research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[bis­­(N,O-di­methyl­hydroxyl­ammonium) [di-μ-bromido-di­bromido­stannate(II)]]

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and bDepartment of Chemistry, Faculty of Chemistry, Al. I. Cuza University of Iasi, Carol I Blvd. 11, Iasi 700506, Romania
*Correspondence e-mail: valerii_sirenko@knu.ua

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 November 2024; accepted 11 December 2024; online 1 January 2025)

The title compound, {(C2H8NO)2[SnBr4]}n, is a layered hybrid perovskite crystallizing in the monoclinic space group C2/c. The asymmetric unit consists of one H3C—O—NH2+—CH3 cation (Me2HA+), one SnII atom located on a twofold rotation axis, and two Br atoms. The SnII atom has a distorted octa­hedral coordination environment formed by the bromido ligands. The {SnBr6} units corner-share their equatorial Br atoms, forming infinite mono-layers that extend parallel to the ab plane. These inorganic layers are sandwiched by the organic Me2HA+ cations organized in double-layers; stacking of the layers is along the c-axis direction. Consecutive inorganic layers, separated by the organic cations, are shifted relative to each other along the b-axis direction. Specifically, the SnII atom in one inorganic layer is offset by 3.148 Å along the b axis relative to the SnII atom in an adjacent inorganic layer. The N,O-di­methyl­hydroxyl­ammonium cation forms two hydrogen bonds with the axial bromide anions of the inorganic layers as acceptors, and leads to the cohesion of the crystal structure. According to Hirshfeld surface analysis, the highest contributions to the crystal packing are from H⋯H (46.2%), Br⋯H (38.5%), and H⋯O (14.8%) contacts.

1. Chemical context

Hybrid perovskites are an important class of solution-processable semiconducting materials that exhibit inter­esting electrical and optical properties. Lead halide hybrid perovskites, the most prominent members of the hybrid perovskite family, have demonstrated high power conversion efficiency in solar cells and high photoluminescence quantum yields (Sun et al., 2017[Sun, H., Yang, Z., Wei, M., Sun, W., Li, X., Ye, S., Zhao, Y., Tan, H., Kynaston, E. L., Schon, T. B., Yan, H., Lu, Z., Ozin, G. A., Sargent, E. H. & Seferos, D. S. (2017). Adv. Mater. 29, 1701153.]; Shamsi et al., 2019[Shamsi, J., Urban, A. S., Imran, M., De Trizio, L. & Manna, L. (2019). Chem. Rev. 119, 3296-3348.]). Despite the promising potential of lead halide hybrid perovskites, the high toxicity of lead limits their commercialization. Lead can be easily absorbed into the bloodstream and cause damage to the cardiovascular system, kidneys, reproductive system, DNA, and the central nervous system, leading to brain disorders and, ultimately, death (Jadhav et al., 2007[Jadhav, S. H., Sarkar, S. N., Patil, R. D. & Tripathi, H. C. (2007). Arch. Environ. Contam. Toxicol. 53, 667-677.]). One approach to overcoming lead toxicity is to replace lead with less toxic elements like tin or germanium, which have ionic radii similar to that of lead (Hao et al., 2014[Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. & Kanatzidis, M. G. (2014). Nat. Photon. 8, 489-494.]).

In the past decade, tin halide hybrid perovskites have gained significant attention for solar energy applications due to their low toxicity and tunable band gap (Milot et al., 2018[Milot, R. L., Klug, M. T., Davies, C. L., Wang, Z., Kraus, H., Snaith, H. J., Johnston, M. B. & Herz, L. M. (2018). Adv. Mater. 30, e1804506.]; Li et al., 2023[Li, Y., Zhou, H., Xia, M., Shen, H., Wang, T., Gao, H., Sheng, X., Han, Y., Chen, Z., Dou, L., Zhu, H. & Shi, E. (2023). Sci. Adv. 9 eadh0517.]). However, a major challenge with tin halide hybrid perovskites is the ease with which SnII oxidizes to SnIV (Byranvand et al., 2022[Byranvand, M. M., Zuo, W., Imani, R., Pazoki, M. & Saliba, M. (2022). Chem. Sci. 13, 6766-6781.]). One method to stabilize SnII is by incorporating it into the crystal structure of layered hybrid perovskites (Byranvand et al., 2022[Byranvand, M. M., Zuo, W., Imani, R., Pazoki, M. & Saliba, M. (2022). Chem. Sci. 13, 6766-6781.]). Such layered hybrid perovskites, commonly denoted as `two-dimensional' hybrid perovskites, are stoichiometric compounds composed of alternating inorganic metal halide layers and organic cationic layers. This class of materials offers exceptional flexibility in terms of composition, structure, and dimensionality (Straus & Kagan, 2018[Straus, D. B. & Kagan, C. R. (2018). J. Phys. Chem. Lett. 9, 1434-1447.]). It has been shown that the hydro­phobic nature of the bulky organic cations that form the organic layers in these hybrid perovskites prevents moisture from inter­acting with the ionic inorganic layers composed of metal halide octa­hedra (Azmi et al., 2024[Azmi, R., Zhumagali, S., Bristow, H., Zhang, S., Yazmaciyan, A., Pininti, A. R., Utomo, D. S., Subbiah, A. S. & De Wolf, S. (2024). Adv. Mater. 36, e2211317.]).

In this context, the search for new tin halide hybrid perovskites with a broad range of optoelectronic properties is crucial for the development of more efficient solar cells, optoelectronic, and spintronic devices. One approach to modifying the crystal structure and properties of layered hybrid perovskites is to use different templating organic cations. Hydroxyl­amines, which have been relatively underexplored, represent a promising class towards such cations. Only a few studies have reported on the synthesis of hydroxyl­amine-based metal halides (D'Annibale et al., 2019[D'Annibale, A., Panetta, R., Tarquini, O., Colapietro, M., Quaranta, S., Cassetta, A., Barba, L., Chita, G. & Latini, A. (2019). Dalton Trans. 48, 5397-5407.]; Froschauer et al., 2013[Froschauer, C., Salchner, R., Laus, G., Weber, H. K., Tessadri, R., Griesser, U., Wurst, K., Kahlenberg, V. & Schottenberger, H. (2013). Aust. J. Chem. 66, 391.]; Zhang et al., 2018[Zhang, T., Chen, C., Zhang, W.-Y., Ye, Q. & Fu, D.-W. (2018). Inorg. Chem. Front. 5, 2340-2345.]; Schottenberger et al., 2015[Schottenberger, H., Nerdinger, S., Laus, G., Salchner, R., Haslinger, S., Kahlenberg, V., Wurst, K. E., Braun, D., Vergeiner, S., Kopacka, H., Puckowski, A. & Stolte, S. (2015). Heterocycles, 90, 1018-1037.]; Saal et al., 2017[Saal, T., Rahm, M., Christe, K. O. & Haiges, R. (2017). Angew. Chem. Int. Ed. 56, 9587-9591.]; Ben Hmida et al., 2019[Ben Hmida, W., Jellali, A., Abid, H., Hamdi, B., Naili, H. & Zouari, R. (2019). J. Mol. Struct. 1184, 604-614.]; Yuan et al., 2019[Yuan, W., Zeng, Y., Tan, Y.-Y., Zhou, J.-H., Xu, W.-J., Zhang, W.-X. & Chen, X.-M. (2019). Chem. Commun. 55, 8983-8986.]; Ban et al., 1999[Ban, I., Kristl, M., Volavšek, B. & Golič, L. (1999). Monatsh. Chem. 130, 401-408.]).

In the current study, we synthesized a new layered hybrid perovskite using the reaction between N,O-di­methyl­hydroxyl­amine and tin(II) hydroxide in concentrated hydro­bromic acid. Detailed structural and Hirshfeld surface analyses of the resulting compound, (C2H8NO+)2[SnBr4], (1), were performed.

[Scheme 1]

2. Structural commentary

Compound (1) has a layered crystal structure. The asymmetric unit includes one SnII atom (located on a twofold rotation axis), two Br atoms and one N,O-di­methyl­hydroxyl­ammonium cation (Fig. 1[link]). The SnII atom is coordinated by six bromido ligands, forming a distorted {SnBr6} octa­hedron. The Sn—Br distances within the octa­hedron range from 2.7141 (8) Å to 3.2399 (9) Å (Table 1[link]). Inter­estingly, a special type of octa­hedral distortion is realized, with two short equatorial Sn—Br2 bonds [2.7143 (8) Å], two long equatorial Sn—Br2 bonds [3.2395 (8) Å] and two middle-length axial Sn—Br1 bonds [2.9790 (8) Å]. The cis-Br—Sn—Br bond angles are in the range 84.82 (2)–98.52 (2)°, and the trans-Br—Sn—Br bond angles are 172.29 (3)° for equatorial Br ligands and 175.25 (4)° for axial Br ligands (Table 1[link]), which indicates the distortion from ideal values of 90° and 180°, respectively. Qu­anti­tative octa­hedral distortion parameters can be calculated by formula Δd = (1/6)Σ6i=1 (did)2/d2 (1) and Σ = Σ12i=1 |90–αi| (2), where di is the individual bond length and d is average bond length and αi are twelve individual cis-angles in the coordination octa­hedron. The value of Δd is 6.41·10–3, which is typical for layered tin halide hybrid perovskites (Sirenko et al., 2024[Sirenko, V. Y., Kucheriv, O. I., Shova, S. & Gural'skiy, I. A. (2024). Mater. Today, 41, 102452.]), and the Σ value is 39.21°.

Table 1
Selected geometric parameters (Å, °)

Sn1—Br1 2.9790 (8) Sn1—Br2i 3.2395 (8)
Sn1—Br2 2.7143 (8)    
       
Br1—Sn1—Br1ii 175.25 (4) Br2ii—Sn1—Br2i 88.972 (6)
Sn1—Br2i—Sn1i 172.29 (3) Br1—Sn1—Br2i 84.82 (2)
Br2—Sn1—Br1ii 89.19 (3) Br2—Sn1—Br2ii 91.66 (4)
Br2—Sn1—Br1 87.50 (2) Br1ii—Sn1—Br2i 98.52 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Representation of the building units in the crystal structure of compound (1), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. [Symmetry codes: (i) [{1\over 2}] + x, [{1\over 2}] + y, z; (ii) 1 − x, y, [{3\over 2}] − z; (iii) [{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z.]

The polymeric inorganic layers of (1) propagate parallel to the ab plane and are formed by sharing all equatorial corners of the {SnBr6} octa­hedra. These inorganic [SnBr4/2Br2/1]2– layers (where Br4/2 denotes four equatorial atoms bonded in a corner-sharing manner and Br2/1 denotes two axial halogen atoms bonded only to one SnII atom) are separated by organic Me2HA+ cations (Fig. 2[link]); the stacking direction of the layers is along the c-axis direction. The organic cations are aligned parallel to the c axis and organized in double layers (Fig. 2[link]).

[Figure 2]
Figure 2
Projection of the crystal structure of (1) approximately along [110], showing its layered crystal structure.

3. Supra­molecular features

The N,O-di­methyl­hydroxyl­ammonium cations inter­act with the inorganic layers through the protonated secondary amino group, forming N—H⋯Br hydrogen bonds exclusively with the axially positioned Br anions (Fig. 3[link], Table 2[link]). Additionally, in the crystal structure of (1), weak C—H⋯Br contacts are present. As was previously shown, C—H⋯Br hydrogen bonding can be assumed when the difference (r C⋯B) – (rvdw B + r C—H) < 1.00 Å, where r C—H is the average C—H bond length, and rvdwB is the van der Waals radius of the hydrogen-bond acceptor (Harmon et al., 1992[Harmon, K. M., De Santis, N. J. & Brandt, D. O. (1992). J. Mol. Struct. 265, 47-57.]). For weak contacts C1—H1D⋯Br2, C2—H2B⋯Br1 and C2—H2C⋯Br1iii, this difference is less than 1.00 Å (0.868, 0.908 and 0.893 Å, respectively), which may indicate the presence of such weak hydrogen bonds (Table 2[link]). While the angle for C1—H1D⋯Br2 (123.3°) is less characteristic of hydrogen bonding, the angles for C2—H2B⋯Br1 and C2—H2C⋯Br1iii deviate less from the ideal value of 180° (Table 2[link]), further supporting the possible presence of weak hydrogen bonding (Harmon et al., 1992[Harmon, K. M., De Santis, N. J. & Brandt, D. O. (1992). J. Mol. Struct. 265, 47-57.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1iii 0.80 2.58 3.358 (6) 165
N1—H1B⋯Br1 0.80 2.58 3.358 (6) 165
C1—H1D⋯Br2 0.96 3.16 3.778 (9) 123
C2—H2B⋯Br1 0.96 3.04 3.818 (8) 139
C2—H2C⋯Br1iii 0.96 3.09 3.803 (9) 132
Symmetry code: (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 3]
Figure 3
Side view of a fragment of the crystal structure of (1), showing the orientation of organic cations and the hydrogen-bonding scheme (dotted lines). [Symmetry codes: (i) 1 − x, y, [{3\over 2}] − z; (ii) [{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z; (iii) −[{1\over 2}] + x, −[{1\over 2}] + y, z.]

It is worth noting that the N,O-di­methyl­hydroxyl­ammonium cations are oriented perpendicularly to each other on opposite sides of the inorganic layer (Fig. 3[link]). Such an orientation of the organic cations leads to a less distorted inorganic layer compared to the case where these cations were aligned parallel to each other on both sides of the inorganic layer. This orientation of the organic cations results from the neighbouring inorganic layers positioning themselves in a manner that minimizes the free space between the Me2HA+ cations within the organic layers. The two neighbouring inorganic layers, separated by the double layers of organic cations, are shifted along the b axis; the SnII atom in one inorganic layer is offset by 3.148 Å along the b axis relative to the SnII atom located in the adjacent inorganic layer (Fig. 4[link]).

[Figure 4]
Figure 4
View along [001] of a fragment of inorganic layers in the crystal structure of (1). The upper inorganic layer is offset along the b axis relative to the adjacent inorganic layer (highlighted in green). In this projection, the distance between the SnII atom of the first inorganic layer is offset by 3.148 Å along the b axis relative to the adjacent layer. [Symmetry code: (i) x, 2 − y, [{1\over 2}] + z.]

4. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with standard resolution of the three-dimensional dnorm surfaces, revealing two prominent red spots and several white regions (Fig. 5[link]). Visualizations were performed using a red–white–blue colour scheme, where red regions highlight shorter contacts, white regions indicate contacts around the van der Waals (vdW) separation, and blue areas depict longer contacts. The red spots on the Hirshfeld surface are attributed to the rather strong inter­molecular N—H⋯Br hydrogen bonds, while the white regions mainly correspond to H⋯H and O⋯H/H⋯O contacts.

[Figure 5]
Figure 5
(a) Hirshfeld surface representation with the function dnorm plotted onto the surface for the different inter­actions; two-dimensional fingerprint plots from a Hirshfeld surface analysis of (1) showing: (b) all contacts; (c) H⋯H (46.2%); (d) Br⋯H/H⋯Br (38.5%); (e) O⋯H/H⋯O (14.8%); (f) O⋯O (0.3%); (g) Br⋯O/O⋯Br (0.1%) and (h) Sn⋯H/H⋯Sn (0.1%).

The overall two-dimensional fingerprint plot (Fig. 5[link]b), along with plots showing H⋯H, Br⋯H/H⋯Br, O⋯H/H⋯O, O⋯O, Br⋯O/O⋯Br, and Sn⋯H/H⋯Sn contacts and their relative contributions to the Hirshfeld surface are illustrated in Fig. 5[link]c–j. The most abundant inter­action is H⋯H, which contributes 46.2% to the crystal structure of the title compound (Fig. 5[link]c), with a characteristic tip at de = di = 1.3 Å. The Br⋯H/H⋯Br and O⋯H/H⋯O inter­actions contribute 38.5% and 14.8%, respectively, to the crystal structure (Fig. 5[link]d–e).

The Br⋯H/H⋯Br contacts form a distinctive spike on the corresponding two-dimensional plot at (di, de) = (0.84, 1.53 Å), corresponding to the closest N—H⋯Br contact near 2.37 Å, indicating relevant inter­molecular inter­actions. Similarly, the O⋯H/H⋯O contacts appear as a pair of spikes at (di, de) = (1.55, 1.32 Å), corresponding to the closest C—H⋯O contact near 2.87 Å in the crystal structure. The contributions of the remaining O⋯O, Br⋯O/O⋯Br, and Sn⋯H/H⋯Sn inter­actions are smaller than 1.0%. The contributions of Br⋯H/H⋯Br and O⋯H/H⋯O contacts highlight the significant role of hydrogen bonding and van der Waals inter­actions in the crystal packing of (1).

5. Database survey

A search of the Cambridge Structure Database (CSD version 5.44, last update June 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 73 structures containing {SnBr6} octa­hedra and cations of organic amines. Selected examples include EKIWUS (Lorena et al., 2014[Lorena, G. S., Hasegawa, H., Takahashi, Y., Harada, J. & Inabe, T. (2014). Chem. Lett. 43, 1535-1537.]) and MINNOQ (Fu et al., 2023[Fu, P., Quintero, M. A., Vasileiadou, E. S., Raval, P., Welton, C., Kepenekian, M., Volonakis, G., Even, J., Liu, Y., Malliakas, C., Yang, Y., Laing, C., Dravid, V. P., Reddy, G. N. M., Li, C., Sargent, E. H. & Kanatzidis, M. G. (2023). J. Am. Chem. Soc. 145, 15997-16014.]), which are both layered hybrid perovskites. EKIWUS is a tin bromide compound with inorganic layers built from corner-sharing {SnBr6} octa­hedra, while the organic cations are organized in double layers separating the inorganic layers, similar to the title compound. By contrast, MINNOQ is a mixed lead-tin bromide hybrid perovskite featuring inorganic layers composed of corner-sharing {SnBr6} and {PbBr6} octa­hedra. Unlike EKIWUS, the organic layers in MINNOQ are organized in single layers, resulting in shorter distances between consecutive inorganic layers.

6. Synthesis and crystallization

SnCl2·2H2O (0.1 g, 0.44 mmol) was dissolved in 0.7 ml of distilled water with the addition of a few drops of hydro­chloric acid (HCl) to prevent hydrolysis, and the mixture was stirred until complete dissolution. Then 140 µL of NH3·H2O (35% w/w) was added to this solution, which resulted in the colourless precipitate of SnO·xH2O. The solution obtained was centrifuged at 12000 RPM for 2 min to separate SnO·xH2O from the mother liquor. The resulting solid was washed first with water and then with methanol. After each washing step, the solution was centrifuged again at 12000 RPM for 2 min. Subsequently, the obtained SnO·xH2O was allowed to dry at 303 K for 5 min before it was dissolved in a mixture of 0.5 ml concentrated HBr acid (48%wt) and 50 µL H3PO2 under heating and continuous stirring. Then, N,O-di­methyl­hydroxyl­amine hydro­chloride (0.89 mmol) was added to the solution. The reagents were stirred until the solution became homogenous. Light-yellow crystals were precipitated upon cooling the solution to room temperature. The crystals were separated and kept in the mother solution prior to the diffraction measurements.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Methyl H atoms were positioned geometrically and refined as a rotating group, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). The H atoms of the N–H groups were positioned geometrically and refined as riding atoms with N—H = 0.80 Å and Uiso(H) = 1.2Ueq(N).

Table 3
Experimental details

Crystal data
Chemical formula (C2H8NO)2[SnBr4]
Mr 562.52
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 8.4947 (4), 8.3064 (5), 21.6425 (14)
β (°) 96.150 (5)
V3) 1518.31 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 12.19
Crystal size (mm) 0.20 × 0.11 × 0.09
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) based on expressions derived by Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]]
Tmin, Tmax 0.227, 0.438
No. of measured, independent and observed [I > 2σ(I)] reflections 6678, 1832, 1320
Rint 0.047
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.091, 1.06
No. of reflections 1832
No. of parameters 64
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.81, −0.91
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

catena-Poly[bis(N,O-dimethylhydroxylammonium) [di-µ-bromido-dibromidostannate(II)]] top
Crystal data top
(C2H8NO)2[SnBr4]F(000) = 1040
Mr = 562.52Dx = 2.461 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 8.4947 (4) ÅCell parameters from 1867 reflections
b = 8.3064 (5) Åθ = 3.5–26.2°
c = 21.6425 (14) ŵ = 12.19 mm1
β = 96.150 (5)°T = 293 K
V = 1518.31 (15) Å3Prism, clear light colourless
Z = 40.20 × 0.11 × 0.09 mm
Data collection top
Xcalibur, Eos
diffractometer
1832 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 16.1593 pixels mm-1θmax = 29.2°, θmin = 1.9°
ω scansh = 1010
Absorption correction: analytical
[CrysAlisPro (Rigaku OD, 2023) based on expressions derived by Clark & Reid, 1995]
k = 1110
Tmin = 0.227, Tmax = 0.438l = 2827
6678 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0255P)2 + 5.9957P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.81 e Å3
1832 reflectionsΔρmin = 0.91 e Å3
64 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00064 (10)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.5000000.81057 (7)0.7500000.0296 (2)
Br10.49095 (9)0.79570 (10)0.61214 (3)0.0527 (3)
Br20.26948 (8)0.58288 (9)0.74077 (4)0.0525 (3)
O10.3786 (7)0.3817 (7)0.5434 (3)0.0657 (16)
N10.3672 (7)0.4115 (8)0.6048 (3)0.058 (2)
H1A0.280 (6)0.3942 (13)0.6130 (6)0.069*
H1B0.3886 (15)0.503 (6)0.6129 (6)0.069*
C20.2663 (9)0.4871 (10)0.5057 (4)0.065 (2)
H2A0.2919040.4883600.4635650.097*
H2B0.2732860.5943860.5222650.097*
H2C0.1605230.4471500.5067030.097*
C10.4823 (9)0.3014 (10)0.6406 (4)0.060 (2)
H1C0.4618830.1925120.6271730.090*
H1D0.4708150.3100420.6841170.090*
H1E0.5881400.3308310.6334900.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0243 (3)0.0241 (3)0.0401 (4)0.0000.0021 (3)0.000
Br10.0573 (5)0.0561 (6)0.0440 (5)0.0174 (4)0.0018 (4)0.0028 (4)
Br20.0414 (4)0.0440 (5)0.0722 (6)0.0117 (3)0.0061 (4)0.0013 (4)
O10.075 (4)0.069 (4)0.058 (4)0.003 (3)0.026 (3)0.012 (3)
N10.062 (4)0.052 (4)0.063 (5)0.016 (3)0.022 (4)0.014 (4)
C20.067 (5)0.071 (6)0.051 (5)0.008 (5)0.021 (4)0.013 (5)
C10.056 (5)0.055 (5)0.067 (6)0.014 (4)0.003 (4)0.007 (5)
Geometric parameters (Å, º) top
Sn1—Br1i2.9791 (8)N1—H1B0.80 (5)
Sn1—Br12.9790 (8)N1—C11.493 (9)
Sn1—Br2i2.7144 (8)C2—H2A0.9600
Sn1—Br22.7143 (8)C2—H2B0.9600
Sn1—Br2ii3.2395 (8)C2—H2C0.9600
O1—N11.365 (8)C1—H1C0.9600
O1—C21.476 (9)C1—H1D0.9600
N1—H1A0.80 (5)C1—H1E0.9600
Br1—Sn1—Br1i175.25 (4)C1—N1—H1A110.4
Sn1—Br2ii—Sn1ii172.29 (3)C1—N1—H1B110.4
Br2—Sn1—Br1i89.19 (3)O1—C2—H2A109.5
Br2—Sn1—Br187.50 (2)O1—C2—H2B109.5
Br2i—Sn1—Br2ii88.972 (6)O1—C2—H2C109.5
Br1—Sn1—Br2ii84.82 (2)H2A—C2—H2B109.5
Br2i—Sn1—Br189.19 (3)H2A—C2—H2C109.5
Br2i—Sn1—Br1i87.50 (2)H2B—C2—H2C109.5
Br2—Sn1—Br2i91.66 (4)N1—C1—H1C109.5
Br1i—Sn1—Br2ii98.52 (2)N1—C1—H1D109.5
N1—O1—C2108.8 (6)N1—C1—H1E109.5
O1—N1—H1A110.4H1C—C1—H1D109.5
O1—N1—H1B110.4H1C—C1—H1E109.5
O1—N1—C1106.4 (6)H1D—C1—H1E109.5
H1A—N1—H1B108.6
C2—O1—N1—C1179.7 (6)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1iii0.802.583.358 (6)165
N1—H1B···Br10.802.583.358 (6)165
C1—H1D···Br20.963.163.778 (9)123
C2—H2B···Br10.963.043.818 (8)139
C2—H2C···Br1iii0.963.093.803 (9)132
Symmetry code: (iii) x1/2, y1/2, z.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 24BF037-01M; grant No. 24BF037-02).

References

First citationAzmi, R., Zhumagali, S., Bristow, H., Zhang, S., Yazmaciyan, A., Pininti, A. R., Utomo, D. S., Subbiah, A. S. & De Wolf, S. (2024). Adv. Mater. 36, e2211317.  CrossRef Google Scholar
First citationBan, I., Kristl, M., Volavšek, B. & Golič, L. (1999). Monatsh. Chem. 130, 401–408.  CAS Google Scholar
First citationBen Hmida, W., Jellali, A., Abid, H., Hamdi, B., Naili, H. & Zouari, R. (2019). J. Mol. Struct. 1184, 604–614.  CSD CrossRef CAS Google Scholar
First citationByranvand, M. M., Zuo, W., Imani, R., Pazoki, M. & Saliba, M. (2022). Chem. Sci. 13, 6766–6781.  CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationD'Annibale, A., Panetta, R., Tarquini, O., Colapietro, M., Quaranta, S., Cassetta, A., Barba, L., Chita, G. & Latini, A. (2019). Dalton Trans. 48, 5397–5407.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFroschauer, C., Salchner, R., Laus, G., Weber, H. K., Tessadri, R., Griesser, U., Wurst, K., Kahlenberg, V. & Schottenberger, H. (2013). Aust. J. Chem. 66, 391.  CSD CrossRef Google Scholar
First citationFu, P., Quintero, M. A., Vasileiadou, E. S., Raval, P., Welton, C., Kepenekian, M., Volonakis, G., Even, J., Liu, Y., Malliakas, C., Yang, Y., Laing, C., Dravid, V. P., Reddy, G. N. M., Li, C., Sargent, E. H. & Kanatzidis, M. G. (2023). J. Am. Chem. Soc. 145, 15997–16014.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. & Kanatzidis, M. G. (2014). Nat. Photon. 8, 489–494.  CrossRef CAS Google Scholar
First citationHarmon, K. M., De Santis, N. J. & Brandt, D. O. (1992). J. Mol. Struct. 265, 47–57.  CrossRef CAS Google Scholar
First citationJadhav, S. H., Sarkar, S. N., Patil, R. D. & Tripathi, H. C. (2007). Arch. Environ. Contam. Toxicol. 53, 667–677.  CrossRef CAS Google Scholar
First citationLi, Y., Zhou, H., Xia, M., Shen, H., Wang, T., Gao, H., Sheng, X., Han, Y., Chen, Z., Dou, L., Zhu, H. & Shi, E. (2023). Sci. Adv. 9 eadh0517.  Google Scholar
First citationLorena, G. S., Hasegawa, H., Takahashi, Y., Harada, J. & Inabe, T. (2014). Chem. Lett. 43, 1535–1537.  CSD CrossRef CAS Google Scholar
First citationMilot, R. L., Klug, M. T., Davies, C. L., Wang, Z., Kraus, H., Snaith, H. J., Johnston, M. B. & Herz, L. M. (2018). Adv. Mater. 30, e1804506.  CrossRef PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaal, T., Rahm, M., Christe, K. O. & Haiges, R. (2017). Angew. Chem. Int. Ed. 56, 9587–9591.  CSD CrossRef CAS Google Scholar
First citationSchottenberger, H., Nerdinger, S., Laus, G., Salchner, R., Haslinger, S., Kahlenberg, V., Wurst, K. E., Braun, D., Vergeiner, S., Kopacka, H., Puckowski, A. & Stolte, S. (2015). Heterocycles, 90, 1018–1037.  CSD CrossRef Google Scholar
First citationShamsi, J., Urban, A. S., Imran, M., De Trizio, L. & Manna, L. (2019). Chem. Rev. 119, 3296–3348.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSirenko, V. Y., Kucheriv, O. I., Shova, S. & Gural'skiy, I. A. (2024). Mater. Today, 41, 102452.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStraus, D. B. & Kagan, C. R. (2018). J. Phys. Chem. Lett. 9, 1434–1447.  CrossRef CAS PubMed Google Scholar
First citationSun, H., Yang, Z., Wei, M., Sun, W., Li, X., Ye, S., Zhao, Y., Tan, H., Kynaston, E. L., Schon, T. B., Yan, H., Lu, Z., Ozin, G. A., Sargent, E. H. & Seferos, D. S. (2017). Adv. Mater. 29, 1701153.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, W., Zeng, Y., Tan, Y.-Y., Zhou, J.-H., Xu, W.-J., Zhang, W.-X. & Chen, X.-M. (2019). Chem. Commun. 55, 8983–8986.  CSD CrossRef CAS Google Scholar
First citationZhang, T., Chen, C., Zhang, W.-Y., Ye, Q. & Fu, D.-W. (2018). Inorg. Chem. Front. 5, 2340–2345.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds