research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ-acetato-κ4O:O′-bis­{(acetato-κ2O,O′)tetra­aqua­[1-(pyridin-2-yl­methyl­idene-κN)-2-(pyridin-2-yl-κN)hydrazine-κN1]lanthanum(III)} dinitrate hemihydrate

crossmark logo

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal, and bCRM2, Université de Lorraine and CNRS, Vandoeuvre Les Nancy, France
*Correspondence e-mail: i6thiam@yahoo.fr

Edited by S. Parkin, University of Kentucky, USA (Received 9 December 2024; accepted 20 December 2024; online 1 January 2025)

In the binuclear title complex, [La2(C2H3O2)4(C11H10N4)(H2O)4](NO3)2·0.5H2O, the two lanthanum ions are nine coordinate in a distorted trigonal–prismatic geometry. Each LaIII ion is bonded to three N atoms of the Schiff base, 1-(pyridin-2-yl)-2-(pyridin-2-yl­methyl­ene)hydrazine and is coordinated by one acetate group, which acts in η2-bidentate mode and two acetate groups that act in μ2-mode between the two LaIII ions. Two η1-water mol­ecules complete the coordination sphere. All bond lengths in the coordination environment of the LaIII ion are slightly larger than those observed in the isostructural NdIII and SmIII complexes. The LaIII⋯LaIII distance is 4.6696 (6) Å. In the crystal, extensive O—H⋯O hydrogen-bonding inter­actions involving the coordinated water mol­ecules and the non-coordinating nitrate anions, as well as the oxygen atoms of the acetate groups, generate an overall three-dimensional supra­molecular network.

1. Chemical context

Lanthanide–Schiff base complexes are widely used in applied and fundamental sciences. Chemists continue to pay much attention in the preparation of functional Schiff bases and their lanthanide complexes, which can be used in many fields such as catalysis (Bell et al., 2022[Bell, D. J., Natrajan, L. S. & Riddell, I. A. (2022). Coord. Chem. Rev. 472, 214786.]), radiopharmaceuticals (Hu & Wilson, 2022[Hu, A. & Wilson, J. J. (2022). Acc. Chem. Res. 55, 904-915.]), fluoro­immuno assay reagents (Wu et al., 2024[Wu, X., Ruan, C., Zhou, S., Zou, L., Wang, R. & Li, G. (2024). Spectrochim. Acta A Mol. Biomol. Spectrosc. 317, 124410.]; Dong et al., 2023[Dong, X. Z., Sun, Z., Li, B. L., Ling, Y., Li, N. B. & Luo, H. Q. (2023). Microchem. J. 191, 108881.]), diagnostic tools in biology (Liu et al., 2020[Liu, Y., Wei, Z., Liao, X. & Zhou, J. (2020). Acc. Mater. Res. 1, 225-235.]; Zapolotsky et al., 2022[Zapolotsky, E. N., Qu, Y. & Babailov, S. P. (2022). J. Incl Phenom. Macrocycl Chem. 102, 1-33.]), and in laser development (Lapaev et al., 2019[Lapaev, D. V., Nikiforov, V. G., Lobkov, V. S., Knyazev, A. A., Krupin, A. S. & Galyametdinov, Y. G. (2019). J. Photochem. Photobiol. Chem. 382, 111962.]). The use of acyclic Schiff bases allows the introduction of two identical or different metal ions (Geng et al., 2022[Geng, S., Ren, N. & Zhang, J.-J. (2022). Polyhedron, 219, 115798.]; Bryleva et al., 2023[Bryleva, Y. A., Yzhikova, K. M., Artem'ev, A. V., Davydova, M. P., Rakhmanova, M. I., Polyakova, E. V., Glinskaya, L. A. & Samsonenko, D. G. (2023). Polyhedron, 231, 116251.]). The presence of multiple coordination sites and the versatile coordination modes provide several possible structures with lanthanide ions (Le Fur et al., 2018[Le Fur, M., Molnár, E., Beyler, M., Fougère, O., Esteban-Gómez, D., Rousseaux, O., Tripier, R., Tircsó, G. & Platas-Iglesias, C. (2018). Inorg. Chem. 57, 6932-6945.]; Kariaka et al., 2019[Kariaka, N. S., Kolotilov, S. V., Gawryszewska, P., Kasprzycka, E., Weselski, M., Dyakonenko, V. V., Shishkina, S. V., Trush, V. A. & Amirkhanov, V. M. (2019). Inorg. Chem. 58, 14682-14692.]). Organic ligands that are used as precursors for the structural design of complexes can have hard and/or soft sites such as oxygen, nitro­gen or sulfur atoms. Through proper design, the mol­ecular structure of the ligand can be controlled to have suitable sites to coordinate metal ions to generate specific architectures. The introduction of co-ligands offers multiple possibilities to develop original structures. Carboxyl­ate groups are versatile co-ligands, which can adopt various coordination modes, to generate different structures with the same ligand (Grebenyuk et al., 2021[Grebenyuk, D., Zobel, M., Polentarutti, M., Ungur, L., Kendin, M., Zakharov, K., Degtyarenko, P., Vasiliev, A. & Tsymbarenko, D. (2021). Inorg. Chem. 60, 8049-8061.]; Wang et al., 2012[Wang, H.-C., Xue, M., Guo, Q., Zhao, J.-P., Liu, F.-C. & Ribas, J. (2012). J. Solid State Chem. 187, 143-148.]). However, lanthanides can have high and variable coordination numbers, depending on the synthesis conditions of the complexes. Indeed, the synthesis of these compounds is considerably influenced by the reaction procedures and conditions such as the nature of the solvent, pH, temperature and/or reaction time (Sinchow et al., 2019[Sinchow, M., Chuasaard, T., Yotnoi, B. & Rujiwatra, A. (2019). J. Solid State Chem. 278, 120902.]). This provides a versatility in coordination geometries that makes it difficult to predict the structures and properties of lanthanide com­pounds. In this context, for the synthesis of lanthanide(III) complexes, the Schiff base 1-(pyridin-2-yl­methyl­idene)-2-(pyridin-2-yl)hydrazine (HL), which provides three soft donor N atoms from two pyridine rings and an azomethine unit, was used in the presence of acetate anions as co-ligands, which provide hard donor O atoms. Several complexes from the ligand HL have been reported by our group (Gueye, Dieng et al., 2017[Gueye, M. N., Dieng, M., Lo, D., Thiam, I. E., Barry, A. H., Gaye, M., Sall, A. S. & Retailleau, P. (2017). Eur. J. Chem. 8, 137-143.]; Ndiaye-Gueye, Dieng, Thiam, Sow et al., 2017[Ndiaye-Gueye, M., Dieng, M., Thiam, I. E., Sow, M. M., Sylla-Gueye, R., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Rev. Roum. Chim. 62, 35-41.]; Sarr et al., 2018[Sarr, M., Diop, M., Thiam, E. I., Barry, A. H., Gaye, M. & Retailleau, P. (2018). Acta Cryst. E74, 450-453.]). In all of these complexes, the acetate group is either bidentate chelating η2-OOCH3, bridging μ2-OOCH3 or bidentate bridging η2:μ2-OOCH3. This report presents the synthesis, characterization, and X-ray structure of a lanthanum (III) complex derived from 1-(pyrydin-2­yl)-2-(pyridine-2-yl­methyl­ene)hydrazine (HL) and an acetate group as co-ligand.

[Scheme 1]

2. Structural commentary

A mixture of the ligand HL [1-(pyridin-2-yl)-2-(pyridin-2-yl­methyl­ene)hydrazine], lanthanum nitrate, and acetate salts in a 1:1:3 ratio yields the title compound, which crystallographic studies reveal to be a dicationic binuclear complex with a 1:1:2 stoichiometric ratio. The crystal structure exhibits disorder involving both the ligand and the nitrate group. The site occupancy factors (SOFs) for the two disordered parts of the ligand refine to 0.547 (9) and 0.453 (9). For the nitrate group, the SOFs refine to 0.826 (9) and 0.174 (9). The following analysis of the crystal structure focuses on the major disorder components. The structure of the lanthanum acetato-bridged complex is built from two identical entities {La(HL)(η2-OOCH3)(η1-HO2)2} bridged by two acetate anions acting in μ2-OOCH3 mode, yielding a binuclear dianionic complex containing two uncoordinated nitrate anions and a partial occupancy non-coordinating water mol­ecule (Figs. 1[link] and 2[link]). Each LaIII ion is coordinated by one HL ligand coordinated through two 2-pyridyl nitro­gen atoms and one azomethine nitro­gen atom. The coordination of the Schiff base forms two five-membered rings (LaNCNN) and (LaNCCN) with bite angles of 59.99 (9) and 59.43 (10)°, respectively, in the major disorder component. Additionally, each LaIII ion is coordinated by one chelating-bidentate acetate group acting in η2-OOCH3 mode and two chelating-monodentate water mol­ecules acting in η1-HO2 mode. Thus, the LaIII ions are nine coordinate and their environments are best described as a strongly distorted tricapped trigonal–prismatic geometry. The atoms N4/N3/O5 and O2/O3/O4 define the slanted base faces of the trigonal–tricapped environment. These two planes are twisted and form a dihedral angle of 57.37 (2)°. The three caps are occupied by O1, N1 and N2 atoms. The lanthanum cation is situated 1.320 (4) Å out of the plane defined by the caps O1, N1 and N2 of the polyhedron. The La—N distances (Table 1[link]) are slightly longer than those found for the analogous complex of the NdIII ion with the same ligand [2.675 (3), 2.637 (2) and 2.639 (2) Å] (Ndiaye-Gueye, Dieng, Thiam, Sow et al., 2017[Ndiaye-Gueye, M., Dieng, M., Thiam, I. E., Sow, M. M., Sylla-Gueye, R., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Rev. Roum. Chim. 62, 35-41.]; Ndiaye-Gueye, Dieng, Thiam, Lo et al., 2017[Ndiaye-Gueye, M., Dieng, M., Thiam, E. I., Lo, D., Barry, A. H., Gaye, M. & Retailleau, P. (2017). S. Afr. J. Chem. 70, 8-15.]; Gueye, Dieng et al., 2017[Gueye, M. N., Dieng, M., Lo, D., Thiam, I. E., Barry, A. H., Gaye, M., Sall, A. S. & Retailleau, P. (2017). Eur. J. Chem. 8, 137-143.]; Gueye, et al. 2021[Ndiaye-Gueye, M., Diop, A., Gaye, P. A., Thiam, I. E., Tamboura, F. B. & Gaye, M. (2021). Earthline J. Chem. Sci. pp. 81-95.]). The La—O distances s fall in the range reported for other carboxyl­ate complexes (Gueye, Moussa et al., 2017[Gueye, N. D. M., Moussa, D., Thiam, E. I., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Acta Cryst. E73, 1121-1124.]; Bag et al., 2013[Bag, P., Maji, S. K., Biswas, P., Flörke, U. & Nag, K. (2013). Polyhedron, 52, 976-985.]; Chen et al., 2014[Chen, M.-L., Shi, Y.-R., Yang, Y.-C. & Zhou, Z.-H. (2014). J. Solid State Chem. 219, 265-273.]). The distances for La—OH2 are comparable to the values in the complex [{Ln(HL(η2-OOCH3)2(η1-H2O)2}{μ2-OOCH3)2}{Ln(HL)(η2-OOCH3)2}(η1-H2O)2]·2NO3, (where Ln = Nd or Sm) (Ndiaye-Gueye, Dieng, Thiam, Lo, et al., 2017[Ndiaye-Gueye, M., Dieng, M., Thiam, E. I., Lo, D., Barry, A. H., Gaye, M. & Retailleau, P. (2017). S. Afr. J. Chem. 70, 8-15.]). The LaIII⋯LaIII distance is 4.6696 (6) Å and the value of the bridging angle O3— La1—O10 is 109.21 (5)°. The C6—N3 distance of 1.289 (7) Å is consistent with double-bond character. The bond lengths in the chain C—CH=N—NH—C bridging two pyridine rings are [1.443 (6) Å for PyC—C, 1.289 (7) Å for CH=N, 1.346 (6) Å for N—N and 1.377 (6) Å C—CPy] and are significantly different from the corresponding mean values for this ligand found in the CSD [1.450 (17), 1.283 (15), 1.349 (12) and 1.376 (16) Å, respectively].

Table 1
Selected bond lengths (Å)

La1—O1 2.5659 (14) La1—O10 2.4814 (14)
La1—O2 2.5395 (15) La1—N1 2.626 (8)
La1—O3 2.5184 (16) La1—N3 2.683 (7)
La1—O4 2.5653 (15) La1—N4 2.768 (6)
La1—O5 2.6073 (16)    
[Figure 1]
Figure 1
A view of the title compound, showing the atom-numbering scheme for the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The nature of disorder of the ligand and nitrate anion.

3. Supra­molecular features

The title complex [{La(HL)(η2-OOCH3)(η1-H2O)2}{(μ2-OOCH3)2}{La(HL)(η2-OOCH3)(η1-H2O)2}]·2NO3·0.5(H2O) features both coordinated and solvent water mol­ecules. The unbound solvent water is present at partial occupancy. An intra­molecular hydrogen bond is formed between the OH group of a coordinated water mol­ecule, acting as donor, and an oxygen atom (O7) of a free nitrate group, acting as acceptor (O1—H1B⋯O7). In addition, inter­molecular hydrogen bonds involving the OH groups of coordinated water mol­ecules are significant in the construction of the structure. These OH groups act as donors to the nitrate oxygen atoms of free nitrate groups (O1—H1A⋯O8i and O2—H2B⋯O7i; symmetry codes as in Table 1[link]) and to oxygen atoms of bidentate chelating acetate groups (O2—H2A⋯O4ii). The NH group of the hydrazine moiety inter­acts with an oxygen atom of a bidentate chelating acetate group, further consolidating the structure through the hydrogen bond N2—H2⋯O5iii. Weak inter­molecular C—H⋯O hydrogen bonds are also observed between CH groups and oxygen atoms of the bidentate chelating acetate groups, as summarized in Table 1[link]. These hydrogen bonds collectively connect the mol­ecules of the complex into a three-dimensional network (Table 2[link], Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O6 0.76 (1) 2.27 (2) 2.994 (3) 158 (3)
O1—H1A⋯O7 0.76 (1) 2.59 (2) 3.273 (6) 151 (2)
O1—H1A⋯O6′ 0.76 (1) 2.19 (2) 2.901 (14) 154 (2)
O1—H1B⋯O8i 0.76 (1) 2.03 (2) 2.793 (4) 176 (3)
O1—H1B⋯O8′i 0.76 (1) 1.97 (3) 2.73 (2) 171 (3)
O2—H2A⋯O4ii 0.76 (1) 1.95 (2) 2.6971 (19) 168 (3)
O2—H2B⋯O7i 0.76 (1) 2.03 (2) 2.786 (4) 171 (3)
O2—H2B⋯N5′i 0.76 (1) 2.68 (2) 3.419 (16) 164 (3)
O2—H2B⋯O7′i 0.76 (1) 1.79 (3) 2.54 (2) 167 (3)
C13—H13A⋯O7iii 0.96 2.53 3.483 (5) 170
C13—H13A⋯O7′iii 0.96 2.33 3.27 (3) 167
C13—H13C⋯O7iv 0.96 2.65 3.544 (6) 155
C15—H15A⋯O9 0.96 2.62 3.350 (10) 133
C2—H2⋯O6v 0.93 2.57 3.420 (6) 153
N2—H2C⋯O5iv 0.86 2.13 2.898 (7) 149
C11—H11⋯O9 0.93 2.57 3.150 (10) 121
N2′—H2′A⋯O5iv 0.86 2.30 3.028 (7) 142
C6′—H6′⋯O5iv 0.93 2.32 3.067 (9) 138
C10′—H10′⋯O6′v 0.93 2.34 3.260 (18) 170
O9—H9A⋯O6vi 0.76 (2) 2.66 (14) 3.062 (9) 115 (13)
O9—H9B⋯O8vi 0.76 (2) 2.57 (10) 3.241 (11) 147 (16)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y+2, -z]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, -y+2, -z+1]; (v) [-x+2, -y+2, -z+1]; (vi) [x-1, y, z-1].
[Figure 3]
Figure 3
A partial packing plot showing diperiodic sheets that extend parallel to the bc plane.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.44, updates of September 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated 27 compounds incorporating the ligand 1-(pyridin-2-yl­methyl­idene)-2-(pyridin-2-yl)hydrazine, which has been widely used in coordination chemistry. Seven examples of complexes of the above ligand with f-block metal ions are known from the literature: BEHFUS and TESXOH (Gueye, Dieng et al., 2017[Gueye, M. N., Dieng, M., Lo, D., Thiam, I. E., Barry, A. H., Gaye, M., Sall, A. S. & Retailleau, P. (2017). Eur. J. Chem. 8, 137-143.]), PCPHYB (Baraniak et al., 1976[Baraniak, E., Bruce, R. S. L., Freeman, H. C., Hair, N. J. & James, J. (1976). Inorg. Chem. 15, 2226-2230.]), TIKDAV and TIKCUO (Ndiaye-Gueye, Dieng, Thiam, Lo, et al., 2017[Ndiaye-Gueye, M., Dieng, M., Thiam, E. I., Lo, D., Barry, A. H., Gaye, M. & Retailleau, P. (2017). S. Afr. J. Chem. 70, 8-15.]), ZEFJOM (Gueye, Moussa et al., 2017[Gueye, N. D. M., Moussa, D., Thiam, E. I., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Acta Cryst. E73, 1121-1124.]), GIJYAD (Ndiaye-Gueye et al., 2022[Ndiaye-Gueye, M., Diop, A., Gaye, P. A., Thiam, I. E., Tamboura, F. B. & Gaye, M. (2022). Earthline J. Chem. Sci. 7, 81-95.]). Three structures are available for the Ca2+ metal ion: NIWLEM, NIWLIQ and NIWLOW (Vantomme, Hafezi et al., 2014[Vantomme, G., Hafezi, N. & Lehn, J.-M. (2014). Chem. Sci. 5, 1475-1483.]). One Co2+ (PAPCOC10; Gerloch, 1966[Gerloch, M. (1966). J. Chem. Soc. A, pp. 1317-1325.]) and two Mn2+ [PEQMAC (Sarr et al., 2018[Sarr, M., Diop, M., Thiam, E. I., Barry, A. H., Gaye, M. & Retailleau, P. (2018). Acta Cryst. E74, 450-453.]), SIZPID01 (Diop et al., 2019[Diop, A., Sarr, M., Diop, M., Thiam, I. E., Barry, A. H., Coles, S., Orton, J. & Gaye, M. (2019). Transit. Met. Chem. 44, 415-423.])] structures are reported in the CSD. Nine entries for Cu2+ are found: DIMLEQ10 and DIMLIU01 (Rojo et al., 1988[Rojo, T., Mesa, J. L., Arriortua, M. I., Savariault, J. M., Galy, J., Villeneuve, G. & Beltran, D. (1988). Inorg. Chem. 27, 3904-3911.]), JAWRII (Mesa et al., 1988[Mesa, J. L., Arriortua, M. I., Lezama, L., Pizarro, J. L., Rojo, T. & Beltran, D. (1988). Polyhedron, 7, 1383-1388.]), SAHDOU (Mesa et al., 1989[Mesa, J. L., Rojo, T., Arriortua, M. I., Villeneuve, G., Folgado, J. V., Beltrán-Porter, A. & Beltrán-Porter, D. (1989). J. Chem. Soc. Dalton Trans. pp. 53-56.]), REJMEY and REJMIC (Ainscough et al., 1996[Ainscough, E. W., Brodie, A. M., Ingham, S. L. & waters, J. M. (1996). Inorg. Chim. Acta, 249, 47-55.]), QUJTIZ (Chowdhury et al., 2009[Chowdhury, S., Mal, P., Basu, C., Stoeckli-Evans, H. & Mukherjee, S. (2009). Polyhedron, 28, 3863-3871.]) TUSWEK (Mukherjee et al., 2010[Mukherjee, S., Chowdhury, S., Chattopadhyay, A. P. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1182-1188.]), FAFZOF (U-wang et al., 2020[U-wang, O., Bhubon Singh, R. K., Singh, U. I., Ramina, Singh, T. S., Swu, T. & Singh, Ch. B. (2020). Asian J. Chem. 32, 2783-2792.]). Five Zn2+ structures: GECWAP and GECWIX (Vantomme, Jiang et al., 2014[Vantomme, G., Jiang, S. & Lehn, J.-M. (2014). J. Am. Chem. Soc. 136, 9509-9518.]), SAVQAI and SAVQEM (Dumitru et al., 2005[Dumitru, F., Petit, E., van der Lee, A. & Barboiu, M. (2005). Eur. J. Inorg. Chem. pp. 4255-4262.]), SIZPOJ01 (Diop et al., 2019[Diop, A., Sarr, M., Diop, M., Thiam, I. E., Barry, A. H., Coles, S., Orton, J. & Gaye, M. (2019). Transit. Met. Chem. 44, 415-423.]) are also reported in the CSD.

5. Synthesis and crystallization

A mixture of 2-hydrazino­pyridine (1 mmol) and 2-pyridine­carbaldehyde (1 mmol) in ethanol (15 mL) was stirred under reflux for 30 min. A mixture of sodium acetate (3 mmol) and La(NO3)3·6H2O (1 mmol) in ethanol (10 mL) was added to the solution. The mixture was stirred for 30 min and the resulting yellow solution was filtered and the filtrate was kept at 298 K. A yellow powder appeared after one day and was collected by filtration. Recrystallization by slow evaporation of an ethanol solution gave X-ray quality crystals of the compound [C30H40LaN8O12]·2NO3·0.5H2O. Yield 65%. Analysis calculated C, 32.30; H, 3.70; N, 12.56. Found: C, 32.27; H, 3.73; N, 12.52. %.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were found in difference-Fourier maps, but subsequently included in the refinement using riding models, with constrained distances set to 0.93 Å (Csp2—H), 0.96 Å (RCH3) and 0.86 Å (Nsp2—H). Water hydrogen atoms were refined using 1,2 and 1,3 distance restraints. Uiso(H) parameters were set to values of either 1.2Ueq or 1.5Ueq (RCH3 and H2O only) of the attached atom. To ensure satisfactory refinement for disordered groups in the structure, a combination of constraints and restraints was employed. Constraints (SHELXL command EADP) were used to fix Uij of overlapping fragments. Restraints were used to ensure the integrity of ill-defined or disordered groups (SHELXL commands SAME, DFIX, CHIV, SIMU, and RIGU).

Table 3
Experimental details

Crystal data
Chemical formula [La2(C2H3O2)4(C11H10N4)(H2O)4](NO3)2·0.5H2O
Mr 1115.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.1170 (11), 17.8366 (19), 11.8094 (12)
β (°) 114.213 (3)
V3) 2135.7 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.06
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker X8
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.215, 0.424
No. of measured, independent and observed [I > 2σ(I)] reflections 72063, 10392, 7368
Rint 0.084
(sin θ/λ)max−1) 0.836
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.064, 1.04
No. of reflections 10392
No. of parameters 451
No. of restraints 781
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.26, −0.95
Computer programs: APEX5 (Bruker, 2023[Bruker (2023). APEX5. Bruker-AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Di-µ-acetato-κ4O:O'-bis{(acetato-κ2O,O')tetraaqua[1-(pyridin-2-ylmethylidene-κN)-2-(pyridin-2-yl-κN)hydrazine-κN1]lanthanum(III)} dinitrate hemihydrate top
Crystal data top
[La2(C2H3O2)4(C11H10N4)(H2O)4](NO3)2·0.5H2OF(000) = 1106
Mr = 1115.55Dx = 1.735 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.1170 (11) ÅCell parameters from 21184 reflections
b = 17.8366 (19) Åθ = 2.7–29.4°
c = 11.8094 (12) ŵ = 2.06 mm1
β = 114.213 (3)°T = 293 K
V = 2135.7 (4) Å3Block, metallic yellowish yellow
Z = 20.2 × 0.2 × 0.1 mm
Data collection top
Bruker X8
diffractometer
7368 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1Rint = 0.084
Single crystals were positioned at 35, 40, 35, and 28 mm from the detector scansθmax = 36.4°, θmin = 2.2°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 1618
Tmin = 0.215, Tmax = 0.424k = 2929
72063 measured reflectionsl = 1919
10392 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0112P)2 + 1.5461P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.064(Δ/σ)max = 0.003
S = 1.04Δρmax = 1.26 e Å3
10392 reflectionsΔρmin = 0.94 e Å3
451 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
781 restraintsExtinction coefficient: 0.00071 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.56737 (2)0.95905 (2)0.20467 (2)0.01520 (3)
O10.71353 (15)0.84746 (8)0.31638 (13)0.0207 (3)
H1A0.737 (2)0.8335 (14)0.3831 (15)0.031*
H1B0.753 (2)0.8249 (13)0.289 (2)0.031*
O20.52181 (16)0.84992 (8)0.05463 (13)0.0247 (3)
H2A0.490 (2)0.8580 (14)0.0147 (14)0.037*
H2B0.574 (2)0.8205 (13)0.062 (2)0.037*
O30.77181 (16)0.96048 (9)0.16251 (13)0.0295 (3)
O40.57600 (14)1.10181 (8)0.18261 (12)0.0218 (3)
O50.46089 (19)1.06485 (10)0.28544 (14)0.0360 (4)
C120.5029 (2)1.11655 (12)0.23852 (17)0.0263 (5)
C130.4664 (3)1.19661 (14)0.2475 (2)0.0449 (7)
H13A0.4317381.2188890.1663200.067*
H13B0.5433221.2237720.3009970.067*
H13C0.4009211.1984180.2807780.067*
O100.37451 (14)0.99521 (9)0.01294 (13)0.0248 (3)
C140.2633 (2)1.02384 (12)0.05024 (18)0.0207 (4)
C150.1712 (3)1.04094 (18)0.0093 (2)0.0452 (7)
H15A0.1042321.0029980.0128310.068*
H15B0.1308251.0889040.0188590.068*
H15C0.2194071.0419440.0978470.068*
N10.7389 (8)1.0127 (6)0.4165 (8)0.0154 (11)0.547 (8)
C10.8351 (10)1.0594 (7)0.4194 (8)0.0221 (14)0.547 (8)
H10.8377591.0725300.3442760.026*0.547 (8)
C20.9305 (7)1.0891 (5)0.5271 (6)0.0234 (12)0.547 (8)
H20.9939451.1223420.5246960.028*0.547 (8)
C30.9276 (6)1.0672 (4)0.6394 (5)0.0228 (10)0.547 (8)
H30.9907641.0851190.7141300.027*0.547 (8)
C40.8317 (6)1.0194 (3)0.6390 (5)0.0207 (10)0.547 (8)
H40.8284571.0045070.7131410.025*0.547 (8)
C50.7388 (6)0.9932 (4)0.5261 (5)0.0123 (9)0.547 (8)
N20.6401 (5)0.9460 (4)0.5246 (6)0.0156 (10)0.547 (8)
H2C0.6372010.9327010.5933930.019*0.547 (8)
N30.5482 (6)0.9206 (4)0.4163 (6)0.0154 (10)0.547 (8)
C60.4571 (7)0.8775 (4)0.4207 (6)0.0175 (10)0.547 (8)
H60.4557190.8653410.4966980.021*0.547 (8)
C70.3572 (5)0.8483 (3)0.3071 (5)0.0192 (9)0.547 (8)
C80.2639 (6)0.7974 (3)0.3128 (6)0.0279 (11)0.547 (8)
H80.2665930.7814730.3888080.034*0.547 (8)
C90.1675 (5)0.7714 (3)0.2022 (7)0.0344 (13)0.547 (8)
H90.1043010.7374750.2028710.041*0.547 (8)
C100.1663 (5)0.7966 (3)0.0905 (6)0.0344 (12)0.547 (8)
H100.1019550.7802140.0152030.041*0.547 (8)
C110.2632 (6)0.8466 (4)0.0937 (6)0.0273 (12)0.547 (8)
H110.2622040.8630730.0185970.033*0.547 (8)
N40.3581 (6)0.8727 (3)0.1988 (5)0.0187 (9)0.547 (8)
N1'0.3780 (8)0.8785 (5)0.2388 (6)0.0239 (13)0.453 (8)
C1'0.2781 (9)0.8502 (5)0.1387 (7)0.0324 (15)0.453 (8)
H1'0.2717470.8635080.0603460.039*0.453 (8)
C2'0.1839 (8)0.8019 (5)0.1470 (8)0.0418 (16)0.453 (8)
H2'0.1137810.7845760.0764770.050*0.453 (8)
C3'0.1993 (8)0.7806 (4)0.2654 (9)0.0414 (16)0.453 (8)
H3'0.1403520.7467740.2746810.050*0.453 (8)
C4'0.2991 (7)0.8087 (4)0.3674 (8)0.0328 (14)0.453 (8)
H4'0.3081990.7951760.4465450.039*0.453 (8)
C5'0.3880 (7)0.8582 (4)0.3514 (7)0.0202 (11)0.453 (8)
N2'0.4887 (7)0.8877 (4)0.4527 (6)0.0202 (12)0.453 (8)
H2'A0.4932460.8788410.5259050.024*0.453 (8)
N3'0.5807 (7)0.9306 (5)0.4385 (7)0.0145 (12)0.453 (8)
C6'0.6765 (8)0.9552 (6)0.5382 (8)0.0174 (13)0.453 (8)
H6'0.6808700.9418450.6159350.021*0.453 (8)
C7'0.7762 (7)1.0032 (5)0.5286 (7)0.0178 (13)0.453 (8)
C8'0.8745 (7)1.0334 (4)0.6364 (6)0.0236 (13)0.453 (8)
H8'0.8799961.0205800.7146660.028*0.453 (8)
C9'0.9619 (8)1.0821 (4)0.6225 (7)0.0286 (14)0.453 (8)
H9'1.0273391.1039380.6919920.034*0.453 (8)
C10'0.9537 (9)1.0992 (6)0.5056 (8)0.0290 (16)0.453 (8)
H10'1.0134691.1319460.4952940.035*0.453 (8)
C11'0.8542 (12)1.0663 (8)0.4037 (10)0.0228 (17)0.453 (8)
H11'0.8481581.0781810.3248950.027*0.453 (8)
N4'0.7676 (9)1.0191 (7)0.4134 (9)0.0162 (14)0.453 (8)
N50.8120 (3)0.7717 (2)0.6227 (3)0.0278 (7)0.826 (9)
O60.8757 (3)0.8140 (3)0.5847 (4)0.0629 (13)0.826 (9)
O70.6941 (4)0.7636 (2)0.5548 (5)0.0405 (8)0.826 (9)
O80.8623 (4)0.7415 (2)0.7271 (3)0.0445 (10)0.826 (9)
N5'0.8000 (16)0.7501 (9)0.5993 (15)0.0278 (7)0.174 (9)
O6'0.8688 (15)0.7717 (12)0.5480 (17)0.0629 (13)0.174 (9)
O7'0.6816 (18)0.7484 (13)0.543 (3)0.0405 (8)0.174 (9)
O8'0.854 (2)0.7191 (12)0.7010 (16)0.0445 (10)0.174 (9)
O90.0421 (9)0.8898 (6)0.1673 (8)0.062 (3)0.25
H9A0.016 (14)0.907 (8)0.232 (6)0.093*0.25
H9B0.010 (11)0.861 (7)0.170 (13)0.093*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01924 (6)0.01380 (5)0.01228 (5)0.00382 (5)0.00618 (4)0.00176 (4)
O10.0285 (8)0.0184 (7)0.0151 (6)0.0072 (6)0.0089 (6)0.0030 (5)
O20.0375 (9)0.0191 (7)0.0136 (6)0.0035 (6)0.0064 (6)0.0031 (5)
O30.0304 (8)0.0409 (9)0.0196 (7)0.0064 (7)0.0127 (6)0.0083 (7)
O40.0318 (8)0.0186 (7)0.0125 (6)0.0045 (6)0.0064 (6)0.0011 (5)
O50.0626 (12)0.0311 (9)0.0273 (8)0.0265 (8)0.0317 (8)0.0145 (7)
C120.0427 (13)0.0244 (11)0.0113 (8)0.0151 (10)0.0105 (8)0.0025 (7)
C130.083 (2)0.0246 (13)0.0345 (13)0.0207 (13)0.0311 (14)0.0021 (10)
O100.0201 (7)0.0258 (8)0.0238 (7)0.0059 (6)0.0043 (6)0.0010 (6)
C140.0190 (9)0.0258 (11)0.0193 (9)0.0010 (8)0.0098 (8)0.0030 (7)
C150.0315 (13)0.078 (2)0.0347 (13)0.0181 (14)0.0220 (11)0.0165 (14)
N10.015 (3)0.019 (2)0.0153 (16)0.002 (2)0.0085 (18)0.0007 (13)
C10.025 (3)0.027 (3)0.018 (2)0.004 (2)0.0123 (18)0.0013 (18)
C20.022 (3)0.023 (3)0.026 (2)0.0031 (18)0.0110 (18)0.0020 (18)
C30.018 (3)0.026 (3)0.0196 (19)0.0020 (19)0.0038 (17)0.0042 (18)
C40.019 (2)0.025 (2)0.0144 (16)0.0004 (18)0.0029 (17)0.0022 (15)
C50.011 (2)0.015 (2)0.0098 (14)0.0023 (17)0.0035 (17)0.0005 (13)
N20.017 (2)0.019 (2)0.012 (2)0.0026 (18)0.0074 (19)0.0022 (15)
N30.016 (3)0.014 (2)0.015 (2)0.0019 (17)0.0041 (18)0.0014 (15)
C60.020 (3)0.018 (2)0.017 (3)0.0020 (19)0.010 (2)0.0026 (19)
C70.017 (2)0.0185 (19)0.022 (2)0.0021 (15)0.0081 (18)0.0042 (17)
C80.027 (3)0.026 (2)0.033 (3)0.0114 (19)0.014 (2)0.003 (2)
C90.025 (2)0.035 (3)0.043 (3)0.0134 (19)0.013 (2)0.006 (2)
C100.025 (2)0.034 (2)0.039 (3)0.0091 (18)0.008 (2)0.006 (2)
C110.021 (2)0.030 (2)0.023 (2)0.0069 (17)0.001 (2)0.003 (2)
N40.019 (2)0.0191 (19)0.017 (2)0.0019 (15)0.0071 (19)0.0002 (19)
N1'0.027 (3)0.024 (2)0.019 (3)0.003 (2)0.008 (2)0.003 (2)
C1'0.031 (3)0.039 (3)0.025 (3)0.003 (2)0.009 (3)0.002 (3)
C2'0.035 (3)0.046 (4)0.038 (3)0.010 (3)0.009 (3)0.006 (3)
C3'0.035 (4)0.041 (4)0.046 (4)0.013 (3)0.015 (3)0.003 (3)
C4'0.030 (3)0.032 (3)0.038 (3)0.006 (2)0.015 (3)0.001 (3)
C5'0.021 (3)0.020 (2)0.022 (3)0.0015 (19)0.011 (2)0.000 (2)
N2'0.020 (3)0.025 (3)0.016 (3)0.002 (2)0.007 (2)0.000 (2)
N3'0.015 (3)0.016 (3)0.012 (3)0.001 (2)0.005 (2)0.0004 (19)
C6'0.018 (3)0.023 (3)0.0060 (19)0.002 (2)0.001 (2)0.0032 (19)
C7'0.013 (3)0.017 (3)0.020 (2)0.002 (2)0.004 (2)0.0022 (17)
C8'0.018 (3)0.030 (3)0.0148 (19)0.005 (2)0.002 (2)0.005 (2)
C9'0.022 (3)0.025 (3)0.030 (3)0.004 (2)0.002 (2)0.006 (2)
C10'0.026 (3)0.023 (3)0.033 (3)0.002 (2)0.007 (2)0.002 (2)
C11'0.021 (3)0.021 (3)0.026 (3)0.003 (2)0.010 (2)0.001 (2)
N4'0.014 (3)0.018 (3)0.015 (2)0.004 (2)0.005 (2)0.0002 (17)
N50.0304 (12)0.0219 (16)0.0343 (15)0.0066 (12)0.0165 (12)0.0098 (12)
O60.0440 (13)0.064 (3)0.090 (2)0.0082 (16)0.0369 (15)0.050 (2)
O70.0407 (14)0.025 (2)0.0347 (14)0.0131 (11)0.0054 (11)0.0036 (14)
O80.0282 (11)0.059 (3)0.0363 (16)0.0100 (16)0.0031 (13)0.0233 (15)
N5'0.0304 (12)0.0219 (16)0.0343 (15)0.0066 (12)0.0165 (12)0.0098 (12)
O6'0.0440 (13)0.064 (3)0.090 (2)0.0082 (16)0.0369 (15)0.050 (2)
O7'0.0407 (14)0.025 (2)0.0347 (14)0.0131 (11)0.0054 (11)0.0036 (14)
O8'0.0282 (11)0.059 (3)0.0363 (16)0.0100 (16)0.0031 (13)0.0233 (15)
O90.047 (5)0.069 (7)0.047 (5)0.007 (5)0.004 (4)0.017 (4)
Geometric parameters (Å, º) top
La1—O12.5659 (14)C7—C81.400 (7)
La1—O22.5395 (15)C7—N41.355 (6)
La1—O32.5184 (16)C8—H80.9300
La1—O42.5653 (15)C8—C91.386 (6)
La1—O52.6073 (16)C9—H90.9300
La1—O102.4814 (14)C9—C101.388 (7)
La1—N12.626 (8)C10—H100.9300
La1—N32.683 (7)C10—C111.388 (7)
La1—N42.768 (6)C11—H110.9300
La1—N1'2.712 (8)C11—N41.339 (6)
La1—N3'2.752 (8)N1'—C1'1.345 (8)
La1—N4'2.771 (9)N1'—C5'1.338 (7)
O1—H1A0.763 (14)C1'—H1'0.9300
O1—H1B0.760 (14)C1'—C2'1.389 (10)
O2—H2A0.761 (14)C2'—H2'0.9300
O2—H2B0.761 (14)C2'—C3'1.390 (9)
O3—C14i1.251 (2)C3'—H3'0.9300
O4—C121.267 (3)C3'—C4'1.356 (8)
O5—C121.260 (3)C4'—H4'0.9300
C12—C131.500 (3)C4'—C5'1.394 (8)
C13—H13A0.9600C5'—N2'1.365 (6)
C13—H13B0.9600N2'—H2'A0.8600
C13—H13C0.9600N2'—N3'1.340 (8)
O10—C141.261 (2)N3'—C6'1.298 (7)
C14—C151.491 (3)C6'—H6'0.9300
C15—H15A0.9600C6'—C7'1.441 (8)
C15—H15B0.9600C7'—C8'1.401 (8)
C15—H15C0.9600C7'—N4'1.355 (10)
N1—C11.345 (7)C8'—H8'0.9300
N1—C51.340 (8)C8'—C9'1.363 (8)
C1—H10.9300C9'—H9'0.9300
C1—C21.385 (9)C9'—C10'1.379 (9)
C2—H20.9300C10'—H10'0.9300
C2—C31.396 (7)C10'—C11'1.386 (11)
C3—H30.9300C11'—H11'0.9300
C3—C41.364 (6)C11'—N4'1.319 (9)
C4—H40.9300N5—O61.238 (3)
C4—C51.390 (6)N5—O71.233 (4)
C5—N21.377 (6)N5—O81.248 (3)
N2—H2C0.8600N5'—O6'1.216 (14)
N2—N31.346 (6)N5'—O7'1.208 (15)
N3—C61.289 (7)N5'—O8'1.231 (15)
C6—H60.9300O9—H9A0.761 (16)
C6—C71.443 (6)O9—H9B0.762 (16)
O1—La1—O5131.31 (5)N1—C1—C2124.2 (6)
O1—La1—N174.6 (2)C2—C1—H1117.9
O1—La1—N366.31 (17)C1—C2—H2121.4
O1—La1—N485.96 (14)C1—C2—C3117.2 (5)
O1—La1—N1'83.07 (18)C3—C2—H2121.4
O1—La1—N3'65.1 (2)C2—C3—H3120.2
O1—La1—N4'74.6 (3)C4—C3—C2119.6 (5)
O2—La1—O170.56 (5)C4—C3—H3120.2
O2—La1—O4134.03 (4)C3—C4—H4120.5
O2—La1—O5145.03 (6)C3—C4—C5119.1 (5)
O2—La1—N1143.4 (2)C5—C4—H4120.5
O2—La1—N3112.63 (15)N1—C5—C4123.0 (5)
O2—La1—N468.32 (13)N1—C5—N2117.5 (5)
O2—La1—N1'75.71 (16)N2—C5—C4119.5 (5)
O2—La1—N3'118.17 (18)C5—N2—H2C119.7
O2—La1—N4'140.7 (3)N3—N2—C5120.5 (5)
O3—La1—O171.15 (5)N3—N2—H2C119.7
O3—La1—O278.91 (6)N2—N3—La1118.6 (4)
O3—La1—O484.00 (5)C6—N3—La1123.6 (4)
O3—La1—O5130.31 (6)C6—N3—N2117.8 (6)
O3—La1—N179.82 (16)N3—C6—H6120.1
O3—La1—N3127.56 (15)N3—C6—C7119.8 (5)
O3—La1—N4144.90 (14)C7—C6—H6120.1
O3—La1—N1'148.59 (18)C8—C7—C6119.5 (5)
O3—La1—N3'121.26 (17)N4—C7—C6117.4 (4)
O3—La1—N4'73.2 (2)N4—C7—C8123.1 (4)
O4—La1—O1141.26 (5)C7—C8—H8120.9
O4—La1—O550.23 (5)C9—C8—C7118.2 (5)
O4—La1—N172.1 (2)C9—C8—H8120.9
O4—La1—N3111.64 (16)C8—C9—H9120.3
O4—La1—N4128.03 (14)C8—C9—C10119.4 (5)
O4—La1—N1'127.18 (18)C10—C9—H9120.3
O4—La1—N3'107.23 (19)C9—C10—H10120.8
O4—La1—N4'69.9 (2)C9—C10—C11118.5 (5)
O5—La1—N169.4 (2)C11—C10—H10120.8
O5—La1—N367.84 (17)C10—C11—H11118.1
O5—La1—N484.78 (14)N4—C11—C10123.8 (5)
O5—La1—N1'80.33 (18)N4—C11—H11118.1
O5—La1—N3'67.2 (2)C7—N4—La1119.1 (3)
O5—La1—N4'73.4 (2)C11—N4—La1123.4 (4)
O10—La1—O1143.00 (5)C11—N4—C7117.1 (5)
O10—La1—O273.27 (5)C1'—N1'—La1118.7 (5)
O10—La1—O3109.21 (5)C5'—N1'—La1122.6 (4)
O10—La1—O472.76 (5)C5'—N1'—C1'118.2 (7)
O10—La1—O578.09 (5)N1'—C1'—H1'118.5
O10—La1—N1142.4 (2)N1'—C1'—C2'123.0 (7)
O10—La1—N3123.20 (15)C2'—C1'—H1'118.5
O10—La1—N473.67 (12)C1'—C2'—H2'121.5
O10—La1—N1'80.82 (16)C1'—C2'—C3'117.1 (6)
O10—La1—N3'129.37 (18)C3'—C2'—H2'121.5
O10—La1—N4'142.2 (3)C2'—C3'—H3'119.6
N1—La1—N360.63 (17)C4'—C3'—C2'120.7 (6)
N1—La1—N4120.08 (16)C4'—C3'—H3'119.6
N3—La1—N459.61 (13)C3'—C4'—H4'120.6
N1'—La1—N3'58.56 (16)C3'—C4'—C5'118.8 (6)
N1'—La1—N4'117.50 (19)C5'—C4'—H4'120.6
N3'—La1—N4'59.0 (2)N1'—C5'—C4'122.1 (6)
La1—O1—H1A131.3 (18)N1'—C5'—N2'118.0 (6)
La1—O1—H1B123.4 (18)N2'—C5'—C4'119.9 (6)
H1A—O1—H1B105 (2)C5'—N2'—H2'A119.8
La1—O2—H2A118.5 (19)N3'—N2'—C5'120.3 (6)
La1—O2—H2B122 (2)N3'—N2'—H2'A119.8
H2A—O2—H2B105 (2)N2'—N3'—La1120.0 (4)
C14i—O3—La1107.31 (13)C6'—N3'—La1122.3 (6)
C12—O4—La195.42 (13)C6'—N3'—N2'117.6 (7)
C12—O5—La193.60 (13)N3'—C6'—H6'120.0
O4—C12—C13118.9 (2)N3'—C6'—C7'120.1 (7)
O5—C12—O4120.66 (19)C7'—C6'—H6'120.0
O5—C12—C13120.4 (2)C8'—C7'—C6'119.7 (6)
C12—C13—H13A109.5N4'—C7'—C6'117.6 (6)
C12—C13—H13B109.5N4'—C7'—C8'122.6 (6)
C12—C13—H13C109.5C7'—C8'—H8'121.1
H13A—C13—H13B109.5C9'—C8'—C7'117.7 (6)
H13A—C13—H13C109.5C9'—C8'—H8'121.1
H13B—C13—H13C109.5C8'—C9'—H9'119.9
La1—O10—La1i116.24 (6)C8'—C9'—C10'120.2 (6)
C14—O10—La1i83.51 (11)C10'—C9'—H9'119.9
C14—O10—La1156.33 (14)C9'—C10'—H10'120.8
O3i—C14—La1i50.25 (10)C9'—C10'—C11'118.5 (7)
O3i—C14—O10121.44 (19)C11'—C10'—H10'120.8
O3i—C14—C15118.55 (19)C10'—C11'—H11'118.5
O10—C14—La1i72.88 (11)N4'—C11'—C10'123.1 (8)
O10—C14—C15120.00 (19)N4'—C11'—H11'118.5
C15—C14—La1i161.51 (17)C7'—N4'—La1120.9 (5)
C14—C15—H15A109.5C11'—N4'—La1121.2 (6)
C14—C15—H15B109.5C11'—N4'—C7'117.9 (8)
C14—C15—H15C109.5O6—N5—O8122.0 (3)
H15A—C15—H15B109.5O7—N5—O6116.7 (3)
H15A—C15—H15C109.5O7—N5—O8121.2 (4)
H15B—C15—H15C109.5O6'—N5'—O8'118.5 (17)
C1—N1—La1120.6 (5)O7'—N5'—O6'120.1 (19)
C5—N1—La1122.5 (4)O7'—N5'—O8'120.4 (19)
C5—N1—C1116.8 (6)H9A—O9—H9B104 (3)
N1—C1—H1117.9
La1—O4—C12—O53.1 (2)C7—C8—C9—C100.2 (8)
La1—O4—C12—C13176.59 (19)C8—C7—N4—La1172.4 (4)
La1—O5—C12—O43.0 (2)C8—C7—N4—C110.8 (9)
La1—O5—C12—C13176.64 (19)C8—C9—C10—C110.6 (9)
La1—O10—C14—La1i148.0 (3)C9—C10—C11—N40.4 (10)
La1i—O10—C14—O3i13.4 (2)C10—C11—N4—La1172.5 (5)
La1—O10—C14—O3i161.5 (2)C10—C11—N4—C70.3 (10)
La1i—O10—C14—C15165.5 (2)N4—C7—C8—C90.6 (8)
La1—O10—C14—C1517.4 (5)N1'—C1'—C2'—C3'2.6 (13)
La1—N1—C1—C2178.9 (9)N1'—C5'—N2'—N3'5.7 (11)
La1—N1—C5—C4177.9 (5)C1'—N1'—C5'—C4'0.3 (11)
La1—N1—C5—N23.2 (10)C1'—N1'—C5'—N2'179.3 (7)
La1—N3—C6—C71.0 (9)C1'—C2'—C3'—C4'2.6 (12)
La1—N1'—C1'—C2'173.1 (7)C2'—C3'—C4'—C5'1.3 (11)
La1—N1'—C5'—C4'171.4 (5)C3'—C4'—C5'—N1'0.2 (11)
La1—N1'—C5'—N2'9.0 (9)C3'—C4'—C5'—N2'179.4 (7)
La1—N3'—C6'—C7'4.1 (12)C4'—C5'—N2'—N3'174.7 (8)
N1—C1—C2—C31.8 (15)C5'—N1'—C1'—C2'1.2 (13)
N1—C5—N2—N30.3 (10)C5'—N2'—N3'—La10.2 (10)
C1—N1—C5—C40.5 (12)C5'—N2'—N3'—C6'177.8 (8)
C1—N1—C5—N2179.4 (8)N2'—N3'—C6'—C7'178.3 (8)
C1—C2—C3—C41.1 (11)N3'—C6'—C7'—C8'175.9 (9)
C2—C3—C4—C50.3 (9)N3'—C6'—C7'—N4'2.0 (13)
C3—C4—C5—N10.1 (10)C6'—C7'—C8'—C9'176.0 (7)
C3—C4—C5—N2178.8 (6)C6'—C7'—N4'—La11.0 (12)
C4—C5—N2—N3179.3 (6)C6'—C7'—N4'—C11'176.2 (10)
C5—N1—C1—C21.5 (15)C7'—C8'—C9'—C10'1.3 (11)
C5—N2—N3—La12.5 (8)C8'—C7'—N4'—La1178.9 (6)
C5—N2—N3—C6179.0 (7)C8'—C7'—N4'—C11'1.7 (15)
N2—N3—C6—C7179.4 (6)C8'—C9'—C10'—C11'0.7 (14)
N3—C6—C7—C8175.6 (6)C9'—C10'—C11'—N4'0.6 (18)
N3—C6—C7—N45.1 (9)C10'—C11'—N4'—La1178.2 (10)
C6—C7—C8—C9178.7 (5)C10'—C11'—N4'—C7'1.0 (18)
C6—C7—N4—La18.3 (7)N4'—C7'—C8'—C9'1.8 (12)
C6—C7—N4—C11178.5 (6)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O60.76 (1)2.27 (2)2.994 (3)158 (3)
O1—H1A···O70.76 (1)2.59 (2)3.273 (6)151 (2)
O1—H1A···O60.76 (1)2.19 (2)2.901 (14)154 (2)
O1—H1B···O8ii0.76 (1)2.03 (2)2.793 (4)176 (3)
O1—H1B···O8ii0.76 (1)1.97 (3)2.73 (2)171 (3)
O2—H2A···O4i0.76 (1)1.95 (2)2.6971 (19)168 (3)
O2—H2B···O7ii0.76 (1)2.03 (2)2.786 (4)171 (3)
O2—H2B···N5ii0.76 (1)2.68 (2)3.419 (16)164 (3)
O2—H2B···O7ii0.76 (1)1.79 (3)2.54 (2)167 (3)
C13—H13A···O7iii0.962.533.483 (5)170
C13—H13A···O7iii0.962.333.27 (3)167
C13—H13C···O7iv0.962.653.544 (6)155
C15—H15A···O90.962.623.350 (10)133
C2—H2···O6v0.932.573.420 (6)153
N2—H2C···O5iv0.862.132.898 (7)149
C11—H11···O90.932.573.150 (10)121
N2—H2A···O5iv0.862.303.028 (7)142
C6—H6···O5iv0.932.323.067 (9)138
C10—H10···O6v0.932.343.260 (18)170
O9—H9A···O6vi0.76 (2)2.66 (14)3.062 (9)115 (13)
O9—H9B···O8vi0.76 (2)2.57 (10)3.241 (11)147 (16)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+3/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+2, z+1; (v) x+2, y+2, z+1; (vi) x1, y, z1.
 

Acknowledgements

We thank the PMD2X X-ray diffraction facility of the CRM2 laboratory, Université de Lorraine, for the X-ray diffraction measurements, data processing and analysis, and providing of reports for publication: https://crm2.univ-lorraine.fr/plateformes/pmd2x.

References

First citationAinscough, E. W., Brodie, A. M., Ingham, S. L. & waters, J. M. (1996). Inorg. Chim. Acta, 249, 47–55.  CSD CrossRef CAS Web of Science Google Scholar
First citationBag, P., Maji, S. K., Biswas, P., Flörke, U. & Nag, K. (2013). Polyhedron, 52, 976–985.  CrossRef Google Scholar
First citationBaraniak, E., Bruce, R. S. L., Freeman, H. C., Hair, N. J. & James, J. (1976). Inorg. Chem. 15, 2226–2230.  CSD CrossRef CAS Web of Science Google Scholar
First citationBell, D. J., Natrajan, L. S. & Riddell, I. A. (2022). Coord. Chem. Rev. 472, 214786.  CrossRef Google Scholar
First citationBruker (2023). APEX5. Bruker-AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBryleva, Y. A., Yzhikova, K. M., Artem'ev, A. V., Davydova, M. P., Rakhmanova, M. I., Polyakova, E. V., Glinskaya, L. A. & Samsonenko, D. G. (2023). Polyhedron, 231, 116251.  CrossRef Google Scholar
First citationChen, M.-L., Shi, Y.-R., Yang, Y.-C. & Zhou, Z.-H. (2014). J. Solid State Chem. 219, 265–273.  CrossRef Google Scholar
First citationChowdhury, S., Mal, P., Basu, C., Stoeckli–Evans, H. & Mukherjee, S. (2009). Polyhedron, 28, 3863–3871.  Web of Science CSD CrossRef CAS Google Scholar
First citationDiop, A., Sarr, M., Diop, M., Thiam, I. E., Barry, A. H., Coles, S., Orton, J. & Gaye, M. (2019). Transit. Met. Chem. 44, 415–423.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, X. Z., Sun, Z., Li, B. L., Ling, Y., Li, N. B. & Luo, H. Q. (2023). Microchem. J. 191, 108881.  CrossRef Google Scholar
First citationDumitru, F., Petit, E., van der Lee, A. & Barboiu, M. (2005). Eur. J. Inorg. Chem. pp. 4255–4262.  Web of Science CSD CrossRef Google Scholar
First citationGeng, S., Ren, N. & Zhang, J.-J. (2022). Polyhedron, 219, 115798.  CrossRef Google Scholar
First citationGerloch, M. (1966). J. Chem. Soc. A, pp. 1317–1325.  CSD CrossRef Web of Science Google Scholar
First citationGrebenyuk, D., Zobel, M., Polentarutti, M., Ungur, L., Kendin, M., Zakharov, K., Degtyarenko, P., Vasiliev, A. & Tsymbarenko, D. (2021). Inorg. Chem. 60, 8049–8061.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGueye, N. D. M., Moussa, D., Thiam, E. I., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Acta Cryst. E73, 1121–1124.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGueye, M. N., Dieng, M., Lo, D., Thiam, I. E., Barry, A. H., Gaye, M., Sall, A. S. & Retailleau, P. (2017). Eur. J. Chem. 8, 137–143.  CrossRef Google Scholar
First citationHu, A. & Wilson, J. J. (2022). Acc. Chem. Res. 55, 904–915.  CrossRef PubMed Google Scholar
First citationKariaka, N. S., Kolotilov, S. V., Gawryszewska, P., Kasprzycka, E., Weselski, M., Dyakonenko, V. V., Shishkina, S. V., Trush, V. A. & Amirkhanov, V. M. (2019). Inorg. Chem. 58, 14682–14692.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLapaev, D. V., Nikiforov, V. G., Lobkov, V. S., Knyazev, A. A., Krupin, A. S. & Galyametdinov, Y. G. (2019). J. Photochem. Photobiol. Chem. 382, 111962.  CrossRef Google Scholar
First citationLe Fur, M., Molnár, E., Beyler, M., Fougère, O., Esteban-Gómez, D., Rousseaux, O., Tripier, R., Tircsó, G. & Platas-Iglesias, C. (2018). Inorg. Chem. 57, 6932–6945.  CrossRef PubMed Google Scholar
First citationLiu, Y., Wei, Z., Liao, X. & Zhou, J. (2020). Acc. Mater. Res. 1, 225–235.  CrossRef Google Scholar
First citationMesa, J. L., Arriortua, M. I., Lezama, L., Pizarro, J. L., Rojo, T. & Beltran, D. (1988). Polyhedron, 7, 1383–1388.  CSD CrossRef CAS Web of Science Google Scholar
First citationMesa, J. L., Rojo, T., Arriortua, M. I., Villeneuve, G., Folgado, J. V., Beltrán-Porter, A. & Beltrán-Porter, D. (1989). J. Chem. Soc. Dalton Trans. pp. 53–56.  CrossRef Google Scholar
First citationMukherjee, S., Chowdhury, S., Chattopadhyay, A. P. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1182–1188.  Web of Science CSD CrossRef CAS Google Scholar
First citationNdiaye-Gueye, M., Dieng, M., Thiam, E. I., Lo, D., Barry, A. H., Gaye, M. & Retailleau, P. (2017). S. Afr. J. Chem. 70, 8–15.  Google Scholar
First citationNdiaye-Gueye, M., Dieng, M., Thiam, I. E., Sow, M. M., Sylla-Gueye, R., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Rev. Roum. Chim. 62, 35–41.  Google Scholar
First citationNdiaye-Gueye, M., Diop, A., Gaye, P. A., Thiam, I. E., Tamboura, F. B. & Gaye, M. (2022). Earthline J. Chem. Sci. 7, 81–95.  Google Scholar
First citationNdiaye-Gueye, M., Diop, A., Gaye, P. A., Thiam, I. E., Tamboura, F. B. & Gaye, M. (2021). Earthline J. Chem. Sci. pp. 81–95.  Google Scholar
First citationRojo, T., Mesa, J. L., Arriortua, M. I., Savariault, J. M., Galy, J., Villeneuve, G. & Beltran, D. (1988). Inorg. Chem. 27, 3904–3911.  CSD CrossRef CAS Web of Science Google Scholar
First citationSarr, M., Diop, M., Thiam, E. I., Barry, A. H., Gaye, M. & Retailleau, P. (2018). Acta Cryst. E74, 450–453.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinchow, M., Chuasaard, T., Yotnoi, B. & Rujiwatra, A. (2019). J. Solid State Chem. 278, 120902.  Web of Science CSD CrossRef Google Scholar
First citationU-wang, O., Bhubon Singh, R. K., Singh, U. I., Ramina, Singh, T. S., Swu, T. & Singh, Ch. B. (2020). Asian J. Chem. 32, 2783–2792.  Google Scholar
First citationVantomme, G., Hafezi, N. & Lehn, J.-M. (2014). Chem. Sci. 5, 1475–1483.  Web of Science CSD CrossRef CAS Google Scholar
First citationVantomme, G., Jiang, S. & Lehn, J.-M. (2014). J. Am. Chem. Soc. 136, 9509–9518.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, H.-C., Xue, M., Guo, Q., Zhao, J.-P., Liu, F.-C. & Ribas, J. (2012). J. Solid State Chem. 187, 143–148.  CrossRef Google Scholar
First citationWu, X., Ruan, C., Zhou, S., Zou, L., Wang, R. & Li, G. (2024). Spectrochim. Acta A Mol. Biomol. Spectrosc. 317, 124410.  CrossRef PubMed Google Scholar
First citationZapolotsky, E. N., Qu, Y. & Babailov, S. P. (2022). J. Incl Phenom. Macrocycl Chem. 102, 1–33.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds