research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of the chalcone derivative (2E)-3-[4-(di­phenyl­amino)phen­yl]-1-[4-(prop-1-yn-2-yl­­oxy)phen­yl]prop-2-en-1-one

crossmark logo

aDepartment of Physics, The New College, Chennai 600 014, University of Madras, Tamil Nadu, India, bCentre of Excellence in Structural Biology and Drug Discovery, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Chengalpattu, Tamil Nadu - 603203, India, and cDepartment of Biotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Chengalpattu, Tamil Nadu - 603203, India
*Correspondence e-mail: mnizam.new@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 September 2024; accepted 2 December 2024; online 1 January 2025)

In the crystal structure of the title chalcone derivative, C30H23NO2, the mol­ecule adopts an s-cis conformation with respect to the C=O and C=C bonds. The tri­phenyl­amine moiety has a propeller-type shape, with dihedral angles between the mean planes of pairs of phenyl rings of 72.1 (6), 69.7 (1) and 65.6 (6)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains extending parallel to [010]. In addition, weak C—H⋯π inter­actions consolidate the crystal packing. One of the phenyl rings of the tri­phenyl­amine moiety is disordered over two sets of sites.

1. Chemical context

Chalcones are an important class of compounds, with the common structural entity being the central –CH=CH—C(=O)– bridge, in which the H atoms can be substituted. Chalcones provide a necessary configuration for NLO activity, with two planar rings connected through a conjugated double bond (NizamMohideen et al., 2007). They are also inherently chiral owing to the fact that the two phenyl rings are mutually twisted with respect to the linking backbone (Butcher et al., 2006[Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1973-o1975.]). This helicity has also been shown to lead to NLO activity (Botek et al., 2004[Botek, E., Champagne, B., Turki, M. & André, J. M. (2004). J. Chem. Phys. 120, 2042-2048.]). The design of the chalcone system, e.g. in terms of donor—π⋯acceptor (DπA) inter­actions, plays a significant role in intra­molecular charge-transfer transitions (ICT) where optical excitation leads to the movement of charge from the donor group to the acceptor group. In addition, the chalcone bridge consists of two different double bonds, C=C and C=O, which contribute to the conjugation of charge transfer, leading to inter­esting spectroscopic properties (de Toledo et al., 2018[Toledo, T. A. de, da Costa, R. C., Bento, R. R. F., Al-Maqtari, H. M., Jamalis, J. & Pizani, P. S. (2018). J. Mol. Struct. 1155, 634-645.]). The biological properties of chalcone derivatives such as anti­cancer (Bhat et al., 2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]), anti­malarial (Xue et al., 2004[Xue, C. X., Cui, S. Y., Liu, M. C., Hu, D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745-753.]), anti-oxidant and anti­microbial (Yayli et al., 2006[Yayli, N., Ucuncu, O., Yasar, A., Kucuk, M., Yayli, N., Akyuz, E. & Alpay-Karaoglu, S. (2006). Turk. J. Chem. 30, 505-514.]), anti­platelet (Zhao et al., 2005[Zhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Bioorg. Med. Chem. Lett. 15, 5027-5029.]) as well as anti-inflammatory (Madan et al., 2000[Madan, B., Batra, S. & Ghosh, B. (2000). Mol. Pharmacol. 58, 526-534.]) activities have been studied extensively and are constantly developed further. Tri­phenyl­amine (TPA) derivatives, on the other hand, are important compounds used in numerous applications, e.g. in dye-sensitized solar cells (Lin et al., 2010[Lin, L. Y., Tsai, C. H., Wong, K. T., Huang, T. W., Hsieh, L., Liu, S. H., Lin, H. W., Wu, C. C., Chou, S. H., Chen, S. H. & Tsai, A. I. (2010). J. Org. Chem. 75, 4778-4785.]).

[Scheme 1]

In view of the application potentials mentioned above, we synthesized the title compound and report here its mol­ecular and crystal structure and Hirshfeld surface analysis.

2. Structural commentary

In the mol­ecular structure of the title compound, Fig. 1[link], the enone moiety (O1/C19–C21) has a maximum deviation from planarity of 0.0217 (18) Å at C21 and adopts ans-cis conformation with respect to the C21=O1 bond [1.2161 (17) Å] and the C19=C20 bond [1.3230 (18) Å]. The mol­ecule is twisted about the C20—C21 bond with a C19—C20—C21—O1 torsion angle of 5.4 (2)°. A slight twist is also observed about the C21—C22 bond with an O1—C21—C22—C27 torsion angle of 179.55 (15)°. The twisted nature of this part of the mol­ecule is expected because of the steric effects between the carbonyl group and the vicinal phenyl group (Kozlowski et al., 2007[Kozlowski, D., Trouillas, P., Calliste, C., Marsal, P., Lazzaroni, R. & Duroux, J.-L. (2007). J. Phys. Chem. A, 111, 1138-1145.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

The (C1–C6) phenyl ring is disordered over two sets of siteswith a refined occupancy ratio of 0.55 (3):0.45 (3). In the tri­phenyl­amine group, the three phenyl rings form a propeller-type shape with dihedral angles of 72.1 (6)° between rings (C1–C6) and (C7–C12), of 65.6 (6)° between rings (C1—C6) and (C13–C18), and of 69.7 (1)° between rings (C7—C12) and (C13–C18). The enone moiety forms dihedral angles of 5.64 (10), 68.0 (5), 68.93 (10) and 4.18 (10)°, respectively, with the (C22–C27) phenyl ring and the (C1–C6), (C7–C12), and (C13–C18) phenyl rings of the tri­phenyl­amine group. The large variation of the dihedral angles between the enone moiety and the phenyl rings indicates that the possibility for electronic effects has decreased (Jung et al., 2008[Jung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861-867.]). The widening of the C20—C19—C16 angle to 127.70 (13)° and of the C19—C16—C17 angle to 122.83 (12)° can be ascribed to the short inter­atomic contact between atoms H20⋯H17 (2.22 Å). In addition, the strain induced by the short H27⋯H20 (2.10 Å) contact results in a slight opening of the C21—C22—C27 angle to 123.91 (12)°. Similar features have been observed in other comparable structures (Nizam Mohideen et al., 2007[Nizam Mohideen, M., Thenmozhi, S., Subbiah Pandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4379.]; Ravishankar et al., 2005[Ravishankar, T., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o405-o407.]).

3. Supra­molecular features

In the crystal, the mol­ecules are linked via weak C30—H30⋯O1 inter­molecular inter­actions (Table 1[link]) into chains extending parallel to [010] with a C(11) motif (Bernstein et al. 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The crystal packing also features C—H⋯π inter­actions [C28—H28ACg1i and C30—H30⋯Cg2ii, where Cg1 and Cg2 are the centres of gravity of the rings (C7–C12) and (C22—C27)]. Numerical details of the latter are compiled in Table 1[link], and a packing view is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C30—H30⋯O1i 0.93 2.55 3.054 (2) 114
C28—H28ACg(C7–C12)ii 0.93 2.97 3.853 (2) 153
C30—H30⋯Cg(C22–C27)iii 0.93 2.72 3.527 (2) 145
Symmetry codes: (i) [x, y-1, z]; (ii) [x-1, y+1, z-1]; (iii) [-x, -y+2, -z].
[Figure 2]
Figure 2
A view along the a axis of the title compound, showing the crystal packing. C—H⋯O hydrogen bonds are shown as dashed lines; H atoms not involved in hydrogen bonding have been omitted.

4. Hirshfeld surface analysis

A recent article by Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) reviewed and described the utility of Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) for analysis and qu­anti­fication of inter­molecular contacts in crystals. We also performed such calculations (surface mapped over dnorm and two-dimensional fingerprint plots) by using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface of the title compound mapped over dnorm is shown in Fig. 3[link], where the normalized contact distance, dnorm, is colour-mapped from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The red spots visible indicate the inter­molecular contacts involved in hydrogen-bonding inter­actions, as discussed above. The two-dimensional fingerprint plots detailing the various inter­actions are displayed in Fig. 4[link]a for all contacts. H⋯H inter­molecular contacts predominate, followed by the C⋯H/H⋯C and O⋯H/H⋯O contacts corresponding to the different kinds of C—H⋯π and C—H⋯O bonds. This is manifested by the contributions of H⋯H contacts at 50.3% (Fig. 4[link]b), H⋯C/C⋯H contacts at 36.7% (Fig. 4[link]c), and O⋯H/H⋯O at 9.3% (Fig. 4[link]d). Other contacts, viz. C⋯C at 2.4% (Fig. 4[link]e), O⋯C/C⋯O at 0.9% (Fig. 4[link]f) and N⋯H/H⋯N contacts at 0.3% (Fig. 4[link]g) play a minor role.

[Figure 3]
Figure 3
The Hirshfeld surfaces of the title compound mapped over dnorm.
[Figure 4]
Figure 4
(a) The full two-dimensional fingerprint plot for the title compound, and fingerprint plots delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) C⋯C (f) O⋯C/C⋯O and (g) N⋯H/H⋯N contacts.

5. Database survey

A survey of Cambridge Structural Database (CSD, Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed fused-ring-substituted chalcones similar to the title compound. There are four compounds that have an anthracene ketone substituent on the chalcone: 9-anthryl styryl ketone and 9,10-anthryl bis­(styryl ketone) (CCDC codes: 1827021 and 1827019; Harlow et al., 1975[Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344-1350.]), (2E)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phen­yl]prop-2-en-1-one (CCDC 1494027 and 1494026; Girisha et al., 2016[Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153-1158.]) and (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluoro­phen­yl)prop-2-en-1-one (CCDC 1470351; Abdullah et al., 2016[Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648-651.]). Zainuri et al. (2018a[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492-496.],b[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650-655.]) reported two anthracene substituents on the chalcone (E)-1,3-bis­(anthracen-9-yl)prop-2-en-1-one (CCDC 1817217). Other related compounds include 1-(anthracen-9-yl)-2-methyl­prop- 2-en-1-one (CCDC 1817219; Agrahari et al., 2015[Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357-359.]) and 9-anthroylacetone (CCDC 1817253; Cicogna et al., 2004[Cicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959-11968.]). For tri­phenyl­amine derivatives, Lin et al. (2010[Lin, L. Y., Tsai, C. H., Wong, K. T., Huang, T. W., Hsieh, L., Liu, S. H., Lin, H. W., Wu, C. C., Chou, S. H., Chen, S. H. & Tsai, A. I. (2010). J. Org. Chem. 75, 4778-4785.]) reported a compound with the tri­phenyl­amine moiety in a similar propeller-type shape (CCDC 1051418), with dihedral angles between the mean planes of pairs of rings of 71.6 (2), 69.7 (1) and 65.8 (2)°, which is comparable with the title compound.

6. Synthesis and crystallization

To a 100 ml methanol solution of 4-(di­phenyl­amino) benzaldehyde (1.37 g, 5.0 mmol) was added 2-acetyl­pridine (0.61 g, 5.0 mmol). The mixture was stirred for 2 h at room temperature. The yellow precipitate formed was collected by filtration, and washed sequentially with water and methanol for three times, respectively. Removal of the solvent in vacuo followed by recrystallization from methanol (4 ml) afforded crystals of the title compound suitable for single crystal X-ray studies.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and constrained to ride on their parent atoms. The (C1–C6) phenyl ring is disordered over two sets of sites with a refined occupancy ratio of 0.55 (3):0.45 (3). The ring geometries were regularized using soft restraints.

Table 2
Experimental details

Crystal data
Chemical formula C30H23NO2
Mr 429.49
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.6337 (1), 9.8825 (2), 12.8446 (3)
α, β, γ (°) 87.546 (2), 86.605 (1), 70.914 (3)
V3) 1153.26 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.29 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker D8 VENTURE diffractometer with PHOTON II detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.786, 0.841
No. of measured, independent and observed [I > 2σ(I)] reflections 17043, 4720, 3564
Rint 0.027
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.03
No. of reflections 4720
No. of parameters 353
No. of restraints 186
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.18
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

(2E)-3-[4-(Diphenylamino)phenyl]-1-[4-(prop-1-yn-2-yloxy)phenyl]prop-2-en-1-one top
Crystal data top
C30H23NO2Z = 2
Mr = 429.49F(000) = 452
Triclinic, P1Dx = 1.237 Mg m3
a = 9.6337 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8825 (2) ÅCell parameters from 4720 reflections
c = 12.8446 (3) Åθ = 1.6–26.5°
α = 87.546 (2)°µ = 0.08 mm1
β = 86.605 (1)°T = 293 K
γ = 70.914 (3)°Block, colourless
V = 1153.26 (4) Å30.29 × 0.24 × 0.20 mm
Data collection top
Bruker D8 VENTURE
diffractometer with PHOTON II detector
4720 independent reflections
Radiation source: fine-focus sealed tube3564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scanθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1211
Tmin = 0.786, Tmax = 0.841k = 1212
17043 measured reflectionsl = 1516
Refinement top
Refinement on F2186 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.1568P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4720 reflectionsΔρmax = 0.14 e Å3
353 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.8450 (13)0.3165 (18)0.3291 (11)0.0477 (19)0.55 (3)
C2A0.9929 (12)0.2650 (13)0.2998 (8)0.0526 (15)0.55 (3)
H2A1.0577760.2011280.3440550.063*0.55 (3)
C3A1.0457 (13)0.3066 (13)0.2066 (9)0.0686 (18)0.55 (3)
H3A1.1459160.2717040.1890960.082*0.55 (3)
C4A0.9533 (17)0.3982 (14)0.1395 (7)0.080 (2)0.55 (3)
H4A0.9901250.4233460.0756440.095*0.55 (3)
C5A0.8058 (17)0.4535 (13)0.1660 (7)0.077 (2)0.55 (3)
H5A0.7421870.5172950.1210200.092*0.55 (3)
C6A0.7529 (14)0.4126 (16)0.2612 (10)0.063 (2)0.55 (3)
H6A0.6532230.4506520.2796740.076*0.55 (3)
C1B0.8233 (15)0.328 (2)0.3218 (12)0.045 (2)0.45 (3)
C2B0.9676 (15)0.2842 (17)0.2828 (11)0.058 (2)0.45 (3)
H2B1.0396590.2151520.3189860.070*0.45 (3)
C3B1.0043 (14)0.3432 (17)0.1894 (10)0.066 (2)0.45 (3)
H3B1.1009230.3142790.1623680.079*0.45 (3)
C4B0.8958 (17)0.4449 (16)0.1379 (7)0.068 (2)0.45 (3)
H4B0.9188440.4854880.0753290.082*0.45 (3)
C5B0.7523 (15)0.4875 (14)0.1782 (9)0.069 (2)0.45 (3)
H5B0.6799390.5568220.1423790.082*0.45 (3)
C6B0.7147 (14)0.4297 (18)0.2698 (11)0.0530 (18)0.45 (3)
H6B0.6177890.4583670.2962550.064*0.45 (3)
C70.65146 (14)0.24068 (14)0.42815 (10)0.0489 (3)
C80.61478 (18)0.16550 (16)0.35241 (12)0.0652 (4)
H80.6788220.1323990.2950760.078*
C90.4812 (2)0.13957 (19)0.36246 (15)0.0819 (5)
H90.4557370.0897290.3110640.098*
C100.3869 (2)0.1863 (2)0.44679 (16)0.0889 (6)
H100.2983740.1673430.4533360.107*
C110.42347 (19)0.2606 (2)0.52096 (14)0.0865 (6)
H110.3594100.2927370.5784500.104*
C120.55364 (16)0.28890 (19)0.51205 (11)0.0660 (4)
H120.5764640.3411570.5630740.079*
C130.87208 (14)0.24616 (14)0.51006 (10)0.0481 (3)
C140.94811 (16)0.33765 (16)0.53177 (11)0.0594 (4)
H140.9437290.4153300.4870560.071*
C151.03041 (15)0.31498 (15)0.61902 (11)0.0558 (3)
H151.0803870.3781250.6321540.067*
C161.04042 (13)0.20048 (13)0.68753 (9)0.0459 (3)
C170.96304 (15)0.10926 (14)0.66508 (10)0.0529 (3)
H170.9670850.0316650.7097990.063*
C180.88078 (15)0.13138 (14)0.57822 (10)0.0531 (3)
H180.8303980.0685980.5650460.064*
C191.12578 (14)0.18198 (14)0.77995 (10)0.0510 (3)
H191.1741520.2482000.7874740.061*
C201.14274 (14)0.08214 (14)0.85454 (10)0.0508 (3)
H201.0981580.0123260.8497050.061*
C211.23054 (16)0.07921 (15)0.94488 (11)0.0567 (3)
C221.25937 (14)0.04205 (14)1.02197 (10)0.0504 (3)
C231.34822 (18)0.04494 (16)1.10440 (11)0.0626 (4)
H231.3848470.0302791.1110440.075*
C241.38253 (19)0.15626 (16)1.17565 (11)0.0671 (4)
H241.4429080.1565421.2295930.081*
C251.32810 (16)0.26811 (14)1.16796 (10)0.0548 (3)
C261.23931 (15)0.26825 (15)1.08761 (11)0.0564 (3)
H261.2021910.3433121.0818710.068*
C271.20619 (15)0.15555 (15)1.01576 (11)0.0552 (3)
H271.1463780.1559600.9616200.066*
C281.31454 (19)0.49115 (16)1.24225 (12)0.0678 (4)
H28A1.2085190.4549021.2377090.081*
H28B1.3361790.5456671.3073200.081*
C291.37787 (16)0.58578 (15)1.15584 (11)0.0583 (4)
C301.4256 (2)0.66103 (18)1.08611 (13)0.0742 (4)
H301.4637780.7212281.0303250.089*
N10.78739 (12)0.26872 (13)0.42113 (8)0.0565 (3)
O11.28056 (16)0.17550 (14)0.95620 (10)0.0973 (5)
O21.36880 (13)0.37308 (11)1.24355 (7)0.0704 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.056 (4)0.050 (3)0.040 (3)0.019 (3)0.018 (2)0.0096 (19)
C2A0.055 (3)0.054 (3)0.052 (3)0.022 (2)0.005 (2)0.0072 (19)
C3A0.075 (4)0.076 (4)0.063 (3)0.037 (3)0.006 (3)0.001 (3)
C4A0.101 (6)0.092 (5)0.055 (3)0.047 (5)0.001 (4)0.018 (3)
C5A0.094 (6)0.085 (5)0.054 (3)0.033 (4)0.023 (4)0.026 (3)
C6A0.053 (4)0.074 (4)0.060 (3)0.017 (4)0.015 (3)0.011 (3)
C1B0.048 (4)0.054 (5)0.037 (4)0.023 (3)0.004 (3)0.004 (3)
C2B0.055 (4)0.061 (4)0.059 (4)0.018 (3)0.009 (3)0.006 (3)
C3B0.063 (5)0.085 (7)0.054 (4)0.033 (4)0.007 (4)0.000 (4)
C4B0.084 (7)0.086 (5)0.043 (2)0.043 (5)0.000 (3)0.011 (3)
C5B0.073 (5)0.077 (5)0.059 (3)0.029 (3)0.015 (3)0.020 (3)
C6B0.046 (4)0.064 (4)0.049 (3)0.017 (3)0.012 (3)0.015 (3)
C70.0489 (7)0.0559 (7)0.0442 (7)0.0199 (6)0.0111 (5)0.0075 (6)
C80.0723 (9)0.0686 (9)0.0588 (8)0.0265 (8)0.0104 (7)0.0072 (7)
C90.0963 (12)0.0799 (11)0.0877 (11)0.0487 (10)0.0349 (9)0.0012 (9)
C100.0707 (11)0.1179 (16)0.0942 (13)0.0531 (11)0.0211 (8)0.0259 (11)
C110.0581 (10)0.1348 (17)0.0706 (11)0.0379 (11)0.0002 (8)0.0018 (11)
C120.0593 (9)0.0915 (11)0.0512 (8)0.0285 (8)0.0061 (7)0.0069 (8)
C130.0456 (7)0.0576 (7)0.0423 (6)0.0187 (6)0.0078 (5)0.0064 (6)
C140.0693 (9)0.0642 (8)0.0547 (8)0.0355 (7)0.0186 (7)0.0207 (7)
C150.0609 (8)0.0604 (8)0.0556 (8)0.0324 (7)0.0139 (6)0.0103 (6)
C160.0435 (7)0.0483 (7)0.0447 (7)0.0130 (5)0.0059 (5)0.0025 (5)
C170.0608 (8)0.0481 (7)0.0515 (7)0.0196 (6)0.0139 (6)0.0104 (6)
C180.0600 (8)0.0525 (7)0.0537 (7)0.0269 (6)0.0133 (6)0.0062 (6)
C190.0506 (7)0.0526 (7)0.0508 (7)0.0172 (6)0.0103 (6)0.0021 (6)
C200.0505 (7)0.0541 (7)0.0480 (7)0.0166 (6)0.0102 (6)0.0024 (6)
C210.0609 (8)0.0593 (8)0.0529 (8)0.0220 (7)0.0142 (6)0.0026 (6)
C220.0500 (7)0.0549 (7)0.0441 (7)0.0128 (6)0.0082 (6)0.0011 (6)
C230.0801 (10)0.0591 (8)0.0530 (8)0.0257 (7)0.0204 (7)0.0014 (7)
C240.0892 (11)0.0632 (9)0.0493 (8)0.0209 (8)0.0286 (8)0.0015 (7)
C250.0655 (9)0.0506 (7)0.0397 (7)0.0065 (6)0.0063 (6)0.0026 (6)
C260.0573 (8)0.0559 (8)0.0566 (8)0.0179 (6)0.0116 (6)0.0030 (6)
C270.0522 (8)0.0616 (8)0.0520 (7)0.0171 (6)0.0169 (6)0.0041 (6)
C280.0854 (11)0.0581 (8)0.0522 (8)0.0145 (8)0.0022 (7)0.0032 (7)
C290.0617 (9)0.0562 (8)0.0561 (8)0.0176 (7)0.0079 (7)0.0037 (7)
C300.0855 (12)0.0692 (10)0.0657 (10)0.0209 (9)0.0041 (8)0.0113 (8)
N10.0544 (7)0.0804 (8)0.0422 (6)0.0327 (6)0.0109 (5)0.0138 (6)
O10.1428 (12)0.0904 (8)0.0880 (9)0.0721 (9)0.0625 (8)0.0315 (7)
O20.1030 (8)0.0547 (6)0.0473 (5)0.0146 (6)0.0214 (5)0.0021 (4)
Geometric parameters (Å, º) top
C1A—C2A1.382 (8)C13—C141.3822 (18)
C1A—C6A1.385 (9)C13—C181.3862 (18)
C1A—N11.405 (11)C13—N11.4106 (16)
C2A—C3A1.372 (8)C14—C151.3792 (19)
C2A—H2A0.9300C14—H140.9300
C3A—C4A1.361 (7)C15—C161.3848 (18)
C3A—H3A0.9300C15—H150.9300
C4A—C5A1.373 (7)C16—C171.3924 (18)
C4A—H4A0.9300C16—C191.4552 (17)
C5A—C6A1.392 (9)C17—C181.3752 (18)
C5A—H5A0.9300C17—H170.9300
C6A—H6A0.9300C18—H180.9300
C1B—C6B1.372 (10)C19—C201.3230 (18)
C1B—C2B1.383 (10)C19—H190.9300
C1B—N11.454 (13)C20—C211.4697 (18)
C2B—C3B1.389 (9)C20—H200.9300
C2B—H2B0.9300C21—O11.2161 (17)
C3B—C4B1.371 (8)C21—C221.4856 (19)
C3B—H3B0.9300C22—C271.3839 (19)
C4B—C5B1.382 (8)C22—C231.3940 (18)
C4B—H4B0.9300C23—C241.367 (2)
C5B—C6B1.367 (10)C23—H230.9300
C5B—H5B0.9300C24—C251.379 (2)
C6B—H6B0.9300C24—H240.9300
C7—C81.3775 (19)C25—O21.3658 (16)
C7—C121.381 (2)C25—C261.3792 (19)
C7—N11.4215 (16)C26—C271.3815 (19)
C8—C91.390 (2)C26—H260.9300
C8—H80.9300C27—H270.9300
C9—C101.365 (3)C28—O21.4271 (19)
C9—H90.9300C28—C291.454 (2)
C10—C111.356 (3)C28—H28A0.9700
C10—H100.9300C28—H28B0.9700
C11—C121.369 (2)C29—C301.162 (2)
C11—H110.9300C30—H300.9300
C12—H120.9300
C2A—C1A—C6A117.4 (8)C15—C14—C13120.72 (13)
C2A—C1A—N1122.0 (9)C15—C14—H14119.6
C6A—C1A—N1120.6 (8)C13—C14—H14119.6
C3A—C2A—C1A121.1 (7)C14—C15—C16121.60 (12)
C3A—C2A—H2A119.5C14—C15—H15119.2
C1A—C2A—H2A119.5C16—C15—H15119.2
C4A—C3A—C2A120.9 (6)C15—C16—C17117.20 (11)
C4A—C3A—H3A119.6C15—C16—C19119.95 (12)
C2A—C3A—H3A119.6C17—C16—C19122.83 (12)
C3A—C4A—C5A120.0 (6)C18—C17—C16121.44 (12)
C3A—C4A—H4A120.0C18—C17—H17119.3
C5A—C4A—H4A120.0C16—C17—H17119.3
C4A—C5A—C6A119.0 (6)C17—C18—C13120.78 (12)
C4A—C5A—H5A120.5C17—C18—H18119.6
C6A—C5A—H5A120.5C13—C18—H18119.6
C1A—C6A—C5A121.7 (7)C20—C19—C16127.70 (13)
C1A—C6A—H6A119.2C20—C19—H19116.1
C5A—C6A—H6A119.2C16—C19—H19116.1
C6B—C1B—C2B121.3 (9)C19—C20—C21121.40 (13)
C6B—C1B—N1119.6 (9)C19—C20—H20119.3
C2B—C1B—N1119.0 (10)C21—C20—H20119.3
C1B—C2B—C3B119.7 (8)O1—C21—C20120.04 (13)
C1B—C2B—H2B120.1O1—C21—C22119.93 (12)
C3B—C2B—H2B120.1C20—C21—C22120.02 (12)
C4B—C3B—C2B118.9 (7)C27—C22—C23117.38 (13)
C4B—C3B—H3B120.6C27—C22—C21123.91 (12)
C2B—C3B—H3B120.6C23—C22—C21118.70 (13)
C3B—C4B—C5B120.4 (7)C24—C23—C22121.24 (14)
C3B—C4B—H4B119.8C24—C23—H23119.4
C5B—C4B—H4B119.8C22—C23—H23119.4
C6B—C5B—C4B121.2 (8)C23—C24—C25120.35 (13)
C6B—C5B—H5B119.4C23—C24—H24119.8
C4B—C5B—H5B119.4C25—C24—H24119.8
C5B—C6B—C1B118.4 (9)O2—C25—C24115.39 (12)
C5B—C6B—H6B120.8O2—C25—C26124.74 (13)
C1B—C6B—H6B120.8C24—C25—C26119.88 (13)
C8—C7—C12118.85 (13)C25—C26—C27119.20 (13)
C8—C7—N1121.16 (13)C25—C26—H26120.4
C12—C7—N1119.99 (12)C27—C26—H26120.4
C7—C8—C9119.40 (15)C26—C27—C22121.95 (12)
C7—C8—H8120.3C26—C27—H27119.0
C9—C8—H8120.3C22—C27—H27119.0
C10—C9—C8120.86 (15)O2—C28—C29112.91 (13)
C10—C9—H9119.6O2—C28—H28A109.0
C8—C9—H9119.6C29—C28—H28A109.0
C11—C10—C9119.46 (16)O2—C28—H28B109.0
C11—C10—H10120.3C29—C28—H28B109.0
C9—C10—H10120.3H28A—C28—H28B107.8
C10—C11—C12120.68 (17)C30—C29—C28178.59 (17)
C10—C11—H11119.7C29—C30—H30180.0
C12—C11—H11119.7C1A—N1—C13117.1 (6)
C11—C12—C7120.73 (15)C1A—N1—C7123.6 (6)
C11—C12—H12119.6C13—N1—C7119.28 (10)
C7—C12—H12119.6C13—N1—C1B124.9 (8)
C14—C13—C18118.26 (12)C7—N1—C1B115.7 (7)
C14—C13—N1121.10 (12)C25—O2—C28118.79 (11)
C18—C13—N1120.64 (12)
C6A—C1A—C2A—C3A0.7 (13)C19—C20—C21—C22174.11 (12)
N1—C1A—C2A—C3A176.0 (15)O1—C21—C22—C27179.55 (15)
C1A—C2A—C3A—C4A1.0 (11)C20—C21—C22—C271.0 (2)
C2A—C3A—C4A—C5A1.9 (15)O1—C21—C22—C232.2 (2)
C3A—C4A—C5A—C6A1.0 (16)C20—C21—C22—C23177.29 (13)
C2A—C1A—C6A—C5A2 (2)C27—C22—C23—C240.6 (2)
N1—C1A—C6A—C5A175.2 (14)C21—C22—C23—C24177.77 (14)
C4A—C5A—C6A—C1A1 (2)C22—C23—C24—C250.7 (2)
C6B—C1B—C2B—C3B0.2 (16)C23—C24—C25—O2179.69 (13)
N1—C1B—C2B—C3B178.2 (18)C23—C24—C25—C260.4 (2)
C1B—C2B—C3B—C4B0.1 (12)O2—C25—C26—C27179.91 (13)
C2B—C3B—C4B—C5B0.1 (17)C24—C25—C26—C270.0 (2)
C3B—C4B—C5B—C6B0.2 (19)C25—C26—C27—C220.1 (2)
C4B—C5B—C6B—C1B0 (2)C23—C22—C27—C260.2 (2)
C2B—C1B—C6B—C5B1 (2)C21—C22—C27—C26178.08 (13)
N1—C1B—C6B—C5B177.9 (16)C2A—C1A—N1—C1339.6 (15)
C12—C7—C8—C90.3 (2)C6A—C1A—N1—C13143.8 (12)
N1—C7—C8—C9179.61 (14)C2A—C1A—N1—C7139.5 (9)
C7—C8—C9—C100.7 (3)C6A—C1A—N1—C737.1 (19)
C8—C9—C10—C110.9 (3)C14—C13—N1—C1A38.7 (8)
C9—C10—C11—C120.1 (3)C18—C13—N1—C1A141.4 (8)
C10—C11—C12—C70.9 (3)C14—C13—N1—C7142.17 (14)
C8—C7—C12—C111.1 (2)C18—C13—N1—C737.67 (19)
N1—C7—C12—C11178.83 (15)C14—C13—N1—C1B33.6 (10)
C18—C13—C14—C150.0 (2)C18—C13—N1—C1B146.6 (9)
N1—C13—C14—C15179.86 (13)C8—C7—N1—C1A44.8 (9)
C13—C14—C15—C160.2 (2)C12—C7—N1—C1A135.3 (9)
C14—C15—C16—C170.4 (2)C8—C7—N1—C13134.28 (14)
C14—C15—C16—C19178.66 (13)C12—C7—N1—C1345.62 (19)
C15—C16—C17—C180.4 (2)C8—C7—N1—C1B49.6 (9)
C19—C16—C17—C18178.59 (13)C12—C7—N1—C1B130.5 (9)
C16—C17—C18—C130.2 (2)C6B—C1B—N1—C13136.2 (14)
C14—C13—C18—C170.0 (2)C2B—C1B—N1—C1342.2 (17)
N1—C13—C18—C17179.88 (12)C6B—C1B—N1—C740 (2)
C15—C16—C19—C20177.62 (13)C2B—C1B—N1—C7141.9 (10)
C17—C16—C19—C200.6 (2)C24—C25—O2—C28178.75 (13)
C16—C19—C20—C21178.67 (13)C26—C25—O2—C281.4 (2)
C19—C20—C21—O15.4 (2)C29—C28—O2—C2570.02 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30···O1i0.932.553.054 (2)114
C28—H28A···Cg(C7–C12)ii0.932.973.853 (2)153
C30—H30···Cg(C22–C27)iii0.932.723.527 (2)145
Symmetry codes: (i) x, y1, z; (ii) x1, y+1, z1; (iii) x, y+2, z.
 

Acknowledgements

The authors thank the SAIF, IIT, Madras, India, for the data collection.

References

First citationAbdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648–651.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBotek, E., Champagne, B., Turki, M. & André, J. M. (2004). J. Chem. Phys. 120, 2042–2048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1973–o1975.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959–11968.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGirisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationKozlowski, D., Trouillas, P., Calliste, C., Marsal, P., Lazzaroni, R. & Duroux, J.-L. (2007). J. Phys. Chem. A, 111, 1138–1145.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLin, L. Y., Tsai, C. H., Wong, K. T., Huang, T. W., Hsieh, L., Liu, S. H., Lin, H. W., Wu, C. C., Chou, S. H., Chen, S. H. & Tsai, A. I. (2010). J. Org. Chem. 75, 4778–4785.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadan, B., Batra, S. & Ghosh, B. (2000). Mol. Pharmacol. 58, 526–534.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNizam Mohideen, M., Thenmozhi, S., Subbiah Pandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4379.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavishankar, T., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o405–o407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationToledo, T. A. de, da Costa, R. C., Bento, R. R. F., Al-Maqtari, H. M., Jamalis, J. & Pizani, P. S. (2018). J. Mol. Struct. 1155, 634–645.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, C. X., Cui, S. Y., Liu, M. C., Hu, D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYayli, N., Ucuncu, O., Yasar, A., Kucuk, M., Yayli, N., Akyuz, E. & Alpay-Karaoglu, S. (2006). Turk. J. Chem. 30, 505–514.  CAS Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492–496.  Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650–655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Bioorg. Med. Chem. Lett. 15, 5027–5029.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds