research communications
μ-acetato-κ4O:O′-bis{(acetato-κ2O,O′)tetraaqua[1-(pyridin-2-ylmethylidene-κN)-2-(pyridin-2-yl-κN)hydrazine-κN1]lanthanum(III)} dinitrate hemihydrate
of di-aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal, and bCRM2, Université de Lorraine and CNRS, Vandoeuvre Les Nancy, France
*Correspondence e-mail: i6thiam@yahoo.fr
In the binuclear title complex, [La2(C2H3O2)4(C11H10N4)(H2O)4](NO3)2·0.5H2O, the two lanthanum ions are nine coordinate in a distorted trigonal–prismatic geometry. Each LaIII ion is bonded to three N atoms of the Schiff base, 1-(pyridin-2-yl)-2-(pyridin-2-ylmethylene)hydrazine and is coordinated by one acetate group, which acts in η2-bidentate mode and two acetate groups that act in μ2-mode between the two LaIII ions. Two η1-water molecules complete the coordination sphere. All bond lengths in the coordination environment of the LaIII ion are slightly larger than those observed in the isostructural NdIII and SmIII complexes. The LaIII⋯LaIII distance is 4.6696 (6) Å. In the crystal, extensive O—H⋯O hydrogen-bonding interactions involving the coordinated water molecules and the non-coordinating nitrate anions, as well as the oxygen atoms of the acetate groups, generate an overall three-dimensional supramolecular network.
Keywords: lanthanum; crystal structure; 2-hydrazinopyridine,hydrazone.
CCDC reference: 2412041
1. Chemical context
Lanthanide–Schiff base complexes are widely used in applied and fundamental sciences. Chemists continue to pay much attention in the preparation of functional et al., 2022), radiopharmaceuticals (Hu & Wilson, 2022), fluoroimmuno assay reagents (Wu et al., 2024; Dong et al., 2023), diagnostic tools in biology (Liu et al., 2020; Zapolotsky et al., 2022), and in laser development (Lapaev et al., 2019). The use of acyclic allows the introduction of two identical or different metal ions (Geng et al., 2022; Bryleva et al., 2023). The presence of multiple coordination sites and the versatile coordination modes provide several possible structures with lanthanide ions (Le Fur et al., 2018; Kariaka et al., 2019). Organic ligands that are used as precursors for the structural design of complexes can have hard and/or soft sites such as oxygen, nitrogen or sulfur atoms. Through proper design, the molecular structure of the ligand can be controlled to have suitable sites to coordinate metal ions to generate specific architectures. The introduction of co-ligands offers multiple possibilities to develop original structures. Carboxylate groups are versatile co-ligands, which can adopt various coordination modes, to generate different structures with the same ligand (Grebenyuk et al., 2021; Wang et al., 2012). However, lanthanides can have high and variable coordination numbers, depending on the synthesis conditions of the complexes. Indeed, the synthesis of these compounds is considerably influenced by the reaction procedures and conditions such as the nature of the solvent, pH, temperature and/or reaction time (Sinchow et al., 2019). This provides a versatility in coordination geometries that makes it difficult to predict the structures and properties of lanthanide compounds. In this context, for the synthesis of lanthanide(III) complexes, the Schiff base 1-(pyridin-2-ylmethylidene)-2-(pyridin-2-yl)hydrazine (HL), which provides three soft donor N atoms from two pyridine rings and an azomethine unit, was used in the presence of acetate anions as co-ligands, which provide hard donor O atoms. Several complexes from the ligand HL have been reported by our group (Gueye, Dieng et al., 2017; Ndiaye-Gueye, Dieng, Thiam, Sow et al., 2017; Sarr et al., 2018). In all of these complexes, the acetate group is either bidentate chelating η2-OOCH3, bridging μ2-OOCH3 or bidentate bridging η2:μ2-OOCH3. This report presents the synthesis, characterization, and X-ray structure of a lanthanum (III) complex derived from 1-(pyrydin-2yl)-2-(pyridine-2-ylmethylene)hydrazine (HL) and an acetate group as co-ligand.
and their lanthanide complexes, which can be used in many fields such as catalysis (Bell2. Structural commentary
A mixture of the ligand HL [1-(pyridin-2-yl)-2-(pyridin-2-ylmethylene)hydrazine], lanthanum nitrate, and acetate salts in a 1:1:3 ratio yields the title compound, which crystallographic studies reveal to be a dicationic binuclear complex with a 1:1:2 stoichiometric ratio. The exhibits disorder involving both the ligand and the nitrate group. The site occupancy factors (SOFs) for the two disordered parts of the ligand refine to 0.547 (9) and 0.453 (9). For the nitrate group, the SOFs refine to 0.826 (9) and 0.174 (9). The following analysis of the focuses on the major disorder components. The structure of the lanthanum acetato-bridged complex is built from two identical entities {La(HL)(η2-OOCH3)(η1-HO2)2} bridged by two acetate anions acting in μ2-OOCH3 mode, yielding a binuclear dianionic complex containing two uncoordinated nitrate anions and a partial occupancy non-coordinating water molecule (Figs. 1 and 2). Each LaIII ion is coordinated by one HL ligand coordinated through two 2-pyridyl nitrogen atoms and one azomethine nitrogen atom. The coordination of the Schiff base forms two five-membered rings (LaNCNN) and (LaNCCN) with bite angles of 59.99 (9) and 59.43 (10)°, respectively, in the major disorder component. Additionally, each LaIII ion is coordinated by one chelating-bidentate acetate group acting in η2-OOCH3 mode and two chelating-monodentate water molecules acting in η1-HO2 mode. Thus, the LaIII ions are nine coordinate and their environments are best described as a strongly distorted tricapped trigonal–prismatic geometry. The atoms N4/N3/O5 and O2/O3/O4 define the slanted base faces of the trigonal–tricapped environment. These two planes are twisted and form a dihedral angle of 57.37 (2)°. The three caps are occupied by O1, N1 and N2 atoms. The lanthanum cation is situated 1.320 (4) Å out of the plane defined by the caps O1, N1 and N2 of the polyhedron. The La—N distances (Table 1) are slightly longer than those found for the analogous complex of the NdIII ion with the same ligand [2.675 (3), 2.637 (2) and 2.639 (2) Å] (Ndiaye-Gueye, Dieng, Thiam, Sow et al., 2017; Ndiaye-Gueye, Dieng, Thiam, Lo et al., 2017; Gueye, Dieng et al., 2017; Gueye, et al. 2021). The La—O distances s fall in the range reported for other carboxylate complexes (Gueye, Moussa et al., 2017; Bag et al., 2013; Chen et al., 2014). The distances for La—OH2 are comparable to the values in the complex [{Ln(HL(η2-OOCH3)2(η1-H2O)2}{μ2-OOCH3)2}{Ln(HL)(η2-OOCH3)2}(η1-H2O)2]·2NO3, (where Ln = Nd or Sm) (Ndiaye-Gueye, Dieng, Thiam, Lo, et al., 2017). The LaIII⋯LaIII distance is 4.6696 (6) Å and the value of the bridging angle O3— La1—O10 is 109.21 (5)°. The C6—N3 distance of 1.289 (7) Å is consistent with double-bond character. The bond lengths in the chain C—CH=N—NH—C bridging two pyridine rings are [1.443 (6) Å for PyC—C, 1.289 (7) Å for CH=N, 1.346 (6) Å for N—N and 1.377 (6) Å C—CPy] and are significantly different from the corresponding mean values for this ligand found in the CSD [1.450 (17), 1.283 (15), 1.349 (12) and 1.376 (16) Å, respectively].
|
3. Supramolecular features
The title complex [{La(HL)(η2-OOCH3)(η1-H2O)2}{(μ2-OOCH3)2}{La(HL)(η2-OOCH3)(η1-H2O)2}]·2NO3·0.5(H2O) features both coordinated and solvent water molecules. The unbound solvent water is present at partial occupancy. An intramolecular hydrogen bond is formed between the OH group of a coordinated water molecule, acting as donor, and an oxygen atom (O7) of a free nitrate group, acting as acceptor (O1—H1B⋯O7). In addition, intermolecular hydrogen bonds involving the OH groups of coordinated water molecules are significant in the construction of the structure. These OH groups act as donors to the nitrate oxygen atoms of free nitrate groups (O1—H1A⋯O8i and O2—H2B⋯O7i; symmetry codes as in Table 1) and to oxygen atoms of bidentate chelating acetate groups (O2—H2A⋯O4ii). The NH group of the hydrazine moiety interacts with an oxygen atom of a bidentate chelating acetate group, further consolidating the structure through the hydrogen bond N2—H2⋯O5iii. Weak intermolecular C—H⋯O hydrogen bonds are also observed between CH groups and oxygen atoms of the bidentate chelating acetate groups, as summarized in Table 1. These hydrogen bonds collectively connect the molecules of the complex into a three-dimensional network (Table 2, Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.44, updates of September 2023; Groom et al., 2016) indicated 27 compounds incorporating the ligand 1-(pyridin-2-ylmethylidene)-2-(pyridin-2-yl)hydrazine, which has been widely used in coordination chemistry. Seven examples of complexes of the above ligand with f-block metal ions are known from the literature: BEHFUS and TESXOH (Gueye, Dieng et al., 2017), PCPHYB (Baraniak et al., 1976), TIKDAV and TIKCUO (Ndiaye-Gueye, Dieng, Thiam, Lo, et al., 2017), ZEFJOM (Gueye, Moussa et al., 2017), GIJYAD (Ndiaye-Gueye et al., 2022). Three structures are available for the Ca2+ metal ion: NIWLEM, NIWLIQ and NIWLOW (Vantomme, Hafezi et al., 2014). One Co2+ (PAPCOC10; Gerloch, 1966) and two Mn2+ [PEQMAC (Sarr et al., 2018), SIZPID01 (Diop et al., 2019)] structures are reported in the CSD. Nine entries for Cu2+ are found: DIMLEQ10 and DIMLIU01 (Rojo et al., 1988), JAWRII (Mesa et al., 1988), SAHDOU (Mesa et al., 1989), REJMEY and REJMIC (Ainscough et al., 1996), QUJTIZ (Chowdhury et al., 2009) TUSWEK (Mukherjee et al., 2010), FAFZOF (U-wang et al., 2020). Five Zn2+ structures: GECWAP and GECWIX (Vantomme, Jiang et al., 2014), SAVQAI and SAVQEM (Dumitru et al., 2005), SIZPOJ01 (Diop et al., 2019) are also reported in the CSD.
5. Synthesis and crystallization
A mixture of 2-hydrazinopyridine (1 mmol) and 2-pyridinecarbaldehyde (1 mmol) in ethanol (15 mL) was stirred under reflux for 30 min. A mixture of sodium acetate (3 mmol) and La(NO3)3·6H2O (1 mmol) in ethanol (10 mL) was added to the solution. The mixture was stirred for 30 min and the resulting yellow solution was filtered and the filtrate was kept at 298 K. A yellow powder appeared after one day and was collected by filtration. Recrystallization by slow evaporation of an ethanol solution gave X-ray quality crystals of the compound [C30H40LaN8O12]·2NO3·0.5H2O. Yield 65%. Analysis calculated C, 32.30; H, 3.70; N, 12.56. Found: C, 32.27; H, 3.73; N, 12.52. %.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were found in difference-Fourier maps, but subsequently included in the using riding models, with constrained distances set to 0.93 Å (Csp2—H), 0.96 Å (RCH3) and 0.86 Å (Nsp2—H). Water hydrogen atoms were refined using 1,2 and 1,3 distance restraints. Uiso(H) parameters were set to values of either 1.2Ueq or 1.5Ueq (RCH3 and H2O only) of the attached atom. To ensure satisfactory for disordered groups in the structure, a combination of constraints and restraints was employed. Constraints (SHELXL command EADP) were used to fix Uij of overlapping fragments. Restraints were used to ensure the integrity of ill-defined or disordered groups (SHELXL commands SAME, DFIX, CHIV, SIMU, and RIGU).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2412041
https://doi.org/10.1107/S2056989024012349/pk2715sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024012349/pk2715Isup2.hkl
[La2(C2H3O2)4(C11H10N4)(H2O)4](NO3)2·0.5H2O | F(000) = 1106 |
Mr = 1115.55 | Dx = 1.735 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.1170 (11) Å | Cell parameters from 21184 reflections |
b = 17.8366 (19) Å | θ = 2.7–29.4° |
c = 11.8094 (12) Å | µ = 2.06 mm−1 |
β = 114.213 (3)° | T = 293 K |
V = 2135.7 (4) Å3 | Block, metallic yellowish yellow |
Z = 2 | 0.2 × 0.2 × 0.1 mm |
Bruker X8 diffractometer | 7368 reflections with I > 2σ(I) |
Detector resolution: 10 pixels mm-1 | Rint = 0.084 |
Single crystals were positioned at 35, 40, 35, and 28 mm from the detector scans | θmax = 36.4°, θmin = 2.2° |
Absorption correction: numerical (SADABS; Krause et al., 2015) | h = −16→18 |
Tmin = 0.215, Tmax = 0.424 | k = −29→29 |
72063 measured reflections | l = −19→19 |
10392 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0112P)2 + 1.5461P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.064 | (Δ/σ)max = 0.003 |
S = 1.04 | Δρmax = 1.26 e Å−3 |
10392 reflections | Δρmin = −0.94 e Å−3 |
451 parameters | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
781 restraints | Extinction coefficient: 0.00071 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
La1 | 0.56737 (2) | 0.95905 (2) | 0.20467 (2) | 0.01520 (3) | |
O1 | 0.71353 (15) | 0.84746 (8) | 0.31638 (13) | 0.0207 (3) | |
H1A | 0.737 (2) | 0.8335 (14) | 0.3831 (15) | 0.031* | |
H1B | 0.753 (2) | 0.8249 (13) | 0.289 (2) | 0.031* | |
O2 | 0.52181 (16) | 0.84992 (8) | 0.05463 (13) | 0.0247 (3) | |
H2A | 0.490 (2) | 0.8580 (14) | −0.0147 (14) | 0.037* | |
H2B | 0.574 (2) | 0.8205 (13) | 0.062 (2) | 0.037* | |
O3 | 0.77181 (16) | 0.96048 (9) | 0.16251 (13) | 0.0295 (3) | |
O4 | 0.57600 (14) | 1.10181 (8) | 0.18261 (12) | 0.0218 (3) | |
O5 | 0.46089 (19) | 1.06485 (10) | 0.28544 (14) | 0.0360 (4) | |
C12 | 0.5029 (2) | 1.11655 (12) | 0.23852 (17) | 0.0263 (5) | |
C13 | 0.4664 (3) | 1.19661 (14) | 0.2475 (2) | 0.0449 (7) | |
H13A | 0.431738 | 1.218889 | 0.166320 | 0.067* | |
H13B | 0.543322 | 1.223772 | 0.300997 | 0.067* | |
H13C | 0.400921 | 1.198418 | 0.280778 | 0.067* | |
O10 | 0.37451 (14) | 0.99521 (9) | 0.01294 (13) | 0.0248 (3) | |
C14 | 0.2633 (2) | 1.02384 (12) | −0.05024 (18) | 0.0207 (4) | |
C15 | 0.1712 (3) | 1.04094 (18) | 0.0093 (2) | 0.0452 (7) | |
H15A | 0.104232 | 1.002998 | −0.012831 | 0.068* | |
H15B | 0.130825 | 1.088904 | −0.018859 | 0.068* | |
H15C | 0.219407 | 1.041944 | 0.097847 | 0.068* | |
N1 | 0.7389 (8) | 1.0127 (6) | 0.4165 (8) | 0.0154 (11) | 0.547 (8) |
C1 | 0.8351 (10) | 1.0594 (7) | 0.4194 (8) | 0.0221 (14) | 0.547 (8) |
H1 | 0.837759 | 1.072530 | 0.344276 | 0.026* | 0.547 (8) |
C2 | 0.9305 (7) | 1.0891 (5) | 0.5271 (6) | 0.0234 (12) | 0.547 (8) |
H2 | 0.993945 | 1.122342 | 0.524696 | 0.028* | 0.547 (8) |
C3 | 0.9276 (6) | 1.0672 (4) | 0.6394 (5) | 0.0228 (10) | 0.547 (8) |
H3 | 0.990764 | 1.085119 | 0.714130 | 0.027* | 0.547 (8) |
C4 | 0.8317 (6) | 1.0194 (3) | 0.6390 (5) | 0.0207 (10) | 0.547 (8) |
H4 | 0.828457 | 1.004507 | 0.713141 | 0.025* | 0.547 (8) |
C5 | 0.7388 (6) | 0.9932 (4) | 0.5261 (5) | 0.0123 (9) | 0.547 (8) |
N2 | 0.6401 (5) | 0.9460 (4) | 0.5246 (6) | 0.0156 (10) | 0.547 (8) |
H2C | 0.637201 | 0.932701 | 0.593393 | 0.019* | 0.547 (8) |
N3 | 0.5482 (6) | 0.9206 (4) | 0.4163 (6) | 0.0154 (10) | 0.547 (8) |
C6 | 0.4571 (7) | 0.8775 (4) | 0.4207 (6) | 0.0175 (10) | 0.547 (8) |
H6 | 0.455719 | 0.865341 | 0.496698 | 0.021* | 0.547 (8) |
C7 | 0.3572 (5) | 0.8483 (3) | 0.3071 (5) | 0.0192 (9) | 0.547 (8) |
C8 | 0.2639 (6) | 0.7974 (3) | 0.3128 (6) | 0.0279 (11) | 0.547 (8) |
H8 | 0.266593 | 0.781473 | 0.388808 | 0.034* | 0.547 (8) |
C9 | 0.1675 (5) | 0.7714 (3) | 0.2022 (7) | 0.0344 (13) | 0.547 (8) |
H9 | 0.104301 | 0.737475 | 0.202871 | 0.041* | 0.547 (8) |
C10 | 0.1663 (5) | 0.7966 (3) | 0.0905 (6) | 0.0344 (12) | 0.547 (8) |
H10 | 0.101955 | 0.780214 | 0.015203 | 0.041* | 0.547 (8) |
C11 | 0.2632 (6) | 0.8466 (4) | 0.0937 (6) | 0.0273 (12) | 0.547 (8) |
H11 | 0.262204 | 0.863073 | 0.018597 | 0.033* | 0.547 (8) |
N4 | 0.3581 (6) | 0.8727 (3) | 0.1988 (5) | 0.0187 (9) | 0.547 (8) |
N1' | 0.3780 (8) | 0.8785 (5) | 0.2388 (6) | 0.0239 (13) | 0.453 (8) |
C1' | 0.2781 (9) | 0.8502 (5) | 0.1387 (7) | 0.0324 (15) | 0.453 (8) |
H1' | 0.271747 | 0.863508 | 0.060346 | 0.039* | 0.453 (8) |
C2' | 0.1839 (8) | 0.8019 (5) | 0.1470 (8) | 0.0418 (16) | 0.453 (8) |
H2' | 0.113781 | 0.784576 | 0.076477 | 0.050* | 0.453 (8) |
C3' | 0.1993 (8) | 0.7806 (4) | 0.2654 (9) | 0.0414 (16) | 0.453 (8) |
H3' | 0.140352 | 0.746774 | 0.274681 | 0.050* | 0.453 (8) |
C4' | 0.2991 (7) | 0.8087 (4) | 0.3674 (8) | 0.0328 (14) | 0.453 (8) |
H4' | 0.308199 | 0.795176 | 0.446545 | 0.039* | 0.453 (8) |
C5' | 0.3880 (7) | 0.8582 (4) | 0.3514 (7) | 0.0202 (11) | 0.453 (8) |
N2' | 0.4887 (7) | 0.8877 (4) | 0.4527 (6) | 0.0202 (12) | 0.453 (8) |
H2'A | 0.493246 | 0.878841 | 0.525905 | 0.024* | 0.453 (8) |
N3' | 0.5807 (7) | 0.9306 (5) | 0.4385 (7) | 0.0145 (12) | 0.453 (8) |
C6' | 0.6765 (8) | 0.9552 (6) | 0.5382 (8) | 0.0174 (13) | 0.453 (8) |
H6' | 0.680870 | 0.941845 | 0.615935 | 0.021* | 0.453 (8) |
C7' | 0.7762 (7) | 1.0032 (5) | 0.5286 (7) | 0.0178 (13) | 0.453 (8) |
C8' | 0.8745 (7) | 1.0334 (4) | 0.6364 (6) | 0.0236 (13) | 0.453 (8) |
H8' | 0.879996 | 1.020580 | 0.714666 | 0.028* | 0.453 (8) |
C9' | 0.9619 (8) | 1.0821 (4) | 0.6225 (7) | 0.0286 (14) | 0.453 (8) |
H9' | 1.027339 | 1.103938 | 0.691992 | 0.034* | 0.453 (8) |
C10' | 0.9537 (9) | 1.0992 (6) | 0.5056 (8) | 0.0290 (16) | 0.453 (8) |
H10' | 1.013469 | 1.131946 | 0.495294 | 0.035* | 0.453 (8) |
C11' | 0.8542 (12) | 1.0663 (8) | 0.4037 (10) | 0.0228 (17) | 0.453 (8) |
H11' | 0.848158 | 1.078181 | 0.324895 | 0.027* | 0.453 (8) |
N4' | 0.7676 (9) | 1.0191 (7) | 0.4134 (9) | 0.0162 (14) | 0.453 (8) |
N5 | 0.8120 (3) | 0.7717 (2) | 0.6227 (3) | 0.0278 (7) | 0.826 (9) |
O6 | 0.8757 (3) | 0.8140 (3) | 0.5847 (4) | 0.0629 (13) | 0.826 (9) |
O7 | 0.6941 (4) | 0.7636 (2) | 0.5548 (5) | 0.0405 (8) | 0.826 (9) |
O8 | 0.8623 (4) | 0.7415 (2) | 0.7271 (3) | 0.0445 (10) | 0.826 (9) |
N5' | 0.8000 (16) | 0.7501 (9) | 0.5993 (15) | 0.0278 (7) | 0.174 (9) |
O6' | 0.8688 (15) | 0.7717 (12) | 0.5480 (17) | 0.0629 (13) | 0.174 (9) |
O7' | 0.6816 (18) | 0.7484 (13) | 0.543 (3) | 0.0405 (8) | 0.174 (9) |
O8' | 0.854 (2) | 0.7191 (12) | 0.7010 (16) | 0.0445 (10) | 0.174 (9) |
O9 | 0.0421 (9) | 0.8898 (6) | −0.1673 (8) | 0.062 (3) | 0.25 |
H9A | 0.016 (14) | 0.907 (8) | −0.232 (6) | 0.093* | 0.25 |
H9B | −0.010 (11) | 0.861 (7) | −0.170 (13) | 0.093* | 0.25 |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.01924 (6) | 0.01380 (5) | 0.01228 (5) | 0.00382 (5) | 0.00618 (4) | 0.00176 (4) |
O1 | 0.0285 (8) | 0.0184 (7) | 0.0151 (6) | 0.0072 (6) | 0.0089 (6) | 0.0030 (5) |
O2 | 0.0375 (9) | 0.0191 (7) | 0.0136 (6) | 0.0035 (6) | 0.0064 (6) | 0.0031 (5) |
O3 | 0.0304 (8) | 0.0409 (9) | 0.0196 (7) | 0.0064 (7) | 0.0127 (6) | 0.0083 (7) |
O4 | 0.0318 (8) | 0.0186 (7) | 0.0125 (6) | 0.0045 (6) | 0.0064 (6) | 0.0011 (5) |
O5 | 0.0626 (12) | 0.0311 (9) | 0.0273 (8) | 0.0265 (8) | 0.0317 (8) | 0.0145 (7) |
C12 | 0.0427 (13) | 0.0244 (11) | 0.0113 (8) | 0.0151 (10) | 0.0105 (8) | 0.0025 (7) |
C13 | 0.083 (2) | 0.0246 (13) | 0.0345 (13) | 0.0207 (13) | 0.0311 (14) | 0.0021 (10) |
O10 | 0.0201 (7) | 0.0258 (8) | 0.0238 (7) | 0.0059 (6) | 0.0043 (6) | 0.0010 (6) |
C14 | 0.0190 (9) | 0.0258 (11) | 0.0193 (9) | 0.0010 (8) | 0.0098 (8) | 0.0030 (7) |
C15 | 0.0315 (13) | 0.078 (2) | 0.0347 (13) | 0.0181 (14) | 0.0220 (11) | 0.0165 (14) |
N1 | 0.015 (3) | 0.019 (2) | 0.0153 (16) | −0.002 (2) | 0.0085 (18) | −0.0007 (13) |
C1 | 0.025 (3) | 0.027 (3) | 0.018 (2) | −0.004 (2) | 0.0123 (18) | 0.0013 (18) |
C2 | 0.022 (3) | 0.023 (3) | 0.026 (2) | −0.0031 (18) | 0.0110 (18) | −0.0020 (18) |
C3 | 0.018 (3) | 0.026 (3) | 0.0196 (19) | −0.0020 (19) | 0.0038 (17) | −0.0042 (18) |
C4 | 0.019 (2) | 0.025 (2) | 0.0144 (16) | −0.0004 (18) | 0.0029 (17) | −0.0022 (15) |
C5 | 0.011 (2) | 0.015 (2) | 0.0098 (14) | 0.0023 (17) | 0.0035 (17) | −0.0005 (13) |
N2 | 0.017 (2) | 0.019 (2) | 0.012 (2) | −0.0026 (18) | 0.0074 (19) | 0.0022 (15) |
N3 | 0.016 (3) | 0.014 (2) | 0.015 (2) | 0.0019 (17) | 0.0041 (18) | −0.0014 (15) |
C6 | 0.020 (3) | 0.018 (2) | 0.017 (3) | −0.0020 (19) | 0.010 (2) | 0.0026 (19) |
C7 | 0.017 (2) | 0.0185 (19) | 0.022 (2) | −0.0021 (15) | 0.0081 (18) | −0.0042 (17) |
C8 | 0.027 (3) | 0.026 (2) | 0.033 (3) | −0.0114 (19) | 0.014 (2) | −0.003 (2) |
C9 | 0.025 (2) | 0.035 (3) | 0.043 (3) | −0.0134 (19) | 0.013 (2) | −0.006 (2) |
C10 | 0.025 (2) | 0.034 (2) | 0.039 (3) | −0.0091 (18) | 0.008 (2) | −0.006 (2) |
C11 | 0.021 (2) | 0.030 (2) | 0.023 (2) | −0.0069 (17) | 0.001 (2) | −0.003 (2) |
N4 | 0.019 (2) | 0.0191 (19) | 0.017 (2) | −0.0019 (15) | 0.0071 (19) | −0.0002 (19) |
N1' | 0.027 (3) | 0.024 (2) | 0.019 (3) | 0.003 (2) | 0.008 (2) | −0.003 (2) |
C1' | 0.031 (3) | 0.039 (3) | 0.025 (3) | −0.003 (2) | 0.009 (3) | −0.002 (3) |
C2' | 0.035 (3) | 0.046 (4) | 0.038 (3) | −0.010 (3) | 0.009 (3) | −0.006 (3) |
C3' | 0.035 (4) | 0.041 (4) | 0.046 (4) | −0.013 (3) | 0.015 (3) | −0.003 (3) |
C4' | 0.030 (3) | 0.032 (3) | 0.038 (3) | −0.006 (2) | 0.015 (3) | −0.001 (3) |
C5' | 0.021 (3) | 0.020 (2) | 0.022 (3) | 0.0015 (19) | 0.011 (2) | 0.000 (2) |
N2' | 0.020 (3) | 0.025 (3) | 0.016 (3) | −0.002 (2) | 0.007 (2) | 0.000 (2) |
N3' | 0.015 (3) | 0.016 (3) | 0.012 (3) | 0.001 (2) | 0.005 (2) | 0.0004 (19) |
C6' | 0.018 (3) | 0.023 (3) | 0.0060 (19) | 0.002 (2) | −0.001 (2) | −0.0032 (19) |
C7' | 0.013 (3) | 0.017 (3) | 0.020 (2) | 0.002 (2) | 0.004 (2) | −0.0022 (17) |
C8' | 0.018 (3) | 0.030 (3) | 0.0148 (19) | −0.005 (2) | −0.002 (2) | −0.005 (2) |
C9' | 0.022 (3) | 0.025 (3) | 0.030 (3) | −0.004 (2) | 0.002 (2) | −0.006 (2) |
C10' | 0.026 (3) | 0.023 (3) | 0.033 (3) | −0.002 (2) | 0.007 (2) | −0.002 (2) |
C11' | 0.021 (3) | 0.021 (3) | 0.026 (3) | −0.003 (2) | 0.010 (2) | −0.001 (2) |
N4' | 0.014 (3) | 0.018 (3) | 0.015 (2) | 0.004 (2) | 0.005 (2) | −0.0002 (17) |
N5 | 0.0304 (12) | 0.0219 (16) | 0.0343 (15) | 0.0066 (12) | 0.0165 (12) | 0.0098 (12) |
O6 | 0.0440 (13) | 0.064 (3) | 0.090 (2) | 0.0082 (16) | 0.0369 (15) | 0.050 (2) |
O7 | 0.0407 (14) | 0.025 (2) | 0.0347 (14) | −0.0131 (11) | −0.0054 (11) | 0.0036 (14) |
O8 | 0.0282 (11) | 0.059 (3) | 0.0363 (16) | −0.0100 (16) | 0.0031 (13) | 0.0233 (15) |
N5' | 0.0304 (12) | 0.0219 (16) | 0.0343 (15) | 0.0066 (12) | 0.0165 (12) | 0.0098 (12) |
O6' | 0.0440 (13) | 0.064 (3) | 0.090 (2) | 0.0082 (16) | 0.0369 (15) | 0.050 (2) |
O7' | 0.0407 (14) | 0.025 (2) | 0.0347 (14) | −0.0131 (11) | −0.0054 (11) | 0.0036 (14) |
O8' | 0.0282 (11) | 0.059 (3) | 0.0363 (16) | −0.0100 (16) | 0.0031 (13) | 0.0233 (15) |
O9 | 0.047 (5) | 0.069 (7) | 0.047 (5) | 0.007 (5) | −0.004 (4) | −0.017 (4) |
La1—O1 | 2.5659 (14) | C7—C8 | 1.400 (7) |
La1—O2 | 2.5395 (15) | C7—N4 | 1.355 (6) |
La1—O3 | 2.5184 (16) | C8—H8 | 0.9300 |
La1—O4 | 2.5653 (15) | C8—C9 | 1.386 (6) |
La1—O5 | 2.6073 (16) | C9—H9 | 0.9300 |
La1—O10 | 2.4814 (14) | C9—C10 | 1.388 (7) |
La1—N1 | 2.626 (8) | C10—H10 | 0.9300 |
La1—N3 | 2.683 (7) | C10—C11 | 1.388 (7) |
La1—N4 | 2.768 (6) | C11—H11 | 0.9300 |
La1—N1' | 2.712 (8) | C11—N4 | 1.339 (6) |
La1—N3' | 2.752 (8) | N1'—C1' | 1.345 (8) |
La1—N4' | 2.771 (9) | N1'—C5' | 1.338 (7) |
O1—H1A | 0.763 (14) | C1'—H1' | 0.9300 |
O1—H1B | 0.760 (14) | C1'—C2' | 1.389 (10) |
O2—H2A | 0.761 (14) | C2'—H2' | 0.9300 |
O2—H2B | 0.761 (14) | C2'—C3' | 1.390 (9) |
O3—C14i | 1.251 (2) | C3'—H3' | 0.9300 |
O4—C12 | 1.267 (3) | C3'—C4' | 1.356 (8) |
O5—C12 | 1.260 (3) | C4'—H4' | 0.9300 |
C12—C13 | 1.500 (3) | C4'—C5' | 1.394 (8) |
C13—H13A | 0.9600 | C5'—N2' | 1.365 (6) |
C13—H13B | 0.9600 | N2'—H2'A | 0.8600 |
C13—H13C | 0.9600 | N2'—N3' | 1.340 (8) |
O10—C14 | 1.261 (2) | N3'—C6' | 1.298 (7) |
C14—C15 | 1.491 (3) | C6'—H6' | 0.9300 |
C15—H15A | 0.9600 | C6'—C7' | 1.441 (8) |
C15—H15B | 0.9600 | C7'—C8' | 1.401 (8) |
C15—H15C | 0.9600 | C7'—N4' | 1.355 (10) |
N1—C1 | 1.345 (7) | C8'—H8' | 0.9300 |
N1—C5 | 1.340 (8) | C8'—C9' | 1.363 (8) |
C1—H1 | 0.9300 | C9'—H9' | 0.9300 |
C1—C2 | 1.385 (9) | C9'—C10' | 1.379 (9) |
C2—H2 | 0.9300 | C10'—H10' | 0.9300 |
C2—C3 | 1.396 (7) | C10'—C11' | 1.386 (11) |
C3—H3 | 0.9300 | C11'—H11' | 0.9300 |
C3—C4 | 1.364 (6) | C11'—N4' | 1.319 (9) |
C4—H4 | 0.9300 | N5—O6 | 1.238 (3) |
C4—C5 | 1.390 (6) | N5—O7 | 1.233 (4) |
C5—N2 | 1.377 (6) | N5—O8 | 1.248 (3) |
N2—H2C | 0.8600 | N5'—O6' | 1.216 (14) |
N2—N3 | 1.346 (6) | N5'—O7' | 1.208 (15) |
N3—C6 | 1.289 (7) | N5'—O8' | 1.231 (15) |
C6—H6 | 0.9300 | O9—H9A | 0.761 (16) |
C6—C7 | 1.443 (6) | O9—H9B | 0.762 (16) |
O1—La1—O5 | 131.31 (5) | N1—C1—C2 | 124.2 (6) |
O1—La1—N1 | 74.6 (2) | C2—C1—H1 | 117.9 |
O1—La1—N3 | 66.31 (17) | C1—C2—H2 | 121.4 |
O1—La1—N4 | 85.96 (14) | C1—C2—C3 | 117.2 (5) |
O1—La1—N1' | 83.07 (18) | C3—C2—H2 | 121.4 |
O1—La1—N3' | 65.1 (2) | C2—C3—H3 | 120.2 |
O1—La1—N4' | 74.6 (3) | C4—C3—C2 | 119.6 (5) |
O2—La1—O1 | 70.56 (5) | C4—C3—H3 | 120.2 |
O2—La1—O4 | 134.03 (4) | C3—C4—H4 | 120.5 |
O2—La1—O5 | 145.03 (6) | C3—C4—C5 | 119.1 (5) |
O2—La1—N1 | 143.4 (2) | C5—C4—H4 | 120.5 |
O2—La1—N3 | 112.63 (15) | N1—C5—C4 | 123.0 (5) |
O2—La1—N4 | 68.32 (13) | N1—C5—N2 | 117.5 (5) |
O2—La1—N1' | 75.71 (16) | N2—C5—C4 | 119.5 (5) |
O2—La1—N3' | 118.17 (18) | C5—N2—H2C | 119.7 |
O2—La1—N4' | 140.7 (3) | N3—N2—C5 | 120.5 (5) |
O3—La1—O1 | 71.15 (5) | N3—N2—H2C | 119.7 |
O3—La1—O2 | 78.91 (6) | N2—N3—La1 | 118.6 (4) |
O3—La1—O4 | 84.00 (5) | C6—N3—La1 | 123.6 (4) |
O3—La1—O5 | 130.31 (6) | C6—N3—N2 | 117.8 (6) |
O3—La1—N1 | 79.82 (16) | N3—C6—H6 | 120.1 |
O3—La1—N3 | 127.56 (15) | N3—C6—C7 | 119.8 (5) |
O3—La1—N4 | 144.90 (14) | C7—C6—H6 | 120.1 |
O3—La1—N1' | 148.59 (18) | C8—C7—C6 | 119.5 (5) |
O3—La1—N3' | 121.26 (17) | N4—C7—C6 | 117.4 (4) |
O3—La1—N4' | 73.2 (2) | N4—C7—C8 | 123.1 (4) |
O4—La1—O1 | 141.26 (5) | C7—C8—H8 | 120.9 |
O4—La1—O5 | 50.23 (5) | C9—C8—C7 | 118.2 (5) |
O4—La1—N1 | 72.1 (2) | C9—C8—H8 | 120.9 |
O4—La1—N3 | 111.64 (16) | C8—C9—H9 | 120.3 |
O4—La1—N4 | 128.03 (14) | C8—C9—C10 | 119.4 (5) |
O4—La1—N1' | 127.18 (18) | C10—C9—H9 | 120.3 |
O4—La1—N3' | 107.23 (19) | C9—C10—H10 | 120.8 |
O4—La1—N4' | 69.9 (2) | C9—C10—C11 | 118.5 (5) |
O5—La1—N1 | 69.4 (2) | C11—C10—H10 | 120.8 |
O5—La1—N3 | 67.84 (17) | C10—C11—H11 | 118.1 |
O5—La1—N4 | 84.78 (14) | N4—C11—C10 | 123.8 (5) |
O5—La1—N1' | 80.33 (18) | N4—C11—H11 | 118.1 |
O5—La1—N3' | 67.2 (2) | C7—N4—La1 | 119.1 (3) |
O5—La1—N4' | 73.4 (2) | C11—N4—La1 | 123.4 (4) |
O10—La1—O1 | 143.00 (5) | C11—N4—C7 | 117.1 (5) |
O10—La1—O2 | 73.27 (5) | C1'—N1'—La1 | 118.7 (5) |
O10—La1—O3 | 109.21 (5) | C5'—N1'—La1 | 122.6 (4) |
O10—La1—O4 | 72.76 (5) | C5'—N1'—C1' | 118.2 (7) |
O10—La1—O5 | 78.09 (5) | N1'—C1'—H1' | 118.5 |
O10—La1—N1 | 142.4 (2) | N1'—C1'—C2' | 123.0 (7) |
O10—La1—N3 | 123.20 (15) | C2'—C1'—H1' | 118.5 |
O10—La1—N4 | 73.67 (12) | C1'—C2'—H2' | 121.5 |
O10—La1—N1' | 80.82 (16) | C1'—C2'—C3' | 117.1 (6) |
O10—La1—N3' | 129.37 (18) | C3'—C2'—H2' | 121.5 |
O10—La1—N4' | 142.2 (3) | C2'—C3'—H3' | 119.6 |
N1—La1—N3 | 60.63 (17) | C4'—C3'—C2' | 120.7 (6) |
N1—La1—N4 | 120.08 (16) | C4'—C3'—H3' | 119.6 |
N3—La1—N4 | 59.61 (13) | C3'—C4'—H4' | 120.6 |
N1'—La1—N3' | 58.56 (16) | C3'—C4'—C5' | 118.8 (6) |
N1'—La1—N4' | 117.50 (19) | C5'—C4'—H4' | 120.6 |
N3'—La1—N4' | 59.0 (2) | N1'—C5'—C4' | 122.1 (6) |
La1—O1—H1A | 131.3 (18) | N1'—C5'—N2' | 118.0 (6) |
La1—O1—H1B | 123.4 (18) | N2'—C5'—C4' | 119.9 (6) |
H1A—O1—H1B | 105 (2) | C5'—N2'—H2'A | 119.8 |
La1—O2—H2A | 118.5 (19) | N3'—N2'—C5' | 120.3 (6) |
La1—O2—H2B | 122 (2) | N3'—N2'—H2'A | 119.8 |
H2A—O2—H2B | 105 (2) | N2'—N3'—La1 | 120.0 (4) |
C14i—O3—La1 | 107.31 (13) | C6'—N3'—La1 | 122.3 (6) |
C12—O4—La1 | 95.42 (13) | C6'—N3'—N2' | 117.6 (7) |
C12—O5—La1 | 93.60 (13) | N3'—C6'—H6' | 120.0 |
O4—C12—C13 | 118.9 (2) | N3'—C6'—C7' | 120.1 (7) |
O5—C12—O4 | 120.66 (19) | C7'—C6'—H6' | 120.0 |
O5—C12—C13 | 120.4 (2) | C8'—C7'—C6' | 119.7 (6) |
C12—C13—H13A | 109.5 | N4'—C7'—C6' | 117.6 (6) |
C12—C13—H13B | 109.5 | N4'—C7'—C8' | 122.6 (6) |
C12—C13—H13C | 109.5 | C7'—C8'—H8' | 121.1 |
H13A—C13—H13B | 109.5 | C9'—C8'—C7' | 117.7 (6) |
H13A—C13—H13C | 109.5 | C9'—C8'—H8' | 121.1 |
H13B—C13—H13C | 109.5 | C8'—C9'—H9' | 119.9 |
La1—O10—La1i | 116.24 (6) | C8'—C9'—C10' | 120.2 (6) |
C14—O10—La1i | 83.51 (11) | C10'—C9'—H9' | 119.9 |
C14—O10—La1 | 156.33 (14) | C9'—C10'—H10' | 120.8 |
O3i—C14—La1i | 50.25 (10) | C9'—C10'—C11' | 118.5 (7) |
O3i—C14—O10 | 121.44 (19) | C11'—C10'—H10' | 120.8 |
O3i—C14—C15 | 118.55 (19) | C10'—C11'—H11' | 118.5 |
O10—C14—La1i | 72.88 (11) | N4'—C11'—C10' | 123.1 (8) |
O10—C14—C15 | 120.00 (19) | N4'—C11'—H11' | 118.5 |
C15—C14—La1i | 161.51 (17) | C7'—N4'—La1 | 120.9 (5) |
C14—C15—H15A | 109.5 | C11'—N4'—La1 | 121.2 (6) |
C14—C15—H15B | 109.5 | C11'—N4'—C7' | 117.9 (8) |
C14—C15—H15C | 109.5 | O6—N5—O8 | 122.0 (3) |
H15A—C15—H15B | 109.5 | O7—N5—O6 | 116.7 (3) |
H15A—C15—H15C | 109.5 | O7—N5—O8 | 121.2 (4) |
H15B—C15—H15C | 109.5 | O6'—N5'—O8' | 118.5 (17) |
C1—N1—La1 | 120.6 (5) | O7'—N5'—O6' | 120.1 (19) |
C5—N1—La1 | 122.5 (4) | O7'—N5'—O8' | 120.4 (19) |
C5—N1—C1 | 116.8 (6) | H9A—O9—H9B | 104 (3) |
N1—C1—H1 | 117.9 | ||
La1—O4—C12—O5 | 3.1 (2) | C7—C8—C9—C10 | −0.2 (8) |
La1—O4—C12—C13 | −176.59 (19) | C8—C7—N4—La1 | −172.4 (4) |
La1—O5—C12—O4 | −3.0 (2) | C8—C7—N4—C11 | 0.8 (9) |
La1—O5—C12—C13 | 176.64 (19) | C8—C9—C10—C11 | 0.6 (9) |
La1—O10—C14—La1i | 148.0 (3) | C9—C10—C11—N4 | −0.4 (10) |
La1i—O10—C14—O3i | 13.4 (2) | C10—C11—N4—La1 | 172.5 (5) |
La1—O10—C14—O3i | 161.5 (2) | C10—C11—N4—C7 | −0.3 (10) |
La1i—O10—C14—C15 | −165.5 (2) | N4—C7—C8—C9 | −0.6 (8) |
La1—O10—C14—C15 | −17.4 (5) | N1'—C1'—C2'—C3' | −2.6 (13) |
La1—N1—C1—C2 | −178.9 (9) | N1'—C5'—N2'—N3' | −5.7 (11) |
La1—N1—C5—C4 | 177.9 (5) | C1'—N1'—C5'—C4' | 0.3 (11) |
La1—N1—C5—N2 | −3.2 (10) | C1'—N1'—C5'—N2' | −179.3 (7) |
La1—N3—C6—C7 | −1.0 (9) | C1'—C2'—C3'—C4' | 2.6 (12) |
La1—N1'—C1'—C2' | 173.1 (7) | C2'—C3'—C4'—C5' | −1.3 (11) |
La1—N1'—C5'—C4' | −171.4 (5) | C3'—C4'—C5'—N1' | −0.2 (11) |
La1—N1'—C5'—N2' | 9.0 (9) | C3'—C4'—C5'—N2' | 179.4 (7) |
La1—N3'—C6'—C7' | 4.1 (12) | C4'—C5'—N2'—N3' | 174.7 (8) |
N1—C1—C2—C3 | 1.8 (15) | C5'—N1'—C1'—C2' | 1.2 (13) |
N1—C5—N2—N3 | 0.3 (10) | C5'—N2'—N3'—La1 | −0.2 (10) |
C1—N1—C5—C4 | 0.5 (12) | C5'—N2'—N3'—C6' | −177.8 (8) |
C1—N1—C5—N2 | 179.4 (8) | N2'—N3'—C6'—C7' | −178.3 (8) |
C1—C2—C3—C4 | −1.1 (11) | N3'—C6'—C7'—C8' | 175.9 (9) |
C2—C3—C4—C5 | 0.3 (9) | N3'—C6'—C7'—N4' | −2.0 (13) |
C3—C4—C5—N1 | 0.1 (10) | C6'—C7'—C8'—C9' | −176.0 (7) |
C3—C4—C5—N2 | −178.8 (6) | C6'—C7'—N4'—La1 | −1.0 (12) |
C4—C5—N2—N3 | 179.3 (6) | C6'—C7'—N4'—C11' | 176.2 (10) |
C5—N1—C1—C2 | −1.5 (15) | C7'—C8'—C9'—C10' | −1.3 (11) |
C5—N2—N3—La1 | 2.5 (8) | C8'—C7'—N4'—La1 | −178.9 (6) |
C5—N2—N3—C6 | −179.0 (7) | C8'—C7'—N4'—C11' | −1.7 (15) |
N2—N3—C6—C7 | −179.4 (6) | C8'—C9'—C10'—C11' | 0.7 (14) |
N3—C6—C7—C8 | 175.6 (6) | C9'—C10'—C11'—N4' | −0.6 (18) |
N3—C6—C7—N4 | −5.1 (9) | C10'—C11'—N4'—La1 | 178.2 (10) |
C6—C7—C8—C9 | 178.7 (5) | C10'—C11'—N4'—C7' | 1.0 (18) |
C6—C7—N4—La1 | 8.3 (7) | N4'—C7'—C8'—C9' | 1.8 (12) |
C6—C7—N4—C11 | −178.5 (6) |
Symmetry code: (i) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O6 | 0.76 (1) | 2.27 (2) | 2.994 (3) | 158 (3) |
O1—H1A···O7 | 0.76 (1) | 2.59 (2) | 3.273 (6) | 151 (2) |
O1—H1A···O6′ | 0.76 (1) | 2.19 (2) | 2.901 (14) | 154 (2) |
O1—H1B···O8ii | 0.76 (1) | 2.03 (2) | 2.793 (4) | 176 (3) |
O1—H1B···O8′ii | 0.76 (1) | 1.97 (3) | 2.73 (2) | 171 (3) |
O2—H2A···O4i | 0.76 (1) | 1.95 (2) | 2.6971 (19) | 168 (3) |
O2—H2B···O7ii | 0.76 (1) | 2.03 (2) | 2.786 (4) | 171 (3) |
O2—H2B···N5′ii | 0.76 (1) | 2.68 (2) | 3.419 (16) | 164 (3) |
O2—H2B···O7′ii | 0.76 (1) | 1.79 (3) | 2.54 (2) | 167 (3) |
C13—H13A···O7iii | 0.96 | 2.53 | 3.483 (5) | 170 |
C13—H13A···O7′iii | 0.96 | 2.33 | 3.27 (3) | 167 |
C13—H13C···O7iv | 0.96 | 2.65 | 3.544 (6) | 155 |
C15—H15A···O9 | 0.96 | 2.62 | 3.350 (10) | 133 |
C2—H2···O6v | 0.93 | 2.57 | 3.420 (6) | 153 |
N2—H2C···O5iv | 0.86 | 2.13 | 2.898 (7) | 149 |
C11—H11···O9 | 0.93 | 2.57 | 3.150 (10) | 121 |
N2′—H2′A···O5iv | 0.86 | 2.30 | 3.028 (7) | 142 |
C6′—H6′···O5iv | 0.93 | 2.32 | 3.067 (9) | 138 |
C10′—H10′···O6′v | 0.93 | 2.34 | 3.260 (18) | 170 |
O9—H9A···O6vi | 0.76 (2) | 2.66 (14) | 3.062 (9) | 115 (13) |
O9—H9B···O8vi | 0.76 (2) | 2.57 (10) | 3.241 (11) | 147 (16) |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, −y+2, −z+1; (v) −x+2, −y+2, −z+1; (vi) x−1, y, z−1. |
Acknowledgements
We thank the PMD2X X-ray diffraction facility of the CRM2 laboratory, Université de Lorraine, for the X-ray diffraction measurements, data processing and analysis, and providing of reports for publication: https://crm2.univ-lorraine.fr/plateformes/pmd2x.
References
Ainscough, E. W., Brodie, A. M., Ingham, S. L. & waters, J. M. (1996). Inorg. Chim. Acta, 249, 47–55. CSD CrossRef CAS Web of Science Google Scholar
Bag, P., Maji, S. K., Biswas, P., Flörke, U. & Nag, K. (2013). Polyhedron, 52, 976–985. CrossRef Google Scholar
Baraniak, E., Bruce, R. S. L., Freeman, H. C., Hair, N. J. & James, J. (1976). Inorg. Chem. 15, 2226–2230. CSD CrossRef CAS Web of Science Google Scholar
Bell, D. J., Natrajan, L. S. & Riddell, I. A. (2022). Coord. Chem. Rev. 472, 214786. CrossRef Google Scholar
Bruker (2023). APEX5. Bruker-AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bryleva, Y. A., Yzhikova, K. M., Artem'ev, A. V., Davydova, M. P., Rakhmanova, M. I., Polyakova, E. V., Glinskaya, L. A. & Samsonenko, D. G. (2023). Polyhedron, 231, 116251. CrossRef Google Scholar
Chen, M.-L., Shi, Y.-R., Yang, Y.-C. & Zhou, Z.-H. (2014). J. Solid State Chem. 219, 265–273. CrossRef Google Scholar
Chowdhury, S., Mal, P., Basu, C., Stoeckli–Evans, H. & Mukherjee, S. (2009). Polyhedron, 28, 3863–3871. Web of Science CSD CrossRef CAS Google Scholar
Diop, A., Sarr, M., Diop, M., Thiam, I. E., Barry, A. H., Coles, S., Orton, J. & Gaye, M. (2019). Transit. Met. Chem. 44, 415–423. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dong, X. Z., Sun, Z., Li, B. L., Ling, Y., Li, N. B. & Luo, H. Q. (2023). Microchem. J. 191, 108881. CrossRef Google Scholar
Dumitru, F., Petit, E., van der Lee, A. & Barboiu, M. (2005). Eur. J. Inorg. Chem. pp. 4255–4262. Web of Science CSD CrossRef Google Scholar
Geng, S., Ren, N. & Zhang, J.-J. (2022). Polyhedron, 219, 115798. CrossRef Google Scholar
Gerloch, M. (1966). J. Chem. Soc. A, pp. 1317–1325. CSD CrossRef Web of Science Google Scholar
Grebenyuk, D., Zobel, M., Polentarutti, M., Ungur, L., Kendin, M., Zakharov, K., Degtyarenko, P., Vasiliev, A. & Tsymbarenko, D. (2021). Inorg. Chem. 60, 8049–8061. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gueye, N. D. M., Moussa, D., Thiam, E. I., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Acta Cryst. E73, 1121–1124. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gueye, M. N., Dieng, M., Lo, D., Thiam, I. E., Barry, A. H., Gaye, M., Sall, A. S. & Retailleau, P. (2017). Eur. J. Chem. 8, 137–143. CrossRef Google Scholar
Hu, A. & Wilson, J. J. (2022). Acc. Chem. Res. 55, 904–915. CrossRef PubMed Google Scholar
Kariaka, N. S., Kolotilov, S. V., Gawryszewska, P., Kasprzycka, E., Weselski, M., Dyakonenko, V. V., Shishkina, S. V., Trush, V. A. & Amirkhanov, V. M. (2019). Inorg. Chem. 58, 14682–14692. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lapaev, D. V., Nikiforov, V. G., Lobkov, V. S., Knyazev, A. A., Krupin, A. S. & Galyametdinov, Y. G. (2019). J. Photochem. Photobiol. Chem. 382, 111962. CrossRef Google Scholar
Le Fur, M., Molnár, E., Beyler, M., Fougère, O., Esteban-Gómez, D., Rousseaux, O., Tripier, R., Tircsó, G. & Platas-Iglesias, C. (2018). Inorg. Chem. 57, 6932–6945. CrossRef PubMed Google Scholar
Liu, Y., Wei, Z., Liao, X. & Zhou, J. (2020). Acc. Mater. Res. 1, 225–235. CrossRef Google Scholar
Mesa, J. L., Arriortua, M. I., Lezama, L., Pizarro, J. L., Rojo, T. & Beltran, D. (1988). Polyhedron, 7, 1383–1388. CSD CrossRef CAS Web of Science Google Scholar
Mesa, J. L., Rojo, T., Arriortua, M. I., Villeneuve, G., Folgado, J. V., Beltrán-Porter, A. & Beltrán-Porter, D. (1989). J. Chem. Soc. Dalton Trans. pp. 53–56. CrossRef Google Scholar
Mukherjee, S., Chowdhury, S., Chattopadhyay, A. P. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1182–1188. Web of Science CSD CrossRef CAS Google Scholar
Ndiaye-Gueye, M., Dieng, M., Thiam, E. I., Lo, D., Barry, A. H., Gaye, M. & Retailleau, P. (2017). S. Afr. J. Chem. 70, 8–15. Google Scholar
Ndiaye-Gueye, M., Dieng, M., Thiam, I. E., Sow, M. M., Sylla-Gueye, R., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Rev. Roum. Chim. 62, 35–41. Google Scholar
Ndiaye-Gueye, M., Diop, A., Gaye, P. A., Thiam, I. E., Tamboura, F. B. & Gaye, M. (2022). Earthline J. Chem. Sci. 7, 81–95. Google Scholar
Ndiaye-Gueye, M., Diop, A., Gaye, P. A., Thiam, I. E., Tamboura, F. B. & Gaye, M. (2021). Earthline J. Chem. Sci. pp. 81–95. Google Scholar
Rojo, T., Mesa, J. L., Arriortua, M. I., Savariault, J. M., Galy, J., Villeneuve, G. & Beltran, D. (1988). Inorg. Chem. 27, 3904–3911. CSD CrossRef CAS Web of Science Google Scholar
Sarr, M., Diop, M., Thiam, E. I., Barry, A. H., Gaye, M. & Retailleau, P. (2018). Acta Cryst. E74, 450–453. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sinchow, M., Chuasaard, T., Yotnoi, B. & Rujiwatra, A. (2019). J. Solid State Chem. 278, 120902. Web of Science CSD CrossRef Google Scholar
U-wang, O., Bhubon Singh, R. K., Singh, U. I., Ramina, Singh, T. S., Swu, T. & Singh, Ch. B. (2020). Asian J. Chem. 32, 2783–2792. Google Scholar
Vantomme, G., Hafezi, N. & Lehn, J.-M. (2014). Chem. Sci. 5, 1475–1483. Web of Science CSD CrossRef CAS Google Scholar
Vantomme, G., Jiang, S. & Lehn, J.-M. (2014). J. Am. Chem. Soc. 136, 9509–9518. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wang, H.-C., Xue, M., Guo, Q., Zhao, J.-P., Liu, F.-C. & Ribas, J. (2012). J. Solid State Chem. 187, 143–148. CrossRef Google Scholar
Wu, X., Ruan, C., Zhou, S., Zou, L., Wang, R. & Li, G. (2024). Spectrochim. Acta A Mol. Biomol. Spectrosc. 317, 124410. CrossRef PubMed Google Scholar
Zapolotsky, E. N., Qu, Y. & Babailov, S. P. (2022). J. Incl Phenom. Macrocycl Chem. 102, 1–33. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.