research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Binary solvent participation in crystals of a multi-aromatic 1,2,3-triazole

crossmark logo

aOligometrics, Inc., 2510 47th Street, Suite 208, Boulder, CO, 80301, USA
*Correspondence e-mail: jfilley@oligometrics.com

Edited by S. P. Kelley, University of Missouri-Columbia, USA (Received 19 September 2024; accepted 8 December 2024; online 1 January 2025)

The X-ray crystal structure of a multi-aromatic substituted 1,2,3-triazole is presented, which shows an extensive three-dimensional hydrogen-bonding network involving two water mol­ecules and two aceto­nitrile mol­ecules. The structure of 4-{[(4-{[1-({[(3,4-di­meth­oxy­phen­yl)meth­yl](3-acetamido­phen­yl)carbamo­yl}meth­yl)-1H-1,2,3-triazol-4-yl]meth­oxy}-3-meth­oxy­phen­yl)meth­yl]amino}­benzoic acid–aceto­nitrile–water (1/2/2), C37H38N6O8·2C2H3N·2H2O, features amine-linked aromatic groups that have a variety functionality including a carb­oxy­lic acid, an acetamido group, and meth­oxy ethers. All X—H groups, and seven out of ten heteroatoms with available lone-pair electrons, participate in hydrogen bonding, with the aid of dimer-bridging water mol­ecules and aceto­nitrile mol­ecules whose methyl groups form close contacts with oxygen atoms. The triazole itself is a dimer made using click chemistry from readily available and inexpensive starting materials and is a precursor to larger oligomers, as well as to compounds with a wide array of readily manipulated functionality.

1. Chemical context

Foldamers, or folding oligomers, are synthetic organic mol­ecules that have a propensity to form weak intra­molecular inter­actions and have secondary structure analogous to biomacromolecules (Hill et al., 2001[Hill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. (2001). Chem. Rev. 101, 3803-4011.]; Gellman, 1998[Gellman, S. H. (1998). Acc. Chem. Res. 31, 173-180.]). With the goal of preparing functional foldamers, we prepared an unusual dimer mol­ecule that crystallized easily from a mixture of aceto­nitrile and water (compound 1). An X-ray structure determination was undertaken to understand whether or not its aromatic components stack intra­molecularly (i.e., fold). While the mol­ecule adopts an extended conformation in the crystal, and therefore may be unlikely to form a folding nucleus for larger oligomers based upon it, certain features of the mol­ecule and its inter­actions with solvent mol­ecules are reported here.

The linking chemistry used to make the title compound is the copper-catalyzed alkyne–azide cyclo­addition reaction, also known as the CuAAC click reaction (Kolb et al., 2001[Kolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004-2021.]). It is composed of an aromatic 1,2,3-triazole substituted at the 1 and 4 positions with groups that each feature two aromatic rings bearing a variety of functionality. The main criteria for linking these groups are the ready availability and low cost of the starting materials, which are transformed into the moieties indicated with brackets, and are: A: 3-acetamido­aniline, B: 3,4-di­meth­oxy­benzaldehye, C: vanillin, and D: ethyl 4-amino­benzoate. The starting materials were also chosen for their functionality, and the ease with which they can be modified. For instance, the acetamido group in A could be changed to a longer chain amide (or an amide containing additional functionality), the 4-meth­oxy group in B can be changed to other ethers (including ones featuring alkynes) using vanillin as the starting material, the meth­oxy group in C can easily be obtained as an eth­oxy group, which could be a useful spectroscopic handle, and leaving the carb­oxy­lic acid in D as an ester decreases its polarity. While the main objective for making the title compound was to use it as a starting point for making larger oligomers, it is also possible to envision it for preparing a large variety of mol­ecules with a wide range of functionality.

[Scheme 1]

2. Structural commentary

The extended conformation is shown in Fig. 1[link], which also shows two water mol­ecules and two aceto­nitrile mol­ecules as solvents of crystallization. The mol­ecular structure confirms the cyclo­addition reaction proceeds with the expected regiochemistry to give a 1,4-substituted 1,2,3-triazole. The amine nitro­gen atom is essentially planar [C6—C5—N1—C8 torsion angle = 0.0 (2)°], indicating the lone pair electrons are conjugated with the aromatic ring, facilitated by the electron withdrawing carb­oxy­lic acid, while the aromatic ring attached at the amide nitro­gen atom is essentially non-planar [C20—N5—C30—C31 torsion angle = 107.1 (2)°] indicating the amide lone pair is not conjugated to the aromatic ring.

[Figure 1]
Figure 1
A view of the title compound with two water and two aceto­nitrile mol­ecules as solvents of crystallization. Atoms are displayed as ellipsoids at the 50% probability displacement level.

3. Supra­molecular features

The crystal packing in Fig. 2[link] shows four mol­ecules with solvent mol­ecules included on the right side of the image. It can be seen that an aceto­nitrile mol­ecule helps fill the void space between two alk­oxy benzenes, the water mol­ecules are hydrogen bonded together [2.01 (2) Å, see Table 1[link]], and one mol­ecule of this pair is hydrogen bonded to an acetamide carbonyl [1.90 (3) Å]. The amide hydrogen atom of this acetamide is hydrogen bonded [1.98 (2) Å] to the linking amide adjacent to the triazole of the next mol­ecule in the crystal. The dimeth­oxy benzenes are π-stacked in a face-to-face manner on a pairwise basis, with the local dipoles oriented anti­parallel, and with the methyl­ene carbon atom (C21) positioned almost directly over an ether oxygen atom (O7). The second pair of stacked dimeth­oxy benzenes is offset several bond lengths such that a methyl group (C29) is located almost directly over a benzene ring carbon (C27).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O2i 0.96 (3) 1.80 (3) 2.7173 (17) 160 (2)
O9—H9B⋯O8 0.99 (3) 1.90 (3) 2.8610 (18) 164 (2)
O10—H10A⋯O6ii 0.96 (3) 2.12 (3) 2.9441 (17) 144 (2)
O10—H10A⋯O7ii 0.96 (3) 2.17 (3) 2.9928 (17) 143 (2)
O10—H10B⋯O9iii 0.95 (3) 2.00 (3) 2.9346 (19) 167 (2)
N1—H1A⋯N3iv 0.90 (2) 2.29 (2) 3.1834 (17) 174.6 (18)
N6—H6⋯O5v 0.85 (2) 1.98 (2) 2.8200 (15) 168.6 (19)
O1—H1⋯N2vi 0.91 (3) 1.87 (3) 2.7614 (16) 166 (3)
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+1, -y, -z+1]; (iii) [x+1, y, z]; (iv) [x, y+1, z]; (v) [x-1, y, z]; (vi) [-x+2, -y+1, -z].
[Figure 2]
Figure 2
Four mol­ecules highlighting the acetamido–amide hydrogen bond, the water dimer bound to the acetamide carbonyl group, π-stacking, and the solvents of crystallization.

Fig. 3[link] shows four mol­ecules focusing on the hydrogen bonding to the triazole, as well as the bridge hydrogen bonding facilitated by the two water mol­ecules. The carb­oxy­lic acid hydrogen bonds to the 3-position of the triazole [1.87 (3) Å] and the amine NH forms a hydrogen bond to the 2-position of the triazole [2.29 (2) Å]. The carb­oxy­lic acid serves as an hydrogen-bond acceptor from a water mol­ecule [1.80 (3) Å]. This water mol­ecule forms the hydrogen bond noted above to the other water mol­ecule, which forms a three-center hydrogen bond to the dimeth­oxy benzene of the fourth mol­ecule displayed [2.12 (3), 2.17 (3) Å]. In total, seven of the ten heteroatoms of the title compound with available lone-pair electrons behave as hydrogen-bond acceptors, creating an extensive three-dimensional hydrogen-bonded network. The dimeth­oxy benzene π-stacking in Fig. 2[link] suggests mol­ecules with multi-aromatic side chains bearing dimeth­oxy benzene units could encourage folding.

[Figure 3]
Figure 3
Four mol­ecules showing hydrogen bonding to the 1,2,3-triazole, water hydrogen bonding to the carb­oxy­lic acid carbonyl group, and water participating in the three-center hydrogen bond.

The close contacts between the C38 hydrogen atoms of an aceto­nitrile mol­ecule and oxygen atoms are highlighted in Fig. 4[link]. The oxygen atoms are O6 of the dialk­oxy benzene unit [2.50 (3) Å], and O2 of the carb­oxy­lic acid [2.59 (3) Å]. Two mol­ecules are inter­twined about the dialk­oxy benzene units with symmetrically disposed aceto­nitrile mol­ecules. Fig. 5[link] shows the unit cell superimposed on amide-to-amide hydrogen bonded tetra­mers with the solvent mol­ecules omitted, with the top unit oriented with N1, N2, and N3 of the triazoles facing the viewer, and the same atoms of the bottom unit facing away from the viewer. Images of mol­ecular structures were manipulated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

[Figure 4]
Figure 4
An inter­twined dimer showing close contacts between an aceto­nitrile mol­ecule and oxygen atoms.
[Figure 5]
Figure 5
Unit cell superimposed on two sets of hydrogen bonded tetra­mers, showing the amide hydrogen bonding.

4. Database survey

Since crystalline carb­oxy­lic acids have a tendency to form dimers analogous to the well-known acetic acid dimer, as in the case of 5-bromo-2-(phenyl­amino)­benzoic acid (Kang & Long, 2024[Kang, L. & Long, S. (2024). IUCrData, 9, x240198.]), it is notable that the carb­oxy­lic acid of the title compound forms a hydrogen bond to the triazole. Carb­oxy­lic acids hydrogen bonded to heterocyclic nitro­gen atoms (Ladraa et al., 2010[Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o693.]) and to the 3-position of 1,2,3-triazoles (Lin, 2010[Lin, J. R. (2010). Acta Cryst. E66, o1967.]) have been examined. A 1,2,3-triazole click reaction product has also been structurally characterized (Zukerman-Schpector et al., 2017[Zukerman-Schpector, J., Dallasta Pedroso, S., Sousa Madureira, L., Weber Paixão, M., Ali, A. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1716-1720.]). A similar arrangement to the π-stacking with dipoles aligned anti-parallel seen for the dimeth­oxy benzene units has been observed in 2-meth­oxy-5-nitro­aniline (Filley, 2024[Filley, J. (2024). Acta Cryst. E80, 1003-1005.]).

5. Synthesis and crystallization

The azide and alkyne in the scheme were prepared in seven steps as detailed in the supporting information. Reductive aminations were performed according to Touchette (2006[Touchette, K. M. (2006). J. Chem. Educ. 83, 929-930.]). The title compound was made as follows: A 50 ml round-bottomed flask was charged with 0.767 g (2.00 mmole) of N-(3-acetamido­phen­yl)-N-(3,4-di­meth­oxy­benz­yl)azido­acetamide, 0.623 g (2.00 mmole) of 4-(4-proparg­yloxy-3-meth­oxy­benzyl­amino)­benzoic acid, 0.28 ml (2.0 mmole) of tri­ethyl­amine and 20 ml of acetone. The solids were dissolved with stirring and treated with 2.0 ml of an aqueous solution containing a mixture of 0.1 M ascorbic acid and 0.1 M sodium acetate, the buffered mixture was then treated with 0.4 ml of aqueous 0.1 M CuSO4. The flask was flushed with N2, capped with a septum, and stirred overnight. The resulting inhomogeneous mixture was poured into 100 ml of water containing 15 mg of Na2EDTA and 300 mg of NaOH, giving a clear solution. When this solution was acidified with 5 ml of 6M HCl, a gooey precipitate resulted, which was isolated by deca­nting off the aqueous solution, boiling in 10 ml of ethanol, and pouring the hot ethanol solution into 100 ml of water followed by about 15 ml of saturated NaCl. The resultant precipitate was filtered off and allowed to air dry, 1.23 g (88%) snow white powder. 1H NMR (400 MHz, CD3CN/1% D20): 2.04 (s, 3H), 3.70 (s, 3H), 3.73 (s, 3H), 3.74 (s, 3H), 4.27 (s, 2H), 4.80 (s, 2H), 4.96 (s, 2H), 5.02 (s, 2H), 6.60–7.75 (m, 14H), 7.84 (s, 1H). 13C NMR (CD3CN/1% D20): 23.3, 46.2, 51.5, 52.6, 55.1, 55.2, 55.3, 61.9, 111.2, 111.4, 111.6, 112.0, 113.6, 117.3, 117.5, 119.1, 119.2, 119.3, 121.0, 123.4, 125.9, 129.2, 130.1, 131.5, 132.5, 140.2, 140.6, 143.1, 146.7, 148.5, 149.0, 149.5, 152.5, 165.4, 167.7, 169.3. X-ray quality crystals can be obtained by dissolving 20 mg of the product in 0.8 ml of aceto­nitrile + 1 drop water, followed by the addition of 0.8 ml additional water, and setting aside for several days at room temperature. The solvents of crystallization should be preserved by not allowing the crystals to dry out.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2 All H-atom parameters were refined.[link]

Table 2
Experimental details

Crystal data
Chemical formula C37H38N6O8·2C2H3N·2H2O
Mr 812.87
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.1493 (2), 12.3058 (3), 20.1432 (5)
α, β, γ (°) 76.076 (2), 84.791 (2), 71.829 (2)
V3) 2091.19 (10)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.78
Crystal size (mm) 0.9 × 0.3 × 0.05
 
Data collection
Diffractometer Xcalibur, Onyx, Ultra
Absorption correction Multi-scan (CrysAlis PRO, Agilent, 2014)
Tmin, Tmax 0.728, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 32961, 8593, 7480
Rint 0.048
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.04
No. of reflections 8593
No. of parameters 724
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.32, −0.25
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

4-{[(4-{[1-({[(3,4-Dimethoxyphenyl)methyl](3-acetamidophenyl)carbamoyl}methyl)-1H-1,2,3-triazol-4-yl]methoxy}-3-methoxyphenyl)methyl]amino}benzoic acid–acetonitrile–water (1/2/2) top
Crystal data top
C37H38N6O8·2C2H3N·2H2OZ = 2
Mr = 812.87F(000) = 860
Triclinic, P1Dx = 1.291 Mg m3
a = 9.1493 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 12.3058 (3) ÅCell parameters from 15358 reflections
c = 20.1432 (5) Åθ = 3.8–75.8°
α = 76.076 (2)°µ = 0.78 mm1
β = 84.791 (2)°T = 100 K
γ = 71.829 (2)°Plate, clear colourless
V = 2091.19 (10) Å30.9 × 0.3 × 0.05 mm
Data collection top
Xcalibur, Onyx, Ultra
diffractometer
7480 reflections with I > 2σ(I)
Detector resolution: 8.2603 pixels mm-1Rint = 0.048
ω scansθmax = 76.4°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlisPro, Agilent, 2014)
h = 1111
Tmin = 0.728, Tmax = 1.000k = 1515
32961 measured reflectionsl = 2525
8593 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045All H-atom parameters refined
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.6126P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
8593 reflectionsΔρmax = 0.32 e Å3
724 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.17136 (13)0.88775 (10)0.09107 (6)0.0306 (2)
O21.09733 (13)0.79667 (11)0.15897 (6)0.0352 (3)
O30.27550 (12)0.47527 (9)0.04633 (5)0.0271 (2)
O40.43548 (12)0.35313 (8)0.15043 (5)0.0260 (2)
O50.52857 (11)0.19991 (9)0.30496 (5)0.0246 (2)
O60.33685 (14)0.32839 (10)0.56423 (6)0.0334 (2)
O70.19717 (14)0.48177 (10)0.60142 (6)0.0337 (2)
O80.13498 (12)0.02355 (11)0.38717 (6)0.0329 (3)
O90.00690 (15)0.13658 (12)0.29127 (7)0.0398 (3)
H9A0.045 (3)0.144 (2)0.2472 (14)0.059 (7)*
H9B0.049 (3)0.074 (3)0.3171 (15)0.069 (8)*
O100.76143 (15)0.36388 (12)0.29092 (6)0.0416 (3)
H10A0.745 (3)0.382 (2)0.3354 (14)0.060 (7)*
H10B0.840 (3)0.291 (2)0.2981 (13)0.055 (7)*
N10.54927 (14)0.86351 (10)0.06410 (7)0.0253 (3)
H1A0.548 (2)0.8990 (19)0.0983 (11)0.035 (5)*
N20.57880 (13)0.09002 (10)0.17503 (6)0.0220 (2)
N30.52279 (13)0.00184 (10)0.18158 (6)0.0224 (2)
N40.40357 (12)0.01865 (10)0.22590 (6)0.0211 (2)
N50.33120 (12)0.26564 (10)0.29033 (6)0.0197 (2)
N60.22795 (13)0.11497 (10)0.32250 (6)0.0220 (2)
H60.309 (2)0.1305 (17)0.3157 (10)0.030 (5)*
N70.1766 (2)0.37004 (18)0.29711 (11)0.0564 (5)
N80.23890 (19)0.01332 (18)0.40928 (10)0.0548 (5)
C11.07409 (16)0.83931 (13)0.10892 (7)0.0249 (3)
C20.94033 (16)0.84063 (12)0.06241 (7)0.0237 (3)
C30.92719 (17)0.88189 (12)0.00259 (7)0.0242 (3)
H31.007 (2)0.9052 (16)0.0086 (9)0.027 (4)*
C40.79857 (16)0.88776 (12)0.03891 (7)0.0234 (3)
H40.790 (2)0.9183 (16)0.0795 (10)0.027 (4)*
C50.67743 (16)0.85103 (11)0.02278 (7)0.0218 (3)
C60.69374 (16)0.80324 (12)0.03534 (7)0.0243 (3)
H6A0.618 (2)0.7733 (16)0.0472 (9)0.024 (4)*
C70.82255 (17)0.80019 (13)0.07722 (7)0.0248 (3)
H70.833 (2)0.7680 (16)0.1162 (9)0.025 (4)*
C80.41784 (16)0.82927 (12)0.05275 (8)0.0258 (3)
H8A0.396 (2)0.8517 (17)0.0036 (11)0.033 (5)*
H8B0.325 (2)0.8750 (17)0.0789 (10)0.033 (5)*
C90.43676 (15)0.69880 (12)0.07817 (7)0.0221 (3)
C100.52712 (15)0.63117 (12)0.13346 (7)0.0225 (3)
H100.590 (2)0.6636 (16)0.1549 (9)0.027 (4)*
C110.53054 (15)0.51384 (12)0.16017 (7)0.0219 (3)
H110.593 (2)0.4681 (17)0.1983 (10)0.028 (4)*
C120.44282 (15)0.46574 (12)0.13011 (7)0.0214 (3)
C130.35354 (15)0.53324 (12)0.07247 (7)0.0219 (3)
C140.35076 (16)0.64869 (12)0.04727 (7)0.0228 (3)
H140.290 (2)0.6954 (17)0.0081 (10)0.028 (4)*
C150.19367 (19)0.53567 (14)0.01514 (8)0.0301 (3)
H15A0.153 (2)0.4791 (19)0.0284 (11)0.040 (5)*
H15B0.262 (2)0.5605 (18)0.0502 (11)0.036 (5)*
H15C0.106 (2)0.6029 (18)0.0067 (10)0.032 (5)*
C160.51982 (16)0.27934 (12)0.20980 (7)0.0227 (3)
H16A0.629 (2)0.2738 (16)0.2041 (9)0.025 (4)*
H16B0.480 (2)0.3104 (16)0.2517 (10)0.027 (4)*
C170.49516 (15)0.16367 (12)0.21461 (7)0.0212 (3)
C180.38211 (15)0.11808 (12)0.24765 (7)0.0222 (3)
H180.303 (2)0.1451 (17)0.2770 (10)0.028 (4)*
C190.31026 (15)0.06093 (12)0.24188 (8)0.0236 (3)
H19A0.218 (2)0.0224 (18)0.2680 (10)0.036 (5)*
H19B0.276 (2)0.0694 (16)0.1975 (10)0.028 (4)*
C200.40083 (14)0.18197 (12)0.28243 (7)0.0201 (3)
C210.40887 (15)0.38716 (12)0.32711 (7)0.0223 (3)
H21A0.3859 (19)0.4391 (15)0.3010 (9)0.020 (4)*
H21B0.519 (2)0.3942 (15)0.3252 (9)0.020 (4)*
C220.34860 (15)0.41398 (12)0.39953 (7)0.0218 (3)
C230.37111 (15)0.35337 (12)0.44665 (7)0.0235 (3)
H230.425 (2)0.2960 (17)0.4345 (10)0.031 (5)*
C240.31919 (16)0.37859 (12)0.51336 (8)0.0252 (3)
C250.24218 (16)0.46476 (13)0.53414 (8)0.0269 (3)
C260.21904 (17)0.52333 (13)0.48759 (8)0.0283 (3)
H260.164 (2)0.5831 (19)0.5014 (11)0.039 (5)*
C270.27249 (16)0.49770 (13)0.42003 (8)0.0265 (3)
H270.255 (2)0.5410 (17)0.3872 (10)0.029 (4)*
C280.4173 (2)0.24290 (15)0.54789 (9)0.0375 (4)
H28A0.362 (2)0.1763 (19)0.5127 (11)0.038 (5)*
H28B0.420 (3)0.219 (2)0.5891 (13)0.052 (6)*
H28C0.526 (3)0.277 (2)0.5303 (12)0.050 (6)*
C290.14031 (19)0.57922 (15)0.62854 (9)0.0339 (3)
H29A0.043 (3)0.5705 (19)0.6095 (11)0.041 (5)*
H29B0.129 (2)0.5808 (18)0.6776 (11)0.036 (5)*
H29C0.221 (2)0.6525 (19)0.6222 (10)0.035 (5)*
C300.17665 (14)0.24101 (11)0.26830 (7)0.0190 (3)
C310.15460 (15)0.27707 (12)0.21066 (7)0.0217 (3)
H310.238 (2)0.3187 (16)0.1868 (9)0.026 (4)*
C320.00458 (16)0.25343 (13)0.18981 (7)0.0237 (3)
H320.013 (2)0.2783 (15)0.1487 (9)0.023 (4)*
C330.11947 (15)0.19647 (12)0.22621 (7)0.0226 (3)
H330.223 (2)0.1797 (15)0.2128 (9)0.022 (4)*
C340.09591 (15)0.16253 (11)0.28466 (7)0.0198 (3)
C350.05423 (15)0.18473 (11)0.30612 (7)0.0198 (3)
H350.0685 (18)0.1614 (14)0.3472 (9)0.017 (4)*
C360.23841 (16)0.05732 (13)0.37295 (7)0.0251 (3)
C370.39062 (19)0.03660 (17)0.41090 (10)0.0367 (4)
H37A0.449 (3)0.081 (2)0.4053 (12)0.050 (6)*
H37B0.459 (3)0.044 (3)0.3891 (15)0.074 (8)*
H37C0.378 (3)0.026 (3)0.4552 (15)0.069 (8)*
C380.0199 (2)0.43962 (19)0.18561 (11)0.0466 (4)
H38A0.021 (3)0.377 (2)0.1815 (14)0.062 (7)*
H38B0.089 (3)0.456 (3)0.1440 (16)0.075 (9)*
H38C0.070 (4)0.508 (3)0.1896 (15)0.077 (9)*
C390.1066 (2)0.40144 (17)0.24797 (11)0.0424 (4)
C400.0287 (3)0.1594 (3)0.44546 (12)0.0588 (6)
H40A0.065 (3)0.223 (3)0.4272 (15)0.064 (8)*
H40B0.035 (4)0.156 (3)0.4940 (19)0.091 (10)*
H40C0.071 (4)0.163 (3)0.4316 (18)0.091 (10)*
C410.1481 (2)0.06327 (19)0.42515 (9)0.0446 (4)
H11.250 (3)0.887 (2)0.1221 (14)0.064 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0311 (5)0.0353 (6)0.0329 (6)0.0196 (5)0.0045 (4)0.0105 (5)
O20.0362 (6)0.0463 (7)0.0314 (6)0.0201 (5)0.0051 (4)0.0159 (5)
O30.0324 (5)0.0224 (5)0.0296 (5)0.0128 (4)0.0083 (4)0.0028 (4)
O40.0312 (5)0.0170 (5)0.0316 (5)0.0117 (4)0.0086 (4)0.0003 (4)
O50.0168 (4)0.0234 (5)0.0345 (5)0.0088 (4)0.0057 (4)0.0025 (4)
O60.0450 (6)0.0288 (6)0.0304 (5)0.0154 (5)0.0025 (5)0.0094 (4)
O70.0404 (6)0.0292 (6)0.0307 (5)0.0144 (5)0.0049 (5)0.0021 (4)
O80.0261 (5)0.0434 (6)0.0404 (6)0.0178 (5)0.0028 (4)0.0218 (5)
O90.0431 (7)0.0417 (7)0.0372 (6)0.0162 (5)0.0080 (5)0.0063 (5)
O100.0418 (7)0.0474 (7)0.0309 (6)0.0043 (6)0.0078 (5)0.0091 (5)
N10.0298 (6)0.0197 (6)0.0297 (6)0.0121 (5)0.0026 (5)0.0066 (5)
N20.0206 (5)0.0183 (5)0.0281 (6)0.0088 (4)0.0020 (4)0.0026 (4)
N30.0196 (5)0.0197 (5)0.0288 (6)0.0082 (4)0.0004 (4)0.0041 (4)
N40.0180 (5)0.0180 (5)0.0278 (6)0.0080 (4)0.0008 (4)0.0024 (4)
N50.0158 (5)0.0173 (5)0.0264 (6)0.0065 (4)0.0033 (4)0.0028 (4)
N60.0153 (5)0.0238 (6)0.0306 (6)0.0093 (4)0.0010 (4)0.0084 (5)
N70.0436 (9)0.0611 (11)0.0759 (13)0.0141 (8)0.0043 (9)0.0409 (10)
N80.0297 (8)0.0633 (11)0.0567 (10)0.0044 (8)0.0040 (7)0.0026 (9)
C10.0266 (7)0.0235 (7)0.0256 (7)0.0101 (5)0.0030 (5)0.0029 (5)
C20.0254 (6)0.0209 (6)0.0252 (7)0.0089 (5)0.0030 (5)0.0025 (5)
C30.0272 (7)0.0204 (6)0.0279 (7)0.0110 (5)0.0057 (5)0.0034 (5)
C40.0298 (7)0.0195 (6)0.0231 (6)0.0107 (5)0.0036 (5)0.0034 (5)
C50.0258 (6)0.0142 (6)0.0242 (6)0.0071 (5)0.0031 (5)0.0002 (5)
C60.0246 (6)0.0223 (7)0.0296 (7)0.0103 (5)0.0040 (5)0.0067 (5)
C70.0278 (7)0.0239 (7)0.0252 (7)0.0097 (5)0.0037 (5)0.0062 (5)
C80.0246 (7)0.0192 (7)0.0333 (8)0.0086 (5)0.0012 (6)0.0035 (6)
C90.0202 (6)0.0184 (6)0.0279 (7)0.0074 (5)0.0039 (5)0.0048 (5)
C100.0199 (6)0.0204 (6)0.0294 (7)0.0083 (5)0.0009 (5)0.0071 (5)
C110.0208 (6)0.0189 (6)0.0264 (7)0.0071 (5)0.0008 (5)0.0041 (5)
C120.0227 (6)0.0157 (6)0.0266 (6)0.0084 (5)0.0009 (5)0.0033 (5)
C130.0213 (6)0.0210 (6)0.0257 (6)0.0087 (5)0.0002 (5)0.0062 (5)
C140.0226 (6)0.0211 (6)0.0241 (6)0.0069 (5)0.0004 (5)0.0037 (5)
C150.0338 (8)0.0310 (8)0.0286 (7)0.0139 (7)0.0072 (6)0.0043 (6)
C160.0228 (6)0.0178 (6)0.0279 (7)0.0085 (5)0.0044 (5)0.0015 (5)
C170.0201 (6)0.0179 (6)0.0259 (6)0.0070 (5)0.0032 (5)0.0025 (5)
C180.0209 (6)0.0174 (6)0.0274 (7)0.0059 (5)0.0017 (5)0.0029 (5)
C190.0175 (6)0.0200 (6)0.0335 (7)0.0090 (5)0.0033 (5)0.0010 (5)
C200.0166 (6)0.0202 (6)0.0244 (6)0.0071 (5)0.0011 (5)0.0045 (5)
C210.0184 (6)0.0175 (6)0.0300 (7)0.0047 (5)0.0036 (5)0.0034 (5)
C220.0176 (6)0.0175 (6)0.0282 (7)0.0036 (5)0.0049 (5)0.0017 (5)
C230.0224 (6)0.0173 (6)0.0307 (7)0.0076 (5)0.0019 (5)0.0024 (5)
C240.0249 (6)0.0200 (6)0.0302 (7)0.0053 (5)0.0022 (5)0.0058 (5)
C250.0246 (7)0.0226 (7)0.0290 (7)0.0049 (5)0.0005 (5)0.0004 (5)
C260.0264 (7)0.0243 (7)0.0350 (8)0.0130 (6)0.0037 (6)0.0002 (6)
C270.0260 (7)0.0224 (7)0.0319 (7)0.0092 (5)0.0073 (6)0.0026 (6)
C280.0511 (10)0.0288 (8)0.0385 (9)0.0171 (7)0.0040 (8)0.0108 (7)
C290.0319 (8)0.0321 (8)0.0341 (8)0.0131 (7)0.0004 (6)0.0034 (6)
C300.0166 (6)0.0162 (6)0.0242 (6)0.0079 (5)0.0029 (5)0.0001 (5)
C310.0196 (6)0.0212 (6)0.0241 (6)0.0069 (5)0.0002 (5)0.0042 (5)
C320.0232 (6)0.0259 (7)0.0236 (6)0.0085 (5)0.0037 (5)0.0059 (5)
C330.0179 (6)0.0241 (7)0.0273 (7)0.0089 (5)0.0039 (5)0.0043 (5)
C340.0172 (6)0.0178 (6)0.0249 (6)0.0072 (5)0.0007 (5)0.0028 (5)
C350.0187 (6)0.0188 (6)0.0238 (6)0.0090 (5)0.0022 (5)0.0034 (5)
C360.0216 (6)0.0272 (7)0.0293 (7)0.0100 (5)0.0010 (5)0.0084 (6)
C370.0266 (7)0.0482 (10)0.0472 (10)0.0189 (7)0.0108 (7)0.0268 (8)
C380.0472 (10)0.0452 (11)0.0556 (11)0.0218 (9)0.0120 (9)0.0208 (9)
C390.0365 (9)0.0405 (10)0.0609 (12)0.0156 (7)0.0110 (8)0.0307 (9)
C400.0542 (13)0.0686 (16)0.0432 (11)0.0025 (11)0.0065 (9)0.0120 (11)
C410.0292 (8)0.0584 (12)0.0374 (9)0.0112 (8)0.0062 (7)0.0054 (8)
Geometric parameters (Å, º) top
O1—C11.3300 (17)C13—C141.382 (2)
O1—H10.91 (3)C14—H140.961 (19)
O2—C11.2178 (18)C15—H15A0.98 (2)
O3—C131.3648 (16)C15—H15B0.96 (2)
O3—C151.4228 (18)C15—H15C0.99 (2)
O4—C121.3683 (16)C16—H16A0.975 (19)
O4—C161.4347 (17)C16—H16B1.002 (19)
O5—C201.2280 (16)C16—C171.4887 (19)
O6—C241.3619 (18)C17—C181.373 (2)
O6—C281.425 (2)C18—H180.922 (19)
O7—C251.3661 (19)C19—H19A1.00 (2)
O7—C291.424 (2)C19—H19B1.012 (19)
O8—C361.2255 (18)C19—C201.5297 (19)
O9—H9A0.96 (3)C21—H21A0.997 (17)
O9—H9B0.99 (3)C21—H21B0.979 (17)
O10—H10A0.96 (3)C21—C221.509 (2)
O10—H10B0.95 (3)C22—C231.4041 (19)
N1—H1A0.90 (2)C22—C271.381 (2)
N1—C51.3650 (19)C23—H230.96 (2)
N1—C81.4450 (19)C23—C241.379 (2)
N2—N31.3127 (16)C24—C251.412 (2)
N2—C171.3590 (18)C25—C261.379 (2)
N3—N41.3419 (16)C26—H260.99 (2)
N4—C181.3492 (18)C26—C271.400 (2)
N4—C191.4530 (17)C27—H270.995 (19)
N5—C201.3428 (17)C28—H28A0.98 (2)
N5—C211.4798 (17)C28—H28B0.95 (3)
N5—C301.4387 (16)C28—H28C1.02 (2)
N6—H60.85 (2)C29—H29A0.96 (2)
N6—C341.4104 (17)C29—H29B0.98 (2)
N6—C361.3537 (18)C29—H29C1.00 (2)
N7—C391.147 (3)C30—C311.3900 (19)
N8—C411.135 (3)C30—C351.3891 (19)
C1—C21.470 (2)C31—H310.940 (19)
C2—C31.398 (2)C31—C321.3935 (19)
C2—C71.4007 (19)C32—H320.991 (18)
C3—H30.926 (19)C32—C331.385 (2)
C3—C41.373 (2)C33—H330.955 (18)
C4—H40.967 (19)C33—C341.3949 (19)
C4—C51.4096 (19)C34—C351.4019 (18)
C5—C61.4083 (19)C35—H350.971 (17)
C6—H6A0.953 (18)C36—C371.506 (2)
C6—C71.382 (2)C37—H37A0.91 (3)
C7—H70.946 (18)C37—H37B1.01 (3)
C8—H8A0.98 (2)C37—H37C0.95 (3)
C8—H8B1.04 (2)C38—H38A0.98 (3)
C8—C91.5222 (19)C38—H38B1.02 (3)
C9—C101.382 (2)C38—H38C0.99 (3)
C9—C141.4010 (19)C38—C391.446 (3)
C10—H100.971 (19)C40—H40A0.93 (3)
C10—C111.4057 (19)C40—H40B0.98 (4)
C11—H110.95 (2)C40—H40C0.96 (4)
C11—C121.3851 (19)C40—C411.451 (3)
C12—C131.4106 (19)
C1—O1—H1110.4 (17)N4—C19—H19B108.4 (11)
C13—O3—C15117.34 (11)N4—C19—C20111.40 (11)
C12—O4—C16117.77 (10)H19A—C19—H19B109.4 (15)
C24—O6—C28117.66 (12)C20—C19—H19A112.2 (12)
C25—O7—C29117.23 (13)C20—C19—H19B109.1 (11)
H9A—O9—H9B98 (2)O5—C20—N5123.36 (12)
H10A—O10—H10B103 (2)O5—C20—C19121.54 (12)
C5—N1—H1A115.9 (13)N5—C20—C19115.09 (11)
C5—N1—C8123.62 (12)N5—C21—H21A105.7 (10)
C8—N1—H1A120.4 (13)N5—C21—H21B105.6 (10)
N3—N2—C17109.57 (11)N5—C21—C22112.09 (11)
N2—N3—N4106.74 (11)H21A—C21—H21B111.7 (14)
N3—N4—C18111.20 (11)C22—C21—H21A109.2 (10)
N3—N4—C19120.82 (11)C22—C21—H21B112.4 (10)
C18—N4—C19127.87 (12)C23—C22—C21119.45 (12)
C20—N5—C21120.23 (11)C27—C22—C21120.83 (13)
C20—N5—C30122.53 (11)C27—C22—C23119.72 (13)
C30—N5—C21117.11 (10)C22—C23—H23122.0 (11)
C34—N6—H6115.9 (13)C24—C23—C22120.06 (13)
C36—N6—H6115.8 (13)C24—C23—H23117.9 (11)
C36—N6—C34128.01 (12)O6—C24—C23125.84 (13)
O1—C1—C2113.95 (12)O6—C24—C25114.18 (13)
O2—C1—O1121.94 (13)C23—C24—C25119.97 (13)
O2—C1—C2124.10 (13)O7—C25—C24114.25 (13)
C3—C2—C1121.20 (13)O7—C25—C26125.94 (14)
C3—C2—C7118.35 (13)C26—C25—C24119.81 (14)
C7—C2—C1120.45 (13)C25—C26—H26120.5 (12)
C2—C3—H3118.7 (11)C25—C26—C27119.96 (14)
C4—C3—C2120.75 (13)C27—C26—H26119.5 (12)
C4—C3—H3120.5 (11)C22—C27—C26120.47 (13)
C3—C4—H4119.9 (11)C22—C27—H27120.8 (11)
C3—C4—C5120.93 (13)C26—C27—H27118.7 (11)
C5—C4—H4119.2 (11)O6—C28—H28A109.8 (12)
N1—C5—C4118.57 (12)O6—C28—H28B106.2 (15)
N1—C5—C6122.84 (13)O6—C28—H28C111.1 (14)
C6—C5—C4118.58 (13)H28A—C28—H28B110.3 (19)
C5—C6—H6A121.9 (10)H28A—C28—H28C108.8 (18)
C7—C6—C5119.59 (13)H28B—C28—H28C110.6 (19)
C7—C6—H6A118.5 (10)O7—C29—H29A113.0 (13)
C2—C7—H7119.2 (11)O7—C29—H29B103.1 (12)
C6—C7—C2121.65 (13)O7—C29—H29C108.7 (12)
C6—C7—H7119.2 (11)H29A—C29—H29B111.0 (17)
N1—C8—H8A109.6 (12)H29A—C29—H29C112.3 (17)
N1—C8—H8B106.9 (11)H29B—C29—H29C108.2 (17)
N1—C8—C9114.37 (12)C31—C30—N5118.76 (12)
H8A—C8—H8B109.2 (16)C35—C30—N5119.15 (11)
C9—C8—H8A108.6 (12)C35—C30—C31122.07 (12)
C9—C8—H8B108.1 (11)C30—C31—H31121.3 (11)
C10—C9—C8121.97 (13)C30—C31—C32118.46 (12)
C10—C9—C14119.47 (12)C32—C31—H31120.2 (11)
C14—C9—C8118.39 (12)C31—C32—H32119.4 (10)
C9—C10—H10120.8 (11)C33—C32—C31120.63 (12)
C9—C10—C11120.82 (13)C33—C32—H32119.9 (10)
C11—C10—H10118.4 (11)C32—C33—H33121.9 (10)
C10—C11—H11120.3 (11)C32—C33—C34120.35 (12)
C12—C11—C10119.28 (13)C34—C33—H33117.8 (10)
C12—C11—H11120.4 (11)C33—C34—N6116.94 (11)
O4—C12—C11125.59 (12)C33—C34—C35119.84 (12)
O4—C12—C13114.17 (12)C35—C34—N6123.03 (12)
C11—C12—C13120.23 (12)C30—C35—C34118.63 (12)
O3—C13—C12114.78 (12)C30—C35—H35122.6 (10)
O3—C13—C14125.58 (13)C34—C35—H35118.8 (10)
C14—C13—C12119.64 (12)O8—C36—N6124.00 (13)
C9—C14—H14119.3 (11)O8—C36—C37121.88 (13)
C13—C14—C9120.53 (13)N6—C36—C37114.12 (12)
C13—C14—H14120.1 (11)C36—C37—H37A115.1 (15)
O3—C15—H15A106.1 (13)C36—C37—H37B108.2 (17)
O3—C15—H15B110.2 (12)C36—C37—H37C109.4 (17)
O3—C15—H15C110.2 (11)H37A—C37—H37B100 (2)
H15A—C15—H15B109.8 (17)H37A—C37—H37C121 (2)
H15A—C15—H15C108.7 (17)H37B—C37—H37C101 (2)
H15B—C15—H15C111.6 (17)H38A—C38—H38B109 (2)
O4—C16—H16A111.0 (11)H38A—C38—H38C106 (2)
O4—C16—H16B111.4 (11)H38B—C38—H38C114 (2)
O4—C16—C17103.73 (10)C39—C38—H38A108.4 (16)
H16A—C16—H16B107.9 (15)C39—C38—H38B110.6 (16)
C17—C16—H16A111.3 (11)C39—C38—H38C108.8 (18)
C17—C16—H16B111.5 (11)N7—C39—C38179.1 (2)
N2—C17—C16120.91 (12)H40A—C40—H40B99 (3)
N2—C17—C18107.84 (12)H40A—C40—H40C118 (3)
C18—C17—C16130.64 (13)H40B—C40—H40C114 (3)
N4—C18—C17104.64 (12)C41—C40—H40A102.5 (17)
N4—C18—H18123.2 (12)C41—C40—H40B111 (2)
C17—C18—H18132.1 (12)C41—C40—H40C111 (2)
N4—C19—H19A106.2 (12)N8—C41—C40178.3 (2)
O1—C1—C2—C34.54 (19)C11—C12—C13—C141.8 (2)
O1—C1—C2—C7175.50 (13)C12—O4—C16—C17176.54 (11)
O2—C1—C2—C3174.42 (14)C12—C13—C14—C90.5 (2)
O2—C1—C2—C75.5 (2)C14—C9—C10—C111.7 (2)
O3—C13—C14—C9179.55 (12)C15—O3—C13—C12174.93 (12)
O4—C12—C13—O30.33 (17)C15—O3—C13—C145.1 (2)
O4—C12—C13—C14179.62 (12)C16—O4—C12—C113.0 (2)
O4—C16—C17—N280.36 (15)C16—O4—C12—C13178.42 (12)
O4—C16—C17—C1889.54 (17)C16—C17—C18—N4170.74 (13)
O6—C24—C25—O70.75 (18)C17—N2—N3—N40.44 (14)
O6—C24—C25—C26179.07 (13)C18—N4—C19—C20115.62 (15)
O7—C25—C26—C27179.49 (14)C19—N4—C18—C17176.24 (12)
N1—C5—C6—C7175.90 (13)C20—N5—C21—C22101.22 (14)
N1—C8—C9—C1029.93 (19)C20—N5—C30—C31107.10 (15)
N1—C8—C9—C14154.72 (13)C20—N5—C30—C3574.49 (17)
N2—N3—N4—C180.34 (15)C21—N5—C20—O50.7 (2)
N2—N3—N4—C19176.79 (11)C21—N5—C20—C19178.47 (12)
N2—C17—C18—N40.16 (15)C21—N5—C30—C3177.15 (16)
N3—N2—C17—C16171.58 (11)C21—N5—C30—C35101.26 (14)
N3—N2—C17—C180.38 (15)C21—C22—C23—C24178.77 (12)
N3—N4—C18—C170.11 (15)C21—C22—C27—C26179.01 (13)
N3—N4—C19—C2068.58 (16)C22—C23—C24—O6178.35 (13)
N4—C19—C20—O58.79 (19)C22—C23—C24—C250.5 (2)
N4—C19—C20—N5170.36 (11)C23—C22—C27—C260.6 (2)
N5—C21—C22—C2364.78 (15)C23—C24—C25—O7179.76 (12)
N5—C21—C22—C27115.57 (13)C23—C24—C25—C260.1 (2)
N5—C30—C31—C32179.70 (12)C24—C25—C26—C270.3 (2)
N5—C30—C35—C34179.20 (11)C25—C26—C27—C220.0 (2)
N6—C34—C35—C30174.52 (12)C27—C22—C23—C240.9 (2)
C1—C2—C3—C4177.01 (13)C28—O6—C24—C230.7 (2)
C1—C2—C7—C6178.31 (13)C28—O6—C24—C25178.27 (13)
C2—C3—C4—C50.8 (2)C29—O7—C25—C24170.61 (13)
C3—C2—C7—C61.7 (2)C29—O7—C25—C269.2 (2)
C3—C4—C5—N1177.16 (13)C30—N5—C20—O5174.96 (12)
C3—C4—C5—C62.7 (2)C30—N5—C20—C195.91 (18)
C4—C5—C6—C74.0 (2)C30—N5—C21—C2274.63 (14)
C5—N1—C8—C980.99 (17)C30—C31—C32—C330.7 (2)
C5—C6—C7—C21.8 (2)C31—C30—C35—C340.8 (2)
C7—C2—C3—C43.0 (2)C31—C32—C33—C340.4 (2)
C8—N1—C5—C4179.92 (13)C32—C33—C34—N6174.22 (13)
C8—N1—C5—C60.0 (2)C32—C33—C34—C350.9 (2)
C8—C9—C10—C11173.58 (12)C33—C34—C35—C300.28 (19)
C8—C9—C14—C13174.25 (12)C34—N6—C36—O810.5 (2)
C9—C10—C11—C120.5 (2)C34—N6—C36—C37169.90 (14)
C10—C9—C14—C131.2 (2)C35—C30—C31—C321.3 (2)
C10—C11—C12—O4179.72 (13)C36—N6—C34—C33167.21 (14)
C10—C11—C12—C131.3 (2)C36—N6—C34—C3517.8 (2)
C11—C12—C13—O3178.29 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O2i0.96 (3)1.80 (3)2.7173 (17)160 (2)
O9—H9B···O80.99 (3)1.90 (3)2.8610 (18)164 (2)
O10—H10A···O6ii0.96 (3)2.12 (3)2.9441 (17)144 (2)
O10—H10A···O7ii0.96 (3)2.17 (3)2.9928 (17)143 (2)
O10—H10B···O9iii0.95 (3)2.00 (3)2.9346 (19)167 (2)
N1—H1A···N3iv0.90 (2)2.29 (2)3.1834 (17)174.6 (18)
N6—H6···O5v0.85 (2)1.98 (2)2.8200 (15)168.6 (19)
O1—H1···N2vi0.91 (3)1.87 (3)2.7614 (16)166 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y+1, z; (v) x1, y, z; (vi) x+2, y+1, z.
 

Acknowledgements

The author wishes to acknowledge the assistance of Jered Garrison at the University of Nebraska for crystal data collection and helpful discussions.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFilley, J. (2024). Acta Cryst. E80, 1003–1005.  CSD CrossRef IUCr Journals Google Scholar
First citationGellman, S. H. (1998). Acc. Chem. Res. 31, 173–180.  Web of Science CrossRef CAS Google Scholar
First citationHill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. (2001). Chem. Rev. 101, 3803–4011.  CrossRef Google Scholar
First citationKang, L. & Long, S. (2024). IUCrData, 9, x240198.  Google Scholar
First citationKolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004–2021.  Web of Science CrossRef CAS Google Scholar
First citationLadraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, J. R. (2010). Acta Cryst. E66, o1967.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTouchette, K. M. (2006). J. Chem. Educ. 83, 929–930.  CrossRef CAS Google Scholar
First citationZukerman-Schpector, J., Dallasta Pedroso, S., Sousa Madureira, L., Weber Paixão, M., Ali, A. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1716–1720.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds