research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure, Hirshfeld surface analysis and DFT calculations of the coordination compound tetra­aqua­bis­­{2-[(5-methyl-1,3,4-thia­diazol-2-yl)sulfan­yl]acetato-κO}cobalt(II)

crossmark logo

aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, bPhysical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India, cAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India, and dInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek St, 83, Tashkent, 100125, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 October 2024; accepted 9 December 2024; online 1 January 2025)

A novel coordination compound, [Co(L)2(H2O)4], was synthesized from aqueous solutions of Co(NO3)2 and the ligand 2-[(5-methyl-1,3,4-thia­diazol-2-yl)sulfan­yl]acetic acid (HL, C5H6N2O2S2). In the monoclinic crystals (space group P21/c), the cobalt(II) ion is located about a centre of symmetry and is octa­hedrally coordinated by two L anions in a monodentate fashion through carboxyl O atoms and by four water mol­ecules. A relatively strong hydrogen bond between one of the water mol­ecules and the non-coordinating carboxyl­ate O atom consolidates the conformation. In the crystal, inter­molecular hydrogen bonds lead to the formation of a complex tri-periodic structure. Hirshfeld surface analysis revealed that 30.1% of the inter­molecular inter­actions are from H⋯H contacts and 20.8% are from N⋯H/H⋯N contacts. DFT calculations were performed to assess the stability and chemical reactivity of the compound by determining the energy differences between the HOMO and LUMO.

1. Chemical context

1,3,4-Thia­diazole derivatives are versatile compounds with significant applications in various fields, notably as ligands in the formation of metal complexes (Frija et al., 2016[Frija, L. M., Pombeiro, A. J. & Kopylovich, M. N. (2016). Coord. Chem. Rev. 308, 32-55.]). Their ability to coordinate metal ions through multiple donor atoms allows for the creation of stable and diverse complexes (Atashov et al., 2024[Atashov, A., Azamova, M., Ziyatov, D., Uzakbergenova, Z., Torambetov, B., Holczbauer, T., Ashurov, J. & Kadirova, S. (2024). Acta Cryst. E80, 408-412.]; Lavrenova et al., 2023[Lavrenova, L. G., Komarov, V. Y., Glinskaya, L. A., Lavrov, A. N. & Artem'ev, A. V. (2023). J. Struct. Chem. 64, 895-905.]; Serbest et al., 2008[Serbest, K., Kayi, H., Er, M., Sancak, K. & Değirmencioğlu, İ. (2008). Heteroat. Chem. 19, 700-712.]), which can be tailored for specific applications in medicine (Masaryk et al., 2022[Masaryk, L., Zoufalý, P., Słoczyńska, K., Zahradniková, E., Milde, D., Koczurkiewicz-Adamczyk, P. & Štarha, P. (2022). Inorg. Chim. Acta, 536, 120891.]; Patil et al., 2020[Patil, A. M., Shinde, R. S. & Mirgane, S. R. (2020). Modern Green Chemistry and Heterocyclic Compounds, pp. 145-157. New Jersey: Apple Academic Press.]; Karcz et al., 2020[Karcz, D., Matwijczuk, A., Kamiński, D., Creaven, B., Ciszkowicz, E., Lecka-Szlachta, K. & Starzak, K. (2020). Int. J. Mol. Sci. 21, 5735.]), agriculture (Smaili et al., 2017[Smaili, A., Rifai, L. A., Esserti, S., Koussa, T., Bentiss, F., Guesmi, S., Laachir, A. & Faize, M. (2017). Pestic. Biochem. Physiol. 143, 26-32.]; Chandra et al., 2015[Chandra, S., Gautam, S., Kumar, A. & Madan, M. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 672-681.]) or materials science (Bawazeer et al., 2020[Bawazeer, T. M., El-Ghamry, H. A., Farghaly, T. A. & Fawzy, A. (2020). J. Inorg. Organomet. Polym. 30, 1609-1620.]; Karasmani et al., 2018[Karasmani, F., Tsipis, A., Angaridis, P., Hatzidimitriou, A. G. & Aslanidis, P. (2018). Inorg. Chim. Acta, 471, 680-690.]; Wang et al., 2012[Wang, L., Zhao, L., Liu, M., Chen, R., Yang, Y. & Gu, Y. (2012). Sci. China Chem. 55, 2123-2127.]).

[Scheme 1]

[(5-Methyl-1,3,4-thia­diazol-2-yl)sulfan­yl]acetic acid (HL) is a derivative of 5-methyl-1,3,4-thia­diazole-2-thiol by S-alkyl­ation. It is a sulfur-containing carb­oxy­lic acid, which is widely used due to its unique properties. It is a non-toxic and water-soluble compound in which the substituent is located in the form of a pharmacophore, which can lead to higher reactivity and biological activity through complexation. In this context, we report here on the title coordination compound [Co(L)2(H2O)4].

2. Structural commentary

The mol­ecular structure of [Co(L)2(H2O)4] is shown in Fig. 1[link]. The asymmetric unit comprises half a mol­ecule of the complex, with the CoII atom located about a centre of symmetry. The CoII atom exhibits a slightly distorted octa­hedral coordination environment formed by carboxyl­ate and water O atoms. The carboxyl­ate group coordinates monodentately through O1, O1i together with water O atoms O4 and O4i in the equatorial plane [symmetry code: (i) –x + 1, –y + 1, –z + 1], whereas the two water O atoms O3 and O3i are in axial positions. The corresponding distances are listed in Table 1[link]. The cis-bond angles in the coordination polyhedron vary from 84.80 (8) to 95.20 (8)°. Bond lengths and angles of the 5-methyl-1,3,4-thia­diazole-2-thiol­ate ligand are similar to the standard values observed in similar structures (see section 6). The positions of the ligands allow for the formation of one rather strong hydrogen bond between a water mol­ecule (O3—H3B) and the non-coordinating carboxyl­ate O4 atom (Table 2[link]), which is shorter than the stated distance (2.85 Å) in liquid water (Eisenberg & Kauzmann, 2005[Eisenberg, D. & Kauzmann, W. (2005). The structure and properties of water. USA: Oxford University Press.]). This hydrogen bond leads to a six-membered ring motif with designation S(6) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Grabowski, 2020[Grabowski, S. J. (2020). Crystals, 10, 130-133.]). Moreover, crystal-packing effects result in the C4—H4C⋯S distances (Table 2[link]) being smaller than the sum of the van der Waals radii, and the existing short intra­molecular contacts can be considered from a geometrical and topological point of view as a weak hydrogen bond contributing to the overall cohesion of the mol­ecular conformation (Fargher et al., 2022[Fargher, H. A., Sherbow, T. J., Haley, M. M., Johnson, D. W. & Pluth, M. D. (2022). Chem. Soc. Rev. 51, 1454-1469.]; Domagała et al., 2003[Domagała, M., Grabowski, S. J., Urbaniak, K. & Mlostoń, G. (2003). J. Phys. Chem. A, 107, 2730-2736.]; Surange et al., 1997[Surange, S. S., Kumaran, G., Rajappa, S., Pal, D. & Chakrabarti, P. (1997). Helv. Chim. Acta, 80, 2329-2336.]).

Table 1
Selected bond lengths (Å)

Co1—O1 2.088 (2) Co1—O4 2.036 (2)
Co1—O3 2.146 (2)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O2 0.87 (2) 1.91 (3) 2.700 (3) 151 (5)
C4—H4C⋯S1 0.97 2.79 3.181 (3) 105
O4—H4A⋯N2i 0.85 1.95 2.764 (4) 160
O4—H4B⋯O1ii 0.85 1.91 2.757 (3) 172
O3—H3A⋯N1i 0.84 (5) 2.17 (5) 2.979 (4) 162 (5)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title complex [Co(L)2(H2O)4]. Displacement ellipsoids are shown at the 20% probability level. Non-labelled atoms are generated by inversion symmetry [symmetry operation: 1 − x, 1 − y, 1 − z].

3. Supra­molecular features and energy framework calculations

In the crystal structure of [Co(L)2(H2O)4], further hydrogen bonds are observed (Table 2[link]). Neighboring cobalt complexes are connected parallel to the a axis by O4—H4B⋯O1i and O4i—H4Bi ⋯O1 inter­actions; the corresponding Co1⋯Co1i distance is 5.195 Å (Fig. 2[link]a). Neighboring central atoms are located at distances of 10.035 (1) and 18.909 (1) Å, respectively, along the b- and c-axis directions, and cohesion in the crystal is achieved due to the O3—H3A⋯N1 and O4—H4A⋯N2 hydrogen bonds (Fig. 2[link]b).

[Figure 2]
Figure 2
Overview of hydrogen-bonding inter­actions and the crystal packing: (a) Inter­actions along the a axis; (b) inter­actions along the b and c axes, highlighting the O3—H3A⋯N1 and O4—H4A⋯N2 hydrogen bonds (as per symmetry operators).

The inter­action energies of the hydrogen-bonding system were calculated using the HF method (HF/3-21G) in CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The result is represented graphically in Fig. 3[link], showing the total energy (Etot), which is the sum of the Coulombic (Eele), polar (Epol), dispersion (Edis) and repulsive (Erep) contributions. The four energy components were scaled for the total energy calculation (Etot = 1.019Eele + 0.651Epol + 0.901Edis + 0.811Erep). The inter­action energies were investigated for a 3.8 Å cluster around the reference mol­ecule and are depicted in Fig. 4[link]a as framework energy diagrams. The components of the inter­action energies (E), symmetry operations concerning the reference mol­ecule (Symop), the centroid-to-centroid distances between the reference mol­ecule and inter­acting mol­ecules (R), and the number of pair(s) of inter­acting mol­ecules to the reference mol­ecule (N) are listed in Fig. 4[link]b. The total inter­action energy is −274.5 kJ mol−1, involving the electrostatic (–257.2 kJ mol−1), polarization (–74.6 kJ mol−1), dispersion (–129.3 kJ mol−1), and repulsion (186.6 kJ mol−1) energies. The main attractive inter­actions (Coulombic, dispersion and the sum total energy) show a stronger bonding effect along the crystallographic a-axis direction.

[Figure 3]
Figure 3
Calculated inter­action energies in the title compound. The thickness of the tubes correspond to the value of the energy, revealing strong inter­actions along the crystallographic a-axis direction (the largest values are represented here). The total energy framework (in red) and its two main components, dispersion (in green) and Coulombic energy (in blue), shown for a cluster around a reference mol­ecule, also exhibit stronger inter­actions along the crystallographic a-axis direction.
[Figure 4]
Figure 4
(a) Energy framework diagram for compound [Co(L)2(H2O)4]; (b) the color-coded inter­action mapping within 3.8 Å of the center mol­ecule (gray) calculated with the CE—HF⋯HF/3–21 G model (R is the distance between mol­ecular centroids (main atomic position) in Å, all inter­action energies in kJ mol−1).

4. Hirshfeld surface analysis

To further investigate the inter­molecular inter­actions present in the title compound, a Hirshfeld surface (HS) analysis was performed, and the two-dimensional fingerprint plots were generated with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 5[link] shows the three-dimensional Hirshfeld surface of the complex plotted over dnorm (normalized contact distance). The hydrogen-bonding inter­actions given in Table 2[link] play a key role in the mol­ecular packing of the complex.

[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of [Co(L)2(H2O)4] (central part). The full two-dimensional fingerprint plots for the title complex, showing all inter­actions and delineated into separate inter­actions with the percentage contribution of various inter­atomic contacts occurring in the crystal are shown at the top and bottom.

The overall two-dimensional fingerprint plot and those delineated into inter­atomic inter­actions are given in Fig. 5[link]. The HS analysis shows that the most important contributions are from H⋯H, N⋯H/H⋯N, O⋯H/H⋯O and S⋯H/H⋯S contacts, while other contributions (C⋯H/H⋯C, S⋯O/O⋯S, S⋯C/C⋯S and S⋯N/N⋯S) are considered as minor contacts. The percentage contributions of the various inter­atomic contacts occurring in the crystal are also shown in Fig. 5[link].

5. Density functional theory (DFT) calculations

The mol­ecular structure of the complex was optimized in the gas phase by the B3LYP (Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]) DFT method using the LanL2dz basis set (Grimme, 2006[Grimme, S. (2006). J. Comput. Chem. 27, 1787-1799.]) for the Co atom and 6-311G (d,p) basis set (de Castro & Jorge, 1998[Castro, E. V. R. de & Jorge, F. E. (1998). J. Chem. Phys. 108, 5225-5229.]) for non-metal atoms. Calculations were conducted using the Gaussian09 program (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09. Revision E. 01, Gaussian Inc., Wallingford CT, USA.]) to evaluate the stability of the compound and its chemical reactivity by determining the HOMO–LUMO (highest occupied mol­ecular orbital - lowest unoccupied mol­ecular orbital) energy differences, the ionization potential (I), the affinity electronics (A), the electrophilicity index (ω), the chemical potential (μ), the hardness (η) and the softness (S). The optimized potential surface mol­ecular electrostatic potential (MEP) was also determined to characterize the effects of various substituent groups. Additionally, an analysis was performed to identify regions of electron richness and deficiency.

It is well known that for a closed-shell mol­ecule (all electrons are paired) the HOMO–LUMO energy gap is related to its stability. The same argument is used for open-shell systems (unrestricted calculation). In this case, it is taken into account that the energies of both α- and β-spin orbitals designate the orbital with the highest energy as SOMO (singly occupied mol­ecular orbital). Similarly, the LUMO is defined among both α and β, and the corresponding gap is considered as the SOMO–LUMO gap (Abella et al., 2021[Abella, L., Crassous, J., Favereau, L. & Autschbach, J. (2021). Chem. Mater. 33, 3678-3691.]). Fig. 6[link] shows the SOMO and LUMO of the title cobalt complex, as well as the DOS (density of states) spectrum displaying the group contributions to the mol­ecular orbitals and the calculation of the density of states (Gauss-Sum 3.0). The DOS spectra were obtained by combining the mol­ecular orbital information with the extraction from Gaussian (O'boyle et al., 2008[O'boyle, N. M., Tenderholt, A. L. & Langner, K. M. (2008). J. Comput. Chem. 29, 839-845.]). The descriptors of the reactivity of the complex derived from the electronic properties of the specified mol­ecule (Padmanabhan et al., 2007[Padmanabhan, J., Parthasarathi, R., Subramanian, V. & Chattaraj, P. K. (2007). J. Phys. Chem. A, 111, 1358-1361.]; Hekim & Pekdemir, 2022[Hekim, S. & Pekdemir, M. E. (2022). EJSE, 9, 113-122.]) based on the energies of the HOMO (SOMO) and LUMO orbitals, are shown in Table 3[link].

Table 3
Global reactivity indices

E SOMO (eV) −6.64
E LUMO (eV) −2.39
ΔE 4.25
I 6.64
A 2.39
χ 4.515
η 2.125
μ −4.515
S 0.235
ω 0.235
[Figure 6]
Figure 6
DOS spectrum, SOMO and LUMO energies and energy gap in the title complex.

The electrophilic and nucleophilic nature of the inter­actions, as well as hydrogen bonds, can be explained using the mol­ecular electrostatic potential (MEP), which is related to the electron density. The total electron density surface and the surface of the contour in the form of two-dimensional surface curves of the title complex is given in Fig. 7[link], which has color codes from red to blue, representing negative to positive potential distributions. The optimum electrophilic reaction zones are localized on N atoms, the maximum positive regions that determine nucleophilic reactions are concentrated at the hydrogen atoms of the water mol­ecules. These locations provide insight into the regions of the mol­ecule that engage in non-covalent inter­actions.

[Figure 7]
Figure 7
The total electron density surface and the surface of the contour in the form of two dimensional surface curves of [Co(L)2(H2O)4].

6. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.45, last updated March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicates that crystal structures have been reported for complexes of 2-methyl-1,3,4-thia­diazole derivatives with several metal ions, including Co, Ni, Cu, Zn, Ru, Ag, Pd, Cd, Sn, Pr, Nd, Pt, Hg, and Bi. Notably, there are ten reported metal complex structures featuring 2-[(5-methyl-1,3,4-thia­diazol-2-yl)thio]­acetate (denoted as L), specifically: DEKGAE, DEKGEI (Pan & Zheng, 2017[Pan, Z. R. & Zheng, H. G. (2017). Chin. J. Inorg. Chem. 33, 1678-1684.]); ICOVED, ICOVIH (Pan, 2011[Pan, Z. R. (2011). Chin. J. Inorg. Chem. 27, 2027.]); QAFRAS, QAFREW (Pan et al., 2010[Pan, Z. R., Zhou, H. & Xian, H. (2010). Chin. J. Inorg. Chem. 26, 1955-1960.]) and UNENAD, UNENEH, UNENIL, UNENOR (Ma et al., 2010[Ma, M. H., Pan, Z. R., Xu, J., Li, Y. Z. & Zheng, H. G. (2010). Chin. J. Struct. Chem. 29, 843-852.]). In these structures, L coordinates to the metal ions through the oxygen atom of the carb­oxy­lic group. Notably, in the UNENEH structure, L does not directly coordinate to the CoII cation. It is inter­esting to note that the title compound differs from the UNENAD structure by the absence of one water mol­ecule.

7. Synthesis and crystallization

A solution of Co(NO3)2·6H2O (0.291 g, 0.1 mmol) in C2H5OH (3 ml) was added to a solution of HL (0.38 g, 0.2 mmol) in C2H5OH/H2O (5 ml, 1:1), the pH of which was adjusted to 7.0 with dilute sodium hydroxide (1 mol/l). The mixture was stirred at room temperature for 5 h to obtain a clear solution, which was then filtered. Slow evaporation of the filtrate after two weeks gave pink single crystals in the form of blocks suitable for X-ray diffraction. Yield: 0.367 g (72%).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All hydrogen atoms were located in difference-Fourier maps and refined using an isotropic approximation. The water hydrogen atoms were constrained to an ideal geometry with distances fixed at 0.87 (4) Å and Uiso(H) = 1.5Ueq(O). Two reflections ([\overline{3}] 10 9; [\overline{1}] 11 11) were omitted from the refinement..

Table 4
Experimental details

Crystal data
Chemical formula [Co(C5H5N2O2S2)2(H2O)4]
Mr 509.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 5.1950 (2), 10.0347 (3), 18.9090 (6)
β (°) 91.892 (3)
V3) 985.19 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 11.23
Crystal size (mm) 0.08 × 0.06 × 0.04
 
Data collection
Diffractometer Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.808, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6554, 2023, 1770
Rint 0.055
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.06
No. of reflections 2023
No. of parameters 137
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Tetraaquabis{2-[(5-methyl-1,3,4-thiadiazol-2-yl)sulfanyl]acetato-κO}cobalt(II) top
Crystal data top
[Co(C5H5N2O2S2)2(H2O)4]F(000) = 522
Mr = 509.45Dx = 1.717 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 5.1950 (2) ÅCell parameters from 2568 reflections
b = 10.0347 (3) Åθ = 4.4–74.9°
c = 18.9090 (6) ŵ = 11.23 mm1
β = 91.892 (3)°T = 293 K
V = 985.19 (6) Å3Block, pink
Z = 20.08 × 0.06 × 0.04 mm
Data collection top
Xcalibur, Ruby
diffractometer
2023 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 10.2576 pixels mm-1θmax = 76.1°, θmin = 4.7°
ω scansh = 65
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 127
Tmin = 0.808, Tmax = 1.000l = 2223
6554 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.2531P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.34 e Å3
2023 reflectionsΔρmin = 0.27 e Å3
137 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0100 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.5000000.5000000.0225 (2)
S20.93444 (16)0.67263 (8)0.23436 (4)0.0363 (2)
S10.51630 (16)0.46582 (8)0.19232 (4)0.0352 (2)
O10.7298 (4)0.4971 (2)0.41151 (11)0.0301 (5)
O30.3120 (5)0.6845 (2)0.47316 (12)0.0319 (5)
O20.5470 (5)0.6628 (2)0.34843 (12)0.0381 (5)
O40.7849 (4)0.5994 (2)0.55445 (14)0.0403 (6)
H4A0.7541010.6611620.5837810.060*
H4B0.9398500.5769840.5641020.060*
N20.6147 (6)0.6755 (3)0.12306 (16)0.0439 (7)
N10.4211 (7)0.6115 (3)0.08461 (16)0.0466 (7)
C50.7135 (6)0.5770 (3)0.35950 (15)0.0261 (6)
C40.9347 (6)0.5598 (3)0.30843 (16)0.0308 (6)
H4C0.9292700.4693810.2903070.037*
H4D1.0962270.5702650.3350590.037*
C20.6821 (6)0.6126 (3)0.18058 (16)0.0314 (6)
C10.3501 (7)0.5011 (3)0.11352 (17)0.0350 (7)
C30.1401 (8)0.4148 (4)0.0839 (2)0.0464 (8)
H3C0.2084920.3553860.0494770.070*
H3D0.0086040.4693620.0618930.070*
H3E0.0676070.3638600.1213880.070*
H3A0.311 (9)0.750 (5)0.501 (2)0.061 (14)*
H3B0.383 (9)0.707 (5)0.4341 (17)0.070 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0219 (3)0.0233 (3)0.0222 (3)0.0038 (2)0.0007 (2)0.0002 (2)
S20.0405 (5)0.0368 (4)0.0316 (4)0.0094 (3)0.0025 (3)0.0057 (3)
S10.0430 (5)0.0323 (4)0.0301 (4)0.0059 (3)0.0032 (3)0.0096 (3)
O10.0298 (11)0.0348 (11)0.0259 (10)0.0063 (8)0.0038 (8)0.0037 (8)
O30.0374 (13)0.0277 (10)0.0304 (11)0.0073 (9)0.0013 (9)0.0001 (8)
O20.0392 (13)0.0426 (12)0.0326 (11)0.0156 (10)0.0032 (10)0.0060 (9)
O40.0248 (11)0.0418 (13)0.0534 (15)0.0074 (9)0.0121 (10)0.0217 (10)
N20.0510 (18)0.0427 (16)0.0375 (15)0.0075 (13)0.0077 (13)0.0156 (12)
N10.0571 (19)0.0473 (17)0.0348 (15)0.0039 (14)0.0077 (14)0.0123 (13)
C50.0263 (14)0.0275 (13)0.0242 (13)0.0011 (11)0.0008 (11)0.0012 (10)
C40.0299 (15)0.0350 (15)0.0276 (14)0.0044 (12)0.0018 (11)0.0022 (11)
C20.0373 (17)0.0302 (14)0.0270 (14)0.0016 (12)0.0036 (12)0.0062 (11)
C10.0422 (19)0.0347 (16)0.0281 (15)0.0056 (13)0.0010 (13)0.0047 (11)
C30.048 (2)0.0464 (19)0.0437 (19)0.0003 (16)0.0115 (16)0.0015 (15)
Geometric parameters (Å, º) top
Co1—O1i2.088 (2)O2—C51.233 (4)
Co1—O12.088 (2)O4—H4A0.8501
Co1—O32.146 (2)O4—H4B0.8500
Co1—O3i2.146 (2)N2—N11.380 (4)
Co1—O42.036 (2)N2—C21.296 (4)
Co1—O4i2.036 (2)N1—C11.295 (4)
S2—C41.801 (3)C5—C41.535 (4)
S2—C21.740 (3)C4—H4C0.9700
S1—C21.724 (3)C4—H4D0.9700
S1—C11.734 (3)C1—C31.488 (5)
O1—C51.270 (3)C3—H3C0.9600
O3—H3A0.84 (5)C3—H3D0.9600
O3—H3B0.868 (19)C3—H3E0.9600
O1i—Co1—O1180.0C2—N2—N1112.8 (3)
O1—Co1—O395.20 (8)C1—N1—N2112.9 (3)
O1i—Co1—O3i95.20 (8)O1—C5—C4112.6 (2)
O1—Co1—O3i84.80 (8)O2—C5—O1127.0 (3)
O1i—Co1—O384.80 (8)O2—C5—C4120.5 (3)
O3—Co1—O3i180.0S2—C4—H4C108.3
O4—Co1—O1i90.76 (10)S2—C4—H4D108.3
O4i—Co1—O190.76 (10)C5—C4—S2115.9 (2)
O4i—Co1—O1i89.24 (10)C5—C4—H4C108.3
O4—Co1—O189.24 (10)C5—C4—H4D108.3
O4—Co1—O390.83 (9)H4C—C4—H4D107.4
O4—Co1—O3i89.17 (9)S1—C2—S2126.18 (18)
O4i—Co1—O389.17 (9)N2—C2—S2120.0 (2)
O4i—Co1—O3i90.83 (9)N2—C2—S1113.7 (3)
O4—Co1—O4i180.00 (11)N1—C1—S1113.4 (3)
C2—S2—C4102.60 (15)N1—C1—C3123.7 (3)
C2—S1—C187.22 (15)C3—C1—S1122.8 (2)
C5—O1—Co1125.90 (19)C1—C3—H3C109.5
Co1—O3—H3A123 (3)C1—C3—H3D109.5
Co1—O3—H3B103 (3)C1—C3—H3E109.5
H3A—O3—H3B109 (4)H3C—C3—H3D109.5
Co1—O4—H4A122.5H3C—C3—H3E109.5
Co1—O4—H4B130.3H3D—C3—H3E109.5
H4A—O4—H4B104.5
Co1—O1—C5—O26.9 (4)C4—S2—C2—S18.8 (3)
Co1—O1—C5—C4171.97 (18)C4—S2—C2—N2176.0 (3)
O1—C5—C4—S2178.0 (2)C2—S2—C4—C573.2 (2)
O2—C5—C4—S20.9 (4)C2—S1—C1—N10.1 (3)
N2—N1—C1—S10.4 (4)C2—S1—C1—C3177.7 (3)
N2—N1—C1—C3178.3 (3)C2—N2—N1—C11.0 (5)
N1—N2—C2—S2176.8 (2)C1—S1—C2—S2176.1 (2)
N1—N2—C2—S11.1 (4)C1—S1—C2—N20.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O20.87 (2)1.91 (3)2.700 (3)151 (5)
C4—H4C···S10.972.793.181 (3)105
O4—H4A···N2ii0.851.952.764 (4)160
O4—H4B···O1iii0.851.912.757 (3)172
O3—H3A···N1ii0.84 (5)2.17 (5)2.979 (4)162 (5)
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x+2, y+1, z+1.
Global reactivity indices top
E SOMO (eV)-6.64
E LUMO (eV)-2.39
ΔE4.25
I6.64
A2.39
χ4.515
η2.125
µ-4.515
S0.235
ω0.235
 

References

First citationAbella, L., Crassous, J., Favereau, L. & Autschbach, J. (2021). Chem. Mater. 33, 3678–3691.  CrossRef Google Scholar
First citationAtashov, A., Azamova, M., Ziyatov, D., Uzakbergenova, Z., Torambetov, B., Holczbauer, T., Ashurov, J. & Kadirova, S. (2024). Acta Cryst. E80, 408–412.  CSD CrossRef IUCr Journals Google Scholar
First citationBawazeer, T. M., El-Ghamry, H. A., Farghaly, T. A. & Fawzy, A. (2020). J. Inorg. Organomet. Polym. 30, 1609–1620.  CrossRef Google Scholar
First citationCastro, E. V. R. de & Jorge, F. E. (1998). J. Chem. Phys. 108, 5225–5229.  Google Scholar
First citationChandra, S., Gautam, S., Kumar, A. & Madan, M. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 672–681.  CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDomagała, M., Grabowski, S. J., Urbaniak, K. & Mlostoń, G. (2003). J. Phys. Chem. A, 107, 2730–2736.  Web of Science CSD CrossRef CAS Google Scholar
First citationEisenberg, D. & Kauzmann, W. (2005). The structure and properties of water. USA: Oxford University Press.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFargher, H. A., Sherbow, T. J., Haley, M. M., Johnson, D. W. & Pluth, M. D. (2022). Chem. Soc. Rev. 51, 1454–1469.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFrija, L. M., Pombeiro, A. J. & Kopylovich, M. N. (2016). Coord. Chem. Rev. 308, 32–55.  CrossRef Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09. Revision E. 01, Gaussian Inc., Wallingford CT, USA.  Google Scholar
First citationGrabowski, S. J. (2020). Crystals, 10, 130–133.  CrossRef Google Scholar
First citationGrimme, S. (2006). J. Comput. Chem. 27, 1787–1799.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHekim, S. & Pekdemir, M. E. (2022). EJSE, 9, 113–122.  Google Scholar
First citationKarasmani, F., Tsipis, A., Angaridis, P., Hatzidimitriou, A. G. & Aslanidis, P. (2018). Inorg. Chim. Acta, 471, 680–690.  CSD CrossRef Google Scholar
First citationKarcz, D., Matwijczuk, A., Kamiński, D., Creaven, B., Ciszkowicz, E., Lecka-Szlachta, K. & Starzak, K. (2020). Int. J. Mol. Sci. 21, 5735.  CrossRef PubMed Google Scholar
First citationLavrenova, L. G., Komarov, V. Y., Glinskaya, L. A., Lavrov, A. N. & Artem'ev, A. V. (2023). J. Struct. Chem. 64, 895–905.  CSD CrossRef Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationMa, M. H., Pan, Z. R., Xu, J., Li, Y. Z. & Zheng, H. G. (2010). Chin. J. Struct. Chem. 29, 843–852.  Google Scholar
First citationMasaryk, L., Zoufalý, P., Słoczyńska, K., Zahradniková, E., Milde, D., Koczurkiewicz-Adamczyk, P. & Štarha, P. (2022). Inorg. Chim. Acta, 536, 120891.  CrossRef Google Scholar
First citationO'boyle, N. M., Tenderholt, A. L. & Langner, K. M. (2008). J. Comput. Chem. 29, 839–845.  PubMed Google Scholar
First citationPadmanabhan, J., Parthasarathi, R., Subramanian, V. & Chattaraj, P. K. (2007). J. Phys. Chem. A, 111, 1358–1361.  CrossRef PubMed Google Scholar
First citationPan, Z. R. (2011). Chin. J. Inorg. Chem. 27, 2027.  Google Scholar
First citationPan, Z. R. & Zheng, H. G. (2017). Chin. J. Inorg. Chem. 33, 1678–1684.  Google Scholar
First citationPan, Z. R., Zhou, H. & Xian, H. (2010). Chin. J. Inorg. Chem. 26, 1955–1960.  Google Scholar
First citationPatil, A. M., Shinde, R. S. & Mirgane, S. R. (2020). Modern Green Chemistry and Heterocyclic Compounds, pp. 145–157. New Jersey: Apple Academic Press.  Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSerbest, K., Kayi, H., Er, M., Sancak, K. & Değirmencioğlu, İ. (2008). Heteroat. Chem. 19, 700–712.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmaili, A., Rifai, L. A., Esserti, S., Koussa, T., Bentiss, F., Guesmi, S., Laachir, A. & Faize, M. (2017). Pestic. Biochem. Physiol. 143, 26–32.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSurange, S. S., Kumaran, G., Rajappa, S., Pal, D. & Chakrabarti, P. (1997). Helv. Chim. Acta, 80, 2329–2336.  CSD CrossRef Google Scholar
First citationWang, L., Zhao, L., Liu, M., Chen, R., Yang, Y. & Gu, Y. (2012). Sci. China Chem. 55, 2123–2127.  CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds