research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of N-(4-nitro­phen­yl)-2-(piperidin-1-yl)acetamide (lidocaine analogue)

crossmark logo

aLaboratory of Materials Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, PO Box 1014, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, cSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom, dLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, yramli76@yahoo.fr

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 14 November 2024; accepted 6 December 2024; online 1 January 2025)

In the title mol­ecule, C13H17N3O3, the substituents on the phenyl ring are rotated slightly out of the mean plane of the ring but the piperidine moiety is nearly perpendicular to that plane. In the crystal, C—H⋯O hydrogen bonds form chains of mol­ecules extending along the c-axis direction, which are linked by C=O⋯π(ring) inter­actions. A Hirshfeld surface analysis showed the majority of inter­molecular inter­actions to be H⋯H contacts while O⋯H/H⋯O contacts are the second most numerous.

1. Chemical context

Heterocyclic compounds, especially those containing a nitro­gen atom, are of substantial inter­est in medicinal chemistry (El Moutaouakil Ala Allah et al., 2024[El Moutaouakil Ala Allah, A., Said, M. A., Al-Kaff, N. S., Mague, J. T., Demirtaş, G. & Ramli, Y. (2024). J. Mol. Struct. 1318, 139430.]). Extensive studies of the acetamide family have demonstrated that it can be present in various known drugs of different classes with different thera­peutic activities (Rahim et al., 2015[Rahim, F., Ullah, H., Javid, M. T., Wadood, A., Taha, M., Ashraf, M., Shaukat, A., Junaid, M., Hussain, S., Rehman, W., Mehmood, R., Sajid, M., Khan, M. N. & Khan, K. M. (2015). Bioorg. Chem. 62, 15-21.]; Bennani et al., 2020[Bennani, F. E., Doudach, L., Cherrah, Y., Ramli, Y., Karrouchi, K., Ansar, M. & Faouzi, M. E. A. (2020). Bioorg. Chem. 97, 103470.]; Karrouchi et al., 2018[Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134-220.]). Their structural similarity to various bioactive natural and synthetic mol­ecules grants them a broad spectrum of biological activities (Ettahiri et al., 2024[Ettahiri, W., Adardour, M., Alaoui, S., Allah, A. E. A., Aichouch, M., Salim, R., Ramli, Y., Bouyahya, A. & Taleb, M. (2024). Phytochem. Lett.61, 247-269.]). Lidocaine is a heterocyclic compound that acts as a local anesthetic (Calatayud & Gonzalez, 2003[Calatayud, J. & Gonzalez, A. (2003). Anesthesiolgy 98, 1503-8.]). It consists of a lipophilic aromatic ring and a hydro­philic amine. Its main target in excitable cells is the voltage-gated sodium channel, responsible for the increased sodium permeability observed during the rising phase of the action potential in peripheral nerves, skeletal muscles, as well as in neuroendocrine and cardiac cells (Costa et al., 2008[Costa, J. C. S., Neves, J. S., de Souza, M. V. N., Siqueira, R. A., Romeiro, N. C., Boechat, N., Silva, P. M. R. & Martins, M. A. (2008). Bioorg. Med. Chem. Lett. 18, 1162-1166.]). Continuing our research in this area (Missioui et al., 2022b[Missioui, M., Lgaz, H., Guerrab, W., Lee, H., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022b). J. Mol. Struct. 1253, 132132.]; Guerrab et al., 2021[Guerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133-134.]; Mortada et al., 2024[Mortada, S., Guerrab, W., Missioui, M., Salhi, N., Naceiri Mrabti, H., Rouass, L., Benkirane, S., Hassane, M., Masrar, A., Mezzour, H., Faouzi, M. E. A. & Ramli, Y. (2024). J. Biomol. Struct. Dyn. 42, 6711-6725.]) we synthesized the lidocaine analogue N-(4-nitro­phen­yl)-2-(piperidin-1-yl)acetamide through an alkyl­ation reaction of 2-chloro-N-(4-nitro­phen­yl)acetamide and piperidine, conducted under reflux in toluene. This paper presents the crystal structure of this lidocaine analogue, 3. A Hirshfeld surface analysis was performed to analyze the inter­molecular inter­actions.

[Scheme 1]

2. Structural commentary

The title compound, 3, crystallizes in the monoclinic space group P21/c with one mol­ecule in the asymmetric unit (Fig. 1[link]). The nitro group is rotated 2.84 (3)° out of the mean plane of the attached phenyl ring while the dihedral angle between the plane defined by C8, N2, C7 and O1 and the mean plane of the phenyl ring is 4.52 (3)°. The C1—N1—C6—C7 torsion angle is 92.8 (2)°, which places the mean plane of the piperidine ring nearly perpendicular to the remainder of the mol­ecule, which is particularly evident in Figs. 2[link] and 4 and is partly due to the intra­molecular N2—H2⋯N1 hydrogen bond (Fig. 1[link] and Table 1[link]). The piperidine ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) Q = 0.559 (2) Å, θ = 178.1 (2)° and φ = 199 (8)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.91 (1) 2.12 (2) 2.653 (2) 117 (2)
C13—H13⋯O1i 0.93 2.36 3.265 (2) 164
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
Perspective view of the title mol­ecule with labeling scheme and 30% probability ellipsoids. The intra­molecular hydrogen bond is depicted by a dashed line.
[Figure 2]
Figure 2
A portion of one chain viewed along the b-axis direction with the inter­molecular C—H⋯O hydrogen bonds depicted by black dashed lines. Hydrogen atoms not involved in these inter­actions are omitted for clarity.

3. Supra­molecular features

In the crystal, C13—H13⋯O1i hydrogen bonds (Table 1[link]) form chains of mol­ecules extending along the c-axis direction (Fig. 2[link]). These are linked in pairs across centers of symmetry by C7=O1⋯Cg2 inter­actions [Cg2 is the centroid of the C8–C13 ring at −x + 1, −y + 2, −z + 1; O1⋯Cg2 = 3.9066 (7) Å, C7⋯Cg2 = 4.274 (2), C7=O1⋯Cg2 = 99.16 (12)°] (Figs. 3[link] and 4[link]).

[Figure 3]
Figure 3
Packing viewed along the b-axis direction showing the pairing of two chains through C=O⋯π(ring) inter­actions (pink dashed lines). The C—H⋯O hydrogen bonds are depicted by black dashed lines. Hydrogen atoms not involved in these inter­actions are omitted for clarity.
[Figure 4]
Figure 4
Packing viewed along the a-axis direction showing the pairing of two chains through C=O⋯π(ring) inter­actions (pink dashed lines). The C—H⋯O hydrogen bonds are depicted by black dashed lines. Hydrogen atoms not involved in these inter­actions are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, updated to June 2024 (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.])) with the search fragment A shown in Fig. 5[link] yielded eleven hits of which five had the fragment as part of multidentate ligands in metal complexes while three more were ionic compounds. None of these were considered relevant for comparison with the title mol­ecule. The three structures that are relevant are shown in Fig. 5[link].

[Figure 5]
Figure 5
The search fragment used for the Database Survey (A) and three relevant hits generated.

In MACPAJ (Kang et al., 2010[Kang, J., Jang, S. P., Kim, Y.-H., Lee, J. H., Park, E. B., Lee, H. G., Kim, J. H., Kim, Y., Kim, S.-J. & Kim, C. (2010). Tetrahedron Lett. 51, 6658-6662.]), the rotation of the nitro group out of the plane of the attached phenyl ring is virtually the same as in the title mol­ecule, but the dihedral angle between the mean plane of the acetamido group and that of the phenyl ring is significantly greater at 13.80 (8)°. On the other hand, the entire mol­ecule is relatively flat as the mean planes of the phenyl and quinoline moieties are inclined to one another by 8.02 (7)°. The packing involves chains of alternating mol­ecules and water mol­ecules, which are formed by N—H⋯O and O—H⋯O plus O—H⋯N hydrogen bonds and are linked by π-stacking inter­actions between the phenyl and quinoline units.

In QAGNOF (Missioui et al., 2020[Missioui, M., Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1429-1430.]), the mean planes of the nitro and acetamide groups are inclined to that of the phenyl ring by 5.9 (5) and 14.8 (1)°, respectively. The 3-D structure of the crystal consists of corrugated layers parallel to (10[\overline{2}]), which are formed by C—H⋯O and C—H⋯N hydrogen bonds.

There is an intra­molecular N—H⋯O hydrogen bond in VOYJAX (Juraj et al., 2019[Pantalon Juraj, N., Miletić, G. I., Perić, B., Popović, Z., Smrečki, N., Vianello, R. & Kirin, S. I. (2019). Inorg. Chem. 58, 16445-16457.]), which gives the mol­ecule a U-shaped conformation. The dihedral angles between the mean planes of the acetamido groups and their attached phenyl rings are both about 13°, while the nitro group on the portion containing the NH group that forms the intra­molecular hydrogen bond is rotated by 8.7° relative to the plane of its phenyl group, and the other nitro group is rotated by 5.6°. The other NH group forms inter­molecular N—H⋯O hydrogen bonds, generating chains extending along the normal to (201). These are connected into a 3-D network by a large number of C—H⋯O hydrogen bonds and offset π-stacking inter­actions.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis was carried out with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and the descriptions and inter­pretations of the plots generated have been described previously (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The dnorm surface calculated over the range −0.2975 to 1.2755 in arbitrary units is shown in Fig. 6[link]a and includes two neighboring mol­ecules attached via C—H⋯O hydrogen bonds, which are also indicated by the dark-red spots. This view corresponds to that in Fig. 2[link]. The Hirshfeld surface calculated over the shape-index function is shown in Fig. 6[link]b with the set of blue and orange triangles offset from the center of the benzene ring indicating the C=O⋯Cg inter­actions. Fig. 6[link]c shows the dnorm surface viewed parallel to the plane of the benzene ring and includes two of the adjacent mol­ecules involved in the C=O⋯Cg stacking inter­actions. A representation of all inter­molecular inter­actions is given in Fig. 7[link]a with delineations into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C inter­actions, together with their percentage contributions, shown in Fig. 7[link]b–7d, respectively. The high percentage attributed to H⋯H inter­actions is a consequence of the high hydrogen content of the mol­ecule and comes significantly from van der Waals contacts involving the piperidine moiety. Second and third in importance are the O⋯H/H⋯O and the C⋯H/H⋯C contacts with the former appearing as a pair of sharp spikes indicating a narrow range of H⋯O distances. Despite the presence of C=O⋯Cg inter­actions, the O⋯C/C⋯O contacts contribute only 2.9% to the total.

[Figure 6]
Figure 6
Hirshfeld surfaces: (a) dnorm viewed perpendicular to the plane of the phenyl ring with two adjacent hydrogen-bonded mol­ecules, (b) same view of the shape-index surface, (c) dnorm viewed parallel to the plane of the phenyl ring with two adjacent stacking mol­ecules.
[Figure 7]
Figure 7
2-D fingerprint plots: (a) all inter­molecular inter­actions, and those delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C inter­actions.

6. Synthesis and crystallization

The reaction sequence for title compound 3 is shown in Fig. 8[link].

[Figure 8]
Figure 8
Reaction scheme for the formation of the title compound 3.

Compound 1, namely 2-chloro-N-(4-nitro­phen­yl)acetamide was synthesized according to the procedure described in the literature (Missioui et al., 2022a[Missioui, M., Guerrab, W., Nchioua, I., El Moutaouakil Ala Allah, A., Kalonji Mubengayi, C., Alsubari, A., Mague, J. T. & Ramli, Y. (2022a). Acta Cryst. E78, 687-690.]; Li et al., 2006[Wen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427-o4428.]). Next, 1.2 mmol of piperidine 2 was mixed with 1 mmol of 2-chloro-N-(4-nitro­phen­yl)acetamide in toluene, and the mixture was refluxed for 4 h. Upon completion of the reaction, toluene was removed by liquid–liquid extraction, and the aqueous phase was subsequently acidified with hydro­chloric acid, prompting the precipitation of the title compound 3. The precipitate was filtered, dried, and recrystallized from ethanol, yielding white crystals of the target compound.

Yield = 40%, color: white, m.p. = 401–403 K. FT–IR (ATR, ν, cm−1): 3214 (N—H amide), 2937 (C—H Aliphatic), 1692 (C=O). 1H NMR (500 MHz, DMSO-d6) δ ppm: 1.34 (m, 2H, C—CH2—C), 1.52 (quint, 4H, J = 5 Hz, C—CH2—C), 2.40 (t, 4H, J = 5 Hz, N—CH2–), 3.02 (s, 2H, CH2 amide), 7.05–7.65 (m, 4H, H—Ar), 9.67 (s, 1H, NHamide). 13C NMR (125 MHz, DMSO-d6) δ ppm: 25.10 (C—CH2—C), 24.01 (C—CH2—C), 53.85 (N—CH2—C), 61.48 (N—CH2—C=O), 128.80, 128.21, 135.50, 135.52 (C—Ar), 168.82 (C=O). HRMS (ESI): calculated for C13H17N3O3 [M + H]+ 263.1270; found 264.13318.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms attached to carbon were included as riding contributions in idealized positions with isotropic displacement parameters tied to those of the attached atoms. That attached to nitro­gen N2 was located in a difference map and refined with a DFIX 0.91 0.01 instruction.

Table 2
Experimental details

Crystal data
Chemical formula C13H17N3O3
Mr 263.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 16.2304 (9), 6.5804 (3), 13.2222 (7)
β (°) 107.156 (6)
V3) 1349.33 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.53 × 0.16 × 0.16
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Gaussian (CrysAlisPr; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.564, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11819, 3351, 2275
Rint 0.030
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.180, 1.06
No. of reflections 3351
No. of parameters 175
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.21
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

N-(4-Nitrophenyl)-2-(piperidin-1-yl)acetamide top
Crystal data top
C13H17N3O3F(000) = 560
Mr = 263.29Dx = 1.296 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.2304 (9) ÅCell parameters from 4698 reflections
b = 6.5804 (3) Åθ = 4.1–28.9°
c = 13.2222 (7) ŵ = 0.09 mm1
β = 107.156 (6)°T = 293 K
V = 1349.33 (13) Å3Block, colourless
Z = 40.53 × 0.16 × 0.16 mm
Data collection top
SuperNova, Dual, Cu at home/near, Atlas
diffractometer
2275 reflections with I > 2σ(I)
Detector resolution: 10.5082 pixels mm-1Rint = 0.030
ω scansθmax = 29.7°, θmin = 3.4°
Absorption correction: gaussian
(CrysAlisPr; Rigaku OD, 2023)
h = 2217
Tmin = 0.564, Tmax = 1.000k = 89
11819 measured reflectionsl = 1318
3351 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: mixed
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.563P]
where P = (Fo2 + 2Fc2)/3
3351 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. That attached to nitrogen was placed in a location derived from a difference map and refined with a DFIX 0.91 0.01 instruction.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34083 (11)0.7609 (2)0.55602 (11)0.0715 (5)
O20.75115 (11)0.7076 (3)0.49135 (16)0.0883 (6)
O30.71190 (13)0.6897 (4)0.32098 (19)0.1075 (7)
N10.17750 (10)0.7809 (2)0.30235 (12)0.0514 (4)
N20.34754 (11)0.7767 (3)0.38608 (12)0.0544 (4)
H20.3113 (14)0.794 (4)0.3199 (11)0.082*
N30.69567 (13)0.7073 (3)0.40483 (19)0.0725 (6)
C10.15223 (15)0.5745 (3)0.26946 (15)0.0637 (6)
H1A0.1033970.5359770.2934080.076*
H1B0.1994940.4829090.3017680.076*
C20.12820 (17)0.5550 (4)0.15026 (17)0.0738 (7)
H2A0.1786090.5809130.1270500.089*
H2B0.1088850.4174210.1298190.089*
C30.05749 (15)0.7031 (4)0.09660 (17)0.0699 (6)
H3A0.0474100.6980210.0205870.084*
H3B0.0044230.6654030.1113930.084*
C40.08291 (16)0.9145 (4)0.13599 (17)0.0726 (7)
H4A0.0348631.0059170.1069480.087*
H4B0.1307250.9592340.1115830.087*
C50.10881 (16)0.9242 (4)0.25522 (17)0.0706 (6)
H5A0.1280241.0607260.2782320.085*
H5B0.0591990.8938360.2792950.085*
C60.20950 (14)0.7987 (4)0.41715 (15)0.0635 (6)
H6A0.1819320.6958360.4485810.076*
H6B0.1930880.9305270.4378120.076*
C70.30609 (14)0.7755 (3)0.46103 (14)0.0539 (5)
C80.43526 (12)0.7593 (3)0.39598 (14)0.0484 (4)
C90.49923 (14)0.7525 (3)0.49329 (16)0.0564 (5)
H90.4844480.7591050.5560190.068*
C100.58435 (14)0.7361 (3)0.49582 (17)0.0597 (5)
H100.6274090.7314720.5603100.072*
C110.60535 (13)0.7267 (3)0.40304 (17)0.0561 (5)
C120.54306 (15)0.7333 (3)0.30645 (17)0.0648 (6)
H120.5583750.7266520.2440730.078*
C130.45840 (14)0.7497 (3)0.30335 (15)0.0588 (5)
H130.4159290.7544750.2383760.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0773 (10)0.0929 (12)0.0357 (7)0.0018 (8)0.0035 (7)0.0013 (7)
O20.0574 (9)0.0966 (13)0.0938 (14)0.0027 (8)0.0041 (9)0.0062 (10)
O30.0747 (12)0.155 (2)0.0976 (16)0.0010 (12)0.0324 (11)0.0016 (14)
N10.0505 (8)0.0634 (10)0.0369 (8)0.0029 (7)0.0078 (6)0.0033 (7)
N20.0536 (9)0.0673 (10)0.0343 (8)0.0003 (8)0.0008 (7)0.0000 (7)
N30.0610 (11)0.0701 (12)0.0798 (14)0.0034 (9)0.0108 (10)0.0025 (10)
C10.0731 (14)0.0621 (13)0.0494 (11)0.0004 (10)0.0079 (10)0.0051 (9)
C20.0935 (17)0.0671 (14)0.0507 (12)0.0034 (12)0.0053 (11)0.0092 (10)
C30.0600 (12)0.0934 (17)0.0477 (11)0.0108 (12)0.0026 (9)0.0027 (11)
C40.0769 (15)0.0764 (15)0.0562 (12)0.0126 (12)0.0067 (11)0.0133 (11)
C50.0784 (15)0.0684 (14)0.0596 (13)0.0169 (11)0.0122 (11)0.0009 (11)
C60.0672 (13)0.0820 (15)0.0397 (10)0.0038 (11)0.0132 (9)0.0078 (10)
C70.0652 (12)0.0547 (11)0.0364 (9)0.0022 (9)0.0067 (8)0.0030 (8)
C80.0550 (11)0.0428 (9)0.0391 (9)0.0023 (8)0.0012 (8)0.0008 (7)
C90.0601 (11)0.0617 (12)0.0380 (9)0.0029 (9)0.0001 (8)0.0002 (8)
C100.0597 (12)0.0561 (11)0.0491 (11)0.0030 (9)0.0058 (9)0.0015 (9)
C110.0557 (11)0.0460 (10)0.0590 (12)0.0027 (8)0.0052 (9)0.0020 (8)
C120.0682 (14)0.0749 (14)0.0471 (11)0.0011 (11)0.0105 (10)0.0012 (10)
C130.0589 (12)0.0707 (13)0.0383 (9)0.0004 (9)0.0010 (8)0.0001 (9)
Geometric parameters (Å, º) top
O1—C71.219 (2)C4—C51.508 (3)
O2—N31.230 (3)C4—H4A0.9700
O3—N31.218 (3)C4—H4B0.9700
N1—C11.448 (3)C5—H5A0.9700
N1—C51.453 (3)C5—H5B0.9700
N1—C61.457 (2)C6—C71.510 (3)
N2—C71.352 (3)C6—H6A0.9700
N2—C81.396 (3)C6—H6B0.9700
N2—H20.906 (10)C8—C131.384 (3)
N3—C111.465 (3)C8—C91.395 (2)
C1—C21.513 (3)C9—C101.376 (3)
C1—H1A0.9700C9—H90.9300
C1—H1B0.9700C10—C111.368 (3)
C2—C31.513 (3)C10—H100.9300
C2—H2A0.9700C11—C121.376 (3)
C2—H2B0.9700C12—C131.367 (3)
C3—C41.500 (3)C12—H120.9300
C3—H3A0.9700C13—H130.9300
C3—H3B0.9700
C1—N1—C5111.50 (17)N1—C5—C4111.27 (18)
C1—N1—C6111.77 (17)N1—C5—H5A109.4
C5—N1—C6112.78 (16)C4—C5—H5A109.4
C7—N2—C8130.18 (16)N1—C5—H5B109.4
C7—N2—H2112.8 (17)C4—C5—H5B109.4
C8—N2—H2117.0 (17)H5A—C5—H5B108.0
O3—N3—O2123.5 (2)N1—C6—C7113.75 (17)
O3—N3—C11118.5 (2)N1—C6—H6A108.8
O2—N3—C11118.0 (2)C7—C6—H6A108.8
N1—C1—C2110.83 (17)N1—C6—H6B108.8
N1—C1—H1A109.5C7—C6—H6B108.8
C2—C1—H1A109.5H6A—C6—H6B107.7
N1—C1—H1B109.5O1—C7—N2125.2 (2)
C2—C1—H1B109.5O1—C7—C6121.1 (2)
H1A—C1—H1B108.1N2—C7—C6113.72 (16)
C3—C2—C1111.1 (2)C13—C8—C9119.5 (2)
C3—C2—H2A109.4C13—C8—N2117.15 (16)
C1—C2—H2A109.4C9—C8—N2123.38 (19)
C3—C2—H2B109.4C10—C9—C8119.6 (2)
C1—C2—H2B109.4C10—C9—H9120.2
H2A—C2—H2B108.0C8—C9—H9120.2
C4—C3—C2109.97 (18)C11—C10—C9119.71 (18)
C4—C3—H3A109.7C11—C10—H10120.1
C2—C3—H3A109.7C9—C10—H10120.1
C4—C3—H3B109.7C10—C11—C12121.4 (2)
C2—C3—H3B109.7C10—C11—N3120.15 (19)
H3A—C3—H3B108.2C12—C11—N3118.4 (2)
C3—C4—C5111.44 (19)C13—C12—C11119.2 (2)
C3—C4—H4A109.3C13—C12—H12120.4
C5—C4—H4A109.3C11—C12—H12120.4
C3—C4—H4B109.3C12—C13—C8120.65 (18)
C5—C4—H4B109.3C12—C13—H13119.7
H4A—C4—H4B108.0C8—C13—H13119.7
C5—N1—C1—C258.7 (2)C7—N2—C8—C95.4 (3)
C6—N1—C1—C2174.01 (19)C13—C8—C9—C100.1 (3)
N1—C1—C2—C356.4 (3)N2—C8—C9—C10179.68 (18)
C1—C2—C3—C453.3 (3)C8—C9—C10—C110.0 (3)
C2—C3—C4—C553.0 (3)C9—C10—C11—C120.0 (3)
C1—N1—C5—C458.5 (3)C9—C10—C11—N3179.44 (18)
C6—N1—C5—C4174.8 (2)O3—N3—C11—C10176.6 (2)
C3—C4—C5—N155.8 (3)O2—N3—C11—C102.7 (3)
C1—N1—C6—C792.8 (2)O3—N3—C11—C122.9 (3)
C5—N1—C6—C7140.7 (2)O2—N3—C11—C12177.9 (2)
C8—N2—C7—O11.2 (3)C10—C11—C12—C130.0 (3)
C8—N2—C7—C6179.99 (19)N3—C11—C12—C13179.48 (19)
N1—C6—C7—O1170.56 (18)C11—C12—C13—C80.1 (3)
N1—C6—C7—N210.6 (3)C9—C8—C13—C120.2 (3)
C7—N2—C8—C13175.02 (19)N2—C8—C13—C12179.75 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.91 (1)2.12 (2)2.653 (2)117 (2)
C13—H13···O1i0.932.363.265 (2)164
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

YR is thankful to the National Center for Scientific and Technical Research of Morocco (CNRST) for its continuous support. The contributions of the authors are as follows: conceptualization, YR; methodology, AA; investigation, IM and IN; writing (original draft), JTM and AEMAA; writing (review and editing of the manuscript), YR; formal analysis,YR and JTM; supervision, YR and AZ; crystal structure determination, BMK.

References

First citationBennani, F. E., Doudach, L., Cherrah, Y., Ramli, Y., Karrouchi, K., Ansar, M. & Faouzi, M. E. A. (2020). Bioorg. Chem. 97, 103470.  Web of Science CrossRef PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCalatayud, J. & Gonzalez, A. (2003). Anesthesiolgy 98, 1503-8.  CrossRef Google Scholar
First citationCosta, J. C. S., Neves, J. S., de Souza, M. V. N., Siqueira, R. A., Romeiro, N. C., Boechat, N., Silva, P. M. R. & Martins, M. A. (2008). Bioorg. Med. Chem. Lett. 18, 1162–1166.  CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Moutaouakil Ala Allah, A., Said, M. A., Al-Kaff, N. S., Mague, J. T., Demirtaş, G. & Ramli, Y. (2024). J. Mol. Struct. 1318, 139430.  CSD CrossRef Google Scholar
First citationEttahiri, W., Adardour, M., Alaoui, S., Allah, A. E. A., Aichouch, M., Salim, R., Ramli, Y., Bouyahya, A. & Taleb, M. (2024). Phytochem. Lett.61, 247–269.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationKang, J., Jang, S. P., Kim, Y.-H., Lee, J. H., Park, E. B., Lee, H. G., Kim, J. H., Kim, Y., Kim, S.-J. & Kim, C. (2010). Tetrahedron Lett. 51, 6658–6662.  CSD CrossRef CAS Google Scholar
First citationKarrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134–220.  Web of Science CrossRef PubMed Google Scholar
First citationMissioui, M., Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1429–1430.  Web of Science CSD CrossRef CAS Google Scholar
First citationMissioui, M., Guerrab, W., Nchioua, I., El Moutaouakil Ala Allah, A., Kalonji Mubengayi, C., Alsubari, A., Mague, J. T. & Ramli, Y. (2022a). Acta Cryst. E78, 687–690.  CSD CrossRef IUCr Journals Google Scholar
First citationMissioui, M., Lgaz, H., Guerrab, W., Lee, H., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022b). J. Mol. Struct. 1253, 132132.  CSD CrossRef Google Scholar
First citationMortada, S., Guerrab, W., Missioui, M., Salhi, N., Naceiri Mrabti, H., Rouass, L., Benkirane, S., Hassane, M., Masrar, A., Mezzour, H., Faouzi, M. E. A. & Ramli, Y. (2024). J. Biomol. Struct. Dyn. 42, 6711–6725.  CrossRef CAS PubMed Google Scholar
First citationPantalon Juraj, N., Miletić, G. I., Perić, B., Popović, Z., Smrečki, N., Vianello, R. & Kirin, S. I. (2019). Inorg. Chem. 58, 16445–16457.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRahim, F., Ullah, H., Javid, M. T., Wadood, A., Taha, M., Ashraf, M., Shaukat, A., Junaid, M., Hussain, S., Rehman, W., Mehmood, R., Sajid, M., Khan, M. N. & Khan, K. M. (2015). Bioorg. Chem. 62, 15–21.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427–o4428.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds