research communications
Synthesis, κ2O,O′)(2-amino-1-methyl-1H-benzimidazole-κN3)copper(II)
and Hirshfeld surface analysis of bis(acetylacetonato-aKarshi Engineering Economics Institute, Mustakillik Avenue 225, Karshi 180100, Uzbekistan, bNational University of Uzbekistan named after Mirzo Ulugbek, University Street 4, Tashkent 100174, Uzbekistan, cUniversity of Geological Sciences, Olimlar Street 64, Tashkent 100125, Uzbekistan, dNamangan State University, Boburshox Street 161, Namangan 160107, Uzbekistan, eInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Street 83, Tashkent 100125, Uzbekistan, and fUzbek-Japan Innovation Center of Youth, University Street 2B, Tashkent 100095, Uzbekistan
*Correspondence e-mail: ziatovdamin@gmail.com
The title compound, [Cu(C5H7O2)2(C8H9N3)], crystallizes in the orthorhombic Pnma. In the the CuII ion is coordinated by two acetylacetonate ligands and one 2-amino-1-methyl-1H-benzimidazole ligand. The features intramolecular N—H⋯O and intermolecular N—H⋯O hydrogen bonds, which contribute to the overall cohesion of the crystal. Hirshfeld surface analysis and two-dimensional fingerprint plots were utilized to quantify the intermolecular interactions, revealing the relative contributions of H⋯H (61.1%), H⋯C/C⋯H (21.3%), and O⋯H/H⋯O (11.3%) contacts to the crystal packing.
Keywords: benzimidazole; acetylacetone; copper complex; crystal structure; Hirshfeld surface analysis.
CCDC reference: 2405560
1. Chemical context
Transition-metal complexes containing Schiff base ligands have garnered significant attention in recent years due to their promising et al., 2009; Hatefi et al., 2010; Rezaeifard et al., 2010). Benzimidazole derivatives have also attracted considerable interest due to their diverse biological and therapeutic activities, including antimicrobial properties against bacteria such as methicillin-resistant staphylococcus aureus (Gatadi et al., 2019), escherichia coli (Mishra et al., 2019), and bacillus subtilis (Song & Ma, 2016). The discovery of new benzimidazole compounds with novel antibacterial mechanisms is of paramount importance in addressing the growing threat of antibiotic resistance (Khalafi-Nezhad et al., 2005). Recent research has focused on the synthesis and characterization of benzimidazole-based complexes with d-block metals (Jabborova et al., 2024) and f-block metals (Ruzieva et al., 2022), further expanding the potential applications of these compounds.
in various reactions (SheikhshoaieThe coordination chemistry of rare-earth metals with β-diketonate ligands has been extensively studied due to their versatility and ease of use (Binnemans, 2005). β-Dicarbonyl compounds, known for their keto–enol are among the most widely investigated tautomeric systems (Tighadouini et al., 2022; Harris, 2001). Metal acetylacetonates have found applications in diverse fields, including redox flow batteries (Suttil et al., 2015) and as corrosion inhibitors for mild steel (Mahdavian & Attar, 2009). Notably, CuII, NiII, CoII, and ZnII complexes with acetylacetone ligands have demonstrated enhanced antimicrobial activity compared to the free ligand (Raman et al., 2003). In light of the potential biological significance of the title compound, [Cu(C5H7O2)2(C8H9N3)], a detailed investigation of its is presented.
2. Structural commentary
The title compound, bis(acetylacetonato-κ2O,O′)(2-amino-1-methyl-1H-benzimidazole-κN3)copper(II) (I), crystallizes in the orthorhombic Pnma (Fig. 1). The consists of one molecule of 2-amino-1-methyl-1H-benzimidazole (MAB) and one acetylacetonate (acac) ligand, both coordinated to the central copper(II) ion. The CuII ion adopts a square-pyramidal coordination geometry (coordination number 5), with the equatorial plane defined by the oxygen atoms of two bidentate β-diketonate molecules [Cu1—O1 = 1.9378 (16) Å; Cu1—O2 = 1.9546 (16) Å; Table 1]. The observed elongation of the Cu—O bonds is attributed to the Jahn–Teller effect, a common phenomenon in copper-based complexes (Halcrow, 2013). The benzimidazole moiety is essentially planar and lies in the plane of symmetry (Fig. 2). The N1 atom of the benzimidazole ligand coordinates axially to the CuII ion with a bond distance of 2.196 (2) Å. The observed Cu—N1, Cu—O1, and Cu—O2 bond lengths are consistent with those reported for related CuII complexes (Geiger et al., 2017; Wong et al., 2009). The root-mean-square deviation of the equatorial plane (defined by O1, O2, Cu1, and their symmetry-related counterparts O1i and O2i) is 0.118 Å, with out-of-plane distances of 0.0596 (16) Å for O1 and 0.0582 (16) Å for O2. The largest deviation from the plane is observed for the CuII ion [0.2357 (4) Å], which is attributed to the presence of only one axial ligand (Fig. 1). The molecular structure of I exhibits intramolecular N—H⋯O hydrogen bonds (Table 2), which contribute to the stability of the individual molecules. These hydrogen bonds form a characteristic S11(6) graph-set motif (Etter et al., 1990).
|
3. Supramolecular features
Intermolecular N—H⋯O hydrogen bonds play a crucial role in establishing the overall crystal packing. These intermolecular interactions link the molecules into a zigzag chain running along the crystallographic a-axis direction, as depicted in Fig. 3. The graph-set descriptors for these chains are C11(6) and R21(4), further illustrating the connectivity of the hydrogen-bonded network.
The structure also features π-ring interactions between adjacent chains, which contribute to the overall cohesion of the crystal. These interactions involve C—H⋯π contacts, where the C5—H5C bond of one molecule interacts with the centroid (Cg1) of the N1/C2/N3/C3A/C7A ring of a neighbouring molecule. The distance between the hydrogen atom (H5C) and the ring centroid (Cg1) is 2.743 (16) Å, indicating a significant interaction.
The combination of intramolecular and intermolecular hydrogen bonds, along with π-ring interactions, results in a robust three-dimensional supramolecular network in the of I. These interactions not only contribute to the overall cohesion of the crystal but may also influence the physical and chemical properties of the compound.
4. Hirshfeld surface analysis
Hirshfeld surface analysis was conducted using CrystalExplorer 21.5 (Spackman et al., 2021) to gain further insights into the intermolecular interactions in the of I. The dnorm surface, shown in Fig. 4, is mapped over −0.2120 to −1.5316 arbitrary units (a.u.), with red, white, and blue regions representing contacts shorter, equal to, or longer than the sum of van der Waals radii, respectively(Venkatesan et al., 2016).
The overall two-dimensional fingerprint plot (Fig. 5a) and its decomposed components illustrate the relative contributions of different intermolecular contacts to the Hirshfeld surface. As expected, H⋯H contacts (Fig. 5b) constitute the most significant contribution, accounting for 61.1% of the total Hirshfeld surface area. H⋯C/C⋯H contacts (Fig. 5c) comprise 21.3%, followed by O⋯H/H⋯O contacts (Fig. 5d) at 11.3%. The remaining contributions, including N⋯H/H⋯N (4.6%), Cu⋯C (1.0%), and C⋯C (0.7%), are relatively minor. These results highlight the dominance of van der Waals interactions in the crystal packing of I.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.45, November 2023; Groom et al., 2016) revealed two related structures: bis(acetylacetonato-κ2O,O′)(2-amino-1-methyl-1H-benzimidazole-κN)oxidovanadium(IV) (Kadirova et al., 2009; CSD refcode BOVMAB) and aqua(benzimidazole-N)bis(2,4-pentanedionato-O,O′)cobalt(II) (Lin & Feng, 2003; CSD refcode ESUZUN). In both cases, the benzimidazole ligand coordinates to the central metal ion through the sp2 nitrogen atom (N3), as observed in I. However, the coordination geometries and overall structural features differ due to the presence of different metal centers and additional ligands in these related complexes.
6. Synthesis and crystallization
All reagents and solvents were of analytical grade and used as received. Elemental analysis was performed using a FlashSmart™ Elemental Analyzer. The Fourier-transform infrared (FT–IR) spectrum was recorded on a Spectrum Two N FT–IR Spectrometer at room temperature.
Solutions of 0.1 mmol (0.0261 g) of CuCl2·6H2O in ethanol (solution A), 0.2 mmol (0.0294 g) of 2-amino-1-methyl-1H-benzimidazole (MAB) in ethanol (solution B), and 0.2 mmol (0.0205 mL, ρ = 0.975 g mL−1) of acetylacetone (solution C) were prepared. Solution B was added dropwise to solution A with stirring at room temperature for 30 minutes; no immediate changes being observed. Subsequently, solution C was added dropwise to the mixture, followed by stirring for 12 h. The resulting solution was then allowed to stand undisturbed at room temperature. Blue–green crystals formed over several days, which were then filtered, washed with ethanol, and recrystallized from dimethyl sulfoxide to yield light-green crystals suitable for X-ray diffraction analysis.
Elemental analysis: Calculated for C18H23CuN3O4: C, 52.88; H, 5.67; N, 10.28%. Found: C, 53.06; H, 5.33; N, 10.59%.
FT–IR (cm−1): 3448s, 3341s, 3054s, 2935m, 1654s, 1612s, 1584s, 1551s, 1522s, 1499s, 1399s, 1319s, 1289s, 1200m, 1108s, 1089m, 1018s, 934s, 894m, 787s, 746s, 674m, 657s, 587s, 566m, 429m.
7. Refinement
Crystal data, data collection, and structure . Hydrogen atoms bonded to carbon were positioned geometrically (C—H = 0.93 Å for aromatic, 0.96 Å for methyl, and 0.97 Å for methylene) and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl hydrogens and 1.2Ueq(C) for all others. The amine group (–NH2) hydrogen atoms were located in a difference-Fourier map and refined with an N—H distance restraint of 0.86 (2) Å and Uiso(H) = 1.5Ueq(N).
details are summarized in Table 3Supporting information
CCDC reference: 2405560
https://doi.org/10.1107/S2056989024011538/tx2089sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024011538/tx2089Isup2.hkl
[Cu(C5H7O2)2(C8H9N3)] | Dx = 1.345 Mg m−3 |
Mr = 408.93 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pnma | Cell parameters from 5665 reflections |
a = 9.0322 (2) Å | θ = 2.8–69.5° |
b = 13.9740 (3) Å | µ = 1.70 mm−1 |
c = 16.0004 (4) Å | T = 298 K |
V = 2019.51 (8) Å3 | Block, clear light green |
Z = 4 | 0.3 × 0.24 × 0.18 mm |
F(000) = 846.676 |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 1693 reflections with I ≥ 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.066 |
ω scans | θmax = 71.5°, θmin = 4.2° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | h = −11→10 |
Tmin = 0.517, Tmax = 1.000 | k = −17→17 |
19729 measured reflections | l = −19→19 |
2050 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0585P)2 + 0.436P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.109 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.27 e Å−3 |
2050 reflections | Δρmin = −0.33 e Å−3 |
146 parameters | Extinction correction: SHELXL2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00034 (14) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.58425 (4) | 0.250000 | 0.42118 (3) | 0.04582 (19) | |
O1 | 0.66063 (18) | 0.34444 (12) | 0.49868 (10) | 0.0623 (4) | |
N1 | 0.3473 (2) | 0.250000 | 0.45198 (15) | 0.0466 (6) | |
O2 | 0.56911 (18) | 0.34360 (12) | 0.33081 (10) | 0.0615 (4) | |
N2 | 0.2624 (3) | 0.250000 | 0.31270 (17) | 0.0819 (10) | |
H2A | 0.350932 | 0.250000 | 0.292910 | 0.098* | |
H2B | 0.187784 | 0.250000 | 0.279310 | 0.098* | |
C3 | 0.2406 (3) | 0.250000 | 0.39601 (18) | 0.0492 (7) | |
C7A | 0.2752 (3) | 0.250000 | 0.52873 (17) | 0.0440 (6) | |
C8 | −0.0378 (5) | 0.250000 | 0.3850 (3) | 0.0828 (14) | |
C3A | 0.1225 (3) | 0.250000 | 0.5159 (2) | 0.0507 (7) | |
C4B | 0.6857 (3) | 0.43114 (19) | 0.48236 (19) | 0.0713 (7) | |
C5 | 0.0806 (4) | 0.250000 | 0.6613 (3) | 0.0798 (12) | |
H5 | 0.017475 | 0.250000 | 0.707242 | 0.096* | |
C2B | 0.5995 (3) | 0.4322 (2) | 0.33641 (19) | 0.0724 (7) | |
N3 | 0.1028 (3) | 0.250000 | 0.43016 (16) | 0.0534 (7) | |
C3B | 0.6587 (4) | 0.4754 (2) | 0.4067 (2) | 0.0907 (10) | |
H3B | 0.682585 | 0.539925 | 0.402560 | 0.109* | |
C4 | 0.0195 (4) | 0.250000 | 0.5807 (2) | 0.0701 (10) | |
H4 | −0.082124 | 0.250000 | 0.571234 | 0.105* | |
C5B | 0.7560 (5) | 0.4878 (3) | 0.5527 (2) | 0.1149 (14) | |
H5BA | 0.760146 | 0.554218 | 0.537488 | 0.172* | |
H5BB | 0.854430 | 0.464517 | 0.562579 | 0.172* | |
H5BC | 0.697939 | 0.480611 | 0.602556 | 0.172* | |
C6 | 0.2322 (4) | 0.250000 | 0.6747 (2) | 0.0671 (9) | |
H6 | 0.267621 | 0.250000 | 0.729239 | 0.080* | |
C7 | 0.3321 (4) | 0.250000 | 0.6096 (2) | 0.0550 (7) | |
H7 | 0.433621 | 0.250000 | 0.619289 | 0.066* | |
C1B | 0.5684 (6) | 0.4893 (2) | 0.2591 (2) | 0.1206 (15) | |
H1BA | 0.574813 | 0.556314 | 0.271846 | 0.181* | |
H1BB | 0.470795 | 0.474659 | 0.239196 | 0.181* | |
H1BC | 0.639781 | 0.473498 | 0.216864 | 0.181* | |
H8A | −0.049 (6) | 0.199 (3) | 0.353 (3) | 0.19 (2)* | |
H8B | −0.100 (8) | 0.250000 | 0.420 (4) | 0.14 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0410 (3) | 0.0525 (3) | 0.0439 (3) | 0.000 | 0.00055 (16) | 0.000 |
O1 | 0.0659 (10) | 0.0630 (10) | 0.0580 (9) | 0.0026 (8) | −0.0107 (7) | −0.0074 (8) |
N1 | 0.0368 (12) | 0.0605 (14) | 0.0426 (12) | 0.000 | 0.0026 (10) | 0.000 |
O2 | 0.0728 (11) | 0.0612 (10) | 0.0505 (9) | −0.0109 (7) | 0.0010 (7) | 0.0085 (7) |
N2 | 0.0433 (16) | 0.160 (3) | 0.0422 (14) | 0.000 | −0.0035 (12) | 0.000 |
C3 | 0.0360 (14) | 0.0645 (18) | 0.0471 (15) | 0.000 | 0.0009 (12) | 0.000 |
C7A | 0.0464 (15) | 0.0420 (13) | 0.0435 (14) | 0.000 | 0.0033 (12) | 0.000 |
C8 | 0.041 (2) | 0.137 (5) | 0.070 (3) | 0.000 | −0.0072 (19) | 0.000 |
C3A | 0.0441 (15) | 0.0556 (17) | 0.0524 (17) | 0.000 | 0.0055 (13) | 0.000 |
C4B | 0.0746 (17) | 0.0566 (14) | 0.0828 (18) | 0.0047 (12) | −0.0081 (14) | −0.0184 (13) |
C5 | 0.071 (3) | 0.114 (3) | 0.055 (2) | 0.000 | 0.0223 (17) | 0.000 |
C2B | 0.0847 (19) | 0.0593 (15) | 0.0731 (17) | −0.0010 (13) | 0.0100 (14) | 0.0128 (13) |
N3 | 0.0374 (13) | 0.0733 (18) | 0.0494 (14) | 0.000 | −0.0018 (10) | 0.000 |
C3B | 0.129 (3) | 0.0480 (14) | 0.095 (2) | −0.0085 (16) | −0.009 (2) | −0.0014 (14) |
C4 | 0.050 (2) | 0.097 (3) | 0.064 (2) | 0.000 | 0.0117 (15) | 0.000 |
C5B | 0.148 (4) | 0.078 (2) | 0.119 (3) | 0.000 (2) | −0.038 (3) | −0.039 (2) |
C6 | 0.073 (2) | 0.083 (2) | 0.0449 (16) | 0.000 | 0.0051 (15) | 0.000 |
C7 | 0.0554 (19) | 0.0618 (19) | 0.0477 (16) | 0.000 | −0.0022 (14) | 0.000 |
C1B | 0.187 (4) | 0.083 (2) | 0.092 (3) | −0.013 (2) | −0.004 (2) | 0.036 (2) |
Cu1—O1i | 1.9378 (16) | C3A—C4 | 1.393 (5) |
Cu1—O1 | 1.9378 (16) | C4B—C3B | 1.381 (4) |
Cu1—N1 | 2.196 (2) | C4B—C5B | 1.516 (4) |
Cu1—O2 | 1.9546 (16) | C5—H5 | 0.9300 |
Cu1—O2i | 1.9546 (16) | C5—C4 | 1.404 (6) |
O1—C4B | 1.260 (3) | C5—C6 | 1.385 (5) |
N1—C3 | 1.316 (4) | C2B—C3B | 1.383 (4) |
N1—C7A | 1.390 (3) | C2B—C1B | 1.498 (4) |
O2—C2B | 1.272 (3) | C3B—H3B | 0.9300 |
N2—H2A | 0.8600 | C4—H4 | 0.9300 |
N2—H2B | 0.8600 | C5B—H5BA | 0.9600 |
N2—C3 | 1.348 (4) | C5B—H5BB | 0.9600 |
C3—N3 | 1.360 (4) | C5B—H5BC | 0.9600 |
C7A—C3A | 1.395 (4) | C6—H6 | 0.9300 |
C7A—C7 | 1.392 (4) | C6—C7 | 1.378 (5) |
C8—N3 | 1.461 (5) | C7—H7 | 0.9300 |
C8—H8A | 0.89 (5) | C1B—H1BA | 0.9600 |
C8—H8Ai | 0.89 (5) | C1B—H1BB | 0.9600 |
C8—H8B | 0.79 (7) | C1B—H1BC | 0.9600 |
C3A—N3 | 1.383 (4) | ||
O1i—Cu1—O1 | 85.85 (10) | C3B—C4B—C5B | 119.4 (3) |
O1—Cu1—N1 | 101.73 (7) | C4—C5—H5 | 119.0 |
O1i—Cu1—N1 | 101.73 (7) | C6—C5—H5 | 119.0 |
O1—Cu1—O2 | 92.44 (7) | C6—C5—C4 | 122.0 (3) |
O1i—Cu1—O2i | 92.44 (7) | O2—C2B—C3B | 124.4 (3) |
O1—Cu1—O2i | 162.56 (7) | O2—C2B—C1B | 114.8 (3) |
O1i—Cu1—O2 | 162.56 (7) | C3B—C2B—C1B | 120.8 (3) |
O2—Cu1—N1 | 95.61 (7) | C3—N3—C8 | 126.6 (3) |
O2i—Cu1—N1 | 95.61 (7) | C3—N3—C3A | 106.3 (2) |
O2i—Cu1—O2 | 84.01 (10) | C3A—N3—C8 | 127.1 (3) |
C4B—O1—Cu1 | 125.89 (18) | C4B—C3B—C2B | 125.9 (3) |
C3—N1—Cu1 | 124.14 (19) | C4B—C3B—H3B | 117.1 |
C3—N1—C7A | 105.0 (2) | C2B—C3B—H3B | 117.1 |
C7A—N1—Cu1 | 130.90 (19) | C3A—C4—C5 | 114.9 (3) |
C2B—O2—Cu1 | 125.76 (18) | C3A—C4—H4 | 122.5 |
H2A—N2—H2B | 120.0 | C5—C4—H4 | 122.5 |
C3—N2—H2A | 120.0 | C4B—C5B—H5BA | 109.5 |
C3—N2—H2B | 120.0 | C4B—C5B—H5BB | 109.5 |
N1—C3—N2 | 124.5 (3) | C4B—C5B—H5BC | 109.5 |
N1—C3—N3 | 113.4 (3) | H5BA—C5B—H5BB | 109.5 |
N2—C3—N3 | 122.1 (3) | H5BA—C5B—H5BC | 109.5 |
N1—C7A—C3A | 109.5 (3) | H5BB—C5B—H5BC | 109.5 |
N1—C7A—C7 | 130.4 (3) | C5—C6—H6 | 119.0 |
C7—C7A—C3A | 120.1 (3) | C7—C6—C5 | 122.1 (3) |
N3—C8—H8Ai | 112 (3) | C7—C6—H6 | 119.0 |
N3—C8—H8A | 112 (3) | C7A—C7—H7 | 121.3 |
N3—C8—H8B | 105 (5) | C6—C7—C7A | 117.4 (3) |
H8A—C8—H8Ai | 108 (6) | C6—C7—H7 | 121.3 |
H8A—C8—H8B | 109 (4) | C2B—C1B—H1BA | 109.5 |
H8B—C8—H8Ai | 109 (4) | C2B—C1B—H1BB | 109.5 |
N3—C3A—C7A | 105.9 (2) | C2B—C1B—H1BC | 109.5 |
N3—C3A—C4 | 130.7 (3) | H1BA—C1B—H1BB | 109.5 |
C4—C3A—C7A | 123.5 (3) | H1BA—C1B—H1BC | 109.5 |
O1—C4B—C3B | 125.5 (3) | H1BB—C1B—H1BC | 109.5 |
O1—C4B—C5B | 115.1 (3) | ||
Cu1—O1—C4B—C3B | 2.1 (4) | C3—N1—C7A—C7 | 180.000 (1) |
Cu1—O1—C4B—C5B | −175.7 (2) | C7A—N1—C3—N2 | 180.000 (1) |
Cu1—N1—C3—N2 | 0.000 (1) | C7A—N1—C3—N3 | 0.000 (1) |
Cu1—N1—C3—N3 | 180.000 (1) | C7A—C3A—N3—C3 | 0.000 (1) |
Cu1—N1—C7A—C3A | 180.000 (1) | C7A—C3A—N3—C8 | 180.000 (1) |
Cu1—N1—C7A—C7 | 0.000 (1) | C7A—C3A—C4—C5 | 0.000 (1) |
Cu1—O2—C2B—C3B | 4.8 (4) | C3A—C7A—C7—C6 | 0.000 (1) |
Cu1—O2—C2B—C1B | −176.0 (2) | C5—C6—C7—C7A | 0.000 (1) |
O1—C4B—C3B—C2B | 0.3 (6) | N3—C3A—C4—C5 | 180.000 (1) |
N1—C3—N3—C8 | 180.000 (1) | C4—C3A—N3—C3 | 180.000 (1) |
N1—C3—N3—C3A | 0.000 (1) | C4—C3A—N3—C8 | 0.000 (1) |
N1—C7A—C3A—N3 | 0.000 (1) | C4—C5—C6—C7 | 0.000 (1) |
N1—C7A—C3A—C4 | 180.000 (1) | C5B—C4B—C3B—C2B | 178.0 (4) |
N1—C7A—C7—C6 | 180.000 (1) | C6—C5—C4—C3A | 0.000 (1) |
O2—C2B—C3B—C4B | −4.1 (6) | C7—C7A—C3A—N3 | 180.000 (1) |
N2—C3—N3—C8 | 0.000 (1) | C7—C7A—C3A—C4 | 0.000 (1) |
N2—C3—N3—C3A | 180.000 (1) | C1B—C2B—C3B—C4B | 176.9 (4) |
C3—N1—C7A—C3A | 0.000 (1) |
Symmetry code: (i) x, −y+1/2, z. |
Cg1 is the centroid of the N1/C2/N3/C3A/C7A ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2 | 0.86 | 2.44 | 3.077 (3) | 131 |
N2—H2B···O2ii | 0.86 | 2.44 | 3.167 (3) | 142 |
C5B—H5BA···Cg1iii | 0.96 | 2.74 | 3.682 (4) | 166 |
Symmetry codes: (ii) x−1/2, −y+1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1. |
Acknowledgements
The authors acknowledge support from the MIRAI FUND (JICA) and technical equipment support provided by the Institute of Bioorganic Chemistry of Academy Sciences of Uzbekistan.
References
Binnemans, K. (2005). Handbook on the Physics, Chemistry of Rare Earths, vol. 35, ch. 225, pp 107–185. Amsterdam: Elsevier. Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Gatadi, S., Madhavi, Y. V., Chopra, S. & Nanduri, S. (2019). Bioorg. Chem. 92, 364–377. Web of Science CrossRef Google Scholar
Geiger, D. K., DeStefano, M. R. & Lewis, R. A. (2017). Acta Cryst. E73, 1616–1621. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Halcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784–1795. Web of Science CrossRef CAS PubMed Google Scholar
Harris, T. M. (2001). 2,4-Pentanedione. In Encyclopedia of Reagents for Organic Synthesis. Chichester: Wiley. Google Scholar
Hatefi, M., Moghadam, M., Mirkhani, V. & Sheikhshoaei, I. (2010). Polyhedron, 29, 2953–2958. Web of Science CrossRef CAS Google Scholar
Jabborova, K., Ashurov, J., Tojiboev, A. & Daminova, S. (2024). Acta Cryst. E80, 751–754. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kadirova, Z. C., Rahmonova, D. S., Talipov, S. A., Ashurov, J. M. & Parpiev, N. A. (2009). Acta Cryst. E65, m819. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalafi-Nezhad, A., Soltani Rad, M. N., Mohabatkar, H., Asrari, Z. & Hemmateenejad, B. (2005). Bioorg. Med. Chem. 13, 1931–1938. Web of Science CrossRef PubMed CAS Google Scholar
Lin, H. & Feng, Y. L. (2003). Z. Kristallogr. New Cryst. Struct. 218, 533–534. CSD CrossRef CAS Google Scholar
Mahdavian, M. & Attar, M. M. (2009). Corros. Sci. 51, 409–414. Web of Science CrossRef CAS Google Scholar
Mishra, V. R., Ghanavatkar, C. W., Mali, S. N., Qureshi, S. I., Chaudhari, H. K. & Sekar, N. (2019). Comput. Biol. Chem. 78, 330–337. Web of Science CrossRef CAS PubMed Google Scholar
Raman, N., Muthuraj, V., Ravichandran, S. & Kulandaisamy, A. (2003). J. Chem. Sci. 115, 161–167. CrossRef CAS Google Scholar
Rezaeifard, A., Sheikhshoaie, I., Monadi, N. & Stoeckli–Evans, H. (2010). Eur. J. Inorg. Chem. pp. 799–806. Web of Science CSD CrossRef Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Ruzieva, B., Kunafiev, R., Kadirova, Z. & Daminova, S. (2022). Acta Cryst. E78, 647–651. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733–738. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, D. & Ma, S. (2016). ChemMedChem, 11, 646–659. Web of Science CrossRef CAS PubMed Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suttil, J. A., Kucharyson, J. F., Escalante-Garcia, I. L., Cabrera, P. J., James, B. R., Savinell, R. F., Sanford, M. S. & Thompson, L. T. (2015). J. Mater. Chem. A, 3, 7929–7938. Web of Science CSD CrossRef CAS Google Scholar
Tighadouini, S., Roby, O., Mortada, S., Lakbaibi, Z., Radi, S., Al-Ali, A., Faouzi, M. E. A., Ferbinteanu, M., Garcia, Y., Al-Zaqri, N., Zarrouk, A. & Warad, I. (2022). J. Mol. Struct. 1247, 131308. Web of Science CrossRef Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wong, Y. S., Ng, C. H. & Ng, S. W. (2009). Acta Cryst. E65, m934. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.