research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of bis­­(acetyl­acetonato-κ2O,O′)(2-amino-1-methyl-1H-benzimidazole-κN3)copper(II)

crossmark logo

aKarshi Engineering Economics Institute, Mustakillik Avenue 225, Karshi 180100, Uzbekistan, bNational University of Uzbekistan named after Mirzo Ulugbek, University Street 4, Tashkent 100174, Uzbekistan, cUniversity of Geological Sciences, Olimlar Street 64, Tashkent 100125, Uzbekistan, dNamangan State University, Boburshox Street 161, Namangan 160107, Uzbekistan, eInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Street 83, Tashkent 100125, Uzbekistan, and fUzbek-Japan Innovation Center of Youth, University Street 2B, Tashkent 100095, Uzbekistan
*Correspondence e-mail: ziatovdamin@gmail.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 11 September 2024; accepted 26 November 2024; online 1 January 2025)

The title compound, [Cu(C5H7O2)2(C8H9N3)], crystallizes in the ortho­rhom­bic space group Pnma. In the crystal structure, the CuII ion is coordinated by two acetyl­acetonate ligands and one 2-amino-1-methyl-1H-benzimidazole ligand. The crystal structure features intra­molecular N—H⋯O and inter­molecular N—H⋯O hydrogen bonds, which contribute to the overall cohesion of the crystal. Hirshfeld surface analysis and two-dimensional fingerprint plots were utilized to qu­antify the inter­molecular inter­actions, revealing the relative contributions of H⋯H (61.1%), H⋯C/C⋯H (21.3%), and O⋯H/H⋯O (11.3%) contacts to the crystal packing.

1. Chemical context

Transition-metal complexes containing Schiff base ligands have garnered significant attention in recent years due to their promising catalytic activity in various reactions (Sheikhshoaie et al., 2009[Sheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733-738.]; Hatefi et al., 2010[Hatefi, M., Moghadam, M., Mirkhani, V. & Sheikhshoaei, I. (2010). Polyhedron, 29, 2953-2958.]; Rezaeifard et al., 2010[Rezaeifard, A., Sheikhshoaie, I., Monadi, N. & Stoeckli-Evans, H. (2010). Eur. J. Inorg. Chem. pp. 799-806.]). Benzimidazole derivatives have also attracted considerable inter­est due to their diverse biological and therapeutic activities, including anti­microbial properties against bacteria such as methicillin-resistant staphylococcus aureus (Gatadi et al., 2019[Gatadi, S., Madhavi, Y. V., Chopra, S. & Nanduri, S. (2019). Bioorg. Chem. 92, 364-377.]), escherichia coli (Mishra et al., 2019[Mishra, V. R., Ghanavatkar, C. W., Mali, S. N., Qureshi, S. I., Chaudhari, H. K. & Sekar, N. (2019). Comput. Biol. Chem. 78, 330-337.]), and bacillus subtilis (Song & Ma, 2016[Song, D. & Ma, S. (2016). ChemMedChem, 11, 646-659.]). The discovery of new benzimidazole compounds with novel anti­bacterial mechanisms is of paramount importance in addressing the growing threat of anti­biotic resistance (Khalafi-Nezhad et al., 2005[Khalafi-Nezhad, A., Soltani Rad, M. N., Mohabatkar, H., Asrari, Z. & Hemmateenejad, B. (2005). Bioorg. Med. Chem. 13, 1931-1938.]). Recent research has focused on the synthesis and characterization of benzimidazole-based complexes with d-block metals (Jabborova et al., 2024[Jabborova, K., Ashurov, J., Tojiboev, A. & Daminova, S. (2024). Acta Cryst. E80, 751-754.]) and f-block metals (Ruzieva et al., 2022[Ruzieva, B., Kunafiev, R., Kadirova, Z. & Daminova, S. (2022). Acta Cryst. E78, 647-651.]), further expanding the potential applications of these compounds.

The coordination chemistry of rare-earth metals with β-diketonate ligands has been extensively studied due to their versatility and ease of use (Binnemans, 2005[Binnemans, K. (2005). Handbook on the Physics, Chemistry of Rare Earths, vol. 35, ch. 225, pp 107-185. Amsterdam: Elsevier.]). β-Dicarbonyl compounds, known for their keto–enol tautomerism, are among the most widely investigated tautomeric systems (Tighadouini et al., 2022[Tighadouini, S., Roby, O., Mortada, S., Lakbaibi, Z., Radi, S., Al-Ali, A., Faouzi, M. E. A., Ferbinteanu, M., Garcia, Y., Al-Zaqri, N., Zarrouk, A. & Warad, I. (2022). J. Mol. Struct. 1247, 131308.]; Harris, 2001[Harris, T. M. (2001). 2,4-Pentanedione. In Encyclopedia of Reagents for Organic Synthesis. Chichester: Wiley.]). Metal acetyl­acetonates have found applications in diverse fields, including redox flow batteries (Suttil et al., 2015[Suttil, J. A., Kucharyson, J. F., Escalante-Garcia, I. L., Cabrera, P. J., James, B. R., Savinell, R. F., Sanford, M. S. & Thompson, L. T. (2015). J. Mater. Chem. A, 3, 7929-7938.]) and as corrosion inhibitors for mild steel (Mahdavian & Attar, 2009[Mahdavian, M. & Attar, M. M. (2009). Corros. Sci. 51, 409-414.]). Notably, CuII, NiII, CoII, and ZnII complexes with acetyl­acetone ligands have demonstrated enhanced anti­microbial activity compared to the free ligand (Raman et al., 2003[Raman, N., Muthuraj, V., Ravichandran, S. & Kulandaisamy, A. (2003). J. Chem. Sci. 115, 161-167.]). In light of the potential biological significance of the title compound, [Cu(C5H7O2)2(C8H9N3)], a detailed investigation of its crystal structure is presented.

[Scheme 1]

2. Structural commentary

The title compound, bis­(acetyl­acetonato-κ2O,O′)(2-amino-1-methyl-1H-benzimidazole-κN3)copper(II) (I), crystallizes in the ortho­rhom­bic space group Pnma (Fig. 1[link]). The asymmetric unit consists of one mol­ecule of 2-amino-1-methyl-1H-benzimidazole (MAB) and one acetyl­acetonate (acac) ligand, both coordinated to the central copper(II) ion. The CuII ion adopts a square-pyramidal coordination geometry (coordination number 5), with the equatorial plane defined by the oxygen atoms of two bidentate β-diketonate mol­ecules [Cu1—O1 = 1.9378 (16) Å; Cu1—O2 = 1.9546 (16) Å; Table 1[link]]. The observed elongation of the Cu—O bonds is attributed to the Jahn–Teller effect, a common phenomenon in copper-based complexes (Halcrow, 2013[Halcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784-1795.]). The benzimidazole moiety is essentially planar and lies in the plane of symmetry (Fig. 2[link]). The N1 atom of the benzimidazole ligand coordinates axially to the CuII ion with a bond distance of 2.196 (2) Å. The observed Cu—N1, Cu—O1, and Cu—O2 bond lengths are consistent with those reported for related CuII complexes (Geiger et al., 2017[Geiger, D. K., DeStefano, M. R. & Lewis, R. A. (2017). Acta Cryst. E73, 1616-1621.]; Wong et al., 2009[Wong, Y. S., Ng, C. H. & Ng, S. W. (2009). Acta Cryst. E65, m934.]). The root-mean-square deviation of the equatorial plane (defined by O1, O2, Cu1, and their symmetry-related counterparts O1i and O2i) is 0.118 Å, with out-of-plane distances of 0.0596 (16) Å for O1 and 0.0582 (16) Å for O2. The largest deviation from the plane is observed for the CuII ion [0.2357 (4) Å], which is attributed to the presence of only one axial ligand (Fig. 1[link]). The mol­ecular structure of I exhibits intra­molecular N—H⋯O hydrogen bonds (Table 2[link]), which contribute to the stability of the individual mol­ecules. These hydrogen bonds form a characteristic S11(6) graph-set motif (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

Table 1
Selected bond lengths (Å)

Cu1—O1i 1.9378 (16) Cu1—O2 1.9546 (16)
Cu1—O1 1.9378 (16) Cu1—O2i 1.9546 (16)
Cu1—N1 2.196 (2)    
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C2/N3/C3A/C7A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2 0.86 2.44 3.077 (3) 131
N2—H2B⋯O2ii 0.86 2.44 3.167 (3) 142
C5B—H5BACg1iii 0.96 2.74 3.682 (4) 166
Symmetry codes: (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The hydrogen atoms and symmetry-generated atoms are not labeled.
[Figure 2]
Figure 2
(a) The asymmetric unit in the crystal of I. (b) Emphasis on the benzimidazole planarity.

3. Supra­molecular features

Inter­molecular N—H⋯O hydrogen bonds play a crucial role in establishing the overall crystal packing. These inter­molecular inter­actions link the mol­ecules into a zigzag chain running along the crystallographic a-axis direction, as depicted in Fig. 3[link]. The graph-set descriptors for these chains are C11(6) and R21(4), further illustrating the connectivity of the hydrogen-bonded network.

[Figure 3]
Figure 3
Crystal packing of I along the c axis. Intra­mol­ecular N—H⋯O hydrogen bonds are shown as red and inter­mol­ecular N—H⋯O hydrogen bonds as light-blue dashed lines. Dashed green lines denote C—H⋯Cg1 contacts. For clarity, H atoms not involved in these inter­actions have been omitted.

The structure also features π-ring inter­actions between adjacent chains, which contribute to the overall cohesion of the crystal. These inter­actions involve C—H⋯π contacts, where the C5—H5C bond of one mol­ecule inter­acts with the centroid (Cg1) of the N1/C2/N3/C3A/C7A ring of a neighbouring mol­ecule. The distance between the hydrogen atom (H5C) and the ring centroid (Cg1) is 2.743 (16) Å, indicating a significant inter­action.

The combination of intra­molecular and inter­molecular hydrogen bonds, along with π-ring inter­actions, results in a robust three-dimensional supra­molecular network in the crystal structure of I. These inter­actions not only contribute to the overall cohesion of the crystal but may also influence the physical and chemical properties of the compound.

4. Hirshfeld surface analysis

Hirshfeld surface analysis was conducted using CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to gain further insights into the inter­molecular inter­actions in the crystal structure of I. The dnorm surface, shown in Fig. 4[link], is mapped over −0.2120 to −1.5316 arbitrary units (a.u.), with red, white, and blue regions representing contacts shorter, equal to, or longer than the sum of van der Waals radii, respectively(Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]).

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of I plotted over dnorm.

The overall two-dimensional fingerprint plot (Fig. 5[link]a) and its decomposed components illustrate the relative contributions of different inter­molecular contacts to the Hirshfeld surface. As expected, H⋯H contacts (Fig. 5[link]b) constitute the most significant contribution, accounting for 61.1% of the total Hirshfeld surface area. H⋯C/C⋯H contacts (Fig. 5[link]c) comprise 21.3%, followed by O⋯H/H⋯O contacts (Fig. 5[link]d) at 11.3%. The remaining contributions, including N⋯H/H⋯N (4.6%), Cu⋯C (1.0%), and C⋯C (0.7%), are relatively minor. These results highlight the dominance of van der Waals inter­actions in the crystal packing of I.

[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for I, showing (a) all inter­actions and (b)–(d) delineated into separate inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed two related structures: bis­(acetyl­acetonato-κ2O,O′)(2-amino-1-methyl-1H-benzimidazole-κN)oxidovanadium(IV) (Kadi­rova et al., 2009[Kadirova, Z. C., Rahmonova, D. S., Talipov, S. A., Ashurov, J. M. & Parpiev, N. A. (2009). Acta Cryst. E65, m819.]; CSD refcode BOVMAB) and aqua­(benzimidazole-N)bis­(2,4-penta­nedionato-O,O′)cobalt(II) (Lin & Feng, 2003[Lin, H. & Feng, Y. L. (2003). Z. Kristallogr. New Cryst. Struct. 218, 533-534.]; CSD refcode ESUZUN). In both cases, the benzimidazole ligand coordinates to the central metal ion through the sp2 nitro­gen atom (N3), as observed in I. However, the coordination geometries and overall structural features differ due to the presence of different metal centers and additional ligands in these related complexes.

6. Synthesis and crystallization

All reagents and solvents were of analytical grade and used as received. Elemental analysis was performed using a FlashSmart™ Elemental Analyzer. The Fourier-transform infrared (FT–IR) spectrum was recorded on a Spectrum Two N FT–IR Spectrometer at room temperature.

Solutions of 0.1 mmol (0.0261 g) of CuCl2·6H2O in ethanol (solution A), 0.2 mmol (0.0294 g) of 2-amino-1-methyl-1H-benzimidazole (MAB) in ethanol (solution B), and 0.2 mmol (0.0205 mL, ρ = 0.975 g mL−1) of acetyl­acetone (solution C) were prepared. Solution B was added dropwise to solution A with stirring at room temperature for 30 minutes; no immediate changes being observed. Subsequently, solution C was added dropwise to the mixture, followed by stirring for 12 h. The resulting solution was then allowed to stand undisturbed at room temperature. Blue–green crystals formed over several days, which were then filtered, washed with ethanol, and recrystallized from dimethyl sulfoxide to yield light-green crystals suitable for X-ray diffraction analysis.

Elemental analysis: Calculated for C18H23CuN3O4: C, 52.88; H, 5.67; N, 10.28%. Found: C, 53.06; H, 5.33; N, 10.59%.

FT–IR (cm−1): 3448s, 3341s, 3054s, 2935m, 1654s, 1612s, 1584s, 1551s, 1522s, 1499s, 1399s, 1319s, 1289s, 1200m, 1108s, 1089m, 1018s, 934s, 894m, 787s, 746s, 674m, 657s, 587s, 566m, 429m.

7. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link]. Hydrogen atoms bonded to carbon were positioned geometrically (C—H = 0.93 Å for aromatic, 0.96 Å for methyl, and 0.97 Å for methyl­ene) and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl hydrogens and 1.2Ueq(C) for all others. The amine group (–NH2) hydrogen atoms were located in a difference-Fourier map and refined with an N—H distance restraint of 0.86 (2) Å and Uiso(H) = 1.5Ueq(N).

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C5H7O2)2(C8H9N3)]
Mr 408.93
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 298
a, b, c (Å) 9.0322 (2), 13.9740 (3), 16.0004 (4)
V3) 2019.51 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.70
Crystal size (mm) 0.3 × 0.24 × 0.18
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.517, 1.000
No. of measured, independent and observed [I ≥ 2σ(I)] reflections 19729, 2050, 1693
Rint 0.066
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.109, 1.04
No. of reflections 2050
No. of parameters 146
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.34
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), OLEX2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Bis(acetylacetonato-κ2O,O')(2-amino-1-methyl-1H-\ benzimidazole-κN3)copper(II) top
Crystal data top
[Cu(C5H7O2)2(C8H9N3)]Dx = 1.345 Mg m3
Mr = 408.93Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PnmaCell parameters from 5665 reflections
a = 9.0322 (2) Åθ = 2.8–69.5°
b = 13.9740 (3) ŵ = 1.70 mm1
c = 16.0004 (4) ÅT = 298 K
V = 2019.51 (8) Å3Block, clear light green
Z = 40.3 × 0.24 × 0.18 mm
F(000) = 846.676
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
1693 reflections with I 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.066
ω scansθmax = 71.5°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1110
Tmin = 0.517, Tmax = 1.000k = 1717
19729 measured reflectionsl = 1919
2050 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.436P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.27 e Å3
2050 reflectionsΔρmin = 0.33 e Å3
146 parametersExtinction correction: SHELXL2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00034 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.58425 (4)0.2500000.42118 (3)0.04582 (19)
O10.66063 (18)0.34444 (12)0.49868 (10)0.0623 (4)
N10.3473 (2)0.2500000.45198 (15)0.0466 (6)
O20.56911 (18)0.34360 (12)0.33081 (10)0.0615 (4)
N20.2624 (3)0.2500000.31270 (17)0.0819 (10)
H2A0.3509320.2500000.2929100.098*
H2B0.1877840.2500000.2793100.098*
C30.2406 (3)0.2500000.39601 (18)0.0492 (7)
C7A0.2752 (3)0.2500000.52873 (17)0.0440 (6)
C80.0378 (5)0.2500000.3850 (3)0.0828 (14)
C3A0.1225 (3)0.2500000.5159 (2)0.0507 (7)
C4B0.6857 (3)0.43114 (19)0.48236 (19)0.0713 (7)
C50.0806 (4)0.2500000.6613 (3)0.0798 (12)
H50.0174750.2500000.7072420.096*
C2B0.5995 (3)0.4322 (2)0.33641 (19)0.0724 (7)
N30.1028 (3)0.2500000.43016 (16)0.0534 (7)
C3B0.6587 (4)0.4754 (2)0.4067 (2)0.0907 (10)
H3B0.6825850.5399250.4025600.109*
C40.0195 (4)0.2500000.5807 (2)0.0701 (10)
H40.0821240.2500000.5712340.105*
C5B0.7560 (5)0.4878 (3)0.5527 (2)0.1149 (14)
H5BA0.7601460.5542180.5374880.172*
H5BB0.8544300.4645170.5625790.172*
H5BC0.6979390.4806110.6025560.172*
C60.2322 (4)0.2500000.6747 (2)0.0671 (9)
H60.2676210.2500000.7292390.080*
C70.3321 (4)0.2500000.6096 (2)0.0550 (7)
H70.4336210.2500000.6192890.066*
C1B0.5684 (6)0.4893 (2)0.2591 (2)0.1206 (15)
H1BA0.5748130.5563140.2718460.181*
H1BB0.4707950.4746590.2391960.181*
H1BC0.6397810.4734980.2168640.181*
H8A0.049 (6)0.199 (3)0.353 (3)0.19 (2)*
H8B0.100 (8)0.2500000.420 (4)0.14 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0410 (3)0.0525 (3)0.0439 (3)0.0000.00055 (16)0.000
O10.0659 (10)0.0630 (10)0.0580 (9)0.0026 (8)0.0107 (7)0.0074 (8)
N10.0368 (12)0.0605 (14)0.0426 (12)0.0000.0026 (10)0.000
O20.0728 (11)0.0612 (10)0.0505 (9)0.0109 (7)0.0010 (7)0.0085 (7)
N20.0433 (16)0.160 (3)0.0422 (14)0.0000.0035 (12)0.000
C30.0360 (14)0.0645 (18)0.0471 (15)0.0000.0009 (12)0.000
C7A0.0464 (15)0.0420 (13)0.0435 (14)0.0000.0033 (12)0.000
C80.041 (2)0.137 (5)0.070 (3)0.0000.0072 (19)0.000
C3A0.0441 (15)0.0556 (17)0.0524 (17)0.0000.0055 (13)0.000
C4B0.0746 (17)0.0566 (14)0.0828 (18)0.0047 (12)0.0081 (14)0.0184 (13)
C50.071 (3)0.114 (3)0.055 (2)0.0000.0223 (17)0.000
C2B0.0847 (19)0.0593 (15)0.0731 (17)0.0010 (13)0.0100 (14)0.0128 (13)
N30.0374 (13)0.0733 (18)0.0494 (14)0.0000.0018 (10)0.000
C3B0.129 (3)0.0480 (14)0.095 (2)0.0085 (16)0.009 (2)0.0014 (14)
C40.050 (2)0.097 (3)0.064 (2)0.0000.0117 (15)0.000
C5B0.148 (4)0.078 (2)0.119 (3)0.000 (2)0.038 (3)0.039 (2)
C60.073 (2)0.083 (2)0.0449 (16)0.0000.0051 (15)0.000
C70.0554 (19)0.0618 (19)0.0477 (16)0.0000.0022 (14)0.000
C1B0.187 (4)0.083 (2)0.092 (3)0.013 (2)0.004 (2)0.036 (2)
Geometric parameters (Å, º) top
Cu1—O1i1.9378 (16)C3A—C41.393 (5)
Cu1—O11.9378 (16)C4B—C3B1.381 (4)
Cu1—N12.196 (2)C4B—C5B1.516 (4)
Cu1—O21.9546 (16)C5—H50.9300
Cu1—O2i1.9546 (16)C5—C41.404 (6)
O1—C4B1.260 (3)C5—C61.385 (5)
N1—C31.316 (4)C2B—C3B1.383 (4)
N1—C7A1.390 (3)C2B—C1B1.498 (4)
O2—C2B1.272 (3)C3B—H3B0.9300
N2—H2A0.8600C4—H40.9300
N2—H2B0.8600C5B—H5BA0.9600
N2—C31.348 (4)C5B—H5BB0.9600
C3—N31.360 (4)C5B—H5BC0.9600
C7A—C3A1.395 (4)C6—H60.9300
C7A—C71.392 (4)C6—C71.378 (5)
C8—N31.461 (5)C7—H70.9300
C8—H8A0.89 (5)C1B—H1BA0.9600
C8—H8Ai0.89 (5)C1B—H1BB0.9600
C8—H8B0.79 (7)C1B—H1BC0.9600
C3A—N31.383 (4)
O1i—Cu1—O185.85 (10)C3B—C4B—C5B119.4 (3)
O1—Cu1—N1101.73 (7)C4—C5—H5119.0
O1i—Cu1—N1101.73 (7)C6—C5—H5119.0
O1—Cu1—O292.44 (7)C6—C5—C4122.0 (3)
O1i—Cu1—O2i92.44 (7)O2—C2B—C3B124.4 (3)
O1—Cu1—O2i162.56 (7)O2—C2B—C1B114.8 (3)
O1i—Cu1—O2162.56 (7)C3B—C2B—C1B120.8 (3)
O2—Cu1—N195.61 (7)C3—N3—C8126.6 (3)
O2i—Cu1—N195.61 (7)C3—N3—C3A106.3 (2)
O2i—Cu1—O284.01 (10)C3A—N3—C8127.1 (3)
C4B—O1—Cu1125.89 (18)C4B—C3B—C2B125.9 (3)
C3—N1—Cu1124.14 (19)C4B—C3B—H3B117.1
C3—N1—C7A105.0 (2)C2B—C3B—H3B117.1
C7A—N1—Cu1130.90 (19)C3A—C4—C5114.9 (3)
C2B—O2—Cu1125.76 (18)C3A—C4—H4122.5
H2A—N2—H2B120.0C5—C4—H4122.5
C3—N2—H2A120.0C4B—C5B—H5BA109.5
C3—N2—H2B120.0C4B—C5B—H5BB109.5
N1—C3—N2124.5 (3)C4B—C5B—H5BC109.5
N1—C3—N3113.4 (3)H5BA—C5B—H5BB109.5
N2—C3—N3122.1 (3)H5BA—C5B—H5BC109.5
N1—C7A—C3A109.5 (3)H5BB—C5B—H5BC109.5
N1—C7A—C7130.4 (3)C5—C6—H6119.0
C7—C7A—C3A120.1 (3)C7—C6—C5122.1 (3)
N3—C8—H8Ai112 (3)C7—C6—H6119.0
N3—C8—H8A112 (3)C7A—C7—H7121.3
N3—C8—H8B105 (5)C6—C7—C7A117.4 (3)
H8A—C8—H8Ai108 (6)C6—C7—H7121.3
H8A—C8—H8B109 (4)C2B—C1B—H1BA109.5
H8B—C8—H8Ai109 (4)C2B—C1B—H1BB109.5
N3—C3A—C7A105.9 (2)C2B—C1B—H1BC109.5
N3—C3A—C4130.7 (3)H1BA—C1B—H1BB109.5
C4—C3A—C7A123.5 (3)H1BA—C1B—H1BC109.5
O1—C4B—C3B125.5 (3)H1BB—C1B—H1BC109.5
O1—C4B—C5B115.1 (3)
Cu1—O1—C4B—C3B2.1 (4)C3—N1—C7A—C7180.000 (1)
Cu1—O1—C4B—C5B175.7 (2)C7A—N1—C3—N2180.000 (1)
Cu1—N1—C3—N20.000 (1)C7A—N1—C3—N30.000 (1)
Cu1—N1—C3—N3180.000 (1)C7A—C3A—N3—C30.000 (1)
Cu1—N1—C7A—C3A180.000 (1)C7A—C3A—N3—C8180.000 (1)
Cu1—N1—C7A—C70.000 (1)C7A—C3A—C4—C50.000 (1)
Cu1—O2—C2B—C3B4.8 (4)C3A—C7A—C7—C60.000 (1)
Cu1—O2—C2B—C1B176.0 (2)C5—C6—C7—C7A0.000 (1)
O1—C4B—C3B—C2B0.3 (6)N3—C3A—C4—C5180.000 (1)
N1—C3—N3—C8180.000 (1)C4—C3A—N3—C3180.000 (1)
N1—C3—N3—C3A0.000 (1)C4—C3A—N3—C80.000 (1)
N1—C7A—C3A—N30.000 (1)C4—C5—C6—C70.000 (1)
N1—C7A—C3A—C4180.000 (1)C5B—C4B—C3B—C2B178.0 (4)
N1—C7A—C7—C6180.000 (1)C6—C5—C4—C3A0.000 (1)
O2—C2B—C3B—C4B4.1 (6)C7—C7A—C3A—N3180.000 (1)
N2—C3—N3—C80.000 (1)C7—C7A—C3A—C40.000 (1)
N2—C3—N3—C3A180.000 (1)C1B—C2B—C3B—C4B176.9 (4)
C3—N1—C7A—C3A0.000 (1)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C2/N3/C3A/C7A ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.862.443.077 (3)131
N2—H2B···O2ii0.862.443.167 (3)142
C5B—H5BA···Cg1iii0.962.743.682 (4)166
Symmetry codes: (ii) x1/2, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge support from the MIRAI FUND (JICA) and technical equipment support provided by the Institute of Bioorganic Chemistry of Academy Sciences of Uzbekistan.

References

First citationBinnemans, K. (2005). Handbook on the Physics, Chemistry of Rare Earths, vol. 35, ch. 225, pp 107–185. Amsterdam: Elsevier.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGatadi, S., Madhavi, Y. V., Chopra, S. & Nanduri, S. (2019). Bioorg. Chem. 92, 364–377.  Web of Science CrossRef Google Scholar
First citationGeiger, D. K., DeStefano, M. R. & Lewis, R. A. (2017). Acta Cryst. E73, 1616–1621.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHalcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784–1795.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHarris, T. M. (2001). 2,4-Pentanedione. In Encyclopedia of Reagents for Organic Synthesis. Chichester: Wiley.  Google Scholar
First citationHatefi, M., Moghadam, M., Mirkhani, V. & Sheikhshoaei, I. (2010). Polyhedron, 29, 2953–2958.  Web of Science CrossRef CAS Google Scholar
First citationJabborova, K., Ashurov, J., Tojiboev, A. & Daminova, S. (2024). Acta Cryst. E80, 751–754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKadirova, Z. C., Rahmonova, D. S., Talipov, S. A., Ashurov, J. M. & Parpiev, N. A. (2009). Acta Cryst. E65, m819.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalafi-Nezhad, A., Soltani Rad, M. N., Mohabatkar, H., Asrari, Z. & Hemmateenejad, B. (2005). Bioorg. Med. Chem. 13, 1931–1938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, H. & Feng, Y. L. (2003). Z. Kristallogr. New Cryst. Struct. 218, 533–534.  CSD CrossRef CAS Google Scholar
First citationMahdavian, M. & Attar, M. M. (2009). Corros. Sci. 51, 409–414.  Web of Science CrossRef CAS Google Scholar
First citationMishra, V. R., Ghanavatkar, C. W., Mali, S. N., Qureshi, S. I., Chaudhari, H. K. & Sekar, N. (2019). Comput. Biol. Chem. 78, 330–337.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRaman, N., Muthuraj, V., Ravichandran, S. & Kulandaisamy, A. (2003). J. Chem. Sci. 115, 161–167.  CrossRef CAS Google Scholar
First citationRezaeifard, A., Sheikhshoaie, I., Monadi, N. & Stoeckli–Evans, H. (2010). Eur. J. Inorg. Chem. pp. 799–806.  Web of Science CSD CrossRef Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRuzieva, B., Kunafiev, R., Kadirova, Z. & Daminova, S. (2022). Acta Cryst. E78, 647–651.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733–738.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, D. & Ma, S. (2016). ChemMedChem, 11, 646–659.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuttil, J. A., Kucharyson, J. F., Escalante-Garcia, I. L., Cabrera, P. J., James, B. R., Savinell, R. F., Sanford, M. S. & Thompson, L. T. (2015). J. Mater. Chem. A, 3, 7929–7938.  Web of Science CSD CrossRef CAS Google Scholar
First citationTighadouini, S., Roby, O., Mortada, S., Lakbaibi, Z., Radi, S., Al-Ali, A., Faouzi, M. E. A., Ferbinteanu, M., Garcia, Y., Al-Zaqri, N., Zarrouk, A. & Warad, I. (2022). J. Mol. Struct. 1247, 131308.  Web of Science CrossRef Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWong, Y. S., Ng, C. H. & Ng, S. W. (2009). Acta Cryst. E65, m934.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds