19647 (12) | 0.22621 (7) | 0.0226 (3) | |
H33 | −0.223 (2) | −0.1797 (15) | 0.2128 (9) | 0.022 (4)* | |
C34 | −0.09591 (15) | −0.16253 (11) | 0.28466 (7) | 0.0198 (3) | |
C35 | 0.05423 (15) | −0.18473 (11) | 0.30612 (7) | 0.0198 (3) | |
H35 | 0.0685 (18) | −0.1614 (14) | 0.3472 (9) | 0.017 (4)* | |
C36 | −0.23841 (16) | −0.05732 (13) | 0.37295 (7) | 0.0251 (3) | |
C37 | −0.39062 (19) | −0.03660 (17) | 0.41090 (10) | 0.0367 (4) | |
H37A | −0.449 (3) | −0.081 (2) | 0.4053 (12) | 0.050 (6)* | |
H37B | −0.459 (3) | 0.044 (3) | 0.3891 (15) | 0.074 (8)* | |
H37C | −0.378 (3) | −0.026 (3) | 0.4552 (15) | 0.069 (8)* | |
C38 | 0.0199 (2) | 0.43962 (19) | 0.18561 (11) | 0.0466 (4) | |
H38A | −0.021 (3) | 0.377 (2) | 0.1815 (14) | 0.062 (7)* | |
H38B | 0.089 (3) | 0.456 (3) | 0.1440 (16) | 0.075 (9)* | |
H38C | −0.070 (4) | 0.508 (3) | 0.1896 (15) | 0.077 (9)* | |
C39 | 0.1066 (2) | 0.40144 (17) | 0.24797 (11) | 0.0424 (4) | |
C40 | 0.0287 (3) | 0.1594 (3) | 0.44546 (12) | 0.0588 (6) | |
H40A | 0.065 (3) | 0.223 (3) | 0.4272 (15) | 0.064 (8)* | |
H40B | 0.035 (4) | 0.156 (3) | 0.4940 (19) | 0.091 (10)* | |
H40C | −0.071 (4) | 0.163 (3) | 0.4316 (18) | 0.091 (10)* | |
C41 | 0.1481 (2) | 0.06327 (19) | 0.42515 (9) | 0.0446 (4) | |
H1 | 1.250 (3) | 0.887 (2) | −0.1221 (14) | 0.064 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0311 (5) | 0.0353 (6) | 0.0329 (6) | −0.0196 (5) | 0.0045 (4) | −0.0105 (5) |
O2 | 0.0362 (6) | 0.0463 (7) | 0.0314 (6) | −0.0201 (5) | 0.0051 (4) | −0.0159 (5) |
O3 | 0.0324 (5) | 0.0224 (5) | 0.0296 (5) | −0.0128 (4) | −0.0083 (4) | −0.0028 (4) |
O4 | 0.0312 (5) | 0.0170 (5) | 0.0316 (5) | −0.0117 (4) | −0.0086 (4) | 0.0003 (4) |
O5 | 0.0168 (4) | 0.0234 (5) | 0.0345 (5) | −0.0088 (4) | −0.0057 (4) | −0.0025 (4) |
O6 | 0.0450 (6) | 0.0288 (6) | 0.0304 (5) | −0.0154 (5) | 0.0025 (5) | −0.0094 (4) |
O7 | 0.0404 (6) | 0.0292 (6) | 0.0307 (5) | −0.0144 (5) | 0.0049 (5) | −0.0021 (4) |
O8 | 0.0261 (5) | 0.0434 (6) | 0.0404 (6) | −0.0178 (5) | 0.0028 (4) | −0.0218 (5) |
O9 | 0.0431 (7) | 0.0417 (7) | 0.0372 (6) | −0.0162 (5) | −0.0080 (5) | −0.0063 (5) |
O10 | 0.0418 (7) | 0.0474 (7) | 0.0309 (6) | −0.0043 (6) | −0.0078 (5) | −0.0091 (5) |
N1 | 0.0298 (6) | 0.0197 (6) | 0.0297 (6) | −0.0121 (5) | 0.0026 (5) | −0.0066 (5) |
N2 | 0.0206 (5) | 0.0183 (5) | 0.0281 (6) | −0.0088 (4) | −0.0020 (4) | −0.0026 (4) |
N3 | 0.0196 (5) | 0.0197 (5) | 0.0288 (6) | −0.0082 (4) | −0.0004 (4) | −0.0041 (4) |
N4 | 0.0180 (5) | 0.0180 (5) | 0.0278 (6) | −0.0080 (4) | −0.0008 (4) | −0.0024 (4) |
N5 | 0.0158 (5) | 0.0173 (5) | 0.0264 (6) | −0.0065 (4) | −0.0033 (4) | −0.0028 (4) |
N6 | 0.0153 (5) | 0.0238 (6) | 0.0306 (6) | −0.0093 (4) | −0.0010 (4) | −0.0084 (5) |
N7 | 0.0436 (9) | 0.0611 (11) | 0.0759 (13) | −0.0141 (8) | 0.0043 (9) | −0.0409 (10) |
N8 | 0.0297 (8) | 0.0633 (11) | 0.0567 (10) | −0.0044 (8) | −0.0040 (7) | 0.0026 (9) |
C1 | 0.0266 (7) | 0.0235 (7) | 0.0256 (7) | −0.0101 (5) | −0.0030 (5) | −0.0029 (5) |
C2 | 0.0254 (6) | 0.0209 (6) | 0.0252 (7) | −0.0089 (5) | −0.0030 (5) | −0.0025 (5) |
C3 | 0.0272 (7) | 0.0204 (6) | 0.0279 (7) | −0.0110 (5) | −0.0057 (5) | −0.0034 (5) |
C4 | 0.0298 (7) | 0.0195 (6) | 0.0231 (6) | −0.0107 (5) | −0.0036 (5) | −0.0034 (5) |
C5 | 0.0258 (6) | 0.0142 (6) | 0.0242 (6) | −0.0071 (5) | −0.0031 (5) | 0.0002 (5) |
C6 | 0.0246 (6) | 0.0223 (7) | 0.0296 (7) | −0.0103 (5) | −0.0040 (5) | −0.0067 (5) |
C7 | 0.0278 (7) | 0.0239 (7) | 0.0252 (7) | −0.0097 (5) | −0.0037 (5) | −0.0062 (5) |
C8 | 0.0246 (7) | 0.0192 (7) | 0.0333 (8) | −0.0086 (5) | 0.0012 (6) | −0.0035 (6) |
C9 | 0.0202 (6) | 0.0184 (6) | 0.0279 (7) | −0.0074 (5) | 0.0039 (5) | −0.0048 (5) |
C10 | 0.0199 (6) | 0.0204 (6) | 0.0294 (7) | −0.0083 (5) | 0.0009 (5) | −0.0071 (5) |
C11 | 0.0208 (6) | 0.0189 (6) | 0.0264 (7) | −0.0071 (5) | −0.0008 (5) | −0.0041 (5) |
C12 | 0.0227 (6) | 0.0157 (6) | 0.0266 (6) | −0.0084 (5) | 0.0009 (5) | −0.0033 (5) |
C13 | 0.0213 (6) | 0.0210 (6) | 0.0257 (6) | −0.0087 (5) | −0.0002 (5) | −0.0062 (5) |
C14 | 0.0226 (6) | 0.0211 (6) | 0.0241 (6) | −0.0069 (5) | 0.0004 (5) | −0.0037 (5) |
C15 | 0.0338 (8) | 0.0310 (8) | 0.0286 (7) | −0.0139 (7) | −0.0072 (6) | −0.0043 (6) |
C16 | 0.0228 (6) | 0.0178 (6) | 0.0279 (7) | −0.0085 (5) | −0.0044 (5) | −0.0015 (5) |
C17 | 0.0201 (6) | 0.0179 (6) | 0.0259 (6) | −0.0070 (5) | −0.0032 (5) | −0.0025 (5) |
C18 | 0.0209 (6) | 0.0174 (6) | 0.0274 (7) | −0.0059 (5) | −0.0017 (5) | −0.0029 (5) |
C19 | 0.0175 (6) | 0.0200 (6) | 0.0335 (7) | −0.0090 (5) | −0.0033 (5) | −0.0010 (5) |
C20 | 0.0166 (6) | 0.0202 (6) | 0.0244 (6) | −0.0071 (5) | −0.0011 (5) | −0.0045 (5) |
C21 | 0.0184 (6) | 0.0175 (6) | 0.0300 (7) | −0.0047 (5) | −0.0036 (5) | −0.0034 (5) |
C22 | 0.0176 (6) | 0.0175 (6) | 0.0282 (7) | −0.0036 (5) | −0.0049 (5) | −0.0017 (5) |
C23 | 0.0224 (6) | 0.0173 (6) | 0.0307 (7) | −0.0076 (5) | −0.0019 (5) | −0.0024 (5) |
C24 | 0.0249 (6) | 0.0200 (6) | 0.0302 (7) | −0.0053 (5) | −0.0022 (5) | −0.0058 (5) |
C25 | 0.0246 (7) | 0.0226 (7) | 0.0290 (7) | −0.0049 (5) | −0.0005 (5) | −0.0004 (5) |
C26 | 0.0264 (7) | 0.0243 (7) | 0.0350 (8) | −0.0130 (6) | −0.0037 (6) | 0.0002 (6) |
C27 | 0.0260 (7) | 0.0224 (7) | 0.0319 (7) | −0.0092 (5) | −0.0073 (6) | −0.0026 (6) |
C28 | 0.0511 (10) | 0.0288 (8) | 0.0385 (9) | −0.0171 (7) | −0.0040 (8) | −0.0108 (7) |
C29 | 0.0319 (8) | 0.0321 (8) | 0.0341 (8) | −0.0131 (7) | 0.0004 (6) | 0.0034 (6) |
C30 | 0.0166 (6) | 0.0162 (6) | 0.0242 (6) | −0.0079 (5) | −0.0029 (5) | −0.0001 (5) |
C31 | 0.0196 (6) | 0.0212 (6) | 0.0241 (6) | −0.0069 (5) | −0.0002 (5) | −0.0042 (5) |
C32 | 0.0232 (6) | 0.0259 (7) | 0.0236 (6) | −0.0085 (5) | −0.0037 (5) | −0.0059 (5) |
C33 | 0.0179 (6) | 0.0241 (7) | 0.0273 (7) | −0.0089 (5) | −0.0039 (5) | −0.0043 (5) |
C34 | 0.0172 (6) | 0.0178 (6) | 0.0249 (6) | −0.0072 (5) | −0.0007 (5) | −0.0028 (5) |
C35 | 0.0187 (6) | 0.0188 (6) | 0.0238 (6) | −0.0090 (5) | −0.0022 (5) | −0.0034 (5) |
C36 | 0.0216 (6) | 0.0272 (7) | 0.0293 (7) | −0.0100 (5) | 0.0010 (5) | −0.0084 (6) |
C37 | 0.0266 (7) | 0.0482 (10) | 0.0472 (10) | −0.0189 (7) | 0.0108 (7) | −0.0268 (8) |
C38 | 0.0472 (10) | 0.0452 (11) | 0.0556 (11) | −0.0218 (9) | 0.0120 (9) | −0.0208 (9) |
C39 | 0.0365 (9) | 0.0405 (10) | 0.0609 (12) | −0.0156 (7) | 0.0110 (8) | −0.0307 (9) |
C40 | 0.0542 (13) | 0.0686 (16) | 0.0432 (11) | −0.0025 (11) | −0.0065 (9) | −0.0120 (11) |
C41 | 0.0292 (8) | 0.0584 (12) | 0.0374 (9) | −0.0112 (8) | −0.0062 (7) | 0.0054 (8) |
O1—C1 | 1.3300 (17) | C13—C14 | 1.382 (2) |
O1—H1 | 0.91 (3) | C14—H14 | 0.961 (19) |
O2—C1 | 1.2178 (18) | C15—H15A | 0.98 (2) |
O3—C13 | 1.3648 (16) | C15—H15B | 0.96 (2) |
O3—C15 | 1.4228 (18) | C15—H15C | 0.99 (2) |
O4—C12 | 1.3683 (16) | C16—H16A | 0.975 (19) |
O4—C16 | 1.4347 (17) | C16—H16B | 1.002 (19) |
O5—C20 | 1.2280 (16) | C16—C17 | 1.4887 (19) |
O6—C24 | 1.3619 (18) | C17—C18 | 1.373 (2) |
O6—C28 | 1.425 (2) | C18—H18 | 0.922 (19) |
O7—C25 | 1.3661 (19) | C19—H19A | 1.00 (2) |
O7—C29 | 1.424 (2) | C19—H19B | 1.012 (19) |
O8—C36 | 1.2255 (18) | C19—C20 | 1.5297 (19) |
O9—H9A | 0.96 (3) | C21—H21A | 0.997 (17) |
O9—H9B | 0.99 (3) | C21—H21B | 0.979 (17) |
O10—H10A | 0.96 (3) | C21—C22 | 1.509 (2) |
O10—H10B | 0.95 (3) | C22—C23 | 1.4041 (19) |
N1—H1A | 0.90 (2) | C22—C27 | 1.381 (2) |
N1—C5 | 1.3650 (19) | C23—H23 | 0.96 (2) |
N1—C8 | 1.4450 (19) | C23—C24 | 1.379 (2) |
N2—N3 | 1.3127 (16) | C24—C25 | 1.412 (2) |
N2—C17 | 1.3590 (18) | C25—C26 | 1.379 (2) |
N3—N4 | 1.3419 (16) | C26—H26 | 0.99 (2) |
N4—C18 | 1.3492 (18) | C26—C27 | 1.400 (2) |
N4—C19 | 1.4530 (17) | C27—H27 | 0.995 (19) |
N5—C20 | 1.3428 (17) | C28—H28A | 0.98 (2) |
N5—C21 | 1.4798 (17) | C28—H28B | 0.95 (3) |
N5—C30 | 1.4387 (16) | C28—H28C | 1.02 (2) |
N6—H6 | 0.85 (2) | C29—H29A | 0.96 (2) |
N6—C34 | 1.4104 (17) | C29—H29B | 0.98 (2) |
N6—C36 | 1.3537 (18) | C29—H29C | 1.00 (2) |
N7—C39 | 1.147 (3) | C30—C31 | 1.3900 (19) |
N8—C41 | 1.135 (3) | C30—C35 | 1.3891 (19) |
C1—C2 | 1.470 (2) | C31—H31 | 0.940 (19) |
C2—C3 | 1.398 (2) | C31—C32 | 1.3935 (19) |
C2—C7 | 1.4007 (19) | C32—H32 | 0.991 (18) |
C3—H3 | 0.926 (19) | C32—C33 | 1.385 (2) |
C3—C4 | 1.373 (2) | C33—H33 | 0.955 (18) |
C4—H4 | 0.967 (19) | C33—C34 | 1.3949 (19) |
C4—C5 | 1.4096 (19) | C34—C35 | 1.4019 (18) |
C5—C6 | 1.4083 (19) | C35—H35 | 0.971 (17) |
C6—H6A | 0.953 (18) | C36—C37 | 1.506 (2) |
C6—C7 | 1.382 (2) | C37—H37A | 0.91 (3) |
C7—H7 | 0.946 (18) | C37—H37B | 1.01 (3) |
C8—H8A | 0.98 (2) | C37—H37C | 0.95 (3) |
C8—H8B | 1.04 (2) | C38—H38A | 0.98 (3) |
C8—C9 | 1.5222 (19) | C38—H38B | 1.02 (3) |
C9—C10 | 1.382 (2) | C38—H38C | 0.99 (3) |
C9—C14 | 1.4010 (19) | C38—C39 | 1.446 (3) |
C10—H10 | 0.971 (19) | C40—H40A | 0.93 (3) |
C10—C11 | 1.4057 (19) | C40—H40B | 0.98 (4) |
C11—H11 | 0.95 (2) | C40—H40C | 0.96 (4) |
C11—C12 | 1.3851 (19) | C40—C41 | 1.451 (3) |
C12—C13 | 1.4106 (19) | ||
C1—O1—H1 | 110.4 (17) | N4—C19—H19B | 108.4 (11) |
C13—O3—C15 | 117.34 (11) | N4—C19—C20 | 111.40 (11) |
C12—O4—C16 | 117.77 (10) | H19A—C19—H19B | 109.4 (15) |
C24—O6—C28 | 117.66 (12) | C20—C19—H19A | 112.2 (12) |
C25—O7—C29 | 117.23 (13) | C20—C19—H19B | 109.1 (11) |
H9A—O9—H9B | 98 (2) | O5—C20—N5 | 123.36 (12) |
H10A—O10—H10B | 103 (2) | O5—C20—C19 | 121.54 (12) |
C5—N1—H1A | 115.9 (13) | N5—C20—C19 | 115.09 (11) |
C5—N1—C8 | 123.62 (12) | N5—C21—H21A | 105.7 (10) |
C8—N1—H1A | 120.4 (13) | N5—C21—H21B | 105.6 (10) |
N3—N2—C17 | 109.57 (11) | N5—C21—C22 | 112.09 (11) |
N2—N3—N4 | 106.74 (11) | H21A—C21—H21B | 111.7 (14) |
N3—N4—C18 | 111.20 (11) | C22—C21—H21A | 109.2 (10) |
N3—N4—C19 | 120.82 (11) | C22—C21—H21B | 112.4 (10) |
C18—N4—C19 | 127.87 (12) | C23—C22—C21 | 119.45 (12) |
C20—N5—C21 | 120.23 (11) | C27—C22—C21 | 120.83 (13) |
C20—N5—C30 | 122.53 (11) | C27—C22—C23 | 119.72 (13) |
C30—N5—C21 | 117.11 (10) | C22—C23—H23 | 122.0 (11) |
C34—N6—H6 | 115.9 (13) | C24—C23—C22 | 120.06 (13) |
C36—N6—H6 | 115.8 (13) | C24—C23—H23 | 117.9 (11) |
C36—N6—C34 | 128.01 (12) | O6—C24—C23 | 125.84 (13) |
O1—C1—C2 | 113.95 (12) | O6—C24—C25 | 114.18 (13) |
O2—C1—O1 | 121.94 (13) | C23—C24—C25 | 119.97 (13) |
O2—C1—C2 | 124.10 (13) | O7—C25—C24 | 114.25 (13) |
C3—C2—C1 | 121.20 (13) | O7—C25—C26 | 125.94 (14) |
C3—C2—C7 | 118.35 (13) | C26—C25—C24 | 119.81 (14) |
C7—C2—C1 | 120.45 (13) | C25—C26—H26 | 120.5 (12) |
C2—C3—H3 | 118.7 (11) | C25—C26—C27 | 119.96 (14) |
C4—C3—C2 | 120.75 (13) | C27—C26—H26 | 119.5 (12) |
C4—C3—H3 | 120.5 (11) | C22—C27—C26 | 120.47 (13) |
C3—C4—H4 | 119.9 (11) | C22—C27—H27 | 120.8 (11) |
C3—C4—C5 | 120.93 (13) | C26—C27—H27 | 118.7 (11) |
C5—C4—H4 | 119.2 (11) | O6—C28—H28A | 109.8 (12) |
N1—C5—C4 | 118.57 (12) | O6—C28—H28B | 106.2 (15) |
N1—C5—C6 | 122.84 (13) | O6—C28—H28C | 111.1 (14) |
C6—C5—C4 | 118.58 (13) | H28A—C28—H28B | 110.3 (19) |
C5—C6—H6A | 121.9 (10) | H28A—C28—H28C | 108.8 (18) |
C7—C6—C5 | 119.59 (13) | H28B—C28—H28C | 110.6 (19) |
C7—C6—H6A | 118.5 (10) | O7—C29—H29A | 113.0 (13) |
C2—C7—H7 | 119.2 (11) | O7—C29—H29B | 103.1 (12) |
C6—C7—C2 | 121.65 (13) | O7—C29—H29C | 108.7 (12) |
C6—C7—H7 | 119.2 (11) | H29A—C29—H29B | 111.0 (17) |
N1—C8—H8A | 109.6 (12) | H29A—C29—H29C | 112.3 (17) |
N1—C8—H8B | 106.9 (11) | H29B—C29—H29C | 108.2 (17) |
N1—C8—C9 | 114.37 (12) | C31—C30—N5 | 118.76 (12) |
H8A—C8—H8B | 109.2 (16) | C35—C30—N5 | 119.15 (11) |
C9—C8—H8A | 108.6 (12) | C35—C30—C31 | 122.07 (12) |
C9—C8—H8B | 108.1 (11) | C30—C31—H31 | 121.3 (11) |
C10—C9—C8 | 121.97 (13) | C30—C31—C32 | 118.46 (12) |
C10—C9—C14 | 119.47 (12) | C32—C31—H31 | 120.2 (11) |
C14—C9—C8 | 118.39 (12) | C31—C32—H32 | 119.4 (10) |
C9—C10—H10 | 120.8 (11) | C33—C32—C31 | 120.63 (12) |
C9—C10—C11 | 120.82 (13) | C33—C32—H32 | 119.9 (10) |
C11—C10—H10 | 118.4 (11) | C32—C33—H33 | 121.9 (10) |
C10—C11—H11 | 120.3 (11) | C32—C33—C34 | 120.35 (12) |
C12—C11—C10 | 119.28 (13) | C34—C33—H33 | 117.8 (10) |
C12—C11—H11 | 120.4 (11) | C33—C34—N6 | 116.94 (11) |
O4—C12—C11 | 125.59 (12) | C33—C34—C35 | 119.84 (12) |
O4—C12—C13 | 114.17 (12) | C35—C34—N6 | 123.03 (12) |
C11—C12—C13 | 120.23 (12) | C30—C35—C34 | 118.63 (12) |
O3—C13—C12 | 114.78 (12) | C30—C35—H35 | 122.6 (10) |
O3—C13—C14 | 125.58 (13) | C34—C35—H35 | 118.8 (10) |
C14—C13—C12 | 119.64 (12) | O8—C36—N6 | 124.00 (13) |
C9—C14—H14 | 119.3 (11) | O8—C36—C37 | 121.88 (13) |
C13—C14—C9 | 120.53 (13) | N6—C36—C37 | 114.12 (12) |
C13—C14—H14 | 120.1 (11) | C36—C37—H37A | 115.1 (15) |
O3—C15—H15A | 106.1 (13) | C36—C37—H37B | 108.2 (17) |
O3—C15—H15B | 110.2 (12) | C36—C37—H37C | 109.4 (17) |
O3—C15—H15C | 110.2 (11) | H37A—C37—H37B | 100 (2) |
H15A—C15—H15B | 109.8 (17) | H37A—C37—H37C | 121 (2) |
H15A—C15—H15C | 108.7 (17) | H37B—C37—H37C | 101 (2) |
H15B—C15—H15C | 111.6 (17) | H38A—C38—H38B | 109 (2) |
O4—C16—H16A | 111.0 (11) | H38A—C38—H38C | 106 (2) |
O4—C16—H16B | 111.4 (11) | H38B—C38—H38C | 114 (2) |
O4—C16—C17 | 103.73 (10) | C39—C38—H38A | 108.4 (16) |
H16A—C16—H16B | 107.9 (15) | C39—C38—H38B | 110.6 (16) |
C17—C16—H16A | 111.3 (11) | C39—C38—H38C | 108.8 (18) |
C17—C16—H16B | 111.5 (11) | N7—C39—C38 | 179.1 (2) |
N2—C17—C16 | 120.91 (12) | H40A—C40—H40B | 99 (3) |
N2—C17—C18 | 107.84 (12) | H40A—C40—H40C | 118 (3) |
C18—C17—C16 | 130.64 (13) | H40B—C40—H40C | 114 (3) |
N4—C18—C17 | 104.64 (12) | C41—C40—H40A | 102.5 (17) |
N4—C18—H18 | 123.2 (12) | C41—C40—H40B | 111 (2) |
C17—C18—H18 | 132.1 (12) | C41—C40—H40C | 111 (2) |
N4—C19—H19A | 106.2 (12) | N8—C41—C40 | 178.3 (2) |
O1—C1—C2—C3 | −4.54 (19) | C11—C12—C13—C14 | −1.8 (2) |
O1—C1—C2—C7 | 175.50 (13) | C12—O4—C16—C17 | −176.54 (11) |
O2—C1—C2—C3 | 174.42 (14) | C12—C13—C14—C9 | 0.5 (2) |
O2—C1—C2—C7 | −5.5 (2) | C14—C9—C10—C11 | −1.7 (2) |
O3—C13—C14—C9 | −179.55 (12) | C15—O3—C13—C12 | −174.93 (12) |
O4—C12—C13—O3 | −0.33 (17) | C15—O3—C13—C14 | 5.1 (2) |
O4—C12—C13—C14 | 179.62 (12) | C16—O4—C12—C11 | 3.0 (2) |
O4—C16—C17—N2 | 80.36 (15) | C16—O4—C12—C13 | −178.42 (12) |
O4—C16—C17—C18 | −89.54 (17) | C16—C17—C18—N4 | 170.74 (13) |
O6—C24—C25—O7 | 0.75 (18) | C17—N2—N3—N4 | −0.44 (14) |
O6—C24—C25—C26 | −179.07 (13) | C18—N4—C19—C20 | −115.62 (15) |
O7—C25—C26—C27 | −179.49 (14) | C19—N4—C18—C17 | −176.24 (12) |
N1—C5—C6—C7 | 175.90 (13) | C20—N5—C21—C22 | 101.22 (14) |
N1—C8—C9—C10 | 29.93 (19) | C20—N5—C30—C31 | 107.10 (15) |
N1—C8—C9—C14 | −154.72 (13) | C20—N5—C30—C35 | −74.49 (17) |
N2—N3—N4—C18 | 0.34 (15) | C21—N5—C20—O5 | −0.7 (2) |
N2—N3—N4—C19 | 176.79 (11) | C21—N5—C20—C19 | 178.47 (12) |
N2—C17—C18—N4 | −0.16 (15) | C21—N5—C30—C31 | −77.15 (16) |
N3—N2—C17—C16 | −171.58 (11) | C21—N5—C30—C35 | 101.26 (14) |
N3—N2—C17—C18 | 0.38 (15) | C21—C22—C23—C24 | −178.77 (12) |
N3—N4—C18—C17 | −0.11 (15) | C21—C22—C27—C26 | 179.01 (13) |
N3—N4—C19—C20 | 68.58 (16) | C22—C23—C24—O6 | 178.35 (13) |
N4—C19—C20—O5 | 8.79 (19) | C22—C23—C24—C25 | −0.5 (2) |
N4—C19—C20—N5 | −170.36 (11) | C23—C22—C27—C26 | −0.6 (2) |
N5—C21—C22—C23 | −64.78 (15) | C23—C24—C25—O7 | 179.76 (12) |
N5—C21—C22—C27 | 115.57 (13) | C23—C24—C25—C26 | −0.1 (2) |
N5—C30—C31—C32 | 179.70 (12) | C24—C25—C26—C27 | 0.3 (2) |
N5—C30—C35—C34 | −179.20 (11) | C25—C26—C27—C22 | 0.0 (2) |
N6—C34—C35—C30 | 174.52 (12) | C27—C22—C23—C24 | 0.9 (2) |
C1—C2—C3—C4 | 177.01 (13) | C28—O6—C24—C23 | −0.7 (2) |
C1—C2—C7—C6 | −178.31 (13) | C28—O6—C24—C25 | 178.27 (13) |
C2—C3—C4—C5 | 0.8 (2) | C29—O7—C25—C24 | −170.61 (13) |
C3—C2—C7—C6 | 1.7 (2) | C29—O7—C25—C26 | 9.2 (2) |
C3—C4—C5—N1 | −177.16 (13) | C30—N5—C20—O5 | 174.96 (12) |
C3—C4—C5—C6 | 2.7 (2) | C30—N5—C20—C19 | −5.91 (18) |
C4—C5—C6—C7 | −4.0 (2) | C30—N5—C21—C22 | −74.63 (14) |
C5—N1—C8—C9 | 80.99 (17) | C30—C31—C32—C33 | −0.7 (2) |
C5—C6—C7—C2 | 1.8 (2) | C31—C30—C35—C34 | −0.8 (2) |
C7—C2—C3—C4 | −3.0 (2) | C31—C32—C33—C34 | −0.4 (2) |
C8—N1—C5—C4 | 179.92 (13) | C32—C33—C34—N6 | −174.22 (13) |
C8—N1—C5—C6 | 0.0 (2) | C32—C33—C34—C35 | 0.9 (2) |
C8—C9—C10—C11 | 173.58 (12) | C33—C34—C35—C30 | −0.28 (19) |
C8—C9—C14—C13 | −174.25 (12) | C34—N6—C36—O8 | 10.5 (2) |
C9—C10—C11—C12 | 0.5 (2) | C34—N6—C36—C37 | −169.90 (14) |
C10—C9—C14—C13 | 1.2 (2) | C35—C30—C31—C32 | 1.3 (2) |
C10—C11—C12—O4 | 179.72 (13) | C36—N6—C34—C33 | −167.21 (14) |
C10—C11—C12—C13 | 1.3 (2) | C36—N6—C34—C35 | 17.8 (2) |
C11—C12—C13—O3 | 178.29 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9A···O2i | 0.96 (3) | 1.80 (3) | 2.7173 (17) | 160 (2) |
O9—H9B···O8 | 0.99 (3) | 1.90 (3) | 2.8610 (18) | 164 (2) |
O10—H10A···O6ii | 0.96 (3) | 2.12 (3) | 2.9441 (17) | 144 (2) |
O10—H10A···O7ii | 0.96 (3) | 2.17 (3) | 2.9928 (17) | 143 (2) |
O10—H10B···O9iii | 0.95 (3) | 2.00 (3) | 2.9346 (19) | 167 (2) |
N1—H1A···N3iv | 0.90 (2) | 2.29 (2) | 3.1834 (17) | 174.6 (18) |
N6—H6···O5v | 0.85 (2) | 1.98 (2) | 2.8200 (15) | 168.6 (19) |
O1—H1···N2vi | 0.91 (3) | 1.87 (3) | 2.7614 (16) | 166 (3) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y, −z+1; (iii) x+1, y, z; (iv) x, y+1, z; (v) x−1, y, z; (vi) −x+2, −y+1, −z. |
Acknowledgements
The author wishes to acknowledge the assistance of Jered Garrison at the University of Nebraska for crystal data collection and helpful discussions.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Filley, J. (2024). Acta Cryst. E80, 1003–1005. CSD CrossRef IUCr Journals Google Scholar
Gellman, S. H. (1998). Acc. Chem. Res. 31, 173–180. Web of Science CrossRef CAS Google Scholar
Hill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. (2001). Chem. Rev. 101, 3803–4011. CrossRef Google Scholar
Kang, L. & Long, S. (2024). IUCrData, 9, x240198. Google Scholar
Kolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004–2021. Web of Science CrossRef CAS Google Scholar
Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o693. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lin, J. R. (2010). Acta Cryst. E66, o1967. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Touchette, K. M. (2006). J. Chem. Educ. 83, 929–930. CrossRef CAS Google Scholar
Zukerman-Schpector, J., Dallasta Pedroso, S., Sousa Madureira, L., Weber Paixão, M., Ali, A. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1716–1720. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.