research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1,3,3,4,4,5,5-hepta­fluoro-2-(3-[(2,3,3,4,4,5,5-hepta­fluoro­cyclo­penten-1-yl)­­oxy]-2-{[(2,3,3,4,4,5,5-hepta­fluoro­cyclo­penten-1-yl)­­oxy]meth­yl}-2-methyl­prop­­oxy)cyclo­pentene

crossmark logo

aDepartment of Chemistry, United States Air Force Academy, Colorado Springs, CO 80840, USA
*Correspondence e-mail: abby.jennings@afacademy.af.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 4 November 2024; accepted 25 November 2024; online 1 January 2025)

In the title compound, C20H9F21O3, a central sp3-hybridized carbon atom is decorated with three hepta­fluoro-2-meth­yloxy(cyclo­pent-1-ene) arms and a methyl group. The primary packing is determined by C—F⋯F—C inter­actions, forming [001] chains, which are consolidated via weaker C—F⋯F—C and C—H⋯F—C contacts. A Hirshfeld surface analysis was conducted to aid in the visualization of these various influences on the packing: this revealed that the largest contribution to the surface contacts arises from F⋯F inter­actions (53.5%), followed by F⋯H/H⋯F (34.5%) and F⋯C/C⋯F (7.1%).

1. Chemical context

Perfluoro­cyclo­pentene (C5F8; PFCP) is known to be selectively reactive towards nucleophilic addition at the fluoro­olefin, via simultaneous addition at the 1- and 5-positions or controlled to only add at the 1-position (Alvino et al., 2020[Alvino, E. L., Lochmaier, E. C., Iacono, S. T. & Jennings, A. R. (2020). J. Fluor. Chem. 232, 109454.]). In the former case, the fluorine atom in the 5-position is latently reactive and can be utilized to create more complex fluorinated mol­ecules and materials (Lauer et al., 2024[Lauer, M. K., Godman, N. P. & Iacono, S. T. (2024). ACS Macro Lett. 13, 40-46.]). As such, the synthesis and single-crystal structure of the title compound, C20H9F2O3, is reported herein. This mol­ecule was designed to be tri-functional, in that it contains three latently reactive fluorine atoms, which could be employed in designing more complex materials, such as a dendrimer core or for cross-linking (Abbasi et al., 2014[Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., Hanifehpour, Y., Nejati-Koshki, K. & Pashaei-Asl, R. (2014). Nanoscale Res. Lett. 9, 247.]; Weerasinghe et al., 2023[Weerasinghe, M. A. S. N., Dodo, O. J., Rajawasam, C. W. H., Raji, I. O., Wanasinghe, S. V., Konkolewicz, D. & De Alwis Watuthanthrige, N. (2023). Polym. Chem. 14, 4503-4514.]).

[Scheme 1]

2. Structural commentary

The structure of the title highly fluorinated alkyl ether mol­ecule, C20H9F21O3, consists of a central sp3-hybridized carbon atom (C19) covalently bound to a methyl group (C20) and three hepta­fluoro-2-meth­yloxy(cyclo­pent-1-ene) arms (Fig. 1[link]). The geometry around C19 is nearly that of an ideal tetra­hedral sp3 geometry, with an average C—C—C bond angle of 109.47o. Using a plane defined by C16, C17 and C18, the three non-methyl carbon atoms bound to the sp3 carbon atom as reference, two of the ether oxygen atoms (O1 and O3) are oriented to the methyl side of the plane, with the third ether oxygen atom (O2) below the plane. Within the cyclo­pentenyl rings, the C=C double-bond lengths range from 1.328 (3) to 1.334 (3) Å. The C—C single bonds to either side of the C=C double bond are approximately 0.15 Å longer, ranging from 1.478 (3) to 1.497 (2) Å. The final two C—C single bonds in the ring are longer yet, ranging from 1.537 (3) to 1.554 (3) Å. The r.m.s. cyclo­pentenyl ring plane angle with respect to the plane defined by its corresponding Cether—Csp3—Cmeth­yl fragment range from 14.62 (15) to 40.25 (13)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

The primary directional inter­action in the extended structure occurs as a short C—F⋯F—C inter­action between F2 and F7i [symmetry code: (i) x − 1, y, z] at 2.5983 (16) Å, compared to a van der Waals separation of about 2.94 Å. This inter­action contributes to the formation of chains propagating along the a-axis direction (Fig. 2[link]). The packing is consolidated in the crystallographic c-axis direction via a weak C—F⋯F—C inter­action between F7 and F13ii [symmetry code: (ii) x, [{1\over 2}] − y, [{1\over 2}] + z] at 2.6848 (15) Å and in the b-axis direction by a C—H⋯F hydrogen bond between C17—H17A and F9iii [symmetry code: (iii) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z] at 2.546 (2) Å [angle = 127.61 (14)°].

[Figure 2]
Figure 2
Part of the packing of the title compound showing chains formed by short C—F⋯F—C inter­actions, propagating along the a-axis direction.

Hirshfeld surface analysis was used to investigate the presence of hydrogen bonds and inter­molecular inter­actions in the crystal structure. The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378392.]) were generated by CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface. net.]), using a standard surface resolution. The pale-red spots symbolize short contacts and negative dnorm values on the corresponding surface plots shown in Fig. 3[link], associated with their relative contributions to the Hirshfeld surface.

[Figure 3]
Figure 3
Map of dnorm onto the Hirshfeld surface for the title compound.

The largest contribution to the overall crystal packing in the title compound is from F⋯F inter­actions (53.3%), represented as a single, central spike on the fingerprint plot at 1.30 Å < (di + de) < 1.35 Å (Fig. 4[link], Table 1[link]). A significant portion of the inter­molecular inter­actions can also be attributed to F⋯H/H⋯F inter­actions (34.5%), visible on the fingerprint plot as a pair of spikes at 1.15 Å < (di + de) < 1.35 Å. The remaining 12% of the inter­actions are attributed to F⋯C/C⋯F, F⋯O/O⋯F, and H⋯H contacts.

Table 1
Percentage contribution of inter-atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
F⋯F 53.5
F⋯H/H⋯F 34.5
F⋯C/C⋯F 7.1
F⋯O/O⋯F 3.0
H⋯H 2.1
[Figure 4]
Figure 4
The overall two-dimensional fingerprint plot for the title compound.

4. Database survey

A search of the November 2023 release of the Cambridge Structure Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), with updates through September 2024, was performed using the program ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). A for search the perfluoro­cyclo­pentene-ether moiety yielded one result, 4,4′-bis­[(2,3,3,4,4,5,5-hepta­fluoro­cyclo­pent-1-en-1-yl)­oxy]biphenyl (CSD refcode GILXUW; Sharma et al., 2013[Sharma, B., VanDerveer, D. G., Liff, S. M. & Smith, D. W. Jr (2013). Tetrahedron Lett. 54, 3609-3612.]). This compound contains a pair of perfluoro­cyclo­pentenyl rings bound through an ether linkage to a 4,4′-bis­phenol aromatic core. A short ring C=C bond is observed, flanked by two medium length C—C bonds and two long C—C bonds to complete the ring, similar to the pattern observed in the title compound. A search for the non-fluorinated analog yielded four results. While the C=C double bond is clearly observed, the remaining four C—C bonds within the ring are more similar in bond length to one another.

5. Synthesis and crystallization

The title compound was prepared by a modified literature procedure (Alvino et al., 2020[Alvino, E. L., Lochmaier, E. C., Iacono, S. T. & Jennings, A. R. (2020). J. Fluor. Chem. 232, 109454.]) using di­methyl­formamide (DMF) (20 ml), perfluoro­cyclo­pentene (3.0 ml, 22.4 mmol), tri­methyl­olethane (0.81 g, 6.7 mmol), and tri­ethyl­amine (2.8 ml, 20.2 mmol). The isolated compound (1.0 g) was purified using a plug of silica gel and 80 ml of a 1:3 hexa­ne:ethyl acetate solution. All volatiles were removed under reduced pressure and the compound was obtained as a faint yellow, waxy solid (0.57 g, 57%). Crystals of the title compound, in the form of faint-yellow rectangular prisms, were obtained by slow evaporation from diethyl ether solution. 1H NMR (500 MHz, CDCl3): δ 4.37 (d, –CH2–, 6H, JHF = 2.5 Hz), 1.25 (s, –CH3, 3H); 19F NMR (470 MHz, CDCl3): δ −115.2 (d, 6F, JFF = 12.7 MHz), −115.8 (d, 6F, JFF = 10.8), −129.4 (s, 6F), −158.2 (bs, 3F); 13C NMR (125 MHz, CDCl3): δ 72.9 {d, –[(–CH2)3CCH3], JCF = 4.5 Hz], 41.3 [–(CH2)3CCH3], 15.8 [–(CH2)3CCH3].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The coordinates of all H atoms were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C20H9F21O3
Mr 696.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.0271 (1), 19.2243 (1), 17.7558 (1)
β (°) 97.332 (1)
V3) 2379.04 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.21
Crystal size (mm) 0.23 × 0.09 × 0.07
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix3000
Absorption correction Gaussian [CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.681, 1.000
No. of measured, independent and observed [I ≥ 2u(I)] reflections 23552, 4403, 4160
Rint 0.020
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 1.07
No. of reflections 4403
No. of parameters 398
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.90, −0.49
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

1,3,3,4,4,5,5-Heptafluoro-2-(3-[(2,3,3,4,4,5,5-heptafluorocyclopenten-1-yl)oxy]-2-{[(2,3,3,4,4,5,5-heptafluorocyclopenten-1-yl)oxy]methyl}-2-methylpropoxy)cyclopentene top
Crystal data top
C20H9F21O3F(000) = 1376.511
Mr = 696.26Dx = 1.944 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 7.0271 (1) ÅCell parameters from 18314 reflections
b = 19.2243 (1) Åθ = 3.4–68.7°
c = 17.7558 (1) ŵ = 2.21 mm1
β = 97.332 (1)°T = 100 K
V = 2379.04 (4) Å3Needle, colourless
Z = 40.23 × 0.09 × 0.07 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix3000
diffractometer
4403 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4160 reflections with I 2u(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.0000 pixels mm-1θmax = 68.9°, θmin = 3.4°
φ and ω scansh = 88
Absorption correction: gaussian
[CrysAlisPro; Rigaku OD, 2019)
k = 2321
Tmin = 0.681, Tmax = 1.000l = 2121
23552 measured reflections
Refinement top
Refinement on F213 constraints
Least-squares matrix: fullPrimary atom site location: dual
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0336P)2 + 2.693P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4403 reflectionsΔρmax = 0.90 e Å3
398 parametersΔρmin = 0.49 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.16671 (15)0.06887 (6)0.41851 (6)0.0265 (3)
F20.05627 (16)0.07023 (7)0.56596 (7)0.0360 (3)
F30.26356 (18)0.01232 (6)0.56315 (6)0.0303 (3)
F40.29905 (18)0.15059 (7)0.64289 (7)0.0370 (3)
F50.4531 (2)0.05472 (7)0.67162 (7)0.0394 (3)
F60.60320 (18)0.18574 (7)0.58931 (7)0.0332 (3)
F70.69217 (16)0.07832 (7)0.57776 (7)0.0364 (3)
F80.54974 (18)0.40300 (6)0.39070 (8)0.0365 (3)
F90.6667 (2)0.53068 (7)0.32545 (11)0.0556 (4)
F100.8592 (2)0.50227 (8)0.42497 (8)0.0489 (4)
F110.9283 (3)0.51416 (7)0.24445 (8)0.0562 (4)
F121.12533 (19)0.48847 (7)0.34431 (9)0.0490 (4)
F130.92808 (17)0.38965 (6)0.20407 (6)0.0300 (3)
F141.11525 (16)0.36215 (6)0.30559 (7)0.0284 (3)
F150.53049 (15)0.16320 (7)0.06431 (6)0.0321 (3)
F160.26253 (17)0.22500 (7)0.04917 (6)0.0322 (3)
F170.17650 (18)0.11897 (6)0.03126 (6)0.0321 (3)
F180.0027 (2)0.27674 (7)0.01901 (7)0.0436 (3)
F190.13285 (18)0.17587 (9)0.00174 (7)0.0481 (4)
F200.00523 (15)0.25007 (6)0.15861 (6)0.0261 (2)
F210.03121 (15)0.13923 (6)0.14101 (7)0.0276 (3)
O10.54484 (17)0.15167 (7)0.43624 (7)0.0201 (3)
O20.34863 (17)0.18994 (7)0.21007 (7)0.0187 (3)
O30.7469 (2)0.29766 (7)0.29659 (8)0.0249 (3)
C10.4486 (2)0.12012 (9)0.48619 (10)0.0176 (4)
C20.2853 (3)0.08400 (10)0.48122 (10)0.0192 (4)
C30.2388 (3)0.05780 (10)0.55538 (11)0.0223 (4)
C40.3839 (3)0.09592 (10)0.61344 (10)0.0237 (4)
C50.5398 (3)0.12188 (10)0.56695 (10)0.0215 (4)
C60.2748 (2)0.18792 (9)0.13720 (10)0.0172 (4)
C70.3486 (3)0.17718 (10)0.07275 (10)0.0210 (4)
C80.2073 (3)0.18092 (10)0.00375 (10)0.0226 (4)
C90.0244 (3)0.20780 (12)0.03398 (11)0.0276 (4)
C100.0619 (3)0.19687 (10)0.12074 (10)0.0192 (4)
C110.7822 (3)0.36440 (9)0.31298 (10)0.0196 (4)
C120.7004 (3)0.41170 (10)0.35294 (11)0.0234 (4)
C130.7921 (3)0.48097 (10)0.35442 (12)0.0291 (4)
C140.9557 (3)0.47250 (10)0.30511 (12)0.0280 (4)
C150.9490 (3)0.39496 (10)0.28019 (10)0.0210 (4)
C160.4700 (2)0.14610 (9)0.35623 (10)0.0178 (4)
H16a0.4625 (2)0.09673 (9)0.34028 (10)0.0213 (4)*
H16b0.3401 (2)0.16670 (9)0.34662 (10)0.0213 (4)*
C170.5524 (2)0.17454 (9)0.22766 (10)0.0173 (4)
H17a0.5779 (2)0.12577 (9)0.21408 (10)0.0208 (4)*
H17b0.6280 (2)0.20554 (9)0.19828 (10)0.0208 (4)*
C180.5989 (3)0.26292 (9)0.33273 (10)0.0190 (4)
H18a0.6218 (3)0.26940 (9)0.38846 (10)0.0229 (4)*
H18b0.4709 (3)0.28201 (9)0.31370 (10)0.0229 (4)*
C190.6095 (2)0.18591 (9)0.31262 (10)0.0163 (3)
C200.8146 (2)0.15762 (10)0.33228 (10)0.0200 (4)
H20a0.8608 (8)0.1678 (6)0.3856 (2)0.0300 (6)*
H20b0.8145 (4)0.10719 (14)0.3242 (7)0.0300 (6)*
H20c0.8992 (5)0.1798 (5)0.2996 (5)0.0300 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0214 (5)0.0330 (6)0.0232 (6)0.0069 (5)0.0039 (4)0.0037 (5)
F20.0233 (6)0.0477 (8)0.0402 (7)0.0013 (5)0.0156 (5)0.0023 (6)
F30.0451 (7)0.0206 (6)0.0263 (6)0.0036 (5)0.0084 (5)0.0029 (5)
F40.0411 (7)0.0335 (7)0.0409 (7)0.0024 (6)0.0230 (6)0.0146 (6)
F50.0514 (8)0.0411 (7)0.0236 (6)0.0063 (6)0.0031 (5)0.0101 (5)
F60.0387 (7)0.0368 (7)0.0247 (6)0.0157 (5)0.0061 (5)0.0092 (5)
F70.0242 (6)0.0605 (9)0.0230 (6)0.0171 (6)0.0028 (5)0.0048 (6)
F80.0366 (7)0.0267 (6)0.0502 (8)0.0005 (5)0.0211 (6)0.0091 (6)
F90.0435 (8)0.0204 (6)0.1018 (13)0.0097 (6)0.0048 (8)0.0101 (7)
F100.0689 (10)0.0416 (8)0.0381 (8)0.0207 (7)0.0138 (7)0.0219 (6)
F110.1066 (13)0.0237 (7)0.0411 (8)0.0014 (8)0.0204 (8)0.0155 (6)
F120.0346 (7)0.0389 (8)0.0721 (10)0.0132 (6)0.0020 (7)0.0240 (7)
F130.0411 (7)0.0338 (7)0.0151 (5)0.0073 (5)0.0034 (5)0.0020 (5)
F140.0254 (6)0.0282 (6)0.0307 (6)0.0003 (5)0.0002 (5)0.0029 (5)
F150.0181 (5)0.0552 (8)0.0241 (6)0.0040 (5)0.0071 (4)0.0070 (5)
F160.0359 (6)0.0416 (7)0.0197 (6)0.0083 (5)0.0063 (5)0.0070 (5)
F170.0421 (7)0.0334 (7)0.0202 (6)0.0071 (5)0.0017 (5)0.0064 (5)
F180.0531 (8)0.0464 (8)0.0319 (7)0.0215 (7)0.0074 (6)0.0164 (6)
F190.0238 (6)0.0941 (12)0.0253 (6)0.0156 (7)0.0009 (5)0.0091 (7)
F200.0235 (5)0.0290 (6)0.0264 (6)0.0072 (5)0.0047 (4)0.0029 (5)
F210.0226 (5)0.0294 (6)0.0316 (6)0.0074 (5)0.0064 (5)0.0031 (5)
O10.0202 (6)0.0251 (7)0.0148 (6)0.0052 (5)0.0014 (5)0.0013 (5)
O20.0167 (6)0.0251 (7)0.0139 (6)0.0018 (5)0.0008 (5)0.0010 (5)
O30.0336 (7)0.0160 (6)0.0279 (7)0.0067 (6)0.0146 (6)0.0047 (5)
C10.0179 (8)0.0187 (8)0.0167 (9)0.0029 (7)0.0036 (7)0.0011 (7)
C20.0171 (8)0.0213 (9)0.0183 (9)0.0011 (7)0.0006 (7)0.0001 (7)
C30.0211 (9)0.0226 (9)0.0244 (10)0.0010 (7)0.0079 (7)0.0003 (8)
C40.0306 (10)0.0238 (10)0.0175 (9)0.0019 (8)0.0064 (8)0.0005 (7)
C50.0187 (9)0.0267 (10)0.0187 (9)0.0010 (7)0.0012 (7)0.0036 (8)
C60.0184 (8)0.0170 (8)0.0159 (8)0.0009 (7)0.0012 (7)0.0008 (7)
C70.0176 (8)0.0265 (10)0.0194 (9)0.0002 (7)0.0042 (7)0.0009 (7)
C80.0259 (9)0.0283 (10)0.0142 (8)0.0044 (8)0.0050 (7)0.0005 (7)
C90.0211 (9)0.0411 (12)0.0197 (10)0.0005 (8)0.0009 (7)0.0026 (8)
C100.0186 (9)0.0216 (9)0.0179 (9)0.0001 (7)0.0045 (7)0.0004 (7)
C110.0266 (9)0.0153 (9)0.0162 (8)0.0025 (7)0.0001 (7)0.0004 (7)
C120.0263 (9)0.0199 (9)0.0244 (10)0.0006 (8)0.0042 (8)0.0005 (8)
C130.0358 (11)0.0162 (9)0.0342 (11)0.0024 (8)0.0009 (9)0.0031 (8)
C140.0366 (11)0.0192 (10)0.0274 (10)0.0065 (8)0.0015 (8)0.0037 (8)
C150.0271 (9)0.0193 (9)0.0162 (9)0.0022 (7)0.0012 (7)0.0022 (7)
C160.0191 (8)0.0196 (9)0.0139 (8)0.0026 (7)0.0009 (7)0.0004 (7)
C170.0146 (8)0.0201 (9)0.0171 (8)0.0011 (7)0.0013 (6)0.0011 (7)
C180.0212 (9)0.0170 (9)0.0198 (9)0.0035 (7)0.0061 (7)0.0012 (7)
C190.0176 (8)0.0161 (9)0.0151 (8)0.0007 (7)0.0015 (6)0.0002 (7)
C200.0184 (8)0.0215 (9)0.0195 (9)0.0009 (7)0.0004 (7)0.0003 (7)
Geometric parameters (Å, º) top
F1—C21.335 (2)C1—C51.495 (2)
F2—C31.341 (2)C2—C31.485 (3)
F3—C31.364 (2)C3—C41.540 (3)
F4—C41.347 (2)C4—C51.536 (3)
F5—C41.343 (2)C6—C71.331 (3)
F6—C51.349 (2)C6—C101.497 (2)
F7—C51.354 (2)C7—C81.477 (3)
F8—C121.334 (2)C8—C91.543 (3)
F9—C131.356 (2)C9—C101.544 (3)
F10—C131.345 (3)C11—C121.328 (3)
F11—C141.336 (2)C11—C151.494 (3)
F12—C141.337 (2)C12—C131.478 (3)
F13—C151.345 (2)C13—C141.540 (3)
F14—C151.354 (2)C14—C151.554 (3)
F15—C71.333 (2)C16—H16a0.9900
F16—C81.358 (2)C16—H16b0.9900
F17—C81.348 (2)C16—C191.530 (2)
F18—C91.357 (3)C17—H17a0.9900
F19—C91.328 (2)C17—H17b0.9900
F20—C101.342 (2)C17—C191.527 (2)
F21—C101.359 (2)C18—H18a0.9900
O1—C11.329 (2)C18—H18b0.9900
O1—C161.454 (2)C18—C191.527 (2)
O2—C61.332 (2)C19—C201.538 (2)
O2—C171.457 (2)C20—H20a0.9800
O3—C111.332 (2)C20—H20b0.9800
O3—C181.453 (2)C20—H20c0.9800
C1—C21.334 (3)
C16—O1—C1117.84 (13)C15—C11—C12110.70 (16)
C17—O2—C6116.93 (13)C11—C12—F8127.44 (17)
C18—O3—C11118.06 (14)C13—C12—F8118.43 (17)
C2—C1—O1134.45 (17)C13—C12—C11114.13 (17)
C5—C1—O1115.95 (15)F10—C13—F9105.80 (17)
C5—C1—C2109.57 (16)C12—C13—F9111.57 (17)
C1—C2—F1127.48 (17)C12—C13—F10113.02 (18)
C3—C2—F1118.77 (15)C14—C13—F9110.79 (18)
C3—C2—C1113.75 (16)C14—C13—F10111.31 (17)
F3—C3—F2105.90 (15)C14—C13—C12104.47 (16)
C2—C3—F2112.73 (16)F12—C14—F11108.02 (17)
C2—C3—F3112.67 (15)C13—C14—F11110.69 (18)
C4—C3—F2112.63 (15)C13—C14—F12111.12 (17)
C4—C3—F3109.73 (15)C15—C14—F11110.45 (16)
C4—C3—C2103.32 (15)C15—C14—F12111.18 (17)
F5—C4—F4107.25 (15)C15—C14—C13105.40 (15)
C3—C4—F4110.08 (16)F14—C15—F13106.17 (15)
C3—C4—F5112.23 (16)C11—C15—F13111.80 (15)
C5—C4—F4109.66 (16)C11—C15—F14111.93 (15)
C5—C4—F5113.06 (16)C14—C15—F13110.77 (15)
C5—C4—C3104.57 (14)C14—C15—F14111.00 (15)
F7—C5—F6107.20 (15)C14—C15—C11105.26 (15)
C1—C5—F6112.84 (16)H16a—C16—O1110.45 (9)
C1—C5—F7110.89 (15)H16b—C16—O1110.45 (9)
C4—C5—F6111.66 (15)H16b—C16—H16a108.6
C4—C5—F7109.16 (16)C19—C16—O1106.40 (13)
C4—C5—C1105.08 (14)C19—C16—H16a110.45 (9)
C7—C6—O2133.91 (17)C19—C16—H16b110.45 (9)
C10—C6—O2116.23 (15)H17a—C17—O2110.09 (9)
C10—C6—C7109.82 (16)H17b—C17—O2110.09 (9)
C6—C7—F15127.73 (17)H17b—C17—H17a108.4
C8—C7—F15117.98 (15)C19—C17—O2108.07 (13)
C8—C7—C6114.29 (16)C19—C17—H17a110.09 (9)
F17—C8—F16105.98 (14)C19—C17—H17b110.09 (9)
C7—C8—F16112.53 (16)H18a—C18—O3110.44 (9)
C7—C8—F17113.01 (16)H18b—C18—O3110.44 (9)
C9—C8—F16110.84 (16)H18b—C18—H18a108.6
C9—C8—F17111.36 (16)C19—C18—O3106.45 (14)
C9—C8—C7103.24 (15)C19—C18—H18a110.44 (9)
F19—C9—F18107.48 (17)C19—C18—H18b110.44 (9)
C8—C9—F18109.68 (16)C17—C19—C16108.89 (14)
C8—C9—F19112.29 (17)C18—C19—C16108.24 (14)
C10—C9—F18109.21 (16)C18—C19—C17110.82 (14)
C10—C9—F19113.19 (16)C20—C19—C16110.53 (14)
C10—C9—C8104.95 (15)C20—C19—C17107.11 (14)
F21—C10—F20106.06 (14)C20—C19—C18111.24 (14)
C6—C10—F20113.34 (15)H20a—C20—C19109.5
C6—C10—F21110.95 (15)H20b—C20—C19109.5
C9—C10—F20111.73 (15)H20b—C20—H20a109.5
C9—C10—F21110.42 (15)H20c—C20—C19109.5
C9—C10—C6104.44 (14)H20c—C20—H20a109.5
C12—C11—O3134.00 (18)H20c—C20—H20b109.5
C15—C11—O3115.30 (16)
F1—C2—C1—O10.3 (3)F14—C15—C14—C13119.26 (16)
F1—C2—C1—C5177.52 (19)F15—C7—C6—O21.5 (3)
F1—C2—C3—F248.42 (18)F15—C7—C6—C10176.0 (2)
F1—C2—C3—F371.38 (17)F15—C7—C8—F1652.69 (18)
F1—C2—C3—C4170.27 (17)F15—C7—C8—F1767.32 (18)
F2—C3—C2—C1132.64 (16)F15—C7—C8—C9172.25 (19)
F2—C3—C4—F421.91 (17)F16—C8—C7—C6127.91 (17)
F2—C3—C4—F597.46 (16)F16—C8—C9—F1819.40 (16)
F2—C3—C4—C5139.63 (16)F16—C8—C9—F19100.03 (16)
F3—C3—C2—C1107.57 (17)F16—C8—C9—C10136.61 (16)
F3—C3—C4—F4139.60 (14)F17—C8—C7—C6112.08 (16)
F3—C3—C4—F520.24 (16)F17—C8—C9—F18137.13 (15)
F3—C3—C4—C5102.68 (15)F17—C8—C9—F1917.70 (17)
F4—C4—C3—C2100.02 (16)F17—C8—C9—C10105.67 (16)
F4—C4—C5—F623.43 (17)F18—C9—C8—C7101.32 (16)
F4—C4—C5—F7141.78 (15)F18—C9—C10—F2023.24 (17)
F4—C4—C5—C199.23 (16)F18—C9—C10—F21141.03 (15)
F5—C4—C3—C2140.61 (16)F18—C9—C10—C699.64 (16)
F5—C4—C5—F696.19 (16)F19—C9—C8—C7139.25 (18)
F5—C4—C5—F722.16 (17)F19—C9—C10—F2096.44 (18)
F5—C4—C5—C1141.15 (16)F19—C9—C10—F2121.34 (19)
F6—C5—C1—O146.89 (17)F19—C9—C10—C6140.67 (18)
F6—C5—C1—C2134.85 (16)F20—C10—C6—O246.61 (17)
F6—C5—C4—C3141.43 (16)F20—C10—C6—C7135.38 (16)
F7—C5—C1—O173.39 (17)F20—C10—C9—C8140.77 (16)
F7—C5—C1—C2104.87 (17)F21—C10—C6—O272.58 (15)
F7—C5—C4—C3100.21 (15)F21—C10—C6—C7105.42 (16)
F8—C12—C11—O30.8 (3)F21—C10—C9—C8101.44 (16)
F8—C12—C11—C15179.4 (2)O1—C1—C2—C3179.1 (2)
F8—C12—C13—F959.5 (2)O1—C1—C5—C4168.79 (17)
F8—C12—C13—F1059.58 (19)O1—C16—C19—C17173.11 (13)
F8—C12—C13—C14179.26 (19)O1—C16—C19—C1866.34 (15)
F9—C13—C12—C11120.75 (19)O1—C16—C19—C2055.72 (15)
F9—C13—C14—F112.68 (19)O2—C6—C7—C8179.2 (2)
F9—C13—C14—F12117.35 (17)O2—C6—C10—C9168.45 (17)
F9—C13—C14—C15122.11 (17)O2—C17—C19—C1650.98 (15)
F10—C13—C12—C11120.16 (18)O2—C17—C19—C1867.96 (15)
F10—C13—C14—F11120.11 (17)O2—C17—C19—C20170.53 (14)
F10—C13—C14—F120.08 (18)O3—C11—C12—C13179.5 (2)
F10—C13—C14—C15120.46 (17)O3—C11—C15—C14178.33 (17)
F11—C14—C13—C12117.60 (18)O3—C18—C19—C16174.23 (13)
F11—C14—C15—F133.45 (19)O3—C18—C19—C1766.43 (15)
F11—C14—C15—F14121.15 (17)O3—C18—C19—C2052.62 (15)
F11—C14—C15—C11117.56 (18)C1—C2—C3—C410.78 (17)
F12—C14—C13—C12122.37 (17)C1—C5—C4—C318.77 (16)
F12—C14—C15—F13116.45 (17)C2—C3—C4—C517.70 (15)
F12—C14—C15—F141.24 (18)C6—C7—C8—C98.35 (19)
F12—C14—C15—C11122.54 (17)C6—C10—C9—C817.88 (15)
F13—C15—C11—O358.00 (17)C7—C8—C9—C1015.89 (16)
F13—C15—C11—C12121.86 (17)C11—C12—C13—C141.00 (19)
F13—C15—C14—C13123.05 (16)C11—C15—C14—C132.03 (16)
F14—C15—C11—O360.98 (16)C12—C13—C14—C151.83 (17)
F14—C15—C11—C12119.16 (16)
Percentage contribution of inter-atomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
F···F53.5
F···H/H···F34.5
F···C/C···F7.1
F···O/O···F3.0
H···H2.1
 

Acknowledgements

The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the United States Air Force Academy, the Air Force, the Department of Defense, or the US Government.

Funding information

Funding for this research was provided by: Air Force Office of Scientific Research.

References

First citationAbbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., Hanifehpour, Y., Nejati-Koshki, K. & Pashaei-Asl, R. (2014). Nanoscale Res. Lett. 9, 247.  Web of Science CrossRef PubMed Google Scholar
First citationAlvino, E. L., Lochmaier, E. C., Iacono, S. T. & Jennings, A. R. (2020). J. Fluor. Chem. 232, 109454.  Web of Science CrossRef Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLauer, M. K., Godman, N. P. & Iacono, S. T. (2024). ACS Macro Lett. 13, 40–46.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSharma, B., VanDerveer, D. G., Liff, S. M. & Smith, D. W. Jr (2013). Tetrahedron Lett. 54, 3609–3612.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378392.  Web of Science CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface. net.  Google Scholar
First citationWeerasinghe, M. A. S. N., Dodo, O. J., Rajawasam, C. W. H., Raji, I. O., Wanasinghe, S. V., Konkolewicz, D. & De Alwis Watuthanthrige, N. (2023). Polym. Chem. 14, 4503–4514.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds