research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of luliconazole

crossmark logo

aUniversity of Lodz Doctoral School of Exact and Natural Sciences, Narutowicza 68, 90-136 Łódź, Poland, and bUniversity of Lodz, Faculty of Chemistry, Pomorska 163/165, 90-236 Łódź, Poland
*Correspondence e-mail: anna.ben@edu.uni.lodz.pl

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 20 November 2024; accepted 4 December 2024; online 1 January 2025)

The crystal structure of luliconazole {LCZ; C14H9Cl2N3S2; systematic name: (E)-[(4R)-4-(2,4-di­chloro­phen­yl)-1,3-di­thio­lan-2-yl­idene](1H-imidazol-1-yl)aceto­nitrile} is reported. In the mol­ecule of the title compound, the di­thiol­ane ring adopts an envelope conformation, while the di­chloro­phenyl ring exhibits disorder. In the crystal packing of luliconazole, only two inter­molecular C–H⋯N hydrogen bonds are observed. Hirshfeld surface analysis reveals that the most dominant contacts are H⋯N/N⋯H, H⋯Cl/Cl⋯H, H⋯H and C⋯H/H⋯C.

1. Chemical context

Luliconazole {LCZ; C14H9Cl2N3S2; CAS No. 187164-19-8; systematic name: (E)-[(4R)-4-(2,4-di­chloro­phen­yl)-1,3-di­thio­lan-2-yl­idene](1H-imidazol-1-yl)aceto­nitrile} is a prominent anti­fungal agent and belongs to the azole class of drugs, specifically imidazole derivatives. The compound possesses a distinctive chemical structure, enhanced by the incorporation of an imidazole moiety into the ketene di­thio­acetate framework. This structural modification retains the broad anti­fungal spectrum of imidazole drugs, while achieving high potency against filamentous fungi, including dermatophytes (Koga et al., 2012[Koga, H., Nanjoh, Y., Kaneda, H., Yamaguchi, H. & Tsuboi, R. (2012). Antimicrob. Agents Chemother. 56, 3138-3143.]).

[Scheme 1]

Luliconazole, as the R-enanti­omer, exhibits significantly greater anti­fungal activity compared to lanoconazole, which exists as a racemic mixture (Deepshikha & Subhash, 2014[Deepshikha, K. & Subhash, B. (2014). Dovepress, 9, 113-124.]). The key distinction between these two compounds lies in their stereochemistry: lanoconazole is a racemic compound, while luliconazole is the pure R-enanti­omer. Inter­estingly, the S-enanti­omers of both compounds are inactive as anti­fungal agents, making LCZ inherently more potent (Niwano et al., 1998[Niwano, Y., Kuzuhara, N., Kodama, H., Yoshida, M., Miyazaki, T. & Yamaguchi, H. (1998). Antimicrob. Agents Chemother. 42, 967-970.]).

This article provides a detailed structural analysis of the pure drug luliconazole, which has not previously been reported in the literature.

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. It crystallizes in the monoclinic crystal system, space group P21 with one mol­ecule in the asymmetric unit. The LCZ mol­ecule has an R configuration at the asymmetric center of atom C8. The di­thiol­ane ring adopts an envelope conformation with the C8 flap atom having a maximum deviation of 0.287 (2) Å, and puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) Q = 0.438 (2) Å and φ = 295.6 (3)°. According to the asymmetry parameters (Duax & Norton, 1975[Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]), the mirror plane passes through atom C8 and the C6—S1 bond; ΔCs(C8) = 10.21 (2)°. In the LCZ structure, the di­chloro­phenyl ring was found to be disordered over two orientations and the occupancies of the disordered atoms were fixed at 0.5. Fig. 2[link] presents an overlay of three independent luliconazole skeletons, considering separately the two disordered components A and B of LCZ, i.e. LCZ-A (red), LCZ-B (green) and the theoretically obtained optimized structure (LCZ-opt, black). The mol­ecular conformations are quite similar, differing only slightly in the orientations of the imidazole and di­chloro­phenyl rings. The dihedral angle between the disordered di­chloro­phenyl rings A and B of LCZ is 18.2 (4)°. The imidazole ring is planar (r.m.s. deviation = 0.002 Å). The mutual arrangement of the rings can be analyzed by the dihedral angles between their best planes, calculated using the least-squares method (Table 1[link]).

Table 1
Dihedral angles (°) between the best planes in LCZ-structures

1 - di­thiol­ane ring; 2 - imidazole ring; 3 - di­chloro­phenyl ring (A and B are the disordered components).

  1/2 1/3 2/3
LCZ-A 62.7 (1) 88.7 (3) 28.4 (3)
LCZ-B 62.7 (1) 74.0 (3) 46.6 (3)
LCZ-opt 81.4 75.2 36.9
[Figure 1]
Figure 1
The mol­ecular structure of LCZ with the atom-numbering scheme. The disordered components A and B of the di­chloro­phenyl ring have equal site-occupancies (1/2). Component A is drawn using unbroken lines while component B is drawn using dashed lines without labels. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
An overlay of three luliconazole mol­ecules LCZ-A (red), LCZ-B (green), LCZ-opt (black), and two related structures PESWAM (cyan) and DELYAV (blue).

3. Supra­molecular features

In the crystal structure of luliconazole, there are no potential strong proton donors, apart from weak C—H bonds. There are two inter­molecular hydrogen bonds: C5—H5⋯N3(−x, y + [{1\over 2}], −z + 1) and C11A—H11A⋯N3(−x, y + [{1\over 2}], −z + 1); in both, the N3 atom is a hydrogen-bond acceptor. The geometric parameters of these inter­actions are presented in Table 2[link]. Fig. 3[link] demonstrates that the former inter­action produces a mono-periodic chain along the b-axis direction, whose first-level graph-set descriptor is C(4) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), while the latter inter­action generates a C(11) chain motif along the [101] direction (Fig. 4[link]). The combination of these two chain motifs leads to the formation of di-periodic mol­ecular layers parallel to ([\overline{1}]01) (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N3i 0.93 2.49 3.335 (4) 151
C11A—H11A⋯N3ii 0.93 2.45 3.371 (6) 172
C11B—H11B⋯N3ii 0.93 2.58 3.440 (6) 154
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) [x+1, y, z+1].
[Figure 3]
Figure 3
A part of the crystal structure of LCZ (only disordered component A is shown) showing the formation of the C(4) chain motif. Hydrogen bonds are drawn as dashed lines, and for the sake of clarity, the H atoms not involved in hydrogen bonds have been omitted. Symmetry codes: (i) −x, y + [{1\over 2}], −z; (iii) −x, y - 1/2, −z + 1.
[Figure 4]
Figure 4
A part of the crystal structure of LCZ (only disordered component A is shown) showing the formation of the C(11) chain motif. Hydrogen bonds are drawn as dashed lines, and for the sake of clarity, the H atoms not involved in hydrogen bonds have been omitted. Symmetry codes: (ii) x + 1, y, z + 1; (iv) x − 1, y, z − 1.
[Figure 5]
Figure 5
Partial crystal packing of LCZ-A showing the formation of mol­ecular layers parallel to ([\overline{1}]01).

4. Hirshfeld surface analysis

Hirshfeld surfaces and fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) were generated using CrystalExplorer software (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) complements the comparison of the two disordered components of the luliconazole mol­ecule. Fig. 6[link] presents a comparison of the Hirshfeld surfaces of the LCZ-A and LCZ-B structures and the corresponding 2D fingerprint plots of the most dominant contacts combined with their percentage contributions to the Hirshfeld surface. Red spots on the Hirshfeld surfaces indicate atoms participating in the C—H⋯N hydrogen bonds and an N⋯S contact shorter than the sum of their van der Waals radii.

[Figure 6]
Figure 6
Comparison of Hirshfeld surfaces and the corresponding two-dimensional fingerprint plots of the most dominant contacts for the two disordered components of LCZ (top half for LCZ-A, bottom half for LCZ-B). The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

For both mol­ecules, the H⋯N/N⋯H, H⋯Cl/Cl⋯H, H⋯H and C⋯H/H⋯C contacts provide the greatest contribution (each about 15–20%) to the Hirshfeld surface. The H⋯S/S⋯H inter­actions contribute about 9%. Other contacts do not exceed 5%. Two pairs of spikes in the H⋯N/N⋯H fingerprint plots belong to the closest N⋯H contacts, while H⋯S/S⋯H inter­actions lead to characteristic sharp spikes for LCZ-A compared to the chicken-wing-like features for LCZ-B.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.45, June 2024, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) did not reveal any structure of luliconazole. However, two isomeric structures (E and Z) were found (DELYAV; Lin et al., 2006[Lin, Y., Xiao, T. & Wang, J.-T. (2006). Acta Cryst. E62, o3159-o3160.]; PESWAM; Xiao et al., 2006[Xiao, T., Lin, Y., Zhang, X.-Q., Chen, J. & Wang, J.-T. (2006). Acta Cryst. E62, o5052-o5053.]), which differ from luliconazole by the presence of a 2-chloro­phenyl ring instead of the di­chloro­phenyl ring in LCZ. Fig. 2[link] shows the superposition of their skeletons compared to three luliconazole mol­ecules. PESWAM (isomer E) is closely related in mol­ecular conformation to LCZ-A, in contrast to the structure of DELYAV, which differs from the others in the site of substitution (atom C7 vs C8 of the di­thiol­ane ring; isomer Z) and the spatial orientation of imidazole ring.

6. Synthesis and crystallization

The luliconazole (purity 98%) used in this study was purchased from BLD Pharmatech GmbH (Germany). A pure crystalline form of luliconazole was obtained unexpectedly from cocrystallization of the drug with pyrazinedi­carb­oxy­lic acid; all substances (0.05 mmol) were used with a fixed stoichiometric ratio of 1:1, dissolved in ethanol (3 ml EtOH) and the mixture was heated to 346 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C14H9Cl2N3S2
Mr 354.26
Crystal system, space group Monoclinic, P21
Temperature (K) 294
a, b, c (Å) 9.0136 (1), 8.1561 (1), 10.8718 (1)
β (°) 95.778 (1)
V3) 795.19 (2)
Z 2
Radiation type Cu Kα
μ (mm−1) 6.09
Crystal size (mm) 0.20 × 0.07 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.167, 0.787
No. of measured, independent and observed [I > 2σ(I)] reflections 14902, 3132, 3031
Rint 0.026
(sin θ/λ)max−1) 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.069, 1.07
No. of reflections 3132
No. of parameters 238
No. of restraints 295
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.19
Absolute structure Flack x determined using 1322 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.010 (6)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

During the refinement of compound LCZ, the di­chloro­phenyl ring was found to be disordered over two orientations (ring 1A: C9A, C10A, C11A, C12A, C13A, C14A, Cl1A, Cl2A and ring 1B: C9B, C10B, C11B, C12B, C13B, C14B, Cl1B, Cl2B); finally site occupancies of two components were fixed at 0.5. Two components of the disorder were modelled, using rigid planar hexa­gons for the phenyl rings. Furthermore, similarity restraints were applied to the atomic displacement parameters of all disordered atoms using SIMU and ISOR commands in SHELXL. The distances between atom pairs C—Cl were restrained to be equal, with an effective s.u. of 0.003 Å.

All hydrogen atoms bonded to carbon atoms were placed geometrically and refined as riding, with Uiso(H) = 1.2 Ueq(C) for the methyl­ene, methine and aromatic groups.

8. Theoretical calculations

To make a comparison between the experimental and theoretical models of luliconazole, full geometry optimization of the luliconazole mol­ecule was carried out using GAUSSIAN16 (Frisch et al., 2019[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2019). GAUSSIAN16. Revision C.02. Gaussian Inc., Wallingford, CT, USA. https://gaussian. com/.]) at the B3LYP/6-311++G(3df,3pd) level of theory. The input coordinates for density functional theory (DFT) calculations were generated from the experimental Cartesian coordinates of the LCZ-A structure. A stationary point of the theoretical model of luliconazole (LCZ-opt) was confirmed by the absence of imaginary frequencies. Cartesian coordinates (XYZ) for the LCZ-opt structure are given in Table S1 in the supporting information.

Supporting information


Computing details top

(E)-[(4R)-4-(2,4-Dichlorophenyl)-1,3-dithiolan-2-ylidene](1H-imidazol-1-yl)acetonitrile top
Crystal data top
C14H9Cl2N3S2F(000) = 360
Mr = 354.26Dx = 1.480 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 9.0136 (1) ÅCell parameters from 12732 reflections
b = 8.1561 (1) Åθ = 4.1–76.6°
c = 10.8718 (1) ŵ = 6.09 mm1
β = 95.778 (1)°T = 294 K
V = 795.19 (2) Å3Prism, colourless
Z = 20.20 × 0.07 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3132 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3031 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.0000 pixels mm-1θmax = 77.2°, θmin = 4.1°
ω scansh = 1110
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2023)
k = 910
Tmin = 0.167, Tmax = 0.787l = 1313
14902 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.0887P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.15 e Å3
3132 reflectionsΔρmin = 0.19 e Å3
238 parametersAbsolute structure: Flack x determined using 1322 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
295 restraintsAbsolute structure parameter: 0.010 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.7112 (8)0.3287 (9)1.1135 (7)0.0901 (16)0.5
Cl2A1.2841 (5)0.2715 (10)1.0208 (5)0.0882 (15)0.5
Cl1B0.7057 (9)0.2672 (10)1.1114 (7)0.114 (3)0.5
Cl2B1.2743 (5)0.3102 (11)1.0307 (6)0.105 (2)0.5
S10.39907 (7)0.21429 (7)0.66512 (6)0.05387 (17)
S20.59952 (8)0.49155 (9)0.73496 (7)0.0642 (2)
N10.4012 (3)0.8370 (3)0.6007 (3)0.0670 (6)
N20.2121 (2)0.4772 (3)0.51520 (18)0.0454 (4)
N30.0737 (3)0.3647 (3)0.3584 (2)0.0658 (7)
C10.3416 (2)0.5289 (3)0.5913 (2)0.0436 (5)
C20.3726 (3)0.6999 (3)0.5944 (2)0.0488 (5)
C30.2085 (3)0.3786 (3)0.4141 (2)0.0531 (6)
H30.2918390.3272320.3877260.064*
C40.0127 (3)0.4596 (4)0.4260 (3)0.0724 (9)
H40.1148890.4739640.4077210.087*
C50.0686 (3)0.5297 (4)0.5224 (3)0.0615 (7)
H50.0348060.5990830.5813890.074*
C60.4336 (3)0.4234 (3)0.6568 (2)0.0454 (5)
C70.5759 (3)0.1646 (4)0.7514 (3)0.0624 (7)
H7A0.5643130.0692350.8029230.075*
H7B0.6490200.1387190.6946830.075*
C80.6294 (3)0.3087 (4)0.8315 (2)0.0559 (6)
H80.5666020.3170070.8997440.067*
C9A0.7953 (5)0.2935 (9)0.8872 (7)0.0553 (13)0.5
C10A0.8435 (7)0.3149 (11)1.0117 (7)0.0556 (14)0.5
C11A0.9949 (8)0.3097 (11)1.0515 (5)0.0628 (14)0.5
H11A1.0271540.3240011.1347430.075*0.5
C12A1.0981 (5)0.2832 (9)0.9668 (7)0.0683 (14)0.5
C13A1.0499 (6)0.2618 (8)0.8423 (6)0.0619 (14)0.5
H13A1.1188880.2440230.7856270.074*0.5
C14A0.8985 (7)0.2670 (7)0.8025 (5)0.0579 (14)0.5
H14A0.8662050.2526830.7192350.069*0.5
C9B0.7923 (5)0.3066 (9)0.8760 (7)0.0528 (13)0.5
C10B0.8287 (7)0.2829 (11)1.0020 (7)0.0566 (14)0.5
C11B0.9773 (8)0.2807 (11)1.0507 (5)0.0646 (14)0.5
H11B1.0017050.2647901.1350030.077*0.5
C12B1.0895 (5)0.3021 (9)0.9733 (7)0.0632 (13)0.5
C13B1.0531 (6)0.3258 (8)0.8473 (7)0.0648 (14)0.5
H13B1.1281760.3401760.7955140.078*0.5
C14B0.9045 (7)0.3281 (8)0.7986 (5)0.0602 (14)0.5
H14B0.8801200.3439520.7142860.072*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0641 (16)0.161 (4)0.0466 (17)0.009 (2)0.0115 (11)0.013 (2)
Cl2A0.0450 (13)0.138 (4)0.0786 (16)0.0186 (15)0.0057 (10)0.023 (2)
Cl1B0.0780 (18)0.213 (7)0.051 (2)0.003 (3)0.0122 (15)0.034 (3)
Cl2B0.0491 (16)0.142 (4)0.116 (3)0.0239 (15)0.0284 (15)0.0304 (19)
S10.0493 (3)0.0458 (3)0.0639 (4)0.0038 (3)0.0072 (3)0.0024 (3)
S20.0528 (3)0.0561 (4)0.0776 (5)0.0055 (3)0.0234 (3)0.0048 (3)
N10.0606 (14)0.0490 (14)0.0923 (18)0.0040 (11)0.0118 (12)0.0051 (13)
N20.0347 (9)0.0481 (11)0.0521 (10)0.0016 (8)0.0012 (7)0.0022 (9)
N30.0610 (14)0.0669 (16)0.0645 (13)0.0120 (12)0.0180 (11)0.0023 (11)
C10.0375 (11)0.0453 (12)0.0470 (11)0.0013 (9)0.0008 (9)0.0052 (9)
C20.0405 (11)0.0481 (14)0.0571 (13)0.0033 (10)0.0020 (9)0.0043 (11)
C30.0491 (13)0.0576 (15)0.0515 (13)0.0072 (11)0.0005 (10)0.0060 (11)
C40.0409 (13)0.0672 (19)0.104 (2)0.0011 (13)0.0176 (14)0.0105 (17)
C50.0413 (13)0.0551 (15)0.087 (2)0.0060 (11)0.0015 (13)0.0022 (13)
C60.0436 (12)0.0457 (12)0.0461 (12)0.0020 (10)0.0004 (9)0.0065 (10)
C70.0556 (15)0.0583 (17)0.0700 (18)0.0077 (12)0.0101 (13)0.0066 (13)
C80.0441 (12)0.0763 (18)0.0460 (11)0.0081 (13)0.0016 (9)0.0004 (13)
C9A0.047 (2)0.077 (3)0.042 (2)0.006 (2)0.002 (2)0.003 (2)
C10A0.050 (2)0.076 (3)0.039 (2)0.001 (2)0.005 (2)0.003 (2)
C11A0.051 (2)0.086 (3)0.047 (2)0.002 (2)0.013 (2)0.001 (2)
C12A0.053 (2)0.089 (3)0.061 (2)0.009 (2)0.005 (2)0.003 (2)
C13A0.048 (2)0.081 (3)0.057 (2)0.013 (2)0.0042 (19)0.002 (3)
C14A0.050 (2)0.078 (3)0.045 (2)0.008 (2)0.0013 (18)0.001 (2)
C9B0.046 (2)0.075 (3)0.035 (2)0.011 (2)0.0074 (19)0.004 (2)
C10B0.050 (2)0.079 (3)0.040 (2)0.001 (2)0.002 (2)0.004 (2)
C11B0.055 (3)0.088 (3)0.048 (2)0.000 (2)0.006 (2)0.005 (2)
C12B0.042 (2)0.087 (3)0.058 (2)0.016 (2)0.006 (2)0.001 (2)
C13B0.049 (2)0.085 (3)0.060 (2)0.010 (3)0.005 (2)0.001 (3)
C14B0.052 (2)0.080 (3)0.048 (2)0.008 (3)0.0025 (19)0.006 (3)
Geometric parameters (Å, º) top
Cl1A—C10A1.711 (3)C7—H7B0.9700
Cl2A—C12A1.722 (3)C8—C9B1.499 (5)
Cl1B—C10B1.710 (3)C8—C9A1.561 (5)
Cl2B—C12B1.720 (3)C8—H80.9800
S1—C61.737 (3)C9A—C10A1.3900
S1—C71.812 (3)C9A—C14A1.3900
S2—C61.736 (2)C10A—C11A1.3900
S2—C81.828 (3)C11A—C12A1.3900
N1—C21.148 (4)C11A—H11A0.9300
N2—C31.360 (3)C12A—C13A1.3900
N2—C51.371 (3)C13A—C14A1.3900
N2—C11.425 (3)C13A—H13A0.9300
N3—C31.306 (3)C14A—H14A0.9300
N3—C41.364 (4)C9B—C10B1.3900
C1—C61.348 (3)C9B—C14B1.3900
C1—C21.422 (4)C10B—C11B1.3900
C3—H30.9300C11B—C12B1.3900
C4—C51.344 (4)C11B—H11B0.9300
C4—H40.9300C12B—C13B1.3900
C5—H50.9300C13B—C14B1.3900
C7—C81.512 (4)C13B—H13B0.9300
C7—H7A0.9700C14B—H14B0.9300
C6—S1—C795.38 (13)C10A—C9A—C14A120.0
C6—S2—C895.13 (12)C10A—C9A—C8124.2 (5)
C3—N2—C5106.5 (2)C14A—C9A—C8115.7 (5)
C3—N2—C1126.6 (2)C11A—C10A—C9A120.0
C5—N2—C1126.6 (2)C11A—C10A—Cl1A121.8 (6)
C3—N3—C4104.8 (2)C9A—C10A—Cl1A117.9 (5)
C6—C1—C2120.3 (2)C10A—C11A—C12A120.0
C6—C1—N2122.8 (2)C10A—C11A—H11A120.0
C2—C1—N2116.8 (2)C12A—C11A—H11A120.0
N1—C2—C1177.5 (3)C13A—C12A—C11A120.0
N3—C3—N2111.8 (2)C13A—C12A—Cl2A121.5 (5)
N3—C3—H3124.1C11A—C12A—Cl2A118.4 (5)
N2—C3—H3124.1C12A—C13A—C14A120.0
C5—C4—N3111.4 (2)C12A—C13A—H13A120.0
C5—C4—H4124.3C14A—C13A—H13A120.0
N3—C4—H4124.3C13A—C14A—C9A120.0
C4—C5—N2105.4 (3)C13A—C14A—H14A120.0
C4—C5—H5127.3C9A—C14A—H14A120.0
N2—C5—H5127.3C10B—C9B—C14B120.0
C1—C6—S2120.55 (19)C10B—C9B—C8116.5 (5)
C1—C6—S1123.39 (19)C14B—C9B—C8123.5 (5)
S2—C6—S1116.03 (14)C11B—C10B—C9B120.0
C8—C7—S1109.7 (2)C11B—C10B—Cl1B113.7 (6)
C8—C7—H7A109.7C9B—C10B—Cl1B126.2 (6)
S1—C7—H7A109.7C10B—C11B—C12B120.0
C8—C7—H7B109.7C10B—C11B—H11B120.0
S1—C7—H7B109.7C12B—C11B—H11B120.0
H7A—C7—H7B108.2C11B—C12B—C13B120.0
C9B—C8—C7115.0 (4)C11B—C12B—Cl2B121.5 (5)
C7—C8—C9A113.5 (3)C13B—C12B—Cl2B118.4 (5)
C9B—C8—S2106.1 (3)C14B—C13B—C12B120.0
C7—C8—S2106.49 (17)C14B—C13B—H13B120.0
C9A—C8—S2111.6 (3)C12B—C13B—H13B120.0
C7—C8—H8108.4C13B—C14B—C9B120.0
C9A—C8—H8108.4C13B—C14B—H14B120.0
S2—C8—H8108.4C9B—C14B—H14B120.0
C3—N2—C1—C662.6 (4)C14A—C9A—C10A—C11A0.0
C5—N2—C1—C6124.2 (3)C8—C9A—C10A—C11A175.7 (6)
C3—N2—C1—C2116.4 (3)C14A—C9A—C10A—Cl1A174.2 (7)
C5—N2—C1—C256.8 (4)C8—C9A—C10A—Cl1A10.0 (6)
C4—N3—C3—N20.6 (3)C9A—C10A—C11A—C12A0.0
C5—N2—C3—N30.5 (3)Cl1A—C10A—C11A—C12A174.0 (7)
C1—N2—C3—N3174.8 (2)C10A—C11A—C12A—C13A0.0
C3—N3—C4—C50.4 (4)C10A—C11A—C12A—Cl2A178.1 (6)
N3—C4—C5—N20.1 (4)C11A—C12A—C13A—C14A0.0
C3—N2—C5—C40.2 (3)Cl2A—C12A—C13A—C14A178.0 (6)
C1—N2—C5—C4174.5 (3)C12A—C13A—C14A—C9A0.0
C2—C1—C6—S25.7 (3)C10A—C9A—C14A—C13A0.0
N2—C1—C6—S2173.31 (18)C8—C9A—C14A—C13A176.1 (6)
C2—C1—C6—S1176.36 (19)C7—C8—C9B—C10B111.8 (4)
N2—C1—C6—S14.7 (3)S2—C8—C9B—C10B130.8 (3)
C8—S2—C6—C1164.4 (2)C7—C8—C9B—C14B68.7 (6)
C8—S2—C6—S117.54 (17)S2—C8—C9B—C14B48.7 (5)
C7—S1—C6—C1174.3 (2)C14B—C9B—C10B—C11B0.0
C7—S1—C6—S23.76 (18)C8—C9B—C10B—C11B179.5 (6)
C6—S1—C7—C829.9 (2)C14B—C9B—C10B—Cl1B175.7 (7)
S1—C7—C8—C9B161.5 (4)C8—C9B—C10B—Cl1B3.8 (7)
S1—C7—C8—C9A167.4 (4)C9B—C10B—C11B—C12B0.0
S1—C7—C8—S244.3 (2)Cl1B—C10B—C11B—C12B176.2 (7)
C6—S2—C8—C9B159.7 (3)C10B—C11B—C12B—C13B0.0
C6—S2—C8—C736.8 (2)C10B—C11B—C12B—Cl2B176.8 (7)
C6—S2—C8—C9A161.1 (3)C11B—C12B—C13B—C14B0.0
C7—C8—C9A—C10A129.6 (4)Cl2B—C12B—C13B—C14B176.9 (6)
S2—C8—C9A—C10A110.0 (4)C12B—C13B—C14B—C9B0.0
C7—C8—C9A—C14A54.5 (5)C10B—C9B—C14B—C13B0.0
S2—C8—C9A—C14A65.9 (5)C8—C9B—C14B—C13B179.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N3i0.932.493.335 (4)151
C11A—H11A···N3ii0.932.453.371 (6)172
C11B—H11B···N3ii0.932.583.440 (6)154
Symmetry codes: (i) x, y+1/2, z+1; (ii) x+1, y, z+1.
Dihedral angles (°) between the best planes in LCZ-structures top
1 - dithiolane ring; 2 - imidazole ring; 3 - dichlorophenyl ring (A and B are the disordered components).
1/21/32/3
LCZ-A62.7 (1)88.7 (3)28.4 (3)
LCZ-B62.7 (1)74.0 (3)46.6 (3)
LCZ-opt81.475.236.9
 

Acknowledgements

The financial support from University of Lodz Doctoral School of Exact and Natural Sciences is gratefully acknowledged.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDeepshikha, K. & Subhash, B. (2014). Dovepress, 9, 113–124.  Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2019). GAUSSIAN16. Revision C.02. Gaussian Inc., Wallingford, CT, USA. https://gaussian. com/.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKoga, H., Nanjoh, Y., Kaneda, H., Yamaguchi, H. & Tsuboi, R. (2012). Antimicrob. Agents Chemother. 56, 3138–3143.  Web of Science CrossRef PubMed Google Scholar
First citationLin, Y., Xiao, T. & Wang, J.-T. (2006). Acta Cryst. E62, o3159–o3160.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNiwano, Y., Kuzuhara, N., Kodama, H., Yoshida, M., Miyazaki, T. & Yamaguchi, H. (1998). Antimicrob. Agents Chemother. 42, 967–970.  Web of Science CrossRef PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, T., Lin, Y., Zhang, X.-Q., Chen, J. & Wang, J.-T. (2006). Acta Cryst. E62, o5052–o5053.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds