research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and properties of catena-poly[[bis­­(4-methyl­pyridine-κN)cobalt(II)]-di-μ-thio­cyanato-κ2N:S;κ2S:N], which shows a rare coordination geometry

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by Y. Ozawa, University of Hyogo, Japan (Received 11 November 2024; accepted 11 December 2024; online 1 January 2025)

Reaction of Co(NCS)2 with 4-methyl­pyridine in water leads to the formation of single crystals of the title compound, [Co(NCS)2(C6H7N)2]n. The asymmetric unit consists of two crystallographically independent thio­cyanate anions and two crystallographically independent 4-methyl­pyridine coligands in general positions, as well as of two different CoII cations, of which one is located on a twofold rotational axis, whereas the second occupies a center of inversion. The methyl H atoms in both 4-methyl­pyridine ligands are disordered and were refined using a split model. Both CoII cations are octa­hedrally coordinated by two N- and two S-bonded thio­cyanate anions and two 4-methyl­pyridine coligands and are linked by pairs of 1,3-bridging anionic ligands into chains. Within these chains the cations show an alternating all-trans and ciscistrans configuration, which leads to the formation of corrugated chains. Powder X-ray diffraction proves that a pure crystalline phase has been obtained and the values of the CN stretching vibrations of the anionic ligands observed in the IR and the Raman spectra are in agreement with the presence of bridging anionic ligands.

1. Chemical context

For a long time, our inter­est has focused on the synthesis and crystal structure of transition-metal thio­cyanate coordination compounds based on MnII, FeII, CoII and NiII, because they show a large structural variability, which can partly be traced back to the versatile coordination behavior of this anionic ligand (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). In nearly all cases these cations are in an octa­hedral coordination, even though with cobalt several compounds with a tetra­hedral coordination are also known. Within this project we are especially inter­ested in compounds in which the metal cations are linked into chains or layers, because such compounds show versatile magnetic behavior (Neumann et al., 2018[Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018). Inorg. Chem. 57, 3305-3314.]; Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]). This is especially the case for compounds based on cobalt, which can show 1D or 3D ferromagnetic ordering (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Jochim et al., 2020[Jochim, A., Rams, M., Böhme, M., Ceglarska, M., Plass, W. & Näther, C. (2020). Dalton Trans. 49, 15310-15322.]; Rams et al., 2017a[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534-24544.], 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]).

In most cases, chain compounds are observed in which the metal cations are in an octa­hedral all-trans coordination, leading to the formation of linear chains. Linear chains are also observed for a cis–cis–trans-coordination if the neutral coligands are in trans-positions, which is the case, for example, in M(NCS)2(4-benzoyl­pyridine)2 with M = Co, Ni [refcodes ODEYII (Rams et al., 2017b[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232-3243.]) and GIQQUV (Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 4779-4789.])] or in Co(NCS)2(2,3-di­methyl­pyrazine-1,4-dioxide) (PEVZOG; Shi et al., 2007[Shi, J. M., Li, W. N., Zhang, F. X., Zhang, X. & Liu, L. D. (2007). Chin. J. Struct. Chem. 26, 118-121.]). Corrugated chains are observed if the two bridging S-bonded thio­cyanate anions are in an trans-position like in Mn(NCS)2(4-nitro­pyridine N-oxide (SINKUW; Shi et al., 2006a[Shi, J. M., Chen, J. N. & Liu, L. D. (2006a). Pol. J. Chem. 80, 1909-1912.]) or in Ni(NCS)2(2,2′-bi­pyridine (GIQREG; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 4779-4789.]). If the two bridging N-bonded thio­canate anions are in a trans-position like in Ni(NCS)2[1-(2-amino­eth­yl)pyrrolidine-N,N′) (ABOBIC; Maji et al., 2001[Maji, T. K., Laskar, I. R., Mostafa, G., Welch, A. J., Mukherjee, P. S. & Chaudhuri, N. E. (2001). Polyhedron, 20, 651-655.]) corrugated chains are also observed, Finally, in Ni(NCS)2(4-methyl­pyridine N-oxide [PEDSUN (Shi et al., 2006b[Shi, J. M., Sun, Y. M., Liu, Z. & Liu, L. D. (2006b). Chem. Phys. Lett. 418, 84-89.]) and PEDSUN0 (Marsh, 2009[Marsh, R. E. (2009). Acta Cryst. B65, 782-783.])] an all-cis configuration is observed that also leads to the formation of corrugated chains.

In this context it is noted that we have reported on Co and Ni compounds with the composition Ni(NCS)2(4-chloro­pyridine)2 (UHUVIF and UHUVIF01; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 4779-4789.] and Co(NCS)2(4-chloro­pyridine)2 (GIQQIJ and GIQQIJ01; Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]) for each of which two isomers exist. In one of these isomers the metal cations are in an all-trans configuration, whereas in the second isomer that is thermodynamically stable at room temperature, an alternating all-trans and ciscistrans configuration is observed. Based on these results, we tried to prepare compounds with Ni(NCS)2 and 4-methyl­pyridine as ligand for which, because of the chloro–methyl exchange rule (Desiraju & Sarma, 1986[Desiraju, G. R. & Sarma, J. A. (1986). Proc. - Indian Acad. Sci. Chem. Sci. 96, 599-605.]), similar structures can be expected, but only one isomer with the composition Ni(NCS)2(4-methyl­pyridine)2 was obtained, which is isotypic to the stable isomer of Ni(NCS)2(4-chloro­pyridine)2 with an alternating all-trans and ciscistrans configuration (Näther & Mangelsen, 2024[Näther, C. & Mangelsen, S. (2024). Acta Cryst. E80, 771-776.]).

In the course of our systematic work we became inter­ested in Co(NCS)2 compounds with 4-methyl­pyridine as coligand, to check which of the two isomers might form and if this compound is isotypic to the corresponding Ni compound. It is noted that some of such compounds are already reported with this ligand. Most of them consist of solvates of discrete complexes but one chain compound is reported, for which no atomic coordinates are presented (see Database survey).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, Co(NCS)2(C6H7N)2, is built up of two crystallographically independent thio­cyanate anions and two crystallographically independent 4-methyl­pyridine coligands in general positions, as well as of two crystallographically independent CoII cations, of which one is located on a twofold rotational axis whereas the second occupies a center of inversion (Figs. 1[link] and 2[link]). The methyl H atoms in both 4-methyl­pyridine ligands are disordered and were refined in two different orientations. Both CoII cations are octa­hedrally coordinated by two 4-methyl­pyridine ligands and two N- and two S-bonding thio­cyanate anions (Figs. 1[link] and 2[link]). One of the CoII cations (Co1) shows a ciscis–trans configuration with the thio­cyanate N atoms in a trans position and the pyridine N atom as well as the thio­cyanate S atom in cis positions (Fig. 2[link]). The second crystallographically independent CoII cation (Co2) shows an all-trans configuration (Fig. 2[link]). For the CoII cation that shows a ciscis–trans configuration, the Co—N distances to the 4-methyl­pyridine ligands are slightly shorter compared to the cation in the cis–cis–trans configuration (Table 1[link]). Moreover, from the bond lengths and angles it is obvious that the octa­hedra are slightly distorted. The metal cations are linked by pairs of μ-1,3-bridging thio­cyanate anions into chains that, because of the alternating all-trans and ciscistrans configurations, are corrugated (Fig. 3[link]). It is noted that the title compound is isotypic to the corresponding compound with Ni(NCS)2 (Näther & Mangelsen, 2024[Näther, C. & Mangelsen, S. (2024). Acta Cryst. E80, 771-776.]) and to the isomer that is thermodynamically stable at room temperature of Ni(NCS)2(4-chloro­pyridine)2, which proves that the chloro–methyl exchange rule is valid in this case. From our synthetic work there is no hint of the existence of a second isomer of the title compound as observed for the corresponding 4-chloro­pyridine compound. Finally, it is noted that the title compound with an alternating all-trans and ciscistrans configuration shows a very rare Co coordination.

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.0699 (16) Co2—S1 2.5752 (4)
Co1—S2 2.6138 (6) Co2—N2 2.0585 (16)
Co1—N11 2.1437 (16) Co2—N21 2.1768 (16)
       
N1i—Co1—N1 174.16 (10) N2—Co2—S1 93.94 (4)
N1i—Co1—S2 82.53 (5) N2ii—Co2—S1 86.06 (5)
N1—Co1—S2 93.32 (5) N2—Co2—N2ii 180.00 (10)
N1i—Co1—N11 93.35 (6) N2—Co2—N21ii 90.54 (6)
N1—Co1—N11 90.80 (6) N2—Co2—N21 89.46 (6)
S2i—Co1—S2 89.82 (3) N21—Co2—S1 90.10 (4)
N11—Co1—S2 90.71 (4) N21ii—Co2—S1ii 90.09 (4)
N11i—Co1—S2 173.33 (4) N21ii—Co2—S1 89.90 (4)
N11—Co1—N11i 89.54 (8) N21—Co2—N21ii 180.0
S1—Co2—S1ii 180.0    
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) −x + 1, y, −z + [{1\over 2}]; (ii) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1. The disorder of the methyl H atoms is shown with full and open bonds.
[Figure 2]
Figure 2
Crystal structure of the title compound with view of a part of a chain with labeling of the CoII cations and showing the actual metal configuration. For clarity the disorder of the methyl H atoms is not shown.
[Figure 3]
Figure 3
Crystal structure of the title compound in a view along [101]. For clarity the disorder of the methyl H atoms is not shown.

3. Supra­molecular features

In the crystal structure of the title compound, the chains elongate along [101] with each chain surrounded by six neighboring chains (Fig. 3[link]). There are no significant inter­molecular C—H⋯N or C—H⋯S contacts and there are also no hints of any ππ stacking inter­actions (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N1 0.94 2.67 3.131 (3) 111

4. Database survey

A search in the CSD (version 5.43, last update December 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using CONQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for compounds based on Co(NCS)2 and 4-methyl­pyridine revealed that some such compounds are already reported. This includes a compound with the composition Co(NCS)2(4-methyl­pyridine)4·p-xylene in which the Co cations are tetra­hedrally coordinated by only one N-bonding thio­cyanate anion and three 4-methyl­pyridine ligands and which crystallizes with additional p-xylene solvate mol­ecules (Refcode: QQQGKJ; Solaculu et al., 1974[Solaculu, I., Sandulescu, D. & Dragulescu, C. (1974). Rev. Roum. Chim. 19, 415-417.]). However, no atomic coordinates are given and no charge balance is achieved, which means that the existence of this compound is questionable. There is also one compound with the composition Co(NCS)2(4-methyl­pyridine)2bis­(p-toluidine)2 reported for which also no atomic coordinates are given (Refcode: CECDAP; Micu-Semeniuc et al., 1983[Micu-Semeniuc, R., Hila, E., Dobos-Roman, G. & Ghergari, L. (1983). Rev. Roum. Chim. 28, 471-475.]). Surprisingly, the unit-cell parameters are very similar and the crystal system identical to that of compounds built up of octa­hedral discrete complexes with additional solvate mol­ecules (see below).

All remaining compounds consists of discrete complexes with the composition Co(NCS)2(4-methyl­pyridine)4 that crystallize as clathrates with p-toluidine (Refcode CECCOC; Micu-Semeniuc et al., 1983[Micu-Semeniuc, R., Hila, E., Dobos-Roman, G. & Ghergari, L. (1983). Rev. Roum. Chim. 28, 471-475.]), 4-methyl­pyridine [Refcodes: XIHHEB (Harris et al., 2001[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Fanwick, P. E., Richardson, J. & Gordon, E. M. (2001). Mater. Des. 22, 625-634.]) and XIHHEB01 (Harris et al., 2003[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.])] and nitro­benzene (Refcode ZZZUXU), nitro­ethane (Refcode: ZZZUXY) and benzene solvate (Refcode: ZZZUYI; Belitskus et al., 1963[Belitskus, D., Jeffrey, G. A., McMullan, R. K. & Stephenson, N. C. (1963). Inorg. Chem. 2, 873-875.]). However, only for one of these compounds (XIHHEB) are atomic coordinates available. Finally, the crystal structure of the pure complex Co(NCS)2(4-methyl­pyridine)4 is also reported but the unit-cell parameters are identical to that of several clathrates, which indicates that the solvent was not located (Refcode: VERNUC; Harris et al., 2003[Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.]).

5. Additional investigations

Powder X-ray diffraction measurements prove that the title compound has been obtained as a pure phase (Fig. 4[link]). In the IR and Raman spectrum the CN stretching vibration is observed at 2108 and 2095 cm−1 (IR) and at 2100 cm−1 (Raman), which confirms the presence of μ-1,3-bridging thio­cyanate anions (Fig. 5[link]). To determine whether the title compound can be transformed into a discrete aqua complex with the composition Co(NCS)2(4-methyl­pyridine)2(H2O)2, which exists for the corresponding compound with 4-chloro­pyridine (Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]), a sample of the title compound was stored for 2 d in a humid atmosphere, but no changes were observed (Fig. 6[link]).

[Figure 4]
Figure 4
Experimental (top) and calculated (bottom) X-ray powder pattern for the title compound.
[Figure 5]
Figure 5
IR (top) and Raman (bottom) spectra of the title compound. The CN stretching vibration of the thio­cyanate anions is given.
[Figure 6]
Figure 6
Experimental X-ray powder pattern of a sample of the title compound stored for 2 d in a humid atmosphere (top) and the calculated powder pattern (bottom).

6. Synthesis and crystallization

Synthesis

4-Methyl­pyridine and Co(NCS)2 were obtained from Sigma-Aldrich. The title compound was prepared by the reaction of Co(NCS)2 (350.2 mg, 2.06 mmol) and 4-methyl­pyridine (100 µL, 1.03 mmol) in 3 mL of water. The reaction mixture was stirred for 2 d at 393 K in a closed glass tube. C14H14CoN4S2 (361.34): calculated C 46.53, H 3.91, N 15.50, S 17.75; found C 46.2, H 3.7, N 15.3, S 17.4. Single crystals were prepared by the same method without stirring. The purity was proven by powder X-ray diffraction (see Fig. 4[link]). An IR and a Raman spectrum of the title compound can be seen in Fig. 5[link].

Experimental details

Elemental analysis was performed with a vario MICRO cube from Elementar Analysensysteme GmbH. IR spectra were recorded at room temperature on a Bruker Vertex70 FT-IR spectrometer using a broadband spectral range extension VERTEX FM for full mid and far IR. Raman spectra were recorded on a Bruker RAM II FT-Raman spectrometer using a liquid nitro­gen cooled, highly sensitive Ge detector, 1064 nm radiation and 3 cm−1 resolution. X-ray powder diffraction experiments were performed using a Stoe STADI P transmission powder diffractometer with Cu Kα1 radiation (λ = 1.540598 Å), a Johann-type Ge(111) monochromator and a MYTHEN 1K detector from Dectris.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model. The methyl H atoms in both crystallographically independent 4-methyl­pyridine ligands are disordered and were refined in two orientations rotated by 60°.

Table 3
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C6H7N)2]
Mr 361.34
Crystal system, space group Monoclinic, C2/c
Temperature (K) 220
a, b, c (Å) 20.1106 (12), 9.2112 (4), 19.2309 (12)
β (°) 116.353 (6)
V3) 3192.2 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.33
Crystal size (mm) 0.19 × 0.15 × 0.12
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.685, 0.763
No. of measured, independent and observed [I > 2σ(I)] reflections 18094, 3840, 3249
Rint 0.030
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.04
No. of reflections 3840
No. of parameters 195
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.44
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

catena-Poly[[bis(4-methylpyridine-κN)cobalt(II)]-di-µ-thiocyanato-κ2N:S;κ2S:N] top
Crystal data top
[Co(NCS)2(C6H7N)2]F(000) = 1480
Mr = 361.34Dx = 1.504 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.1106 (12) ÅCell parameters from 18094 reflections
b = 9.2112 (4) Åθ = 2.4–28.0°
c = 19.2309 (12) ŵ = 1.33 mm1
β = 116.353 (6)°T = 220 K
V = 3192.2 (3) Å3Block, violet
Z = 80.19 × 0.15 × 0.12 mm
Data collection top
Stoe IPDS-2
diffractometer
3249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 28.0°, θmin = 2.4°
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
h = 2626
Tmin = 0.685, Tmax = 0.763k = 1212
18094 measured reflectionsl = 2525
3840 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.3181P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.54 e Å3
3840 reflectionsΔρmin = 0.44 e Å3
195 parametersExtinction correction: SHELXL-2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0057 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.5000000.49107 (4)0.2500000.02383 (11)
Co20.7500000.2500000.5000000.02301 (11)
S10.66193 (2)0.42603 (6)0.52245 (2)0.02860 (13)
C10.59987 (9)0.4576 (2)0.43277 (10)0.0227 (3)
N10.55673 (9)0.47963 (18)0.36976 (9)0.0282 (3)
S20.58146 (3)0.29010 (6)0.22966 (3)0.03552 (15)
C20.64772 (10)0.2750 (2)0.31844 (10)0.0241 (3)
N20.69410 (9)0.26457 (19)0.38096 (9)0.0289 (3)
N110.57409 (8)0.65628 (18)0.24774 (9)0.0272 (3)
C110.59645 (10)0.6656 (2)0.19205 (11)0.0295 (4)
H110.5779250.5977310.1513600.035*
C120.64542 (11)0.7701 (2)0.19119 (11)0.0307 (4)
H120.6587990.7728920.1501810.037*
C130.67484 (10)0.8707 (2)0.25094 (11)0.0293 (4)
C140.65122 (12)0.8613 (2)0.30850 (13)0.0375 (5)
H140.6691430.9274910.3499960.045*
C150.60160 (12)0.7551 (2)0.30501 (12)0.0358 (5)
H150.5862360.7516410.3445620.043*
C160.72997 (13)0.9827 (3)0.25418 (15)0.0423 (5)
H16A0.7196811.0116520.2018690.063*0.3193
H16B0.7796230.9424960.2800150.063*0.3193
H16C0.7263701.0667190.2827520.063*0.3193
H16D0.7641021.0022600.3078890.063*0.6807
H16E0.7041591.0714150.2297430.063*0.6807
H16F0.7574130.9471920.2270050.063*0.6807
N210.67949 (8)0.06822 (18)0.49669 (9)0.0280 (3)
C210.70667 (11)0.0423 (2)0.54644 (12)0.0348 (4)
H210.7580410.0455510.5786350.042*
C220.66266 (12)0.1523 (2)0.55279 (13)0.0374 (4)
H220.6843920.2276740.5887880.045*
C230.58650 (11)0.1515 (2)0.50608 (12)0.0306 (4)
C240.55912 (11)0.0391 (2)0.45241 (12)0.0333 (4)
H240.5083010.0354510.4179350.040*
C250.60634 (10)0.0673 (2)0.44959 (11)0.0304 (4)
H250.5863220.1423590.4130220.036*
C260.53661 (13)0.2648 (2)0.51418 (14)0.0404 (5)
H26A0.4853010.2345440.4855880.061*0.6344
H26B0.5484540.2764660.5685620.061*0.6344
H26C0.5438750.3563700.4936260.061*0.6344
H26D0.5664520.3437090.5462630.061*0.3656
H26E0.5032990.3017880.4632890.061*0.3656
H26F0.5078790.2218830.5382240.061*0.3656
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01963 (17)0.0287 (2)0.01631 (17)0.0000.00182 (13)0.000
Co20.01948 (17)0.0281 (2)0.01689 (17)0.00358 (12)0.00393 (13)0.00223 (13)
S10.0267 (2)0.0373 (3)0.0161 (2)0.00936 (18)0.00425 (17)0.00090 (17)
C10.0198 (7)0.0243 (8)0.0228 (8)0.0022 (6)0.0083 (6)0.0016 (7)
N10.0247 (7)0.0350 (9)0.0190 (7)0.0046 (6)0.0044 (6)0.0003 (6)
S20.0337 (3)0.0424 (3)0.0187 (2)0.0092 (2)0.00094 (19)0.00481 (19)
C20.0243 (8)0.0255 (9)0.0229 (8)0.0033 (6)0.0109 (7)0.0013 (7)
N20.0274 (7)0.0356 (9)0.0202 (7)0.0072 (6)0.0075 (6)0.0015 (6)
N110.0232 (7)0.0311 (8)0.0246 (7)0.0022 (6)0.0082 (6)0.0051 (6)
C110.0295 (8)0.0335 (10)0.0230 (8)0.0015 (7)0.0093 (7)0.0077 (8)
C120.0329 (9)0.0344 (10)0.0285 (9)0.0002 (8)0.0170 (8)0.0036 (8)
C130.0252 (8)0.0294 (10)0.0328 (9)0.0006 (7)0.0125 (7)0.0041 (8)
C140.0426 (11)0.0395 (12)0.0343 (10)0.0130 (9)0.0205 (9)0.0160 (9)
C150.0428 (11)0.0392 (11)0.0317 (10)0.0107 (9)0.0224 (9)0.0133 (9)
C160.0437 (12)0.0404 (12)0.0498 (13)0.0125 (9)0.0271 (11)0.0095 (10)
N210.0245 (7)0.0297 (9)0.0272 (8)0.0017 (6)0.0092 (6)0.0005 (6)
C210.0287 (9)0.0331 (10)0.0347 (10)0.0013 (8)0.0069 (8)0.0033 (9)
C220.0380 (10)0.0312 (11)0.0363 (10)0.0011 (8)0.0106 (9)0.0057 (9)
C230.0343 (9)0.0289 (9)0.0329 (9)0.0008 (8)0.0187 (8)0.0064 (8)
C240.0256 (8)0.0385 (11)0.0350 (10)0.0006 (8)0.0126 (8)0.0046 (9)
C250.0260 (8)0.0340 (10)0.0288 (9)0.0049 (7)0.0101 (7)0.0022 (8)
C260.0438 (11)0.0358 (11)0.0477 (12)0.0072 (9)0.0260 (10)0.0082 (10)
Geometric parameters (Å, º) top
Co1—N1i2.0699 (16)C14—C151.377 (3)
Co1—N12.0699 (16)C15—H150.9400
Co1—S2i2.6138 (6)C16—H16A0.9700
Co1—S22.6138 (6)C16—H16B0.9700
Co1—N112.1437 (16)C16—H16C0.9700
Co1—N11i2.1437 (16)C16—H16D0.9700
Co2—S12.5752 (4)C16—H16E0.9700
Co2—S1ii2.5753 (4)C16—H16F0.9700
Co2—N22.0585 (16)N21—C211.336 (3)
Co2—N2ii2.0585 (16)N21—C251.342 (2)
Co2—N212.1768 (16)C21—H210.9400
Co2—N21ii2.1768 (16)C21—C221.386 (3)
S1—C11.6448 (18)C22—H220.9400
C1—N11.153 (2)C22—C231.390 (3)
S2—C21.6401 (18)C23—C241.392 (3)
C2—N21.153 (2)C23—C261.503 (3)
N11—C111.336 (2)C24—H240.9400
N11—C151.344 (2)C24—C251.382 (3)
C11—H110.9400C25—H250.9400
C11—C121.382 (3)C26—H26A0.9700
C12—H120.9400C26—H26B0.9700
C12—C131.388 (3)C26—H26C0.9700
C13—C141.387 (3)C26—H26D0.9700
C13—C161.495 (3)C26—H26E0.9700
C14—H140.9400C26—H26F0.9700
N1i—Co1—N1174.16 (10)C13—C16—H16D109.5
N1i—Co1—S282.53 (5)C13—C16—H16E109.5
N1—Co1—S293.32 (5)C13—C16—H16F109.5
N1i—Co1—S2i93.32 (5)H16A—C16—H16B109.5
N1—Co1—S2i82.53 (5)H16A—C16—H16C109.5
N1i—Co1—N1193.35 (6)H16A—C16—H16D141.1
N1i—Co1—N11i90.80 (6)H16A—C16—H16E56.3
N1—Co1—N1190.80 (6)H16A—C16—H16F56.3
N1—Co1—N11i93.34 (6)H16B—C16—H16C109.5
S2i—Co1—S289.82 (3)H16B—C16—H16D56.3
N11—Co1—S290.71 (4)H16B—C16—H16E141.1
N11i—Co1—S2173.33 (4)H16B—C16—H16F56.3
N11—Co1—S2i173.33 (4)H16C—C16—H16D56.3
N11i—Co1—S2i90.71 (4)H16C—C16—H16E56.3
N11—Co1—N11i89.54 (8)H16C—C16—H16F141.1
S1—Co2—S1ii180.0H16D—C16—H16E109.5
N2—Co2—S193.94 (4)H16D—C16—H16F109.5
N2ii—Co2—S1ii93.94 (4)H16E—C16—H16F109.5
N2ii—Co2—S186.06 (5)C21—N21—Co2120.72 (13)
N2—Co2—S1ii86.06 (4)C21—N21—C25117.11 (18)
N2—Co2—N2ii180.00 (10)C25—N21—Co2121.95 (14)
N2—Co2—N21ii90.54 (6)N21—C21—H21118.5
N2—Co2—N2189.46 (6)N21—C21—C22123.07 (19)
N2ii—Co2—N2190.54 (6)C22—C21—H21118.5
N2ii—Co2—N21ii89.46 (7)C21—C22—H22119.9
N21—Co2—S190.10 (4)C21—C22—C23120.2 (2)
N21ii—Co2—S1ii90.09 (4)C23—C22—H22119.9
N21ii—Co2—S189.90 (4)C22—C23—C24116.29 (18)
N21—Co2—S1ii89.91 (4)C22—C23—C26121.6 (2)
N21—Co2—N21ii180.0C24—C23—C26122.07 (19)
C1—S1—Co2101.18 (6)C23—C24—H24119.9
N1—C1—S1179.55 (16)C25—C24—C23120.27 (18)
C1—N1—Co1164.70 (14)C25—C24—H24119.9
C2—S2—Co1100.25 (6)N21—C25—C24122.98 (19)
N2—C2—S2179.70 (18)N21—C25—H25118.5
C2—N2—Co2162.72 (14)C24—C25—H25118.5
C11—N11—Co1123.13 (13)C23—C26—H26A109.5
C11—N11—C15116.78 (17)C23—C26—H26B109.5
C15—N11—Co1120.08 (13)C23—C26—H26C109.5
N11—C11—H11118.3C23—C26—H26D109.5
N11—C11—C12123.36 (17)C23—C26—H26E109.5
C12—C11—H11118.3C23—C26—H26F109.5
C11—C12—H12120.0H26A—C26—H26B109.5
C11—C12—C13119.95 (17)H26A—C26—H26C109.5
C13—C12—H12120.0H26A—C26—H26D141.1
C12—C13—C16122.08 (17)H26A—C26—H26E56.3
C14—C13—C12116.57 (18)H26A—C26—H26F56.3
C14—C13—C16121.35 (18)H26B—C26—H26C109.5
C13—C14—H14119.9H26B—C26—H26D56.3
C15—C14—C13120.20 (18)H26B—C26—H26E141.1
C15—C14—H14119.9H26B—C26—H26F56.3
N11—C15—C14123.12 (17)H26C—C26—H26D56.3
N11—C15—H15118.4H26C—C26—H26E56.3
C14—C15—H15118.4H26C—C26—H26F141.1
C13—C16—H16A109.5H26D—C26—H26E109.5
C13—C16—H16B109.5H26D—C26—H26F109.5
C13—C16—H16C109.5H26E—C26—H26F109.5
Co1—N11—C11—C12178.58 (15)C15—N11—C11—C120.0 (3)
Co1—N11—C15—C14177.88 (18)C16—C13—C14—C15178.6 (2)
Co2—N21—C21—C22172.50 (17)N21—C21—C22—C230.2 (3)
Co2—N21—C25—C24172.73 (15)C21—N21—C25—C242.0 (3)
N11—C11—C12—C131.0 (3)C21—C22—C23—C242.2 (3)
C11—N11—C15—C140.8 (3)C21—C22—C23—C26176.8 (2)
C11—C12—C13—C141.3 (3)C22—C23—C24—C252.5 (3)
C11—C12—C13—C16177.9 (2)C23—C24—C25—N210.4 (3)
C12—C13—C14—C150.6 (3)C25—N21—C21—C222.3 (3)
C13—C14—C15—N110.5 (4)C26—C23—C24—C25176.55 (18)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N10.942.673.131 (3)111
 

Acknowledgements

This work was supported by the federal state of Schleswig-Holstein.

References

First citationBelitskus, D., Jeffrey, G. A., McMullan, R. K. & Stephenson, N. C. (1963). Inorg. Chem. 2, 873–875.  CSD CrossRef CAS Web of Science Google Scholar
First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. R. & Sarma, J. A. (1986). Proc. - Indian Acad. Sci. Chem. Sci. 96, 599–605.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Fanwick, P. E., Richardson, J. & Gordon, E. M. (2001). Mater. Des. 22, 625–634.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. & Richardson, J. (2003). NASA Technical Reports, 211890.  Google Scholar
First citationJochim, A., Rams, M., Böhme, M., Ceglarska, M., Plass, W. & Näther, C. (2020). Dalton Trans. 49, 15310–15322.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 4779–4789.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaji, T. K., Laskar, I. R., Mostafa, G., Welch, A. J., Mukherjee, P. S. & Chaudhuri, N. E. (2001). Polyhedron, 20, 651–655.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarsh, R. E. (2009). Acta Cryst. B65, 782–783.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  CSD CrossRef Google Scholar
First citationMicu-Semeniuc, R., Hila, E., Dobos-Roman, G. & Ghergari, L. (1983). Rev. Roum. Chim. 28, 471–475.  CAS Google Scholar
First citationNäther, C. & Mangelsen, S. (2024). Acta Cryst. E80, 771–776.  CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationNeumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018). Inorg. Chem. 57, 3305–3314.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534–24544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Chen, J. N. & Liu, L. D. (2006a). Pol. J. Chem. 80, 1909–1912.  CAS Google Scholar
First citationShi, J. M., Li, W. N., Zhang, F. X., Zhang, X. & Liu, L. D. (2007). Chin. J. Struct. Chem. 26, 118–121.  CAS Google Scholar
First citationShi, J. M., Sun, Y. M., Liu, Z. & Liu, L. D. (2006b). Chem. Phys. Lett. 418, 84–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationSolaculu, I., Sandulescu, D. & Dragulescu, C. (1974). Rev. Roum. Chim. 19, 415–417.  Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds