research communications
of luliconazole
aUniversity of Lodz Doctoral School of Exact and Natural Sciences, Narutowicza 68, 90-136 Łódź, Poland, and bUniversity of Lodz, Faculty of Chemistry, Pomorska 163/165, 90-236 Łódź, Poland
*Correspondence e-mail: anna.ben@edu.uni.lodz.pl
The 14H9Cl2N3S2; (E)-[(4R)-4-(2,4-dichlorophenyl)-1,3-dithiolan-2-ylidene](1H-imidazol-1-yl)acetonitrile} is reported. In the molecule of the title compound, the dithiolane ring adopts an while the dichlorophenyl ring exhibits disorder. In the crystal packing of luliconazole, only two intermolecular C–H⋯N hydrogen bonds are observed. Hirshfeld surface analysis reveals that the most dominant contacts are H⋯N/N⋯H, H⋯Cl/Cl⋯H, H⋯H and C⋯H/H⋯C.
of luliconazole {LCZ; CKeywords: luliconazole; crystal structure; Hirshfeld surface analysis.
CCDC reference: 2407813
1. Chemical context
Luliconazole {LCZ; C14H9Cl2N3S2; CAS No. 187164-19-8; (E)-[(4R)-4-(2,4-dichlorophenyl)-1,3-dithiolan-2-ylidene](1H-imidazol-1-yl)acetonitrile} is a prominent antifungal agent and belongs to the azole class of drugs, specifically imidazole derivatives. The compound possesses a distinctive chemical structure, enhanced by the incorporation of an imidazole moiety into the ketene dithioacetate framework. This structural modification retains the broad antifungal spectrum of imidazole drugs, while achieving high potency against filamentous fungi, including dermatophytes (Koga et al., 2012).
Luliconazole, as the R-enantiomer, exhibits significantly greater antifungal activity compared to lanoconazole, which exists as a (Deepshikha & Subhash, 2014). The key distinction between these two compounds lies in their stereochemistry: lanoconazole is a while luliconazole is the pure R-enantiomer. Interestingly, the S-enantiomers of both compounds are inactive as antifungal agents, making LCZ inherently more potent (Niwano et al., 1998).
This article provides a detailed structural analysis of the pure drug luliconazole, which has not previously been reported in the literature.
2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. It crystallizes in the monoclinic P21 with one molecule in the The LCZ molecule has an R configuration at the asymmetric center of atom C8. The dithiolane ring adopts an with the C8 flap atom having a maximum deviation of 0.287 (2) Å, and puckering parameters (Cremer & Pople, 1975) Q = 0.438 (2) Å and φ = 295.6 (3)°. According to the asymmetry parameters (Duax & Norton, 1975), the mirror plane passes through atom C8 and the C6—S1 bond; ΔCs(C8) = 10.21 (2)°. In the LCZ structure, the dichlorophenyl ring was found to be disordered over two orientations and the occupancies of the disordered atoms were fixed at 0.5. Fig. 2 presents an overlay of three independent luliconazole skeletons, considering separately the two disordered components A and B of LCZ, i.e. LCZ-A (red), LCZ-B (green) and the theoretically obtained optimized structure (LCZ-opt, black). The molecular conformations are quite similar, differing only slightly in the orientations of the imidazole and dichlorophenyl rings. The dihedral angle between the disordered dichlorophenyl rings A and B of LCZ is 18.2 (4)°. The imidazole ring is planar (r.m.s. deviation = 0.002 Å). The mutual arrangement of the rings can be analyzed by the dihedral angles between their best planes, calculated using the least-squares method (Table 1).
|
3. Supramolecular features
In the x, y + , −z + 1) and C11A—H11A⋯N3(−x, y + , −z + 1); in both, the N3 atom is a hydrogen-bond acceptor. The geometric parameters of these interactions are presented in Table 2. Fig. 3 demonstrates that the former interaction produces a mono-periodic chain along the b-axis direction, whose first-level graph-set descriptor is C(4) (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995), while the latter interaction generates a C(11) chain motif along the [101] direction (Fig. 4). The combination of these two chain motifs leads to the formation of di-periodic molecular layers parallel to (01) (Fig. 5).
of luliconazole, there are no potential strong proton donors, apart from weak C—H bonds. There are two intermolecular hydrogen bonds: C5—H5⋯N3(−4. Hirshfeld surface analysis
Hirshfeld surfaces and fingerprint plots (Spackman & McKinnon, 2002; Spackman & Jayatilaka, 2009) were generated using CrystalExplorer software (Spackman et al., 2021). Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) complements the comparison of the two disordered components of the luliconazole molecule. Fig. 6 presents a comparison of the Hirshfeld surfaces of the LCZ-A and LCZ-B structures and the corresponding 2D fingerprint plots of the most dominant contacts combined with their percentage contributions to the Hirshfeld surface. Red spots on the Hirshfeld surfaces indicate atoms participating in the C—H⋯N hydrogen bonds and an N⋯S contact shorter than the sum of their van der Waals radii.
For both molecules, the H⋯N/N⋯H, H⋯Cl/Cl⋯H, H⋯H and C⋯H/H⋯C contacts provide the greatest contribution (each about 15–20%) to the Hirshfeld surface. The H⋯S/S⋯H interactions contribute about 9%. Other contacts do not exceed 5%. Two pairs of spikes in the H⋯N/N⋯H fingerprint plots belong to the closest N⋯H contacts, while H⋯S/S⋯H interactions lead to characteristic sharp spikes for LCZ-A compared to the chicken-wing-like features for LCZ-B.
5. Database survey
A search of the Cambridge Structural Database (CSD version 5.45, June 2024, Groom et al., 2016) did not reveal any structure of luliconazole. However, two isomeric structures (E and Z) were found (DELYAV; Lin et al., 2006; PESWAM; Xiao et al., 2006), which differ from luliconazole by the presence of a 2-chlorophenyl ring instead of the dichlorophenyl ring in LCZ. Fig. 2 shows the superposition of their skeletons compared to three luliconazole molecules. PESWAM (isomer E) is closely related in molecular conformation to LCZ-A, in contrast to the structure of DELYAV, which differs from the others in the site of substitution (atom C7 vs C8 of the dithiolane ring; isomer Z) and the spatial orientation of imidazole ring.
6. Synthesis and crystallization
The luliconazole (purity 98%) used in this study was purchased from BLD Pharmatech GmbH (Germany). A pure crystalline form of luliconazole was obtained unexpectedly from cocrystallization of the drug with pyrazinedicarboxylic acid; all substances (0.05 mmol) were used with a fixed stoichiometric ratio of 1:1, dissolved in ethanol (3 ml EtOH) and the mixture was heated to 346 K.
7. Refinement
Crystal data, data collection and structure .
details are summarized in Table 3During the A: C9A, C10A, C11A, C12A, C13A, C14A, Cl1A, Cl2A and ring 1B: C9B, C10B, C11B, C12B, C13B, C14B, Cl1B, Cl2B); finally site occupancies of two components were fixed at 0.5. Two components of the disorder were modelled, using rigid planar hexagons for the phenyl rings. Furthermore, similarity restraints were applied to the atomic displacement parameters of all disordered atoms using SIMU and ISOR commands in SHELXL. The distances between atom pairs C—Cl were restrained to be equal, with an effective s.u. of 0.003 Å.
of compound LCZ, the dichlorophenyl ring was found to be disordered over two orientations (ring 1All hydrogen atoms bonded to carbon atoms were placed geometrically and refined as riding, with Uiso(H) = 1.2 Ueq(C) for the methylene, methine and aromatic groups.
8. Theoretical calculations
To make a comparison between the experimental and theoretical models of luliconazole, full geometry optimization of the luliconazole molecule was carried out using GAUSSIAN16 (Frisch et al., 2019) at the B3LYP/6-311++G(3df,3pd) level of theory. The input coordinates for density functional theory (DFT) calculations were generated from the experimental Cartesian coordinates of the LCZ-A structure. A stationary point of the theoretical model of luliconazole (LCZ-opt) was confirmed by the absence of imaginary frequencies. Cartesian coordinates (XYZ) for the LCZ-opt structure are given in Table S1 in the supporting information.
Supporting information
CCDC reference: 2407813
https://doi.org/10.1107/S2056989024011812/vm2310sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024011812/vm2310Isup2.hkl
Cartesian coordinates (XYZ) for LCZ-opt structure. DOI: https://doi.org/10.1107/S2056989024011812/vm2310sup3.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2056989024011812/vm2310Isup4.cml
C14H9Cl2N3S2 | F(000) = 360 |
Mr = 354.26 | Dx = 1.480 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
a = 9.0136 (1) Å | Cell parameters from 12732 reflections |
b = 8.1561 (1) Å | θ = 4.1–76.6° |
c = 10.8718 (1) Å | µ = 6.09 mm−1 |
β = 95.778 (1)° | T = 294 K |
V = 795.19 (2) Å3 | Prism, colourless |
Z = 2 | 0.20 × 0.07 × 0.03 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3132 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3031 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.026 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 77.2°, θmin = 4.1° |
ω scans | h = −11→10 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2023) | k = −9→10 |
Tmin = 0.167, Tmax = 0.787 | l = −13→13 |
14902 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.0399P)2 + 0.0887P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.069 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.15 e Å−3 |
3132 reflections | Δρmin = −0.19 e Å−3 |
238 parameters | Absolute structure: Flack x determined using 1322 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
295 restraints | Absolute structure parameter: −0.010 (6) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1A | 0.7112 (8) | 0.3287 (9) | 1.1135 (7) | 0.0901 (16) | 0.5 |
Cl2A | 1.2841 (5) | 0.2715 (10) | 1.0208 (5) | 0.0882 (15) | 0.5 |
Cl1B | 0.7057 (9) | 0.2672 (10) | 1.1114 (7) | 0.114 (3) | 0.5 |
Cl2B | 1.2743 (5) | 0.3102 (11) | 1.0307 (6) | 0.105 (2) | 0.5 |
S1 | 0.39907 (7) | 0.21429 (7) | 0.66512 (6) | 0.05387 (17) | |
S2 | 0.59952 (8) | 0.49155 (9) | 0.73496 (7) | 0.0642 (2) | |
N1 | 0.4012 (3) | 0.8370 (3) | 0.6007 (3) | 0.0670 (6) | |
N2 | 0.2121 (2) | 0.4772 (3) | 0.51520 (18) | 0.0454 (4) | |
N3 | 0.0737 (3) | 0.3647 (3) | 0.3584 (2) | 0.0658 (7) | |
C1 | 0.3416 (2) | 0.5289 (3) | 0.5913 (2) | 0.0436 (5) | |
C2 | 0.3726 (3) | 0.6999 (3) | 0.5944 (2) | 0.0488 (5) | |
C3 | 0.2085 (3) | 0.3786 (3) | 0.4141 (2) | 0.0531 (6) | |
H3 | 0.291839 | 0.327232 | 0.387726 | 0.064* | |
C4 | −0.0127 (3) | 0.4596 (4) | 0.4260 (3) | 0.0724 (9) | |
H4 | −0.114889 | 0.473964 | 0.407721 | 0.087* | |
C5 | 0.0686 (3) | 0.5297 (4) | 0.5224 (3) | 0.0615 (7) | |
H5 | 0.034806 | 0.599083 | 0.581389 | 0.074* | |
C6 | 0.4336 (3) | 0.4234 (3) | 0.6568 (2) | 0.0454 (5) | |
C7 | 0.5759 (3) | 0.1646 (4) | 0.7514 (3) | 0.0624 (7) | |
H7A | 0.564313 | 0.069235 | 0.802923 | 0.075* | |
H7B | 0.649020 | 0.138719 | 0.694683 | 0.075* | |
C8 | 0.6294 (3) | 0.3087 (4) | 0.8315 (2) | 0.0559 (6) | |
H8 | 0.566602 | 0.317007 | 0.899744 | 0.067* | |
C9A | 0.7953 (5) | 0.2935 (9) | 0.8872 (7) | 0.0553 (13) | 0.5 |
C10A | 0.8435 (7) | 0.3149 (11) | 1.0117 (7) | 0.0556 (14) | 0.5 |
C11A | 0.9949 (8) | 0.3097 (11) | 1.0515 (5) | 0.0628 (14) | 0.5 |
H11A | 1.027154 | 0.324001 | 1.134743 | 0.075* | 0.5 |
C12A | 1.0981 (5) | 0.2832 (9) | 0.9668 (7) | 0.0683 (14) | 0.5 |
C13A | 1.0499 (6) | 0.2618 (8) | 0.8423 (6) | 0.0619 (14) | 0.5 |
H13A | 1.118888 | 0.244023 | 0.785627 | 0.074* | 0.5 |
C14A | 0.8985 (7) | 0.2670 (7) | 0.8025 (5) | 0.0579 (14) | 0.5 |
H14A | 0.866205 | 0.252683 | 0.719235 | 0.069* | 0.5 |
C9B | 0.7923 (5) | 0.3066 (9) | 0.8760 (7) | 0.0528 (13) | 0.5 |
C10B | 0.8287 (7) | 0.2829 (11) | 1.0020 (7) | 0.0566 (14) | 0.5 |
C11B | 0.9773 (8) | 0.2807 (11) | 1.0507 (5) | 0.0646 (14) | 0.5 |
H11B | 1.001705 | 0.264790 | 1.135003 | 0.077* | 0.5 |
C12B | 1.0895 (5) | 0.3021 (9) | 0.9733 (7) | 0.0632 (13) | 0.5 |
C13B | 1.0531 (6) | 0.3258 (8) | 0.8473 (7) | 0.0648 (14) | 0.5 |
H13B | 1.128176 | 0.340176 | 0.795514 | 0.078* | 0.5 |
C14B | 0.9045 (7) | 0.3281 (8) | 0.7986 (5) | 0.0602 (14) | 0.5 |
H14B | 0.880120 | 0.343952 | 0.714286 | 0.072* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1A | 0.0641 (16) | 0.161 (4) | 0.0466 (17) | 0.009 (2) | 0.0115 (11) | −0.013 (2) |
Cl2A | 0.0450 (13) | 0.138 (4) | 0.0786 (16) | 0.0186 (15) | −0.0057 (10) | 0.023 (2) |
Cl1B | 0.0780 (18) | 0.213 (7) | 0.051 (2) | −0.003 (3) | 0.0122 (15) | 0.034 (3) |
Cl2B | 0.0491 (16) | 0.142 (4) | 0.116 (3) | 0.0239 (15) | −0.0284 (15) | −0.0304 (19) |
S1 | 0.0493 (3) | 0.0458 (3) | 0.0639 (4) | −0.0038 (3) | −0.0072 (3) | 0.0024 (3) |
S2 | 0.0528 (3) | 0.0561 (4) | 0.0776 (5) | −0.0055 (3) | −0.0234 (3) | −0.0048 (3) |
N1 | 0.0606 (14) | 0.0490 (14) | 0.0923 (18) | −0.0040 (11) | 0.0118 (12) | −0.0051 (13) |
N2 | 0.0347 (9) | 0.0481 (11) | 0.0521 (10) | −0.0016 (8) | −0.0012 (7) | −0.0022 (9) |
N3 | 0.0610 (14) | 0.0669 (16) | 0.0645 (13) | −0.0120 (12) | −0.0180 (11) | 0.0023 (11) |
C1 | 0.0375 (11) | 0.0453 (12) | 0.0470 (11) | −0.0013 (9) | −0.0008 (9) | −0.0052 (9) |
C2 | 0.0405 (11) | 0.0481 (14) | 0.0571 (13) | 0.0033 (10) | 0.0020 (9) | −0.0043 (11) |
C3 | 0.0491 (13) | 0.0576 (15) | 0.0515 (13) | −0.0072 (11) | −0.0005 (10) | −0.0060 (11) |
C4 | 0.0409 (13) | 0.0672 (19) | 0.104 (2) | −0.0011 (13) | −0.0176 (14) | 0.0105 (17) |
C5 | 0.0413 (13) | 0.0551 (15) | 0.087 (2) | 0.0060 (11) | 0.0015 (13) | −0.0022 (13) |
C6 | 0.0436 (12) | 0.0457 (12) | 0.0461 (12) | −0.0020 (10) | −0.0004 (9) | −0.0065 (10) |
C7 | 0.0556 (15) | 0.0583 (17) | 0.0700 (18) | 0.0077 (12) | −0.0101 (13) | 0.0066 (13) |
C8 | 0.0441 (12) | 0.0763 (18) | 0.0460 (11) | 0.0081 (13) | −0.0016 (9) | 0.0004 (13) |
C9A | 0.047 (2) | 0.077 (3) | 0.042 (2) | 0.006 (2) | 0.002 (2) | 0.003 (2) |
C10A | 0.050 (2) | 0.076 (3) | 0.039 (2) | −0.001 (2) | −0.005 (2) | −0.003 (2) |
C11A | 0.051 (2) | 0.086 (3) | 0.047 (2) | 0.002 (2) | −0.013 (2) | −0.001 (2) |
C12A | 0.053 (2) | 0.089 (3) | 0.061 (2) | 0.009 (2) | −0.005 (2) | 0.003 (2) |
C13A | 0.048 (2) | 0.081 (3) | 0.057 (2) | 0.013 (2) | 0.0042 (19) | −0.002 (3) |
C14A | 0.050 (2) | 0.078 (3) | 0.045 (2) | 0.008 (2) | 0.0013 (18) | 0.001 (2) |
C9B | 0.046 (2) | 0.075 (3) | 0.035 (2) | 0.011 (2) | −0.0074 (19) | 0.004 (2) |
C10B | 0.050 (2) | 0.079 (3) | 0.040 (2) | −0.001 (2) | −0.002 (2) | −0.004 (2) |
C11B | 0.055 (3) | 0.088 (3) | 0.048 (2) | 0.000 (2) | −0.006 (2) | 0.005 (2) |
C12B | 0.042 (2) | 0.087 (3) | 0.058 (2) | 0.016 (2) | −0.006 (2) | 0.001 (2) |
C13B | 0.049 (2) | 0.085 (3) | 0.060 (2) | 0.010 (3) | 0.005 (2) | −0.001 (3) |
C14B | 0.052 (2) | 0.080 (3) | 0.048 (2) | 0.008 (3) | 0.0025 (19) | 0.006 (3) |
Cl1A—C10A | 1.711 (3) | C7—H7B | 0.9700 |
Cl2A—C12A | 1.722 (3) | C8—C9B | 1.499 (5) |
Cl1B—C10B | 1.710 (3) | C8—C9A | 1.561 (5) |
Cl2B—C12B | 1.720 (3) | C8—H8 | 0.9800 |
S1—C6 | 1.737 (3) | C9A—C10A | 1.3900 |
S1—C7 | 1.812 (3) | C9A—C14A | 1.3900 |
S2—C6 | 1.736 (2) | C10A—C11A | 1.3900 |
S2—C8 | 1.828 (3) | C11A—C12A | 1.3900 |
N1—C2 | 1.148 (4) | C11A—H11A | 0.9300 |
N2—C3 | 1.360 (3) | C12A—C13A | 1.3900 |
N2—C5 | 1.371 (3) | C13A—C14A | 1.3900 |
N2—C1 | 1.425 (3) | C13A—H13A | 0.9300 |
N3—C3 | 1.306 (3) | C14A—H14A | 0.9300 |
N3—C4 | 1.364 (4) | C9B—C10B | 1.3900 |
C1—C6 | 1.348 (3) | C9B—C14B | 1.3900 |
C1—C2 | 1.422 (4) | C10B—C11B | 1.3900 |
C3—H3 | 0.9300 | C11B—C12B | 1.3900 |
C4—C5 | 1.344 (4) | C11B—H11B | 0.9300 |
C4—H4 | 0.9300 | C12B—C13B | 1.3900 |
C5—H5 | 0.9300 | C13B—C14B | 1.3900 |
C7—C8 | 1.512 (4) | C13B—H13B | 0.9300 |
C7—H7A | 0.9700 | C14B—H14B | 0.9300 |
C6—S1—C7 | 95.38 (13) | C10A—C9A—C14A | 120.0 |
C6—S2—C8 | 95.13 (12) | C10A—C9A—C8 | 124.2 (5) |
C3—N2—C5 | 106.5 (2) | C14A—C9A—C8 | 115.7 (5) |
C3—N2—C1 | 126.6 (2) | C11A—C10A—C9A | 120.0 |
C5—N2—C1 | 126.6 (2) | C11A—C10A—Cl1A | 121.8 (6) |
C3—N3—C4 | 104.8 (2) | C9A—C10A—Cl1A | 117.9 (5) |
C6—C1—C2 | 120.3 (2) | C10A—C11A—C12A | 120.0 |
C6—C1—N2 | 122.8 (2) | C10A—C11A—H11A | 120.0 |
C2—C1—N2 | 116.8 (2) | C12A—C11A—H11A | 120.0 |
N1—C2—C1 | 177.5 (3) | C13A—C12A—C11A | 120.0 |
N3—C3—N2 | 111.8 (2) | C13A—C12A—Cl2A | 121.5 (5) |
N3—C3—H3 | 124.1 | C11A—C12A—Cl2A | 118.4 (5) |
N2—C3—H3 | 124.1 | C12A—C13A—C14A | 120.0 |
C5—C4—N3 | 111.4 (2) | C12A—C13A—H13A | 120.0 |
C5—C4—H4 | 124.3 | C14A—C13A—H13A | 120.0 |
N3—C4—H4 | 124.3 | C13A—C14A—C9A | 120.0 |
C4—C5—N2 | 105.4 (3) | C13A—C14A—H14A | 120.0 |
C4—C5—H5 | 127.3 | C9A—C14A—H14A | 120.0 |
N2—C5—H5 | 127.3 | C10B—C9B—C14B | 120.0 |
C1—C6—S2 | 120.55 (19) | C10B—C9B—C8 | 116.5 (5) |
C1—C6—S1 | 123.39 (19) | C14B—C9B—C8 | 123.5 (5) |
S2—C6—S1 | 116.03 (14) | C11B—C10B—C9B | 120.0 |
C8—C7—S1 | 109.7 (2) | C11B—C10B—Cl1B | 113.7 (6) |
C8—C7—H7A | 109.7 | C9B—C10B—Cl1B | 126.2 (6) |
S1—C7—H7A | 109.7 | C10B—C11B—C12B | 120.0 |
C8—C7—H7B | 109.7 | C10B—C11B—H11B | 120.0 |
S1—C7—H7B | 109.7 | C12B—C11B—H11B | 120.0 |
H7A—C7—H7B | 108.2 | C11B—C12B—C13B | 120.0 |
C9B—C8—C7 | 115.0 (4) | C11B—C12B—Cl2B | 121.5 (5) |
C7—C8—C9A | 113.5 (3) | C13B—C12B—Cl2B | 118.4 (5) |
C9B—C8—S2 | 106.1 (3) | C14B—C13B—C12B | 120.0 |
C7—C8—S2 | 106.49 (17) | C14B—C13B—H13B | 120.0 |
C9A—C8—S2 | 111.6 (3) | C12B—C13B—H13B | 120.0 |
C7—C8—H8 | 108.4 | C13B—C14B—C9B | 120.0 |
C9A—C8—H8 | 108.4 | C13B—C14B—H14B | 120.0 |
S2—C8—H8 | 108.4 | C9B—C14B—H14B | 120.0 |
C3—N2—C1—C6 | −62.6 (4) | C14A—C9A—C10A—C11A | 0.0 |
C5—N2—C1—C6 | 124.2 (3) | C8—C9A—C10A—C11A | −175.7 (6) |
C3—N2—C1—C2 | 116.4 (3) | C14A—C9A—C10A—Cl1A | −174.2 (7) |
C5—N2—C1—C2 | −56.8 (4) | C8—C9A—C10A—Cl1A | 10.0 (6) |
C4—N3—C3—N2 | 0.6 (3) | C9A—C10A—C11A—C12A | 0.0 |
C5—N2—C3—N3 | −0.5 (3) | Cl1A—C10A—C11A—C12A | 174.0 (7) |
C1—N2—C3—N3 | −174.8 (2) | C10A—C11A—C12A—C13A | 0.0 |
C3—N3—C4—C5 | −0.4 (4) | C10A—C11A—C12A—Cl2A | −178.1 (6) |
N3—C4—C5—N2 | 0.1 (4) | C11A—C12A—C13A—C14A | 0.0 |
C3—N2—C5—C4 | 0.2 (3) | Cl2A—C12A—C13A—C14A | 178.0 (6) |
C1—N2—C5—C4 | 174.5 (3) | C12A—C13A—C14A—C9A | 0.0 |
C2—C1—C6—S2 | −5.7 (3) | C10A—C9A—C14A—C13A | 0.0 |
N2—C1—C6—S2 | 173.31 (18) | C8—C9A—C14A—C13A | 176.1 (6) |
C2—C1—C6—S1 | 176.36 (19) | C7—C8—C9B—C10B | −111.8 (4) |
N2—C1—C6—S1 | −4.7 (3) | S2—C8—C9B—C10B | 130.8 (3) |
C8—S2—C6—C1 | 164.4 (2) | C7—C8—C9B—C14B | 68.7 (6) |
C8—S2—C6—S1 | −17.54 (17) | S2—C8—C9B—C14B | −48.7 (5) |
C7—S1—C6—C1 | 174.3 (2) | C14B—C9B—C10B—C11B | 0.0 |
C7—S1—C6—S2 | −3.76 (18) | C8—C9B—C10B—C11B | −179.5 (6) |
C6—S1—C7—C8 | 29.9 (2) | C14B—C9B—C10B—Cl1B | 175.7 (7) |
S1—C7—C8—C9B | −161.5 (4) | C8—C9B—C10B—Cl1B | −3.8 (7) |
S1—C7—C8—C9A | −167.4 (4) | C9B—C10B—C11B—C12B | 0.0 |
S1—C7—C8—S2 | −44.3 (2) | Cl1B—C10B—C11B—C12B | −176.2 (7) |
C6—S2—C8—C9B | 159.7 (3) | C10B—C11B—C12B—C13B | 0.0 |
C6—S2—C8—C7 | 36.8 (2) | C10B—C11B—C12B—Cl2B | 176.8 (7) |
C6—S2—C8—C9A | 161.1 (3) | C11B—C12B—C13B—C14B | 0.0 |
C7—C8—C9A—C10A | −129.6 (4) | Cl2B—C12B—C13B—C14B | −176.9 (6) |
S2—C8—C9A—C10A | 110.0 (4) | C12B—C13B—C14B—C9B | 0.0 |
C7—C8—C9A—C14A | 54.5 (5) | C10B—C9B—C14B—C13B | 0.0 |
S2—C8—C9A—C14A | −65.9 (5) | C8—C9B—C14B—C13B | 179.5 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···N3i | 0.93 | 2.49 | 3.335 (4) | 151 |
C11A—H11A···N3ii | 0.93 | 2.45 | 3.371 (6) | 172 |
C11B—H11B···N3ii | 0.93 | 2.58 | 3.440 (6) | 154 |
Symmetry codes: (i) −x, y+1/2, −z+1; (ii) x+1, y, z+1. |
1 - dithiolane ring; 2 - imidazole ring; 3 - dichlorophenyl ring (A and B are the disordered components). |
1/2 | 1/3 | 2/3 | |
LCZ-A | 62.7 (1) | 88.7 (3) | 28.4 (3) |
LCZ-B | 62.7 (1) | 74.0 (3) | 46.6 (3) |
LCZ-opt | 81.4 | 75.2 | 36.9 |
Acknowledgements
The financial support from University of Lodz Doctoral School of Exact and Natural Sciences is gratefully acknowledged.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Deepshikha, K. & Subhash, B. (2014). Dovepress, 9, 113–124. Google Scholar
Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures, Vol. 1. New York: Plenum Press. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2019). GAUSSIAN16. Revision C.02. Gaussian Inc., Wallingford, CT, USA. https://gaussian. com/. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Koga, H., Nanjoh, Y., Kaneda, H., Yamaguchi, H. & Tsuboi, R. (2012). Antimicrob. Agents Chemother. 56, 3138–3143. Web of Science CrossRef PubMed Google Scholar
Lin, Y., Xiao, T. & Wang, J.-T. (2006). Acta Cryst. E62, o3159–o3160. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Niwano, Y., Kuzuhara, N., Kodama, H., Yoshida, M., Miyazaki, T. & Yamaguchi, H. (1998). Antimicrob. Agents Chemother. 42, 967–970. Web of Science CrossRef PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiao, T., Lin, Y., Zhang, X.-Q., Chen, J. & Wang, J.-T. (2006). Acta Cryst. E62, o5052–o5053. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.