research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of p-xylene@silicalite-1

crossmark logo

aSchool of Chemical and Biological Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
*Correspondence e-mail: ichwang@snu.ac.kr

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 4 November 2024; accepted 29 November 2024; online 1 January 2025)

The crystal structure of a highly loaded complex of silicalite-1 (SL-1) with eight mol­ecules of p-xylene per unit cell has been solved by single-crystal X-ray diffraction. In the crystal, four symmetrical Si24O48·2C8H10 subunits per unit cell are observed. The p-xylene mol­ecules sit at two different positions within the SL-1 channels. The first mol­ecule is located at the inter­section of the sinusoidal and straight channels, while the second guest mol­ecule is positioned in the center of the double ten-membered ring (10-MR) of the sinusoidal channel.

1. Chemical context

Silicalite-1 (SL-1) has attracted considerable attention due to its wide applicability in shape-selective catalysts and adsorbents. Many aromatic sorbate-SL-1 structures have been investigated by single-crystal X-ray diffraction (van Koningsveld et al., 1989[Koningsveld, H. van, Tuinstra, F., van Bekkum, H. & Jansen, J. C. (1989). Acta Cryst. B45, 423-431.]; Reck et al., 1996[Reck, G., Marlow, F., Kornatowski, J., Hill, W. & Caro, J. (1996). J. Phys. Chem. 100, 1698-1704.]; van Koningsveld, Jansen & de Man, 1996[Koningsveld, H. van, Jansen, J. C. & Man, A. J. M. de (1996). Acta Cryst. B52, 131-139.]; van Koningsveld, Jansen & van Bekkum, 1996[Koningsveld, H. van, Jansen, J. C. & van Bekkum, H. (1996). Acta Cryst. B52, 140-144.]; Nishi et al., 2005[Nishi, K., Hidaka, A. & Yokomori, Y. (2005). Acta Cryst. B61, 160-163.]; Kamiya et al., 2011[Kamiya, N., Iwama, W., Kudo, T., Nasuno, T., Fujiyama, S., Nishi, K. & Yokomori, Y. (2011). Acta Cryst. B67, 508-515.]). In addition, Fujiyama and co-workers reported on the adsorption structures of various non-aromatic hydro­carbons on SL-1 using single-crystal X-ray diffraction (Fujiyama, Seino, Kamiya, Nishi, Yoza & Yokomori, 2014[Fujiyama, S., Seino, S., Kamiya, N., Nishi, K., Yoza, K. & Yokomori, Y. (2014). Phys. Chem. Chem. Phys. 16, 15839-15845.]). They found that, depending on the guest–framework inter­actions, normal hydro­carbons prefer narrow channels, while the bulky iso­pentane prefers larger inter­sections. Additionally, they revealed that bent mol­ecules tend to prefer sinusoidal channels, whereas linear mol­ecules tend to favor straight channels.

Mixed xylenes (p-xylene, m-xylene, and o-xylene) are important chemical feedstocks used in the production of polyester fibers, resins, pigments, gasoline components, and more (Minceva et al., 2008[Minceva, M., Gomes, P. S., Meshko, V. & Rodrigues, A. E. (2008). Chem. Eng. J. 140, 305-323.]; Lusi & Barbour, 2012[Lusi, M. & Barbour, L. J. (2012). Angew. Chem. Int. Ed. 51, 3928-3931.]). Among these isomers, p-xylene has the highest application value and is a key raw material for the synthesis of refined terephthalic acid (PTA), polyethyl­ene terephthalate (PET), and other products (Torres-Knoop et al. 2014[Torres-Knoop, A., Krishna, R. & Dubbeldam, D. (2014). Angew. Chem. Int. Ed. 53, 7774-7778.]; Wu et al.. 2018[Wu, X., Wei, W., Jiang, J., Caro, J. & Huang, A. (2018). Angew. Chem. Int. Ed. 57, 15354-15358.]; Ma et al. 2019[Ma, Y., Jue, M. L., Zhang, F., Mathias, R., Jang, H. Y. & Lively, R. P. (2019). Angew. Chem. Int. Ed. 58, 13259-13265.]).

The two main methods for obtaining high-purity p-xylene in industry are crystallization separation and simulated moving bed (SMB) adsorption separation technology (Mohameed et al., 2007[Mohameed, H., Jdayil, B. A. & Takrouri, K. (2007). Chemical Engineering and Processing: Process Intensification, 46, 25-36.]; Barcia et al., 2012[Barcia, P. S., Nicolau, M. P. M., Gallegos, J. M., Chen, B., Rodrigues, A. E. & Silva, J. A. C. (2012). Microporous Mesoporous Mater. 155, 220-226.]). Currently, research on the separation of p-xylene using porous zeolites has been ongoing (Caro-Ortiz et al., 2021[Caro-Ortiz, S., Zuidema, E., Rigutto, M., Dubbeldam, D. & Vlugt, T. J. H. (2021). J. Phys. Chem. C, 125, 4155-4174.]). van Koningsveld and co-workers reported the detailed structure of the ubiquitous adsorption sites of p-xylene mol­ecules in the channels of the microporous zeolite H-ZSM-5, Si23.92Al0.08O48·2(C8H10) (+0.08H+), and discussed the sorption mechanism of p-xylene mol­ecules in the channels (van Koningsveld et al., 1989[Koningsveld, H. van, Tuinstra, F., van Bekkum, H. & Jansen, J. C. (1989). Acta Cryst. B45, 423-431.]).

However, the p-xylene@SL-1 structure has not yet been determined by single-crystal X-ray diffraction. From this perspective, there is a need to closely examine the structure of p-xylene mol­ecules within zeolite channels, and this study was initiated. Single crystals of p-xylene@SL-1 were obtained by adsorbing p-xylene through vacuum and heat treatment.

[Scheme 1]

2. Structural commentary

The single-crystal structure of p-xylene@SL-1, (C8H10)2@Si24O48, has ortho­rhom­bic symmetry in space group P212121, whereas the original SL-1 framework has monoclinic symmetry in space group P21/n (Pham et al., 2016[Pham, T. C., Docao, S., Hwang, I. C., Song, M. K., Choi, D. Y., Moon, D., Oleynikov, P. & Yoon, K. B. (2016). Energy Environ. Sci. 9, 1050-1062.]). Fig. 1[link] shows that p-xylene mol­ecules are arranged anisotropically in the channels of the SL-1 framework. One of the two independent p-xylene mol­ecules is located at the inter­section of the straight and sinusoidal channels, with its long mol­ecular axis nearly parallel to the straight channel axis. The second p-xylene mol­ecule lies in the sinusoidal channel, with its long mol­ecular axis nearly parallel to [100] (see Fig. 1[link]). The minimal cross-section of the p-xylene mol­ecules fills the maximal limiting pores in both channels. The p-xylene mol­ecules in the sinusoidal channel are more tightly confined by the framework atoms than the mol­ecule in the straight channel. The main inter­action forces between the p-xylene mol­ecules at the inter­section of the channels and the one in the sinusoidal channel are almost identical to those in the [001] layer of p-xylene.

[Figure 1]
Figure 1
Unit-cell structures of p-xylene@SL-1 along the b-axis (top), and along the c-axis (bottom). The carbon atoms of the p-xylene mol­ecules are drawn in two colors, the red-colored mol­ecules are located at the inter­section of the straight channel and sinusoidal channel, while the blue-colored mol­ecules are located in the sinusoidal channels.

3. Supra­molecular features

The distances and angles of the SL-1 framework are summarized in the supporting information, along with the corresponding values for the p-xylene mol­ecules. The O—Si—O angles and Si—O distances are essentially similar to those reported in previous guest–silicalite-1 structures (van Koningsveld et al., 1989[Koningsveld, H. van, Tuinstra, F., van Bekkum, H. & Jansen, J. C. (1989). Acta Cryst. B45, 423-431.]; Fujiyama, Seino, Kamiya, Nishi, Yoza, & Yokomori, 2014[Fujiyama, S., Seino, S., Kamiya, N., Nishi, K., Yoza, K. & Yokomori, Y. (2014). Phys. Chem. Chem. Phys. 16, 15839-15845.]).

The elliptical ten-membered ring (10-MR) diameters of the straight and sinusoidal channels are 8.37 × 7.30 Å and 8.73 × 7.26 Å, respectively, corresponding to the diagonal distances between oxygen atoms along the major and minor axes. The straight channel, parallel to [010], is slightly corrugated, with elliptical cross-sections of 5.7 × 4.6 Å (roxygen = 1.35 Å), while the sinusoidal channel along [100] has dimensions of 6.0 × 4.6 Å (see Fig. 2[link]). One p-xylene mol­ecule lies at the inter­section of the straight and sinusoidal channels, with its long axis nearly parallel to [100] and deviating by 7.45 (1)° from [010]. The angle between the benzene ring plane and the a-axis direction is −32.7 (1)°. The second p-xylene mol­ecule is in the sinusoidal channel, with its long axis deviating by 6.41 (1)° from [100] and nearly parallel to [010]. The angle between the benzene ring plane and the b-axis direction is −34.6 (1)° (see Fig. 2[link]). The minimal cross sections of the p-xylene mol­ecules fill the maximal limiting pores in both channels.

[Figure 2]
Figure 2
p-Xylene arrangement in the straight channel (top) and the sinusoidal channel (bottom), with carbon atoms shown as 50% probability displacement ellipsoids.

Contacts between adjacent methyl groups of p-xylene mol­ecules in the straight channels are 4.18 (1) and 4.93 (1) Å, respectively. In the sinusoidal channel, the shortest CH3—CH3 distance between two C-atoms is 5.342 (1) Å, indicating that the packing forces between p-xylene mol­ecules are negligible.

Short p-xylene-to-SL-1 framework distances are summarized in Fig. 3[link] and Table 1[link], along with several short C—O contacts that may indicate (weak) H—O inter­actions. The p-xylene mol­ecule in the sinusoidal channel is more tightly packed (Fig. 3[link]). On the other hand, the p-xylene mol­ecules at the channel inter­sections show contacts between a methyl group of one p-xylene with the center of the aromatic ring of an adjacent p-xylene with a distance of 3.50 (1) Å [see Fig. 3[link] (top)]. These structural features closely resemble those of the p-xylene/H-ZSM-5 complex (van Koningsveld et al., 1989[Koningsveld, H. van, Tuinstra, F., van Bekkum, H. & Jansen, J. C. (1989). Acta Cryst. B45, 423-431.]), except for the inter­action forces between the p-xylene mol­ecules at the channel inter­sections.

Table 1
Selected interatomic distances (Å)

C1⋯O3 3.499 (1) C6⋯O21i 3.319 (1)
C2⋯O28 3.489 (1) C6⋯O1 3.439 (1)
C3⋯O6 3.326 (1) C6⋯O14i 3.305 (1)
C3⋯O9 3.384 (1) C10⋯O48i 3.830 (1)
C3⋯O44 3.411 (1) C11⋯O31i 3.684 (1)
C4⋯O39 3.494 (1) C11⋯O45i 3.684 (1)
C5⋯O39 3.428 (1) C13⋯O46i 3.402 (1)
C5⋯O19i 3.440 (1) C14⋯O15i 3.897 (1)
C5⋯O21i 3.315 (1) C14⋯O21i 3.481 (1)
C5⋯O14i 3.151 (1)    
Symmetry code: (i) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Illustrations of the inter­molecular inter­actions between p-xylene and oxygen atoms in SL-1. Straight channel (top) and sinusoidal channel (bottom) with arrangements of the p-xylene mol­ecules with carbon atoms shown as 50% probability displacement ellipsoids. The inter­molecular distance between independent p-xylene mol­ecules is d(C8⋯Cg) = 3.498 Å where Cg is the center of gravity of the C9–C14 ring.

4. Database survey

A search of the Cambridge Structure Database (CSD, version 5.45, update June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave several hits for small organic mol­ecules incorporated in SL-1. For example, Fujiyama and co-workers revealed that the adsorption structures of butane derivatives in SL-1 vary depending on the isomers, with bent mol­ecules preferring sinusoidal channels (NUVTIJ, etc.) and linear mol­ecules preferring straight channels (NUVQIG, etc.; Fujiyama, Seino, Kamiya, Nishi, Yoza, & Yokomori, 2014[Fujiyama, S., Seino, S., Kamiya, N., Nishi, K., Yoza, K. & Yokomori, Y. (2014). Phys. Chem. Chem. Phys. 16, 15839-15845.]). Additionally, references to similar single-crystal structures incorporating small mol­ecules in the channels of SL-1 are as follows; CO2 (NUTHOB; Fujiyama, Kamiya, Nishi, & Yokomori, 2014[Fujiyama, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2014). Langmuir, 30, 3749-3753.]), n-hexane (AHODOQ, AHODOQ01, AHODUW; Morell et al., 2002[Morell, H., Angermund, K., Lewis, A. R., Brouwer, D. H., Fyfe, C. A. & Gies, H. (2002). Chem. Mater. 14, 5, 2192-2198.]), dimethyl ether (BOKLIY; Fujiyama, Seino, Kamiya, Nishi, & Yokomori, 2014[Fujiyama, S., Seino, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2014). Acta Cryst. B70, 856-863.]), 1-butyl-3-methyl­imidazolium (FABNAZ; Wheatley et al., 2010[Wheatley, P. S., Allan, P. K., Teat, S. J., Ashbrook, S. E. & Morris, R. E. (2010). Chem. Sci. 1, 483-487.]), toluol (FEWZUD; Nishi et al., 2005[Nishi, K., Hidaka, A. & Yokomori, Y. (2005). Acta Cryst. B61, 160-163.]), ethyl­enedi­amine (FIJYUT, FIKFEL; Perego et al., 2003[Perego, G., Bellussi, G., Millini, R., Alberti, A. & Zanardi, S. (2003). Microporous Mesoporous Mater. 58, 213-223.]), tetra­propyl­ammonium hydroxide (FUHZUD; van Koningsveld et al., 1987[Koningsveld, H. van, van Bekkum, H. & Jansen, J. C. (1987). Acta Cryst. B43, 127-132.]), pyridine (IQEBEM; Nishi et al., 2007[Nishi, K., Kamiya, N. & Yokomori, Y. (2007). Microporous Mesoporous Mater. 101, 83-89.]), phenyl (ODEVOK; Kamiya et al., 2011[Kamiya, N., Iwama, W., Kudo, T., Nasuno, T., Fujiyama, S., Nishi, K. & Yokomori, Y. (2011). Acta Cryst. B67, 508-515.]), lithium hydroxide/tetra­propyl­ammonium hydroxide (PAGMIU; Park et al., 2004[Park, S. H., Liu, H., Kleinsorge, M., Grey, C. P., Toby, B. H. & Parise, J. B. (2004). Chem. Mater. 16, 13, 2605-2614.]), tetra­propyl­ammonium fluoride (PRAFSI10; Price et al., 1982[Price, G. D., Pluth, J. J., Smith, J. V., Bennett, J. M. & Patton, R. L. (1982). J. Am. Chem. Soc. 104, 5971-5977.]), methyl ether (QOTCIN, QOTCOT, QOTCUZ, QOTCUZ01; Fujiyama et al., 2015[Fujiyama, S., Yoza, K., Kamiya, N., Nishi, K. & Yokomori, Y. (2015). Acta Cryst. B71, 112-118.]), para-di­chloro­benzene (WEJJEA01; van Koningsveld, Jansen, & van Bekkum, 1996[Koningsveld, H. van, Jansen, J. C. & van Bekkum, H. (1996). Acta Cryst. B52, 140-144.]), and naphthalene (PUPPAR; van Koningsveld, & Jansen, 1996[Koningsveld, H. van & Jansen, J. C. (1996). Microporous Mater. 6,159-167.]).

In summary, guest mol­ecules adsorbed in the microporous structure of SL-1, which consists of straight channels and sinusoidal channels, can be distinguished into three locations according to their shapes and sizes. The locations are the center of the double 10-MR in sinusoidal channels, the center of the double 10-MR in straight channels, and the inter­section between sinusoidal and straight channels.

5. Synthesis and crystallization

Synthesis of SL-1: Single crystals of pristine SL-1 with regular morphology were synthesized from a mixed gel (mole ratio; fumed silica: tetra­ethyl­ammonium hydroxide (TEAOH): KOH: NH4F: H2O = 1:0.48:0.1:0.18:15) under hydro­thermal reaction conditions (438 K, 12 days). SL-1 product was washed several times with distilled deionized water through sonication and centrifugation process. The washed pristine SL-1 was dried overnight at 353 K in a vacuum oven.

Calcinations of pristine SL-1: The zeolite calcinations process to remove the TEAOH organic template is quite important because the crystalline framework can be damaged depending on the temperature and time. In fact, since calcination above 823 K damages the crystal, two calcination periods of 12 h at 773 K, with a 2 h rest in between, have been performed.

Preparation of p-xylene@SL-1: In a glass vessel connected to a vacuum pump, SL-1 single-crystal (2.0 g) and p-xylene in a 5 ml glass vial were placed together, and heated in an oven under vacuum at 373 K for about 1 h. Then, when rapidly cooled to room temperature, p-xylene@SL-1 was obtained in which p-xylene mol­ecules were adsorbed in a saturated manner within the channels of SL-1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Synchrotron single-crystal X-ray diffraction data were obtained on an ADSC Quantum 210 CCD diffractometer at the Pohang Accelerator Laboratory (PAL) Large Mol­ecular Crystallography Wiggler two-dimensional beamline. The measured diffraction data were obtained using synchrotron radiation (λ = 0.7000 Å), and a total of 360 frames were measured by rotating the ω angle by 1.00° with an exposure time of 5 s per frame at 243 K. In the structure refinements, chemical elements were modified using the instruction of DISP (the dispersion and the absorption coefficient of particular elements) at the wavelength of 0.700 Å. The remaining hydrogen atoms were positioned geometrically and refined isotropically using a riding model, with C—H bond distances of 0.94 Å (phen­yl) and 0.97 Å (meth­yl) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). The crystal studied was refined as a two-component inversion twin.

Table 2
Experimental details

Crystal data
Chemical formula Si24O48·2C8H10
Mr 1654.48
Crystal system, space group Orthorhombic, P212121
Temperature (K) 243
a, b, c (Å) 20.128 (4), 19.816 (4), 13.429 (3)
V3) 5356.2 (19)
Z 4
Radiation type Synchrotron, λ = 0.700 Å
μ (mm−1) 0.65
Crystal size (mm) 0.02 × 0.02 × 0.01
 
Data collection
Diffractometer ADSC Quantum 210 CCD area detector
Absorption correction Empirical (using intensity measurements) (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.987, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 48262, 15347, 14416
Rint 0.031
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.079, 1.04
No. of reflections 15347
No. of parameters 798
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.50
Absolute structure Refined as a perfect inversion twin
Absolute structure parameter 0.5
Computer programs: PAL ADSC Quantum-210 ADX Program, HKL-3000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Supporting information


Computing details top

p-Xylene@silicalite-1 top
Crystal data top
Si24O48·2C8H10Dx = 2.052 Mg m3
Mr = 1654.48Synchrotron radiation, λ = 0.700 Å
Orthorhombic, P212121Cell parameters from 88940 reflections
a = 20.128 (4) Åθ = 1.4–29.5°
b = 19.816 (4) ŵ = 0.65 mm1
c = 13.429 (3) ÅT = 243 K
V = 5356.2 (19) Å3Stick, colorless
Z = 40.02 × 0.02 × 0.01 mm
F(000) = 3344
Data collection top
ADSC Quantum 210 CCD area detector
diffractometer
15347 independent reflections
Radiation source: PLSII 2D bending magnet14416 reflections with I > 2σ(I)
Detector resolution: 4096 pixels mm-1Rint = 0.031
ω–scanθmax = 29.5°, θmin = 1.4°
Absorption correction: empirical (using intensity measurements)
(Scalepack; Otwinowski & Minor, 1997)
h = 2828
Tmin = 0.987, Tmax = 0.995k = 2727
48262 measured reflectionsl = 1818
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0548P)2 + 0.467P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.002
wR(F2) = 0.079Δρmax = 0.60 e Å3
S = 1.04Δρmin = 0.49 e Å3
15347 reflectionsExtinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
798 parametersExtinction coefficient: 0.0027 (2)
0 restraintsAbsolute structure: Refined as a perfect inversion twin
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.5
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The data-reduction process was defined as a unit cell and lattice system in the HKL-3000 program, space group was determined by the XPREP program. The crystal structure of p-xylene@SL-1 was refined by direct methods using the SHELXTL-XS program and refined by full matrix least-squares calculation using SHELXTL-XL (ver. 2008) program package (Sheldrick, 2015) and Olex2 program (Dolomanov, et al., 2009; Bourhis, et al., 2015)). The crystal structure of p- xylene@SL-1 was solved in noncentrosymmetric orthorhombic space group P212121 (No. 19). All non-hydrogen atoms were refined anisotropically. Refined as a 2-component perfect inversion twin. 1. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups 2.a Aromatic/amide H refined with riding coordinates: C2(H2), C3(H3), C5(H5), C6(H6), C10(H10), C11(H11), C13(H13), C14(H14) 2.b Idealised Me refined as rotating group: C7(H7A,H7B,H7C), C8(H8A,H8B,H8C), C15(H15A,H15B,H15C), C16(H16A,H16B,H16C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1480 (3)0.2525 (2)0.8689 (4)0.0515 (13)
C20.1916 (4)0.2830 (2)0.8012 (4)0.0679 (17)
H20.1739810.3066850.7466550.081*
C30.2595 (4)0.2792 (2)0.8122 (4)0.0637 (16)
H30.2870270.3009940.7656840.076*
C40.2885 (3)0.24379 (19)0.8905 (3)0.0445 (11)
C50.2452 (2)0.2122 (2)0.9561 (3)0.0400 (9)
H50.2631490.1869951.0089370.048*
C60.1777 (2)0.2161 (2)0.9472 (3)0.0428 (10)
H60.1505660.1941330.9940570.051*
C70.0741 (3)0.2580 (3)0.8608 (5)0.074 (2)
H7A0.0542400.2140850.8718070.112*
H7B0.0623480.2741010.7948490.112*
H7C0.0578170.2895380.9103830.112*
C80.3614 (3)0.2402 (3)0.9014 (5)0.0674 (17)
H8A0.3795470.2111390.8499890.101*
H8B0.3723630.2219680.9663590.101*
H8C0.3801270.2850600.8948720.101*
C90.5090 (3)0.3324 (4)0.7564 (5)0.0683 (18)
C100.4793 (3)0.2873 (4)0.6896 (4)0.078 (2)
H100.4575480.3043330.6330000.093*
C110.4812 (3)0.2170 (4)0.7051 (4)0.077 (2)
H110.4597720.1885670.6591670.092*
C120.5131 (3)0.1890 (4)0.7845 (5)0.0707 (19)
C130.5422 (3)0.2342 (4)0.8504 (5)0.075 (2)
H130.5641500.2172910.9068640.091*
C140.5400 (3)0.3034 (4)0.8360 (5)0.0675 (17)
H140.5607040.3315850.8830550.081*
C150.5074 (4)0.4061 (5)0.7403 (7)0.112 (3)
H15A0.5259170.4287590.7979890.168*
H15B0.4618050.4205910.7306550.168*
H15C0.5333570.4172800.6817910.168*
C160.5138 (4)0.1147 (4)0.7958 (7)0.100 (3)
H16A0.4708570.0995400.8198520.149*
H16B0.5479880.1019080.8430010.149*
H16C0.5229330.0939330.7318060.149*
O10.29938 (10)0.64082 (8)0.58803 (14)0.0122 (3)
O20.39007 (10)1.24514 (9)1.17883 (17)0.0138 (4)
O30.60073 (10)0.35617 (9)0.32381 (16)0.0133 (4)
O40.49742 (8)0.05418 (11)0.47543 (16)0.0147 (4)
O50.40852 (10)0.07057 (10)0.33702 (15)0.0162 (4)
O60.30167 (12)0.25312 (9)0.57585 (16)0.0181 (4)
O70.24416 (9)0.56576 (10)0.44914 (16)0.0162 (4)
O80.24224 (11)0.33738 (12)0.45610 (19)0.0218 (5)
O90.30155 (11)0.14184 (8)0.67630 (15)0.0151 (4)
O100.18159 (9)0.54782 (10)0.27877 (14)0.0125 (3)
O110.19512 (9)0.65534 (9)0.70339 (16)0.0160 (4)
O120.18492 (12)0.45172 (10)0.41565 (17)0.0234 (4)
O130.42386 (11)0.04857 (10)0.41406 (16)0.0198 (4)
O140.28217 (10)0.75345 (9)0.68150 (16)0.0136 (4)
O150.37364 (9)0.04866 (11)0.52324 (16)0.0177 (4)
O160.57620 (12)0.24562 (10)0.42206 (18)0.0208 (5)
O170.60163 (12)0.00997 (11)0.37934 (18)0.0223 (5)
O180.31129 (11)0.83230 (10)0.82970 (16)0.0195 (4)
O190.24416 (10)0.04377 (13)0.51592 (17)0.0230 (5)
O200.11368 (10)0.34204 (11)0.44102 (17)0.0171 (4)
O210.30494 (11)0.88039 (9)0.64743 (16)0.0176 (4)
O220.41691 (11)0.16696 (11)0.33076 (18)0.0220 (5)
O230.19685 (10)0.84536 (10)0.7406 (2)0.0253 (5)
O240.19998 (10)0.06581 (11)0.73077 (19)0.0255 (5)
O250.41272 (11)0.55262 (12)0.28872 (16)0.0214 (4)
O260.09152 (11)0.01283 (10)0.66209 (18)0.0219 (5)
O270.38698 (10)0.85426 (12)0.98099 (17)0.0185 (4)
O280.60159 (11)0.12256 (10)0.37160 (18)0.0200 (4)
O290.25891 (12)0.85280 (14)1.0056 (2)0.0290 (6)
O300.50287 (8)1.04870 (12)1.06371 (17)0.0184 (4)
O310.37004 (11)0.14891 (12)0.51168 (19)0.0230 (5)
O320.41187 (11)0.44994 (11)0.41273 (19)0.0257 (5)
O330.31349 (13)0.95108 (10)0.90863 (18)0.0278 (5)
O340.70180 (9)0.05429 (12)0.30234 (18)0.0264 (5)
O350.41308 (10)0.36085 (9)0.09386 (16)0.0131 (4)
O360.38387 (9)1.04763 (14)0.99205 (17)0.0224 (5)
O370.41130 (13)1.11865 (11)1.1497 (2)0.0303 (6)
O380.31293 (10)0.64401 (10)0.78159 (15)0.0139 (4)
O390.30783 (10)1.07199 (9)0.83972 (14)0.0127 (3)
O400.49670 (9)0.35045 (12)0.44219 (18)0.0183 (4)
O410.42159 (11)0.35132 (12)0.28593 (17)0.0205 (4)
O420.29762 (12)0.51056 (10)0.60757 (16)0.0212 (4)
O430.11377 (9)0.56067 (10)0.44167 (15)0.0136 (4)
O440.30331 (12)0.38034 (10)0.61749 (16)0.0213 (4)
O450.49648 (9)0.14852 (11)0.48007 (17)0.0176 (4)
O460.37296 (9)0.56810 (10)0.47314 (16)0.0159 (4)
O470.30872 (11)0.01096 (9)0.66601 (16)0.0162 (4)
O480.37061 (10)0.33190 (11)0.4650 (2)0.0230 (5)
Si10.42550 (3)0.03090 (3)0.43722 (5)0.00494 (12)
Si20.31735 (3)0.87229 (3)0.93152 (5)0.00586 (12)
Si30.18148 (3)0.53140 (3)0.39587 (5)0.00567 (12)
Si40.62335 (3)0.05474 (3)0.31636 (5)0.00589 (12)
Si50.30290 (3)0.57070 (3)0.52909 (5)0.00484 (11)
Si60.30393 (3)0.17308 (3)0.56638 (5)0.00556 (11)
Si70.38007 (3)1.17145 (3)1.22503 (6)0.00657 (13)
Si80.27894 (3)0.07270 (3)0.72846 (5)0.00558 (12)
Si90.30721 (3)0.04994 (3)0.58746 (5)0.00548 (11)
Si100.31486 (3)1.02889 (3)0.93970 (5)0.00639 (12)
Si110.38195 (3)0.32528 (3)0.19052 (6)0.00612 (12)
Si120.42542 (3)0.37125 (3)0.40143 (5)0.00596 (12)
Si130.12141 (3)0.07337 (3)0.72653 (5)0.00523 (12)
Si140.18189 (3)0.37195 (3)0.39818 (5)0.00600 (12)
Si150.57203 (3)0.16915 (3)0.45858 (5)0.00624 (12)
Si160.27250 (3)0.67380 (3)0.68885 (5)0.00513 (12)
Si170.42577 (3)1.05029 (3)1.09251 (5)0.00547 (11)
Si180.42620 (3)0.12801 (3)0.43403 (5)0.00593 (12)
Si190.30412 (3)0.32698 (3)0.52895 (5)0.00546 (12)
Si200.42370 (3)0.52956 (3)0.40213 (5)0.00565 (12)
Si210.57473 (3)0.06593 (3)0.45433 (5)0.00522 (12)
Si220.27977 (3)0.44711 (3)0.67508 (5)0.00592 (12)
Si230.57171 (3)0.32600 (3)0.42638 (5)0.00544 (12)
Si240.27405 (3)0.82808 (3)0.72431 (5)0.00614 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.096 (4)0.0269 (18)0.031 (3)0.012 (2)0.010 (3)0.0031 (16)
C20.136 (6)0.034 (2)0.033 (3)0.011 (3)0.005 (3)0.0147 (18)
C30.124 (5)0.034 (2)0.033 (3)0.007 (3)0.020 (3)0.015 (2)
C40.081 (3)0.0265 (17)0.026 (2)0.0090 (19)0.018 (2)0.0064 (14)
C50.065 (3)0.0323 (19)0.022 (2)0.0010 (18)0.0105 (19)0.0065 (15)
C60.064 (3)0.0345 (19)0.030 (2)0.0040 (18)0.0051 (19)0.0058 (16)
C70.102 (5)0.060 (3)0.062 (4)0.035 (3)0.032 (4)0.022 (3)
C80.081 (4)0.068 (3)0.054 (4)0.023 (3)0.027 (3)0.020 (3)
C90.039 (3)0.121 (6)0.045 (3)0.004 (3)0.012 (2)0.004 (3)
C100.052 (3)0.152 (7)0.029 (3)0.009 (4)0.001 (2)0.004 (4)
C110.050 (3)0.145 (7)0.035 (3)0.014 (4)0.006 (2)0.029 (4)
C120.038 (2)0.127 (6)0.048 (4)0.015 (3)0.009 (2)0.017 (4)
C130.041 (3)0.136 (7)0.049 (4)0.013 (3)0.012 (2)0.009 (4)
C140.043 (3)0.107 (5)0.052 (4)0.010 (3)0.009 (2)0.013 (3)
C150.105 (6)0.126 (7)0.104 (7)0.014 (5)0.055 (6)0.001 (6)
C160.082 (5)0.112 (7)0.104 (7)0.014 (4)0.032 (5)0.000 (5)
O10.0207 (9)0.0081 (7)0.0078 (9)0.0018 (7)0.0022 (8)0.0039 (6)
O20.0215 (9)0.0052 (7)0.0146 (11)0.0003 (6)0.0013 (8)0.0032 (7)
O30.0216 (9)0.0084 (8)0.0098 (10)0.0009 (7)0.0038 (8)0.0037 (7)
O40.0060 (7)0.0241 (10)0.0142 (11)0.0053 (7)0.0031 (6)0.0036 (8)
O50.0280 (10)0.0141 (9)0.0066 (10)0.0004 (7)0.0073 (8)0.0028 (7)
O60.0339 (11)0.0061 (7)0.0144 (11)0.0020 (8)0.0091 (10)0.0037 (6)
O70.0137 (8)0.0213 (10)0.0137 (11)0.0043 (7)0.0054 (7)0.0003 (8)
O80.0166 (9)0.0268 (11)0.0220 (13)0.0046 (8)0.0107 (9)0.0015 (9)
O90.0296 (10)0.0081 (7)0.0077 (9)0.0042 (7)0.0001 (8)0.0038 (6)
O100.0108 (7)0.0228 (9)0.0039 (8)0.0005 (7)0.0022 (6)0.0004 (7)
O110.0073 (8)0.0151 (8)0.0255 (11)0.0002 (7)0.0018 (8)0.0007 (7)
O120.0424 (12)0.0077 (8)0.0202 (11)0.0000 (9)0.0045 (9)0.0017 (8)
O130.0309 (10)0.0076 (8)0.0210 (11)0.0006 (8)0.0018 (8)0.0009 (8)
O140.0235 (9)0.0045 (7)0.0129 (11)0.0016 (6)0.0019 (8)0.0032 (6)
O150.0109 (8)0.0267 (10)0.0154 (11)0.0013 (8)0.0087 (7)0.0036 (9)
O160.0359 (11)0.0057 (8)0.0208 (13)0.0004 (8)0.0063 (10)0.0026 (7)
O170.0356 (12)0.0140 (9)0.0173 (12)0.0053 (8)0.0054 (10)0.0056 (8)
O180.0257 (10)0.0228 (9)0.0101 (10)0.0052 (8)0.0086 (9)0.0073 (7)
O190.0154 (9)0.0377 (13)0.0160 (11)0.0035 (9)0.0091 (8)0.0035 (10)
O200.0104 (8)0.0269 (11)0.0141 (11)0.0047 (7)0.0060 (8)0.0012 (8)
O210.0266 (10)0.0074 (7)0.0187 (11)0.0030 (8)0.0047 (9)0.0059 (7)
O220.0274 (11)0.0216 (10)0.0171 (12)0.0065 (8)0.0130 (9)0.0106 (8)
O230.0072 (8)0.0250 (10)0.0437 (15)0.0016 (8)0.0017 (10)0.0161 (9)
O240.0064 (8)0.0358 (12)0.0342 (13)0.0020 (8)0.0011 (9)0.0087 (10)
O250.0257 (10)0.0303 (11)0.0081 (10)0.0010 (9)0.0070 (8)0.0029 (9)
O260.0336 (12)0.0135 (9)0.0186 (12)0.0028 (8)0.0079 (9)0.0089 (8)
O270.0115 (9)0.0332 (12)0.0110 (11)0.0055 (8)0.0050 (8)0.0021 (9)
O280.0295 (11)0.0120 (9)0.0184 (12)0.0036 (8)0.0047 (9)0.0065 (8)
O290.0197 (11)0.0470 (15)0.0202 (13)0.0070 (10)0.0106 (9)0.0044 (11)
O300.0046 (7)0.0352 (11)0.0153 (11)0.0016 (8)0.0002 (7)0.0044 (10)
O310.0147 (10)0.0277 (11)0.0267 (13)0.0049 (8)0.0105 (9)0.0037 (9)
O320.0336 (11)0.0081 (8)0.0355 (14)0.0024 (8)0.0028 (10)0.0011 (9)
O330.0506 (14)0.0082 (8)0.0245 (12)0.0050 (10)0.0032 (11)0.0029 (8)
O340.0062 (8)0.0403 (12)0.0327 (13)0.0020 (9)0.0028 (8)0.0020 (10)
O350.0193 (9)0.0080 (8)0.0121 (10)0.0015 (6)0.0049 (7)0.0039 (7)
O360.0098 (8)0.0452 (13)0.0123 (11)0.0067 (9)0.0063 (7)0.0069 (10)
O370.0485 (15)0.0109 (9)0.0315 (15)0.0051 (9)0.0160 (12)0.0066 (9)
O380.0142 (8)0.0195 (9)0.0080 (9)0.0027 (7)0.0030 (7)0.0031 (7)
O390.0213 (9)0.0108 (7)0.0060 (9)0.0002 (7)0.0039 (8)0.0028 (6)
O400.0071 (8)0.0344 (11)0.0133 (11)0.0055 (7)0.0033 (7)0.0020 (9)
O410.0185 (10)0.0321 (11)0.0109 (11)0.0015 (8)0.0048 (8)0.0069 (9)
O420.0368 (12)0.0118 (8)0.0151 (11)0.0042 (8)0.0014 (10)0.0068 (7)
O430.0091 (7)0.0236 (10)0.0081 (10)0.0037 (7)0.0049 (7)0.0014 (8)
O440.0369 (12)0.0116 (8)0.0154 (11)0.0055 (9)0.0050 (10)0.0058 (7)
O450.0092 (9)0.0290 (11)0.0146 (11)0.0061 (7)0.0037 (7)0.0016 (9)
O460.0090 (8)0.0187 (9)0.0201 (11)0.0006 (7)0.0068 (7)0.0089 (8)
O470.0229 (9)0.0098 (8)0.0158 (10)0.0031 (7)0.0003 (9)0.0062 (7)
O480.0146 (9)0.0226 (10)0.0320 (14)0.0010 (8)0.0121 (9)0.0070 (9)
Si10.0042 (2)0.0063 (3)0.0043 (3)0.00079 (19)0.0002 (2)0.0009 (2)
Si20.0066 (3)0.0059 (2)0.0051 (3)0.0004 (2)0.0010 (2)0.0004 (2)
Si30.0064 (3)0.0068 (3)0.0039 (3)0.0003 (2)0.0012 (2)0.0013 (2)
Si40.0060 (2)0.0065 (3)0.0052 (3)0.0001 (2)0.0006 (2)0.0008 (2)
Si50.0059 (2)0.0047 (2)0.0039 (3)0.0004 (2)0.0008 (2)0.00106 (19)
Si60.0067 (2)0.0047 (2)0.0053 (3)0.0001 (2)0.0003 (2)0.0009 (2)
Si70.0077 (3)0.0035 (2)0.0085 (4)0.0014 (2)0.0007 (2)0.0017 (2)
Si80.0065 (3)0.0056 (3)0.0047 (3)0.0008 (2)0.0004 (2)0.0019 (2)
Si90.0060 (2)0.0058 (2)0.0046 (3)0.0003 (2)0.0016 (2)0.0005 (2)
Si100.0061 (3)0.0078 (3)0.0054 (3)0.0007 (2)0.0011 (2)0.0021 (2)
Si110.0067 (3)0.0051 (3)0.0066 (3)0.0008 (2)0.0003 (2)0.0005 (2)
Si120.0040 (3)0.0060 (3)0.0078 (3)0.0003 (2)0.0001 (2)0.0002 (2)
Si130.0056 (2)0.0063 (2)0.0038 (3)0.0003 (2)0.0001 (2)0.0010 (2)
Si140.0060 (3)0.0062 (3)0.0058 (3)0.0006 (2)0.0019 (2)0.0001 (2)
Si150.0063 (3)0.0043 (3)0.0082 (3)0.0003 (2)0.0017 (2)0.0001 (2)
Si160.0068 (3)0.0036 (2)0.0049 (3)0.0011 (2)0.0007 (2)0.0013 (2)
Si170.0044 (2)0.0061 (2)0.0059 (3)0.0006 (2)0.0004 (2)0.0005 (2)
Si180.0046 (3)0.0058 (3)0.0074 (3)0.0001 (2)0.0010 (2)0.0013 (2)
Si190.0065 (2)0.0035 (2)0.0063 (3)0.0006 (2)0.0013 (2)0.0015 (2)
Si200.0041 (2)0.0070 (3)0.0058 (3)0.0008 (2)0.0000 (2)0.0012 (2)
Si210.0048 (2)0.0056 (3)0.0053 (3)0.00036 (19)0.0008 (2)0.0015 (2)
Si220.0073 (2)0.0053 (2)0.0052 (3)0.0004 (2)0.0019 (2)0.0003 (2)
Si230.0053 (2)0.0045 (2)0.0065 (3)0.0002 (2)0.0012 (2)0.0015 (2)
Si240.0080 (3)0.0041 (2)0.0063 (3)0.0013 (2)0.0002 (2)0.0015 (2)
Geometric parameters (Å, º) top
C1—C21.400 (8)O16—Si151.595 (2)
C1—C61.408 (6)O16—Si231.597 (2)
C1—C71.495 (8)O17—Si41.597 (2)
C2—H20.9400O17—Si211.593 (2)
C2—C31.378 (9)O18—Si21.585 (2)
C3—H30.9400O18—Si241.604 (2)
C3—C41.391 (7)O19—Si91.596 (2)
C4—C51.387 (6)O19—Si10iv1.596 (2)
C4—C81.477 (8)O20—Si141.602 (2)
C5—H50.9400O20—Si15vi1.603 (2)
C5—C61.367 (6)O21—Si9vii1.5990 (19)
C6—H60.9400O21—Si241.590 (2)
C7—H7A0.9700O22—Si7viii1.604 (2)
C7—H7B0.9700O22—Si181.598 (2)
C7—H7C0.9700O23—Si7ix1.597 (2)
C8—H8A0.9700O23—Si241.606 (2)
C8—H8B0.9700O24—Si81.595 (2)
C8—H8C0.9700O24—Si131.590 (2)
C9—C101.400 (9)O25—Si4x1.587 (2)
C9—C141.365 (9)O25—Si201.605 (2)
C9—C151.476 (10)O26—Si131.597 (2)
C10—H100.9400O26—Si17iv1.599 (2)
C10—C111.408 (10)O27—Si21.592 (2)
C11—H110.9400O27—Si23xi1.598 (2)
C11—C121.364 (9)O28—Si41.596 (2)
C12—C131.390 (8)O28—Si151.603 (2)
C12—C161.479 (10)O29—Si21.588 (2)
C13—H130.9400O29—Si6v1.590 (2)
C13—C141.385 (9)O30—Si171.5997 (18)
C14—H140.9400O30—Si20xi1.5934 (19)
C15—H15A0.9700O31—Si61.594 (2)
C15—H15B0.9700O31—Si181.593 (2)
C15—H15C0.9700O32—Si121.590 (2)
C16—H16A0.9700O32—Si201.602 (2)
C16—H16B0.9700O33—Si21.593 (2)
C16—H16C0.9700O33—Si101.597 (2)
O1—Si51.6007 (18)O34—Si41.590 (2)
O1—Si161.598 (2)O34—Si22ii1.599 (2)
O2—Si71.5993 (19)O35—Si111.604 (2)
O2—Si11i1.6042 (19)O35—Si21x1.6075 (19)
O3—Si13ii1.6061 (19)O36—Si101.601 (2)
O3—Si231.611 (2)O36—Si171.592 (2)
O4—Si11.6037 (18)O37—Si71.585 (2)
O4—Si211.5988 (18)O37—Si171.584 (2)
O5—Si11.595 (2)O38—Si14v1.601 (2)
O5—Si13iii1.602 (2)O38—Si161.601 (2)
O6—Si61.5917 (18)O39—Si8vii1.603 (2)
O6—Si191.5941 (19)O39—Si101.5975 (19)
O7—Si31.602 (2)O40—Si121.590 (2)
O7—Si51.600 (2)O40—Si231.600 (2)
O8—Si141.597 (2)O41—Si111.595 (2)
O8—Si191.597 (2)O41—Si121.602 (2)
O9—Si61.601 (2)O42—Si51.594 (2)
O9—Si81.6047 (18)O42—Si221.591 (2)
O10—Si31.606 (2)O43—Si31.6036 (19)
O10—Si22iv1.5980 (19)O43—Si21vi1.606 (2)
O11—Si11v1.607 (2)O44—Si191.591 (2)
O11—Si161.612 (2)O44—Si221.604 (2)
O12—Si31.603 (2)O45—Si151.601 (2)
O12—Si141.599 (2)O45—Si181.596 (2)
O13—Si11.606 (2)O46—Si51.5987 (19)
O13—Si181.597 (2)O46—Si201.5923 (19)
O14—Si161.5932 (18)O47—Si81.5998 (19)
O14—Si241.5950 (19)O47—Si91.6031 (19)
O15—Si11.596 (2)O48—Si121.598 (2)
O15—Si91.5915 (19)O48—Si191.593 (2)
C1···O33.499 (1)C6···O21xii3.319 (1)
C2···O283.489 (1)C6···O13.439 (1)
C3···O63.326 (1)C6···O14xii3.305 (1)
C3···O93.384 (1)C10···O48xii3.830 (1)
C3···O443.411 (1)C11···O31xii3.684 (1)
C4···O393.494 (1)C11···O45xii3.684 (1)
C5···O393.428 (1)C13···O46xii3.402 (1)
C5···O19xii3.440 (1)C14···O15xii3.897 (1)
C5···O21xii3.315 (1)C14···O21xii3.481 (1)
C5···O14xii3.151 (1)
C2—C1—C6116.1 (5)O25xiii—Si4—O17108.92 (13)
C2—C1—C7123.0 (5)O25xiii—Si4—O28108.06 (13)
C6—C1—C7120.9 (5)O25xiii—Si4—O34110.41 (13)
C1—C2—H2119.0O28—Si4—O17110.78 (12)
C3—C2—C1121.9 (5)O34—Si4—O17109.26 (13)
C3—C2—H2119.0O34—Si4—O28109.40 (13)
C2—C3—H3119.2O7—Si5—O1110.63 (11)
C2—C3—C4121.6 (5)O42—Si5—O1108.61 (11)
C4—C3—H3119.2O42—Si5—O7110.40 (12)
C3—C4—C8121.0 (5)O42—Si5—O46110.20 (12)
C5—C4—C3116.4 (5)O46—Si5—O1107.41 (11)
C5—C4—C8122.6 (5)O46—Si5—O7109.54 (12)
C4—C5—H5118.6O6—Si6—O9108.10 (11)
C6—C5—C4122.9 (4)O6—Si6—O31111.11 (12)
C6—C5—H5118.6O29iv—Si6—O6109.85 (14)
C1—C6—H6119.5O29iv—Si6—O9108.94 (13)
C5—C6—C1121.1 (5)O29iv—Si6—O31109.30 (13)
C5—C6—H6119.5O31—Si6—O9109.49 (13)
C1—C7—H7A109.5O2—Si7—O22i109.63 (12)
C1—C7—H7B109.5O23xiv—Si7—O2111.28 (11)
C1—C7—H7C109.5O23xiv—Si7—O22i108.71 (13)
H7A—C7—H7B109.5O37—Si7—O2107.77 (13)
H7A—C7—H7C109.5O37—Si7—O22i110.17 (14)
H7B—C7—H7C109.5O37—Si7—O23xiv109.27 (14)
C4—C8—H8A109.5O24—Si8—O9111.36 (12)
C4—C8—H8B109.5O24—Si8—O39xv110.03 (12)
C4—C8—H8C109.5O24—Si8—O47108.54 (12)
H8A—C8—H8B109.5O39xv—Si8—O9108.14 (10)
H8A—C8—H8C109.5O47—Si8—O9108.53 (11)
H8B—C8—H8C109.5O47—Si8—O39xv110.23 (11)
C10—C9—C15121.9 (7)O15—Si9—O19109.91 (12)
C14—C9—C10115.3 (7)O15—Si9—O21xv108.10 (11)
C14—C9—C15122.7 (7)O15—Si9—O47109.19 (12)
C9—C10—H10119.1O19—Si9—O21xv110.27 (13)
C9—C10—C11121.7 (6)O19—Si9—O47110.70 (12)
C11—C10—H10119.1O21xv—Si9—O47108.62 (11)
C10—C11—H11119.0O19v—Si10—O33109.46 (14)
C12—C11—C10122.1 (6)O19v—Si10—O36108.75 (13)
C12—C11—H11119.0O19v—Si10—O39111.99 (12)
C11—C12—C13115.7 (7)O33—Si10—O36110.71 (14)
C11—C12—C16119.3 (7)O39—Si10—O33107.15 (11)
C13—C12—C16125.0 (7)O39—Si10—O36108.79 (12)
C12—C13—H13118.8O2viii—Si11—O11iv110.20 (10)
C14—C13—C12122.5 (7)O2viii—Si11—O35108.42 (11)
C14—C13—H13118.8O35—Si11—O11iv111.03 (11)
C9—C14—C13122.7 (6)O41—Si11—O2viii110.36 (12)
C9—C14—H14118.7O41—Si11—O11iv108.61 (12)
C13—C14—H14118.7O41—Si11—O35108.20 (12)
C9—C15—H15A109.5O32—Si12—O41109.01 (13)
C9—C15—H15B109.5O32—Si12—O48108.01 (12)
C9—C15—H15C109.5O40—Si12—O32112.09 (13)
H15A—C15—H15B109.5O40—Si12—O41108.22 (12)
H15A—C15—H15C109.5O40—Si12—O48108.22 (13)
H15B—C15—H15C109.5O48—Si12—O41111.31 (13)
C12—C16—H16A109.5O5xii—Si13—O3vi108.81 (11)
C12—C16—H16B109.5O24—Si13—O3vi110.78 (11)
C12—C16—H16C109.5O24—Si13—O5xii109.74 (13)
H16A—C16—H16B109.5O24—Si13—O26108.86 (13)
H16A—C16—H16C109.5O26—Si13—O3vi109.11 (12)
H16B—C16—H16C109.5O26—Si13—O5xii109.53 (12)
Si16—O1—Si5142.09 (13)O8—Si14—O12108.88 (13)
Si7—O2—Si11i148.55 (16)O8—Si14—O20108.56 (13)
Si13ii—O3—Si23140.93 (14)O8—Si14—O38iv110.01 (12)
Si21—O4—Si1149.75 (15)O12—Si14—O20110.22 (12)
Si1—O5—Si13iii151.47 (14)O12—Si14—O38iv109.66 (11)
Si6—O6—Si19151.93 (15)O38iv—Si14—O20109.50 (12)
Si5—O7—Si3155.15 (15)O16—Si15—O20ii111.26 (12)
Si14—O8—Si19161.26 (17)O16—Si15—O28107.67 (13)
Si6—O9—Si8137.81 (13)O16—Si15—O45110.36 (12)
Si22iv—O10—Si3150.07 (13)O20ii—Si15—O28109.83 (12)
Si11v—O11—Si16149.92 (13)O45—Si15—O20ii108.05 (12)
Si14—O12—Si3161.42 (16)O45—Si15—O28109.68 (12)
Si18—O13—Si1158.97 (16)O1—Si16—O11109.70 (11)
Si16—O14—Si24152.08 (15)O1—Si16—O38109.65 (10)
Si9—O15—Si1160.95 (15)O14—Si16—O1108.14 (11)
Si15—O16—Si23159.03 (17)O14—Si16—O11110.51 (10)
Si21—O17—Si4170.69 (17)O14—Si16—O38110.57 (11)
Si2—O18—Si24145.42 (14)O38—Si16—O11108.27 (11)
Si10iv—O19—Si9172.78 (19)O26v—Si17—O30109.69 (12)
Si14—O20—Si15vi143.25 (16)O36—Si17—O26v110.72 (13)
Si24—O21—Si9vii154.34 (15)O36—Si17—O30107.97 (12)
Si18—O22—Si7viii148.09 (15)O37—Si17—O26v110.20 (13)
Si7ix—O23—Si24151.12 (14)O37—Si17—O30108.20 (14)
Si13—O24—Si8169.20 (16)O37—Si17—O36110.00 (15)
Si4x—O25—Si20156.04 (16)O13—Si18—O22109.08 (12)
Si13—O26—Si17iv170.40 (17)O31—Si18—O13110.19 (12)
Si2—O27—Si23xi149.55 (16)O31—Si18—O22111.07 (13)
Si4—O28—Si15157.69 (17)O31—Si18—O45108.00 (13)
Si2—O29—Si6v171.5 (2)O45—Si18—O13110.01 (12)
Si20xi—O30—Si17146.62 (16)O45—Si18—O22108.47 (12)
Si18—O31—Si6166.55 (19)O6—Si19—O8109.66 (13)
Si12—O32—Si20158.71 (17)O44—Si19—O6108.33 (12)
Si2—O33—Si10153.45 (17)O44—Si19—O8111.34 (13)
Si4—O34—Si22ii162.25 (18)O44—Si19—O48111.77 (13)
Si11—O35—Si21x141.42 (14)O48—Si19—O6107.16 (12)
Si17—O36—Si10147.11 (15)O48—Si19—O8108.48 (13)
Si17—O37—Si7161.20 (19)O30xvi—Si20—O25109.45 (12)
Si16—O38—Si14v150.11 (14)O30xvi—Si20—O32110.28 (13)
Si10—O39—Si8vii145.09 (13)O32—Si20—O25110.13 (13)
Si12—O40—Si23152.19 (17)O46—Si20—O25110.08 (12)
Si11—O41—Si12151.79 (16)O46—Si20—O30xvi107.97 (11)
Si22—O42—Si5169.20 (17)O46—Si20—O32108.90 (12)
Si3—O43—Si21vi140.61 (14)O4—Si21—O35xiii110.57 (11)
Si19—O44—Si22155.70 (16)O4—Si21—O43ii108.22 (11)
Si18—O45—Si15146.81 (17)O17—Si21—O4109.97 (12)
Si20—O46—Si5149.61 (14)O17—Si21—O35xiii108.78 (12)
Si8—O47—Si9155.99 (15)O17—Si21—O43ii109.78 (12)
Si19—O48—Si12153.85 (16)O43ii—Si21—O35xiii109.51 (11)
O4—Si1—O13111.27 (12)O10v—Si22—O34vi108.28 (12)
O5—Si1—O4108.75 (11)O10v—Si22—O44109.16 (11)
O5—Si1—O13108.39 (11)O34vi—Si22—O44111.53 (13)
O5—Si1—O15111.20 (12)O42—Si22—O10v109.69 (11)
O15—Si1—O4107.18 (12)O42—Si22—O34vi110.08 (13)
O15—Si1—O13110.06 (12)O42—Si22—O44108.08 (12)
O18—Si2—O27108.40 (12)O16—Si23—O3108.58 (12)
O18—Si2—O29111.21 (14)O16—Si23—O27xvi110.40 (13)
O18—Si2—O33108.64 (12)O16—Si23—O40111.13 (12)
O27—Si2—O33110.09 (13)O27xvi—Si23—O3110.29 (11)
O29—Si2—O27109.65 (14)O27xvi—Si23—O40106.37 (12)
O29—Si2—O33108.84 (14)O40—Si23—O3110.08 (12)
O7—Si3—O10110.49 (11)O14—Si24—O18108.58 (11)
O7—Si3—O12108.10 (12)O14—Si24—O23110.23 (11)
O7—Si3—O43110.13 (11)O18—Si24—O23108.73 (13)
O12—Si3—O10111.22 (11)O21—Si24—O14109.30 (11)
O12—Si3—O43109.23 (12)O21—Si24—O18110.88 (12)
O43—Si3—O10107.67 (10)O21—Si24—O23109.12 (13)
C1—C2—C3—C41.1 (8)Si12—O40—Si23—O1687.2 (4)
C2—C1—C6—C51.0 (7)Si12—O40—Si23—O27xvi152.7 (3)
C2—C3—C4—C50.6 (7)Si12—O41—Si11—O2viii93.5 (3)
C2—C3—C4—C8180.0 (5)Si12—O41—Si11—O11iv27.4 (4)
C3—C4—C5—C61.5 (6)Si12—O41—Si11—O35148.0 (3)
C4—C5—C6—C10.7 (7)Si12—O48—Si19—O6170.7 (4)
C6—C1—C2—C31.8 (7)Si12—O48—Si19—O871.0 (4)
C7—C1—C2—C3177.7 (5)Si12—O48—Si19—O4452.2 (5)
C7—C1—C6—C5178.5 (5)Si13ii—O3—Si23—O16171.0 (2)
C8—C4—C5—C6179.1 (5)Si13ii—O3—Si23—O27xvi49.9 (2)
C9—C10—C11—C121.4 (9)Si13ii—O3—Si23—O4067.2 (2)
C10—C9—C14—C130.0 (9)Si13iii—O5—Si1—O4139.4 (3)
C10—C11—C12—C131.5 (8)Si13iii—O5—Si1—O1318.3 (3)
C10—C11—C12—C16179.3 (6)Si13iii—O5—Si1—O15102.8 (3)
C11—C12—C13—C140.9 (8)Si13—O24—Si8—O910.5 (10)
C12—C13—C14—C90.2 (9)Si13—O24—Si8—O39xv109.4 (10)
C14—C9—C10—C110.6 (8)Si13—O24—Si8—O47129.9 (10)
C15—C9—C10—C11179.7 (6)Si14—O8—Si19—O6143.8 (5)
C15—C9—C14—C13179.2 (6)Si14—O8—Si19—O4423.9 (6)
C16—C12—C13—C14179.9 (6)Si14—O8—Si19—O4899.4 (6)
Si1—O4—Si21—O1734.4 (3)Si14—O12—Si3—O7136.9 (5)
Si1—O4—Si21—O35xiii85.8 (3)Si14—O12—Si3—O1015.4 (6)
Si1—O4—Si21—O43ii154.3 (3)Si14—O12—Si3—O43103.3 (5)
Si1—O13—Si18—O22180.0 (4)Si14v—O38—Si16—O1157.8 (3)
Si1—O13—Si18—O3157.8 (5)Si14v—O38—Si16—O1138.1 (3)
Si1—O13—Si18—O4561.1 (5)Si14v—O38—Si16—O1483.1 (3)
Si1—O15—Si9—O1934.0 (5)Si15—O16—Si23—O3173.4 (5)
Si1—O15—Si9—O21xv154.4 (5)Si15—O16—Si23—O27xvi52.4 (5)
Si1—O15—Si9—O4787.6 (5)Si15—O16—Si23—O4065.4 (5)
Si2—O18—Si24—O14159.6 (3)Si15vi—O20—Si14—O854.9 (3)
Si2—O18—Si24—O2180.3 (3)Si15vi—O20—Si14—O1264.3 (3)
Si2—O18—Si24—O2339.7 (3)Si15vi—O20—Si14—O38iv175.0 (2)
Si2—O33—Si10—O19v61.0 (4)Si15—O28—Si4—O175.7 (5)
Si2—O33—Si10—O3658.9 (4)Si15—O28—Si4—O25xiii124.9 (4)
Si2—O33—Si10—O39177.4 (4)Si15—O28—Si4—O34114.9 (4)
Si3—O7—Si5—O1126.7 (3)Si15—O45—Si18—O1385.9 (3)
Si3—O7—Si5—O426.5 (4)Si15—O45—Si18—O2233.3 (3)
Si3—O7—Si5—O46115.0 (4)Si15—O45—Si18—O31153.8 (3)
Si3—O12—Si14—O8139.6 (5)Si16—O1—Si5—O796.5 (2)
Si3—O12—Si14—O20101.5 (5)Si16—O1—Si5—O4224.8 (3)
Si3—O12—Si14—O38iv19.2 (6)Si16—O1—Si5—O46144.0 (2)
Si4x—O25—Si20—O30xvi164.7 (4)Si16—O14—Si24—O1859.2 (3)
Si4x—O25—Si20—O3243.3 (4)Si16—O14—Si24—O21179.7 (3)
Si4x—O25—Si20—O4676.7 (4)Si16—O14—Si24—O2359.8 (3)
Si4—O28—Si15—O16179.5 (4)Si17—O36—Si10—O19v34.2 (4)
Si4—O28—Si15—O20ii59.2 (5)Si17—O36—Si10—O3386.1 (4)
Si4—O28—Si15—O4559.4 (5)Si17—O36—Si10—O39156.4 (3)
Si5—O1—Si16—O1151.5 (2)Si17—O37—Si7—O2156.0 (6)
Si5—O1—Si16—O14172.1 (2)Si17—O37—Si7—O22i84.4 (7)
Si5—O1—Si16—O3867.3 (2)Si17—O37—Si7—O23xiv35.0 (7)
Si5—O7—Si3—O10145.9 (3)Si18—O13—Si1—O466.1 (5)
Si5—O7—Si3—O1224.0 (4)Si18—O13—Si1—O5174.4 (4)
Si5—O7—Si3—O4395.2 (4)Si18—O13—Si1—O1552.6 (5)
Si5—O42—Si22—O10v159.7 (9)Si18—O31—Si6—O685.1 (7)
Si5—O42—Si22—O34vi40.7 (9)Si18—O31—Si6—O9155.6 (7)
Si5—O42—Si22—O4481.4 (9)Si18—O31—Si6—O29iv36.3 (8)
Si5—O46—Si20—O2592.3 (3)Si18—O45—Si15—O1676.3 (3)
Si5—O46—Si20—O30xvi148.3 (3)Si18—O45—Si15—O20ii161.9 (3)
Si5—O46—Si20—O3228.5 (3)Si18—O45—Si15—O2842.2 (3)
Si6—O6—Si19—O863.9 (4)Si19—O6—Si6—O9175.5 (3)
Si6—O6—Si19—O44174.4 (3)Si19—O6—Si6—O29iv65.7 (4)
Si6—O6—Si19—O4853.6 (4)Si19—O6—Si6—O3155.3 (4)
Si6—O9—Si8—O2472.4 (2)Si19—O8—Si14—O1211.0 (6)
Si6—O9—Si8—O39xv166.6 (2)Si19—O8—Si14—O20109.0 (6)
Si6—O9—Si8—O4747.0 (2)Si19—O8—Si14—O38iv131.2 (5)
Si6—O31—Si18—O1393.5 (7)Si19—O44—Si22—O10v179.1 (4)
Si6—O31—Si18—O2227.5 (8)Si19—O44—Si22—O34vi59.5 (4)
Si6—O31—Si18—O45146.3 (7)Si19—O44—Si22—O4261.6 (4)
Si7viii—O22—Si18—O1339.6 (4)Si19—O48—Si12—O329.7 (5)
Si7viii—O22—Si18—O3182.1 (3)Si19—O48—Si12—O40131.2 (4)
Si7viii—O22—Si18—O45159.4 (3)Si19—O48—Si12—O41110.0 (4)
Si7ix—O23—Si24—O1411.7 (4)Si20xi—O30—Si17—O26v33.1 (3)
Si7ix—O23—Si24—O18130.6 (4)Si20xi—O30—Si17—O36153.9 (3)
Si7ix—O23—Si24—O21108.3 (4)Si20xi—O30—Si17—O3787.1 (3)
Si7—O37—Si17—O26v26.9 (7)Si20—O32—Si12—O4053.8 (5)
Si7—O37—Si17—O30146.8 (6)Si20—O32—Si12—O4166.0 (5)
Si7—O37—Si17—O3695.5 (6)Si20—O32—Si12—O48172.9 (5)
Si8—O9—Si6—O6154.8 (2)Si20—O46—Si5—O1179.2 (3)
Si8—O9—Si6—O29iv35.5 (3)Si20—O46—Si5—O759.0 (3)
Si8—O9—Si6—O3184.0 (2)Si20—O46—Si5—O4262.7 (3)
Si8—O24—Si13—O3vi9.0 (10)Si21—O4—Si1—O552.5 (3)
Si8—O24—Si13—O5xii111.2 (10)Si21—O4—Si1—O1366.8 (3)
Si8—O24—Si13—O26129.0 (10)Si21—O4—Si1—O15172.8 (3)
Si8vii—O39—Si10—O19v92.1 (3)Si21x—O35—Si11—O2viii179.5 (2)
Si8vii—O39—Si10—O3328.0 (3)Si21x—O35—Si11—O11iv58.3 (2)
Si8vii—O39—Si10—O36147.7 (2)Si21x—O35—Si11—O4160.8 (2)
Si8—O47—Si9—O15138.2 (3)Si21vi—O43—Si3—O760.1 (2)
Si8—O47—Si9—O1917.1 (4)Si21vi—O43—Si3—O10179.3 (2)
Si8—O47—Si9—O21xv104.1 (4)Si21vi—O43—Si3—O1258.4 (2)
Si9—O15—Si1—O4165.1 (5)Si22iv—O10—Si3—O746.1 (3)
Si9—O15—Si1—O576.2 (5)Si22iv—O10—Si3—O1274.0 (3)
Si9—O15—Si1—O1343.9 (5)Si22iv—O10—Si3—O43166.4 (3)
Si9vii—O21—Si24—O14141.1 (3)Si22ii—O34—Si4—O1756.2 (6)
Si9vii—O21—Si24—O1899.2 (4)Si22ii—O34—Si4—O25xiii176.0 (5)
Si9vii—O21—Si24—O2320.5 (4)Si22ii—O34—Si4—O2865.2 (6)
Si9—O47—Si8—O9100.6 (4)Si22—O42—Si5—O1117.1 (9)
Si9—O47—Si8—O2420.6 (4)Si22—O42—Si5—O74.4 (9)
Si9—O47—Si8—O39xv141.2 (3)Si22—O42—Si5—O46125.5 (9)
Si10—O33—Si2—O18177.8 (4)Si22—O44—Si19—O6133.9 (4)
Si10—O33—Si2—O2759.2 (4)Si22—O44—Si19—O813.3 (5)
Si10—O33—Si2—O2961.0 (4)Si22—O44—Si19—O48108.2 (4)
Si10—O36—Si17—O26v36.0 (4)Si23—O16—Si15—O20ii52.8 (5)
Si10—O36—Si17—O30156.1 (3)Si23—O16—Si15—O28173.2 (5)
Si10—O36—Si17—O3786.0 (4)Si23—O16—Si15—O4567.1 (5)
Si11i—O2—Si7—O22i56.5 (3)Si23xi—O27—Si2—O18123.4 (3)
Si11i—O2—Si7—O23xiv63.8 (3)Si23xi—O27—Si2—O291.8 (4)
Si11i—O2—Si7—O37176.4 (3)Si23xi—O27—Si2—O33117.9 (3)
Si11v—O11—Si16—O195.1 (3)Si23—O40—Si12—O32108.7 (3)
Si11v—O11—Si16—O1424.1 (3)Si23—O40—Si12—O4111.5 (4)
Si11v—O11—Si16—O38145.3 (3)Si23—O40—Si12—O48132.3 (3)
Si11—O41—Si12—O3292.7 (4)Si24—O14—Si16—O1176.6 (3)
Si11—O41—Si12—O40145.1 (3)Si24—O14—Si16—O1156.5 (3)
Si11—O41—Si12—O4826.3 (4)Si24—O14—Si16—O3863.3 (3)
Si12—O32—Si20—O2571.4 (5)Si24—O18—Si2—O27160.7 (3)
Si12—O32—Si20—O30xvi49.5 (5)Si24—O18—Si2—O2978.7 (3)
Si12—O32—Si20—O46167.8 (5)Si24—O18—Si2—O3341.1 (3)
Si12—O40—Si23—O333.2 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y, z1/2; (iv) x+1/2, y+1, z1/2; (v) x+1/2, y+1, z+1/2; (vi) x1/2, y+1/2, z+1; (vii) x, y+1, z; (viii) x, y1, z1; (ix) x+1/2, y+2, z1/2; (x) x+1, y+1/2, z+1/2; (xi) x+1, y+1/2, z+3/2; (xii) x+1/2, y, z+1/2; (xiii) x+1, y1/2, z+1/2; (xiv) x+1/2, y+2, z+1/2; (xv) x, y1, z; (xvi) x+1, y1/2, z+3/2.
 

Acknowledgements

I would like to thank the School of Chemical and Biological Engineering at Seoul National University for the financial support.

References

First citationBarcia, P. S., Nicolau, M. P. M., Gallegos, J. M., Chen, B., Rodrigues, A. E. & Silva, J. A. C. (2012). Microporous Mesoporous Mater. 155, 220–226.  CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCaro-Ortiz, S., Zuidema, E., Rigutto, M., Dubbeldam, D. & Vlugt, T. J. H. (2021). J. Phys. Chem. C, 125, 4155–4174.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFujiyama, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2014). Langmuir, 30, 3749–3753.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFujiyama, S., Seino, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2014). Acta Cryst. B70, 856–863.  Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
First citationFujiyama, S., Seino, S., Kamiya, N., Nishi, K., Yoza, K. & Yokomori, Y. (2014). Phys. Chem. Chem. Phys. 16, 15839–15845.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFujiyama, S., Yoza, K., Kamiya, N., Nishi, K. & Yokomori, Y. (2015). Acta Cryst. B71, 112–118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKamiya, N., Iwama, W., Kudo, T., Nasuno, T., Fujiyama, S., Nishi, K. & Yokomori, Y. (2011). Acta Cryst. B67, 508–515.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKoningsveld, H. van & Jansen, J. C. (1996). Microporous Mater. 6,159–167.  Google Scholar
First citationKoningsveld, H. van, Jansen, J. C. & Man, A. J. M. de (1996). Acta Cryst. B52, 131–139.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKoningsveld, H. van, Jansen, J. C. & van Bekkum, H. (1996). Acta Cryst. B52, 140–144.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKoningsveld, H. van, Tuinstra, F., van Bekkum, H. & Jansen, J. C. (1989). Acta Cryst. B45, 423–431.  CrossRef ICSD Web of Science IUCr Journals Google Scholar
First citationKoningsveld, H. van, van Bekkum, H. & Jansen, J. C. (1987). Acta Cryst. B43, 127–132.  CSD CrossRef ICSD Web of Science IUCr Journals Google Scholar
First citationLusi, M. & Barbour, L. J. (2012). Angew. Chem. Int. Ed. 51, 3928–3931.  Web of Science CrossRef CAS Google Scholar
First citationMa, Y., Jue, M. L., Zhang, F., Mathias, R., Jang, H. Y. & Lively, R. P. (2019). Angew. Chem. Int. Ed. 58, 13259–13265.  Web of Science CrossRef CAS Google Scholar
First citationMinceva, M., Gomes, P. S., Meshko, V. & Rodrigues, A. E. (2008). Chem. Eng. J. 140, 305–323.  Web of Science CrossRef CAS Google Scholar
First citationMohameed, H., Jdayil, B. A. & Takrouri, K. (2007). Chemical Engineering and Processing: Process Intensification, 46, 25–36.  Google Scholar
First citationMorell, H., Angermund, K., Lewis, A. R., Brouwer, D. H., Fyfe, C. A. & Gies, H. (2002). Chem. Mater. 14, 5, 2192–2198.  Google Scholar
First citationNishi, K., Hidaka, A. & Yokomori, Y. (2005). Acta Cryst. B61, 160–163.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNishi, K., Kamiya, N. & Yokomori, Y. (2007). Microporous Mesoporous Mater. 101, 83–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPark, S. H., Liu, H., Kleinsorge, M., Grey, C. P., Toby, B. H. & Parise, J. B. (2004). Chem. Mater. 16, 13, 2605–2614.  Google Scholar
First citationPerego, G., Bellussi, G., Millini, R., Alberti, A. & Zanardi, S. (2003). Microporous Mesoporous Mater. 58, 213–223.  Web of Science CSD CrossRef CAS Google Scholar
First citationPham, T. C., Docao, S., Hwang, I. C., Song, M. K., Choi, D. Y., Moon, D., Oleynikov, P. & Yoon, K. B. (2016). Energy Environ. Sci. 9, 1050–1062.  Web of Science CrossRef CAS Google Scholar
First citationPrice, G. D., Pluth, J. J., Smith, J. V., Bennett, J. M. & Patton, R. L. (1982). J. Am. Chem. Soc. 104, 5971–5977.  CSD CrossRef CAS Web of Science Google Scholar
First citationReck, G., Marlow, F., Kornatowski, J., Hill, W. & Caro, J. (1996). J. Phys. Chem. 100, 1698–1704.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTorres–Knoop, A., Krishna, R. & Dubbeldam, D. (2014). Angew. Chem. Int. Ed. 53, 7774–7778.  CAS Google Scholar
First citationWheatley, P. S., Allan, P. K., Teat, S. J., Ashbrook, S. E. & Morris, R. E. (2010). Chem. Sci. 1, 483–487.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, X., Wei, W., Jiang, J., Caro, J. & Huang, A. (2018). Angew. Chem. Int. Ed. 57, 15354–15358.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds