research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of anti-10-(4-cyano­phen­yl)-10,11,22,23-tetra­hydro-9H,21H-5,8:15,12-bis­­(metheno)[1,5,11]tri­aza­cyclo­hexadecino[1,16-a:5,6-a′]di­indole di­chloro­methane monosolvate

crossmark logo

aOsaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan, and bOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
*Correspondence e-mail: ktani@cc.osaka-kyoiku.ac.jp

Edited by Y. Ozawa, University of Hyogo, Japan (Received 4 October 2024; accepted 4 December 2024; online 1 January 2025)

The asymmetric unit of the title compound is composed of one host mol­ecule, anti-4-(19H,59H-3-aza-1,5(3,9)-dicarbazola­cyclo­octa­phane-3-yl)benzo­nitrile and one di­chloro­methane solvate mol­ecule, C36H28N4·CH2Cl2. The host mol­ecule possesses a planar chirality but crystallizes as a racemate in the space group P21/c. It adopts an anti-configuration, in which two carbazole rings are partially overlapped with a parallel orientation. The two carbazole ring systems are slightly bent, and the C atoms at the 3- and 1-positions show the largest deviations from the mean planes. The dihedral angle between two carbazole rings is 9.42 (3)°, forming an intra­molecular parallel ππ inter­action [CgCg = 3.2755 (9) Å]. In the crystal, the mol­ecules are linked via host–host and host–guest C—H⋯π inter­actions, forming chain structures along the a-axis direction. The mol­ecules are linked into a ribbon structure along the c-axis direction by further C—H⋯π inter­actions. As a result, The mol­ecules are cross-linked by C—H⋯π inter­actions into a three-dimensional network.

1. Chemical context

Many carbazole derivatives emit blue fluorescence in good quantum yields, and have been used in the development of organic light-emitting diodes (Chen et al., 2021[Chen, L., Chen, W.-C., Yang, Z., Tan, J.-H., Ji, S., Zhang, H.-L., Huo, Y. & Lee, C.-S. (2021). J. Mater. Chem. C. 9, 17233-17264.]). The carbazole chromophore, which shows donor character, has been employed as a hole-transporting material in organic solar cells (Konidena et al., 2022[Konidena, R. K., Thomas, K. R. J. & Park, J. W. (2022). ChemPhotoChem, 6, e202200059.]). As for the structure of the excimer in carbazole chromophore, partially overlapped (PO) and fully overlapped (FO) excimers were proposed (Sakai et al., 1996[Sakai, H., Itaya, A., Masuhara, H., Sasaki, K. & Kawata, S. (1996). Polymer, 37, 31-43.]). To investigate the structure and photophysical properties of the carbazole excimer, our group has synthesized various carbazolophanes (CZPs), which are cyclo­phanes composed of two carbazole rings (Tani et al., 1996[Tani, K., Tohda, Y., Hisada, K. & Yamamoto, M. (1996). Chem. Lett. 25, 145-146.]; Benten et al., 2005[Benten, H., Ohkita, H., Ito, S., Yamamoto, M., Sakumoto, N., Hori, K., Tohda, Y., Tani, K., Nakamura, Y. & Nishimura, J. (2005). J. Phys. Chem. B, 109, 19681-19687.]). The framework of [3.3](3,9)- and [3.4](3,9)-CZPs, where (3,9) describes the bridging position of carbazole ring, and [m.n] denotes the number of bridging lengths between the 3- and 9-positions, are rigid enough to isolate both PO (anti) and FO (syn) isomers at room temperature. For [3.3](3,9)-CZPs, flipping of the carbazole ring between syn and anti CZPs does not occur at room temperature, therefore anti CZPs with planar chirality were successfully separated as enanti­omers (Tani et al., 2020[Tani, K., Imafuku, R., Miyanaga, K., Masaki, M. E., Kato, H., Hori, K., Kubono, K., Taneda, M., Harada, T., Goto, K., Tani, F. & Mori, T. (2020). J. Phys. Chem. A, 124, 2057-2063.]). Intriguingly, the fluorescence spectrum of cyanamide-bridged [3.3](3,9)-CZP was assigned to be excimeric emission, while monomer-like emission was observed in [3.4](3,9)-CZP (Tani et al., 2007[Tani, K., Yamamoto, S., Kubono, K., Hori, K., Tohda, Y., Takemura, H., Nakamura, Y., Nishimura, J., Benten, H., Ohkita, H., Ito, S. & Yamamoto, M. (2007). Chem. Lett. 36, 460-461.]). This result indicates that excimer formation in the carbazole chromophore is extremely susceptible to the geometry of the two carbazole rings in close proximity. As the [3.3](3,9)-aza-bridged CZPs synthesized so far were N-sulfonamide-bridged CZP (Tani et al., 2020[Tani, K., Imafuku, R., Miyanaga, K., Masaki, M. E., Kato, H., Hori, K., Kubono, K., Taneda, M., Harada, T., Goto, K., Tani, F. & Mori, T. (2020). J. Phys. Chem. A, 124, 2057-2063.]), N-cyanamide-bridged CZP (Tani et al., 2001[Tani, K., Tohda, Y., Takemura, H., Ohkita, H., Ito, S. & Yamamoto, M. (2001). Chem. Commun. pp. 1914-1915.]), and N-n-butyl­amine-bridged CZP (Kubono et al., 2022[Kubono, K., Tani, K., Kashiwagi, Y., Tani, F. & Matsumoto, T. (2022). Acta Cryst. E78, 477-480.]), we plan to synthesize more basic aromatic amine-bridged CZP, that is, an aniline derivative-bridged one, which is a potential candidate for systematic elucidation of the excimer formation in the carbazole chromophore. 4-Cyano­aniline was chosen to begin this research since it is treated as the insertion of phenyl­ene moiety into cyanamide and the effect of the aromatic ring can be evaluated. The cyclization reaction between 4-cyano­aniline and 9,9-(1,3-propanedi­yl)-bis­[3-(bromo­meth­yl)-9H-carb­azole] gave the title com­pound, anti-10-(4-cyano­phen­yl)-10,11,22,23-tetra­hydro-9H,21H-5,8:15,12-bis­(metheno)[1,5,11]tri­aza­cyclo­hexa­decino[1,16-a:5,6a′]di­indole[cyclo­phane nomenclature: anti-4-(19H,59H-3-aza-1,5(3,9)-dicarb­azola­cyclo­octaphane-3-yl)ben­zo­nitrile] di­chloro­methane solvate. Herein we report on the synthesis and crystal structure of it.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound is composed of one host mol­ecule and one di­chloro­methane solvate mol­ecule (Fig. 1[link]). The host mol­ecule of the title compound possesses a planar chirality but crystallizes as a racemate in the centrosymmetric space group P21/c. The host mol­ecule adopts an anti-configuration with parallel orientation, thus it is classified into a PO-CZP structure. The carbazole ring systems are slightly bent, with r.m.s. deviations of 0.066 (1) and 0.078 (1) Å, respectively, for the N3/C7–C18 ring and N4/C19–C30 ring systems. In two carbazole fragments, the C atoms at the 3- and 1-positions of carbazole ring show the largest deviations from mean planes [−0.1174 (15) Å for C10 (3-position) and −0.1219 (14) Å for C24 (1-position)]. The dihedral angle between two carbazole fragments is 9.42 (3)°, providing an intra­molecular ππ inter­action [Cg3⋯Cg4 = 3.2755 (9) Å; Cg3 and Cg4 are the centroids of rings C7–C12 and C19–C24, respectively]. In comparison, the dihedral angle between the two carbazole rings and CgCg distances in the crystal structures of related compounds are 5.19 (3)° and 3.2514 (8) Å for [3.3](3,9)-N-n-butyl­amine-bridged PO-CZP (XEBDAN; Kubono et al., 2022[Kubono, K., Tani, K., Kashiwagi, Y., Tani, F. & Matsumoto, T. (2022). Acta Cryst. E78, 477-480.]) and 9.65 (5)° and 3.2296 (12) Å for [3.3](3,9)-N-(R)-phenethyl­amine-bridged (Sp)-PO-CZP (YOLRAW; Tani et al., 2023[Tani, K., Ueno, K., Masaki, M. E., Taneda, M., Hori, K., Kubono, K., Goto, K., Tani, F., Kashiwagi, Y. & Harada, T. (2023). Chem. Lett. 52, 858-860.]), which are close to those of the host mol­ecule in the title compound. The bond angle C34—N5—C35 is 114.81 (11)° in the title compound, similar to those of the related compounds [114.56 (11)° for XEBDAN; 113.97 (16)° for YOLRAW]. For the related compound with a cyano­aniline moiety, 4-(di­benzyl­amino)­benzo­nitrile, the average C(methyl­ene)—N—C bond angle in the two independent mol­ecules in the crystal (IYAXOY; Luo et al., 2021[Luo, Z., Pan, P., Yao, Z., Yang, J., Zhang, X., Liu, X., Xu, L. & Fan, Q.-H. (2021). Green Chem. 23, 5205-5211.]) is 115.97 (12)°. The N5 atom is located 0.0067 (11) Å above the mean plane of the three bounded carbon atoms (C34/C35/C36) in the tertiary amino group. The N5 atom has highly sp2 orbital character because this bridged amine contains an aromatic moiety, whose nitrile group in the 4-position is an electron-withdrawing one.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, two mol­ecules are associated through a pair of inter­molecular C—H⋯π inter­actions [C33—H33ACg2ii; H33ACg2ii = 2.91 Å; C33⋯Cg2ii = 3.6402 (17)Å; Cg2 is the centroid of the C13–C18 ring, symmetry code: (ii) 1 − x, 1 − y, 1 − z] (Table 1[link]), forming a centrosymmetric dimer. The dimers and solvate di­chloro­methane mol­ecules are linked by two other C—H⋯π inter­actions [C43—H43ACg3iii; H43ACg3iii = 2.56 Å; C43⋯Cg3iii = 3.4632 (17) Å, and C43—H43BCg4; H43BCg4 = 2.54 Å; C43⋯Cg4 = 3.4277 (17) Å; Cg3 and Cg4 are the centroids of the C7–C12 and C19–C24 rings, respectively; symmetry code: (iii) x - 1, y, z] (Table 1[link]), forming chain structures along the a-axis direction (Fig. 2[link]). In addition, the host mol­ecules linked by another C—H⋯π inter­action [C12⋯H12⋯Cg1i; H12⋯Cg1i = 2.93 Å; C12⋯Cg1 = 3.8374 (15) Å; Cg1 is the centroid of the C36–C41 ring; symmetry code: (i) x, [{1\over 2}] − y, z − [{3\over 2}]] (Table 1[link]), forming a ribbon structure along the c-axis direction (Fig. 3[link]). As a result, the mol­ecules are cross-linked via C—H⋯π inter­actions into a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of rings C36–C41, C13–C18, C7–C12 and C19–C24, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg1i 0.95 2.93 3.8374 (15) 159
C33—H33ACg2ii 0.99 2.91 3.6402 (17) 131
C43—H43ACg3iii 0.99 2.56 3.4632 (17) 151
C43—H43BCg4 0.99 2.54 3.4277 (17) 149
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [x-1, y, z].
[Figure 2]
Figure 2
A packing diagram of the title compound viewed along the c axis, showing the chain structure. The C—H⋯π inter­actions are shown as double dashed lines. H atoms not involved in the inter­actions have been omitted for clarity. [Symmetry codes: (ii) 1 − x, 1 − y, 1 − z; (iii) x - 1, y, z.]
[Figure 3]
Figure 3
A packing diagram of the title compound viewed along the a axis, showing the ribbon structure. C—H⋯π inter­actions are shown as double dashed lines. H atoms not involved in the inter­actions have been omitted for clarity. [symmetry code: (i) x, [{1\over 2}] − y, z − [{3\over 2}].]

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 2024.1.0, update of March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for compounds containing carbazole skeleton gave 6572 hits, and for those containing two 3,9-di­methyl­enecarbazole fragments gave 573 hits. Among those, the [3.3](3,9)-CZP skeleton gave four hits. Of these four compounds, three structures are PO-carbazolophanes with the same skeleton as the title compound, [3.3](3,9)-N-sulfonamide-bridged PO-CZP (YUKYEL; Tani et al., 2020[Tani, K., Imafuku, R., Miyanaga, K., Masaki, M. E., Kato, H., Hori, K., Kubono, K., Taneda, M., Harada, T., Goto, K., Tani, F. & Mori, T. (2020). J. Phys. Chem. A, 124, 2057-2063.]), [3.3](3,9)-N-cyanamide-bridged PO-CZP (BACKOG; Tani et al., 2001[Tani, K., Tohda, Y., Takemura, H., Ohkita, H., Ito, S. & Yamamoto, M. (2001). Chem. Commun. pp. 1914-1915.]), and [3.3](3,9)-N-n-butyl­amine-bridged PO-CZP (XEBDAN; Kubono et al., 2022[Kubono, K., Tani, K., Kashiwagi, Y., Tani, F. & Matsumoto, T. (2022). Acta Cryst. E78, 477-480.]). One structure is [3.3](3,9)-N-cyanamide-bridged fully overlapped (FO)-CZP, syn-3-cyano-3-aza-1(9,3),3(3,9)-dicarbazola­cyclo­octa­phane benzene clathrate (BACKIA; Tani et al., 2001[Tani, K., Tohda, Y., Takemura, H., Ohkita, H., Ito, S. & Yamamoto, M. (2001). Chem. Commun. pp. 1914-1915.]). In addition to these, we have recently reported the structures of newly chiral [3.3](3,9)-N-(R)-phenethyl­amine-bridged (Sp)-PO-CZP (YOLRAW; Tani et al., 2023[Tani, K., Ueno, K., Masaki, M. E., Taneda, M., Hori, K., Kubono, K., Goto, K., Tani, F., Kashiwagi, Y. & Harada, T. (2023). Chem. Lett. 52, 858-860.]).

5. Synthesis and crystallization

A solution of 9,9′-(1,3-propanedi­yl)bis­[3-(bromo­meth­yl)-9H-carbazole] (370 mg, 0.66 mmol; Tani et al., 2001[Tani, K., Tohda, Y., Takemura, H., Ohkita, H., Ito, S. & Yamamoto, M. (2001). Chem. Commun. pp. 1914-1915.]) in di­chloro­methane (200 mL) was added to a 500 mL flask, which contained a mixture of tetra­butyl­ammonium iodide (85.0 mg, 0.23 mmol) and 4-cyano­aniline (82 mg, 0.69 mmol) in di­chloro­methane ­(150 mL) and sodium hydroxide (1.16 g, 29 mmol) in water (10 mL). Then, the flask was filled with argon and was stirred at room temperature for 3 d. The reaction mixture was washed with water, then the organic layer was washed with sat. aq. NaCl, and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure, and the residue was purified by silica gel chromatography (Wako-gel C-200, 10 g). Elution from benzene gave a white solid (21.2 mg, 0.041 mmol, 6%). It was recrystallized from di­chloro­methane:ethanol (1:3) to give a colourless crystal of the title compound suitable for X-ray diffraction. Melting point (decomposition): 561–563 K. 1H NMR (CDCl3, 400 MHz): δ = 2.88–2.97 (m, 2H), 3.71–3.81 (m, 2H), 4.12–4.20 (m, 2H), 4.79, 4.99 (ABq, J = 15.6 Hz, 4H), 5.35 (d, J = 8.4 Hz, 2H), 6.19 (d, J = 8.8 Hz, 2H), 7.23–7.33 (m, 4H), 7.48–7.55 (m, 4H), 7.62 (d, J = 8.4 Hz, 2H), 7.74 (s, 2H), 8.08 (d, J = 7.2 Hz, 2H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hy­droxy H atoms were located in a difference-Fourier map and freely refined. The C-bound H atoms were placed in geometrically calculated positions (C—H = 0.95–0.99 Å) and refined as part of a riding model with Uiso(H) = 1.2 Ueq (C).

Table 2
Experimental details

Crystal data
Chemical formula C36H28N4·CH2Cl2
Mr 601.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.8527 (1), 28.7160 (3), 10.7754 (1)
β (°) 109.085 (2)
V3) 2881.11 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.29
Crystal size (mm) 0.29 × 0.26 × 0.22
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.726, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20903, 5741, 5247
Rint 0.032
(sin θ/λ)max−1) 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.05
No. of reflections 5741
No. of parameters 388
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.37
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

10-(4-Cyanophenyl)-10,11,22,23-tetrahydro-9H,21H-5,8:15,12-bis(metheno)[1,5,11]triazacyclohexadecino[1,16-a:5,6-a']diindole dichloromethane monosolvate top
Crystal data top
C36H28N4·CH2Cl2F(000) = 1256
Mr = 601.55Dx = 1.387 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.8527 (1) ÅCell parameters from 14622 reflections
b = 28.7160 (3) Åθ = 3.1–76.9°
c = 10.7754 (1) ŵ = 2.29 mm1
β = 109.085 (2)°T = 100 K
V = 2881.11 (6) Å3Block, colourless
Z = 40.29 × 0.26 × 0.22 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
5741 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source5247 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.0000 pixels mm-1θmax = 77.1°, θmin = 3.1°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 3435
Tmin = 0.726, Tmax = 1.000l = 1312
20903 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.042P)2 + 1.3432P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5741 reflectionsΔρmax = 0.25 e Å3
388 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11268 (4)0.71150 (2)0.44555 (4)0.02877 (10)
Cl20.24825 (4)0.68876 (2)0.72262 (3)0.02901 (10)
N40.43170 (12)0.57748 (4)0.31773 (11)0.0156 (2)
N30.78473 (12)0.54742 (4)0.42453 (11)0.0174 (2)
N50.72941 (13)0.74158 (4)0.67578 (11)0.0185 (2)
N60.72965 (16)0.96072 (5)0.44091 (14)0.0309 (3)
C250.35580 (14)0.60184 (5)0.20569 (13)0.0160 (3)
C190.46491 (14)0.60771 (4)0.42325 (13)0.0152 (3)
C140.89025 (14)0.53788 (5)0.64581 (13)0.0166 (3)
C70.81370 (14)0.59140 (5)0.47986 (13)0.0163 (3)
C290.21940 (15)0.61670 (5)0.01674 (14)0.0199 (3)
H290.1763800.6064370.1047220.024*
C300.29201 (15)0.58490 (5)0.07828 (13)0.0182 (3)
H300.2982230.5529620.0577850.022*
C240.53045 (14)0.59869 (5)0.55677 (13)0.0169 (3)
H240.5527100.5677970.5884330.020*
C200.42029 (14)0.65335 (5)0.37803 (13)0.0157 (3)
C260.34617 (14)0.64906 (5)0.23842 (13)0.0158 (3)
C330.46486 (15)0.52786 (5)0.32500 (13)0.0173 (3)
H33A0.3738020.5104080.2884480.021*
H33B0.5069480.5190860.4186500.021*
C360.72887 (15)0.78399 (4)0.61676 (13)0.0160 (3)
C390.73050 (16)0.87537 (5)0.51722 (13)0.0188 (3)
C100.85627 (14)0.67016 (5)0.63849 (13)0.0173 (3)
C130.83261 (14)0.51464 (5)0.52382 (13)0.0171 (3)
C270.26976 (15)0.68025 (5)0.14059 (13)0.0183 (3)
H270.2606660.7120530.1608530.022*
C110.80514 (14)0.67383 (5)0.50091 (14)0.0181 (3)
H110.7850780.7038340.4620700.022*
C410.85592 (15)0.80421 (5)0.60585 (13)0.0187 (3)
H410.9422540.7865870.6309450.022*
C90.89556 (14)0.62684 (5)0.69643 (13)0.0169 (3)
H90.9352780.6241930.7892080.020*
C220.53362 (15)0.68257 (5)0.59713 (13)0.0175 (3)
C80.87635 (14)0.58719 (5)0.61748 (13)0.0164 (3)
C210.45859 (15)0.69087 (4)0.46511 (13)0.0168 (3)
H210.4336770.7217540.4345400.020*
C150.94349 (15)0.51210 (5)0.76165 (14)0.0187 (3)
H150.9820880.5273440.8439750.022*
C400.85646 (15)0.84895 (5)0.55954 (13)0.0191 (3)
H400.9438270.8620170.5563490.023*
C230.56180 (14)0.63634 (5)0.64125 (13)0.0175 (3)
H230.6040630.6307820.7327490.021*
C180.82995 (15)0.46586 (5)0.51621 (14)0.0201 (3)
H180.7928580.4502330.4343370.024*
C380.60242 (15)0.85476 (5)0.51820 (13)0.0195 (3)
H380.5150810.8717060.4859860.023*
C170.88372 (15)0.44135 (5)0.63315 (15)0.0221 (3)
H170.8829580.4082740.6308410.026*
C320.56785 (15)0.51229 (5)0.25314 (14)0.0189 (3)
H32A0.5171050.5151180.1575820.023*
H32B0.5892480.4788600.2722510.023*
C160.93901 (15)0.46396 (5)0.75432 (14)0.0212 (3)
H160.9738940.4460680.8324950.025*
C280.20772 (15)0.66384 (5)0.01377 (14)0.0203 (3)
H280.1564970.6847260.0536550.024*
C370.60095 (15)0.81030 (5)0.56511 (14)0.0190 (3)
H370.5120480.7968750.5628540.023*
C420.73111 (16)0.92259 (5)0.47377 (14)0.0221 (3)
C120.78308 (15)0.63514 (5)0.42023 (13)0.0178 (3)
H120.7482710.6381990.3273500.021*
C340.85826 (16)0.71244 (5)0.72398 (14)0.0205 (3)
H34A0.8684130.7017390.8139130.025*
H34B0.9434600.7316290.7293020.025*
C310.71121 (15)0.53843 (5)0.28535 (13)0.0193 (3)
H31A0.7761690.5201580.2507460.023*
H31B0.6933660.5686150.2383870.023*
C350.59918 (16)0.72148 (5)0.69368 (14)0.0202 (3)
H35A0.5269520.7464300.6831720.024*
H35B0.6237370.7092030.7842100.024*
C430.17529 (16)0.66629 (5)0.56184 (14)0.0218 (3)
H43A0.0948040.6450510.5577550.026*
H43B0.2496880.6480920.5398580.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02377 (19)0.0329 (2)0.02753 (19)0.00193 (14)0.00544 (15)0.00996 (14)
Cl20.0303 (2)0.0375 (2)0.01966 (18)0.00441 (15)0.00875 (15)0.00085 (14)
N40.0151 (5)0.0157 (5)0.0147 (5)0.0003 (4)0.0031 (4)0.0019 (4)
N30.0157 (6)0.0180 (5)0.0174 (6)0.0003 (4)0.0038 (5)0.0001 (4)
N50.0164 (6)0.0164 (5)0.0207 (6)0.0009 (4)0.0035 (5)0.0002 (4)
N60.0323 (8)0.0246 (7)0.0336 (7)0.0020 (5)0.0076 (6)0.0075 (6)
C250.0118 (6)0.0192 (6)0.0170 (6)0.0011 (5)0.0046 (5)0.0032 (5)
C190.0123 (6)0.0163 (6)0.0178 (6)0.0020 (5)0.0057 (5)0.0001 (5)
C140.0107 (6)0.0178 (6)0.0210 (7)0.0000 (5)0.0049 (5)0.0001 (5)
C70.0112 (6)0.0191 (6)0.0188 (6)0.0005 (5)0.0050 (5)0.0001 (5)
C290.0144 (6)0.0274 (7)0.0167 (6)0.0012 (5)0.0033 (5)0.0006 (5)
C300.0151 (6)0.0206 (6)0.0183 (6)0.0017 (5)0.0047 (5)0.0010 (5)
C240.0142 (6)0.0178 (6)0.0184 (6)0.0014 (5)0.0049 (5)0.0038 (5)
C200.0125 (6)0.0179 (6)0.0169 (6)0.0003 (5)0.0052 (5)0.0031 (5)
C260.0119 (6)0.0190 (6)0.0168 (6)0.0015 (5)0.0048 (5)0.0022 (5)
C330.0167 (6)0.0154 (6)0.0186 (6)0.0003 (5)0.0043 (5)0.0021 (5)
C360.0167 (6)0.0167 (6)0.0133 (6)0.0006 (5)0.0033 (5)0.0031 (5)
C390.0226 (7)0.0182 (6)0.0147 (6)0.0010 (5)0.0049 (5)0.0008 (5)
C100.0120 (6)0.0173 (6)0.0212 (7)0.0017 (5)0.0037 (5)0.0006 (5)
C130.0126 (6)0.0186 (6)0.0200 (6)0.0012 (5)0.0052 (5)0.0016 (5)
C270.0143 (6)0.0193 (6)0.0210 (7)0.0007 (5)0.0055 (5)0.0044 (5)
C110.0134 (6)0.0176 (6)0.0222 (7)0.0002 (5)0.0045 (5)0.0041 (5)
C410.0150 (7)0.0203 (7)0.0197 (7)0.0026 (5)0.0043 (5)0.0005 (5)
C90.0113 (6)0.0201 (6)0.0171 (6)0.0004 (5)0.0016 (5)0.0008 (5)
C220.0148 (6)0.0199 (6)0.0192 (6)0.0029 (5)0.0075 (5)0.0001 (5)
C80.0099 (6)0.0193 (6)0.0188 (6)0.0001 (5)0.0031 (5)0.0022 (5)
C210.0150 (6)0.0164 (6)0.0198 (7)0.0010 (5)0.0067 (5)0.0020 (5)
C150.0135 (6)0.0218 (7)0.0197 (7)0.0009 (5)0.0038 (5)0.0014 (5)
C400.0161 (7)0.0220 (7)0.0189 (6)0.0012 (5)0.0055 (5)0.0001 (5)
C230.0141 (6)0.0234 (7)0.0147 (6)0.0027 (5)0.0041 (5)0.0018 (5)
C180.0164 (7)0.0186 (7)0.0244 (7)0.0001 (5)0.0054 (6)0.0020 (5)
C380.0170 (7)0.0215 (7)0.0185 (6)0.0048 (5)0.0040 (5)0.0014 (5)
C170.0178 (7)0.0159 (6)0.0317 (8)0.0009 (5)0.0070 (6)0.0008 (6)
C320.0179 (7)0.0190 (6)0.0181 (6)0.0001 (5)0.0035 (5)0.0018 (5)
C160.0163 (7)0.0217 (7)0.0246 (7)0.0024 (5)0.0052 (6)0.0068 (6)
C280.0150 (6)0.0251 (7)0.0190 (7)0.0031 (5)0.0032 (5)0.0062 (5)
C370.0150 (6)0.0218 (7)0.0198 (7)0.0006 (5)0.0052 (5)0.0022 (5)
C420.0219 (7)0.0243 (7)0.0182 (7)0.0010 (6)0.0040 (6)0.0006 (6)
C120.0144 (6)0.0217 (7)0.0169 (6)0.0001 (5)0.0042 (5)0.0034 (5)
C340.0186 (7)0.0171 (6)0.0206 (7)0.0003 (5)0.0008 (6)0.0006 (5)
C310.0190 (7)0.0235 (7)0.0153 (6)0.0003 (5)0.0054 (5)0.0017 (5)
C350.0221 (7)0.0210 (7)0.0183 (6)0.0041 (5)0.0078 (6)0.0007 (5)
C430.0206 (7)0.0216 (7)0.0232 (7)0.0015 (5)0.0072 (6)0.0014 (5)
Geometric parameters (Å, º) top
Cl1—C431.7693 (15)C10—C341.5203 (19)
Cl2—C431.7664 (15)C13—C181.4028 (19)
N4—C251.3840 (17)C27—H270.9500
N4—C191.3821 (17)C27—C281.385 (2)
N4—C331.4581 (17)C11—H110.9500
N3—C71.3859 (17)C11—C121.383 (2)
N3—C131.3869 (17)C41—H410.9500
N3—C311.4594 (17)C41—C401.3787 (19)
N5—C361.3731 (17)C9—H90.9500
N5—C341.4664 (18)C9—C81.3966 (19)
N5—C351.4759 (18)C22—C211.3926 (19)
N6—C421.150 (2)C22—C231.4070 (19)
C25—C301.3972 (19)C22—C351.5193 (19)
C25—C261.4123 (19)C21—H210.9500
C19—C241.3951 (19)C15—H150.9500
C19—C201.4172 (18)C15—C161.385 (2)
C14—C131.4170 (19)C40—H400.9500
C14—C81.4454 (18)C23—H230.9500
C14—C151.3975 (19)C18—H180.9500
C7—C81.4128 (19)C18—C171.388 (2)
C7—C121.3983 (19)C38—H380.9500
C29—H290.9500C38—C371.375 (2)
C29—C301.384 (2)C17—H170.9500
C29—C281.407 (2)C17—C161.399 (2)
C30—H300.9500C32—H32A0.9900
C24—H240.9500C32—H32B0.9900
C24—C231.3816 (19)C32—C311.5357 (19)
C20—C261.4468 (18)C16—H160.9500
C20—C211.3971 (19)C28—H280.9500
C26—C271.4004 (19)C37—H370.9500
C33—H33A0.9900C12—H120.9500
C33—H33B0.9900C34—H34A0.9900
C33—C321.5307 (19)C34—H34B0.9900
C36—C411.4193 (19)C31—H31A0.9900
C36—C371.4178 (19)C31—H31B0.9900
C39—C401.398 (2)C35—H35A0.9900
C39—C381.397 (2)C35—H35B0.9900
C39—C421.435 (2)C43—H43A0.9900
C10—C111.4051 (19)C43—H43B0.9900
C10—C91.3889 (19)
C25—N4—C33126.04 (11)C23—C22—C35118.02 (12)
C19—N4—C25108.37 (11)C7—C8—C14106.51 (12)
C19—N4—C33125.51 (11)C9—C8—C14133.26 (12)
C7—N3—C13108.45 (11)C9—C8—C7119.69 (12)
C7—N3—C31124.50 (11)C20—C21—H21120.3
C13—N3—C31127.02 (11)C22—C21—C20119.39 (12)
C36—N5—C34122.81 (12)C22—C21—H21120.3
C36—N5—C35122.37 (11)C14—C15—H15120.6
C34—N5—C35114.81 (11)C16—C15—C14118.83 (13)
N4—C25—C30128.48 (12)C16—C15—H15120.6
N4—C25—C26109.19 (11)C39—C40—H40119.5
C30—C25—C26122.30 (12)C41—C40—C39121.05 (13)
N4—C19—C24129.57 (12)C41—C40—H40119.5
N4—C19—C20109.55 (11)C24—C23—C22122.61 (12)
C24—C19—C20120.88 (12)C24—C23—H23118.7
C13—C14—C8106.50 (11)C22—C23—H23118.7
C15—C14—C13119.90 (12)C13—C18—H18121.3
C15—C14—C8133.59 (13)C17—C18—C13117.32 (13)
N3—C7—C8109.36 (11)C17—C18—H18121.3
N3—C7—C12129.63 (13)C39—C38—H38119.5
C12—C7—C8120.91 (12)C37—C38—C39120.95 (13)
C30—C29—H29119.2C37—C38—H38119.5
C30—C29—C28121.61 (13)C18—C17—H17119.1
C28—C29—H29119.2C18—C17—C16121.88 (13)
C25—C30—H30121.5C16—C17—H17119.1
C29—C30—C25117.06 (13)C33—C32—H32A108.0
C29—C30—H30121.5C33—C32—H32B108.0
C19—C24—H24121.2C33—C32—C31117.11 (11)
C23—C24—C19117.55 (12)H32A—C32—H32B107.3
C23—C24—H24121.2C31—C32—H32A108.0
C19—C20—C26105.85 (11)C31—C32—H32B108.0
C21—C20—C19119.80 (12)C15—C16—C17120.80 (13)
C21—C20—C26134.23 (12)C15—C16—H16119.6
C25—C26—C20106.80 (11)C17—C16—H16119.6
C27—C26—C25119.31 (12)C29—C28—H28119.5
C27—C26—C20133.84 (13)C27—C28—C29120.98 (13)
N4—C33—H33A108.4C27—C28—H28119.5
N4—C33—H33B108.4C36—C37—H37119.2
N4—C33—C32115.60 (11)C38—C37—C36121.62 (13)
H33A—C33—H33B107.4C38—C37—H37119.2
C32—C33—H33A108.4N6—C42—C39178.31 (16)
C32—C33—H33B108.4C7—C12—H12121.1
N5—C36—C41122.10 (12)C11—C12—C7117.82 (12)
N5—C36—C37121.52 (12)C11—C12—H12121.1
C37—C36—C41116.38 (12)N5—C34—C10113.76 (11)
C40—C39—C42121.43 (13)N5—C34—H34A108.8
C38—C39—C40118.38 (12)N5—C34—H34B108.8
C38—C39—C42120.19 (13)C10—C34—H34A108.8
C11—C10—C34120.56 (12)C10—C34—H34B108.8
C9—C10—C11119.51 (12)H34A—C34—H34B107.7
C9—C10—C34119.77 (12)N3—C31—C32115.44 (11)
N3—C13—C14109.14 (11)N3—C31—H31A108.4
N3—C13—C18129.61 (13)N3—C31—H31B108.4
C18—C13—C14121.25 (13)C32—C31—H31A108.4
C26—C27—H27120.6C32—C31—H31B108.4
C28—C27—C26118.72 (13)H31A—C31—H31B107.5
C28—C27—H27120.6N5—C35—C22113.03 (11)
C10—C11—H11119.0N5—C35—H35A109.0
C12—C11—C10122.09 (12)N5—C35—H35B109.0
C12—C11—H11119.0C22—C35—H35A109.0
C36—C41—H41119.4C22—C35—H35B109.0
C40—C41—C36121.28 (13)H35A—C35—H35B107.8
C40—C41—H41119.4Cl1—C43—H43A109.4
C10—C9—H9120.2Cl1—C43—H43B109.4
C10—C9—C8119.60 (12)Cl2—C43—Cl1111.25 (8)
C8—C9—H9120.2Cl2—C43—H43A109.4
C21—C22—C23119.13 (12)Cl2—C43—H43B109.4
C21—C22—C35122.58 (12)H43A—C43—H43B108.0
N4—C25—C30—C29178.84 (13)C10—C9—C8—C71.7 (2)
N4—C25—C26—C200.08 (14)C13—N3—C7—C82.19 (15)
N4—C25—C26—C27178.07 (12)C13—N3—C7—C12178.57 (14)
N4—C19—C24—C23174.81 (13)C13—N3—C31—C3260.02 (18)
N4—C19—C20—C264.64 (14)C13—C14—C8—C71.10 (14)
N4—C19—C20—C21172.03 (12)C13—C14—C8—C9170.10 (14)
N4—C33—C32—C3152.46 (16)C13—C14—C15—C160.2 (2)
N3—C7—C8—C142.03 (15)C13—C18—C17—C160.2 (2)
N3—C7—C8—C9170.61 (12)C11—C10—C9—C83.5 (2)
N3—C7—C12—C11170.84 (13)C11—C10—C34—N541.35 (18)
N3—C13—C18—C17178.94 (14)C41—C36—C37—C385.8 (2)
N5—C36—C41—C40172.75 (13)C9—C10—C11—C124.5 (2)
N5—C36—C37—C38173.22 (12)C9—C10—C34—N5134.01 (13)
C25—N4—C19—C24174.70 (13)C8—C14—C13—N30.20 (15)
C25—N4—C19—C204.79 (14)C8—C14—C13—C18179.77 (12)
C25—N4—C33—C3266.61 (17)C8—C14—C15—C16179.01 (14)
C25—C26—C27—C281.04 (19)C8—C7—C12—C115.2 (2)
C19—N4—C25—C30175.24 (13)C21—C20—C26—C25173.22 (14)
C19—N4—C25—C262.97 (14)C21—C20—C26—C279.2 (3)
C19—N4—C33—C32116.79 (14)C21—C22—C23—C246.5 (2)
C19—C24—C23—C221.7 (2)C21—C22—C35—N573.73 (17)
C19—C20—C26—C252.74 (14)C15—C14—C13—N3178.90 (12)
C19—C20—C26—C27174.83 (14)C15—C14—C13—C181.1 (2)
C19—C20—C21—C223.50 (19)C15—C14—C8—C7179.97 (14)
C14—C13—C18—C171.1 (2)C15—C14—C8—C98.8 (3)
C14—C15—C16—C170.7 (2)C40—C39—C38—C372.9 (2)
C7—N3—C13—C141.47 (15)C23—C22—C21—C203.69 (19)
C7—N3—C13—C18178.50 (14)C23—C22—C35—N5100.31 (14)
C7—N3—C31—C32117.55 (14)C18—C17—C16—C150.7 (2)
C30—C25—C26—C20178.27 (12)C38—C39—C40—C412.4 (2)
C30—C25—C26—C270.3 (2)C28—C29—C30—C251.2 (2)
C30—C29—C28—C270.5 (2)C37—C36—C41—C406.31 (19)
C24—C19—C20—C26174.91 (12)C42—C39—C40—C41177.50 (13)
C24—C19—C20—C218.43 (19)C42—C39—C38—C37177.01 (13)
C20—C19—C24—C235.75 (19)C12—C7—C8—C14178.78 (12)
C20—C26—C27—C28178.37 (14)C12—C7—C8—C96.1 (2)
C26—C25—C30—C290.8 (2)C34—N5—C36—C414.27 (19)
C26—C20—C21—C22179.02 (14)C34—N5—C36—C37176.72 (12)
C26—C27—C28—C290.7 (2)C34—N5—C35—C2275.00 (15)
C33—N4—C25—C301.8 (2)C34—C10—C11—C12170.87 (13)
C33—N4—C25—C26179.94 (12)C34—C10—C9—C8171.90 (12)
C33—N4—C19—C242.4 (2)C31—N3—C7—C8175.76 (12)
C33—N4—C19—C20178.11 (12)C31—N3—C7—C120.6 (2)
C33—C32—C31—N343.94 (17)C31—N3—C13—C14176.42 (12)
C36—N5—C34—C10106.00 (14)C31—N3—C13—C183.6 (2)
C36—N5—C35—C22104.09 (15)C35—N5—C36—C41176.71 (12)
C36—C41—C40—C392.3 (2)C35—N5—C36—C372.29 (19)
C39—C38—C37—C361.4 (2)C35—N5—C34—C1073.08 (15)
C10—C11—C12—C70.1 (2)C35—C22—C21—C20170.28 (12)
C10—C9—C8—C14171.95 (14)C35—C22—C23—C24167.77 (13)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of rings C36–C41, C13–C18, C7–C12 and C19–C24, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.952.933.8374 (15)159
C33—H33A···Cg2ii0.992.913.6402 (17)131
C43—H43A···Cg3iii0.992.563.4632 (17)151
C43—H43B···Cg40.992.543.4277 (17)149
Symmetry codes: (i) x, y+1/2, z3/2; (ii) x+1, y+1, z+1; (iii) x1, y, z.
 

Funding information

Funding for this research was provided by: the Japan Science and Technology Agency's Core Research for Evolutional Science and Technology (grant No. JPMJCR2001); the Cooperative Research Program of Network Joint Research Center for Materials and Devices, 20241362 and the Joint Usage/Research Center for Catalysis (grant No. 24DS0570).

References

First citationBenten, H., Ohkita, H., Ito, S., Yamamoto, M., Sakumoto, N., Hori, K., Tohda, Y., Tani, K., Nakamura, Y. & Nishimura, J. (2005). J. Phys. Chem. B, 109, 19681–19687.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, L., Chen, W.-C., Yang, Z., Tan, J.-H., Ji, S., Zhang, H.-L., Huo, Y. & Lee, C.-S. (2021). J. Mater. Chem. C. 9, 17233–17264.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKonidena, R. K., Thomas, K. R. J. & Park, J. W. (2022). ChemPhotoChem, 6, e202200059.  Web of Science CrossRef Google Scholar
First citationKubono, K., Tani, K., Kashiwagi, Y., Tani, F. & Matsumoto, T. (2022). Acta Cryst. E78, 477–480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLuo, Z., Pan, P., Yao, Z., Yang, J., Zhang, X., Liu, X., Xu, L. & Fan, Q.-H. (2021). Green Chem. 23, 5205–5211.  Web of Science CSD CrossRef Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSakai, H., Itaya, A., Masuhara, H., Sasaki, K. & Kawata, S. (1996). Polymer, 37, 31–43.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTani, K., Imafuku, R., Miyanaga, K., Masaki, M. E., Kato, H., Hori, K., Kubono, K., Taneda, M., Harada, T., Goto, K., Tani, F. & Mori, T. (2020). J. Phys. Chem. A, 124, 2057–2063.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTani, K., Tohda, Y., Hisada, K. & Yamamoto, M. (1996). Chem. Lett. 25, 145–146.  CSD CrossRef Web of Science Google Scholar
First citationTani, K., Tohda, Y., Takemura, H., Ohkita, H., Ito, S. & Yamamoto, M. (2001). Chem. Commun. pp. 1914–1915.  Web of Science CSD CrossRef Google Scholar
First citationTani, K., Ueno, K., Masaki, M. E., Taneda, M., Hori, K., Kubono, K., Goto, K., Tani, F., Kashiwagi, Y. & Harada, T. (2023). Chem. Lett. 52, 858–860.  Web of Science CSD CrossRef Google Scholar
First citationTani, K., Yamamoto, S., Kubono, K., Hori, K., Tohda, Y., Takemura, H., Nakamura, Y., Nishimura, J., Benten, H., Ohkita, H., Ito, S. & Yamamoto, M. (2007). Chem. Lett. 36, 460–461.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds