research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses, structures and anti­cancer activities of CuII and ZnII complexes containing 1,1′-[(3-fluoro­phen­yl)methyl­ene]bis­­[3-(3-fluoro­phen­yl)imidazo[1,5-a]pyridine]

crossmark logo

aDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bInstitute of Natural Sciences, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, cInstitute of Chemistry, Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, Vietnam, and dDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 November 2024; accepted 28 November 2024; online 1 January 2025)

Two novel complexes, [Cu(T4)Cl2] and [Zn(T4)Cl2], were synthesized from 1,1′-[(3-fluoro­phen­yl)methyl­ene]bis­[3-(3-fluoro­phen­yl)imidazo[1,5-a]pyridine] (T4), and copper(II) and zinc(II) chloride, respectively. The structures of these complexes were confirmed using ESI-MS, IR and 1H NMR spectra. The results reveal mononuclear structures in which the central metal atoms are coordinated by two N atoms from the imidazole rings and two Cl ligands. The structure of the CuT4 complex [systematic name: di­chlorido­{1,1′-[(3-fluoro­phen­yl)methyl­ene]bis­[3-(3-fluoro­phen­yl)imidazo[1,5-a]pyridine]-κ2N,N′}copper(II), [CuCl2(C33H21F3N4)], was confirmed by single-crystal X-ray diffraction. The CuII atom adopts a distorted tetra­hedral coordination environment with an N2Cl2 coordination set. The predominant features of the crystal packing are C—H⋯F, C—H⋯π and C—F⋯π inter­actions. Biological evaluations demonstrated that both complexes exhibit enhanced anti­cancer activity compared to the free ligand, with IC50 values ranging between 18.93 and 67.06 µM. Notably, the CuII complex displays excellent inhibitory activity against the MCF7 breast cancer cell line (IC50 = 27.99 µM), approximately twice as effective as cisplatin. Conversely, the ZnT4 complex shows greater efficacy against Hep-G2 and A549 lung cancer cell lines, with IC50 values between 18.93 and 24.83 µM. The results suggest that CuII and ZnII complexes of T4 show potential as cancer treatment agents.

1. Chemical context

Cancer remains a significant global health challenge, with high mortality rates worldwide. According to data from the World Health Organization (WHO), Vietnam ranks 90th out of 185 countries in terms of new cancer cases and 50th in cancer-related mortality (Globocan Vietnam, 2022[Globocan Vietnam (2022). https://gco.iarc.who.int/media/globocan/factsheets/populations/704-viet-nam-fact-sheet. pdf]). This creates an urgent need for the discovery of innovative and effective anti­cancer therapies. Platinum(II)-based complexes, such as cisplatin, carboplatin, and oxaliplatin, have been playing an important role in cancer chemotherapy for many cancer types worldwide. However, their clinical efficacy is often limited by significant side effects, including high toxicity, drug resistance and a lack of responsiveness across all cancer types (Johnstone et al., 2016[Johnstone, T. C., Suntharalingam, K. & Lippard, S. J. (2016). Chem. Rev. 116, 3436-3486.]). Consequently, research efforts are increasingly focused on the discovery of novel compounds that exhibit improved anti­cancer activity and reduced toxicity profiles (Thi Hong Hai et al., 2019[Thi Hong Hai, L., Thi Ngoc Vinh, N., Thi Tuyen, L., Van Meervelt, L. & Thi Da, T. (2019). J. Coord. Chem. 72, 1637-1651.]; Thong et al., 2022[Thong, P. V., Chi, N. T. T., Azam, M., Hanh, C. H., Hai, L. T. H., Duyen, L. T., Alam, M., Al-Resayes, S. I. & Hai, N. V. (2022). Polyhedron, 212, 115612.]; Linh et al., 2024[Linh, N. T. B., Ninh, N. H., Thong, P. V. T., Dung, T. N., Duong, N. M., Duyen, L. T., Trang, N. T. Q., Hai, L. T. H. & Chi, N. T. T. (2024). Polyhedron, 261, 117117.]). Besides the fact that the research into new PtII complexes is still ongoing despite high costs, recent efforts have also been made to investigate complexes of other d-block metals such as CuII, ZnII, etc. These complexes offer potential advantages over platinum-based drugs, including lower cost and potentially reduced toxicity (Gou et al., 2022[Gou, Y., Jia, X., Hou, L. X., Deng, J. G., Huang, G. J., Jiang, H. W. & Yang, F. (2022). J. Med. Chem. 65, 6677-6689.]; Agarwal et al., 2022[Agarwal, P., Asija, S., Deswal, Y. & Kumar, N. (2022). J. Indian Chem. Soc. 99, 100556.]). Notably, several CuII and ZnII complexes with heterocyclic N-containing polydentate ligands, such as quinoline and pyridine derivatives, have demonstrated promising anti­cancer activity, in some cases exceeding that of cisplatin (Hong et al., 2022[Hong, H. L. T., Huu, T. N., Anh, T. D., Nhat, K. N., Pham Quoc, L., Thanh Dang, T., Nguyen, H. & Van Meervelt, L. (2022). J. Coord. Chem. 75, 335-346.]; Nguyen et al., 2024[Nguyen, H., Dang, T. T., Mai, C. P., Do, T. T., Tran, H. V., Van Meervelt, L. & Le, H. T. H. (2024). Polyhedron, 252, 116885.]; Rani & Roy, 2023[Rani J, J. & Roy, S. (2023). ChemMedChem 18, e202200652.]).

[Scheme 1]

Among the various heterocyclic ligands explored for anti­cancer applications, imidazo[1,5-a]pyridines (ImPys) have emerged as a promising class of compounds (Fig. 1[link]). Characterized by their aromatic ring systems and two heterocyclic nitro­gen atoms (Fig. 1[link]), ImPys exhibit a diverse range of biological activities, including being anti­cancer agents (Priyanga et al., 2019[Priyanga, S., Khamrang, T., Velusamy, M., Karthi, S., Ashokkumar, B. & Mayilmurugan, R. (2019). Dalton Trans. 48, 1489-1503.]; Roy et al., 2011[Roy, M., Chakravarthi, B. V. S. K., Jayabaskaran, C., Karande, A. A. & Chakravarty, A. R. (2011). Dalton Trans. 40, 4855-4864.]), cardiotonic agents (Davey et al., 1987[Davey, D., Erhardt, P. W., Lumma, W. C., Wiggins, J., Sullivan, M., Pang, D. & Cantor, E. (1987). J. Med. Chem. 30, 1337-1342.]), exhibiting anti-HIV activity (Kim et al., 2005[Kim, D., Wang, L. P., Hale, J. J., Lynch, C. L., Budhu, R. J., MacCoss, M., Mills, S. G., Malkowitz, L., Gould, S. L., DeMartino, J. A., Springer, M. S., Hazuda, D., Miller, M., Kessler, J., Hrin, R. C., Carver, G., Carella, A., Henry, K., Lineberger, J., Schleif, W. A. & Emini, E. A. (2005). Bioorg. Med. Chem. Lett. 15, 2129-2134.]), having use in Alzheimer's treatment (Nirogi et al., 2015[Nirogi, R., Mohammed, A. R., Shinde, A. K., Bogaraju, N., Gagginapalli, S. R., Ravella, S. R., Kota, L., Bhyrapuneni, G., Muddana, N. R., Benade, V., Palacharla, R. C., Jayarajan, P., Subramanian, R. & Goyal, V. K. (2015). Eur. J. Med. Chem. 103, 289-301.]) and as anti-inflammatory agents (Fauber et al., 2015[Fauber, B. P., Gobbi, A., Robarge, K., Zhou, A., Barnard, A., Cao, J., Deng, Y., Eidenschenk, C., Everett, C., Ganguli, A., Hawkins, J., Johnson, A. R., La, H., Norman, M., Salmon, G., Summerhill, S., Ouyang, W., Tang, W. & Wong, H. (2015). Bioorg. Med. Chem. Lett. 25, 2907-2912.]). Furthermore, their extended π-conjugated systems make them attractive candidates for optoelectronic applications, as fluorescent sensors, and as cell-imaging markers (Volpi, 2022[Volpi, G. (2022). Asia. J. Org. Chem. 11, e202200171.]; Volpi et al., 2017[Volpi, G., Garino, C., Priola, E., Diana, E., Gobetto, R., Buscaino, R., Viscardi, G. & Barolo, C. (2017). Dyes Pigments, 143, 284-290.]; Yagishita et al., 2018[Yagishita, F., Nii, C., Tezuka, Y., Tabata, A., Nagamune, H., Uemura, N., Yoshida, Y., Mino, T., Sakamoto, M. & Kawamura, Y. (2018). Asia. J. Org. Chem. 7, 1614-1619.]). Additionally, the incorporation of ImPy cores into carbene ligands has led to intriguing applications in catalysis (Yagishita et al., 2020[Yagishita, F., Nagamori, T., Shimokawa, S., Hoshi, K., Yoshida, Y., Imada, Y. & Kawamura, Y. (2020). Tetrahedron Lett. 61, 151782.]).

[Figure 1]
Figure 1
Chemical structure of imidazo[1,5-a]pyridine compounds (ImPys).

The compound 1,1′-[(3-fluoro­phen­yl)methyl­ene]bis­[3-(3-fluoro­phen­yl)imidazo[1,5-a]pyridine] (T4) was synthesized according to a previously reported procedure (Phuc et al., 2023[Phuc, B. V., Nguyen, N. T., Van, N. T. H., Nguyen, T. L., Nguyen, V. H., Tran, C. M., Nguyen, H., Nguyen, M. T., Hung, T. Q. & Dang, T. T. (2023). Chem. Commun. 59, 1947-1950.]). This ligand is capable of coordinating with transition-metal ions through two N atoms to form six-membered chelate ring complexes. The presence of multiple aromatic rings and fluorine substituents suggests that its complexes with d-block metal ions, such as CuII and ZnII, may exhibit cytotoxicity towards cancer cells. In the present study, two novel CuII and ZnII complexes, [Cu(T4)Cl2] and [Zn(T4)Cl2], were synthesized. The structure of the CuT4 complex was confirmed by single-crystal X-ray diffraction, while the structure of ZnT4 complex was characterized by 1H NMR, ESI-MS and IR spectroscopy. Both complexes were found to be mononuclear, with the metal ion coordinated by the ligand via two nitro­gen atoms and completed with two chlorido ligands, resulting in a four-coordinate coordination environment. The cytotoxic activity of these complexes was evaluated against a panel of human cancer cell lines, including carcinoma cells (KB), liver cancer cells (Hep-G2), lung cancer cells (A549) and breast cancer cells (MCF7).

2. Structural commentary

The complex CuT4 crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule in the asymmetric unit (Fig. 2[link]). The CuII atom displays a distorted tetra­hedral coordination with two N atoms from the imidazole rings and two Cl atoms. This is confirmed by the value of 0.90 for the τ4 parameter (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). Typically, for CuII with coordination number 4, a square-planar coordination is observed. The tetra­hedral environment is most likely due to the steric constraints of the ligand and stabilized by the intra­molecular C23—H23⋯Cl2 inter­action (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of rings N2/C2–C6, N3/N4/C9–C10/C15 and N4/C10–C14, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯F3i 0.93 2.47 3.384 (4) 166
C23—H23⋯Cl2 0.93 2.81 3.736 (3) 174
C20—H20⋯Cg1ii 0.93 2.77 3.477 (3) 133
C18—F1⋯Cg2iii 1.35 (1) 3.23 (1) 4.484 (3) 154 (1)
C24—F2⋯Cg3iv 1.36 (1) 3.57 (1) 4.284 (3) 113 (1)
Symmetry codes: (i) [x, y+1, z]; (ii) [-x, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+1]; (iv) [x-1, y, z].
[Figure 2]
Figure 2
The mol­ecular structure of CuT4 showing the atom-labeling scheme and displacement ellipsoids at the 30% probability level. The C—H⋯Cl inter­action is shown as a green dashed line.

The boat conformation of the central Cu-containing six-membered ring is confirmed by the puckering parameters Q = 0.3947 (19) Å, θ = 91.2 (3) and φ = 352.3 (3)° (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). The imidazo[1,5-a]pyridine rings make a dihedral angle of 26.76 (8)°. The mutual angle between the imidazo[1,5-a]pyridine ring containing N1, N2 and phenyl ring C16–C21 is 52.66 (11)°, lower than for the imidazo[1,5-a]pyridine ring containing N3, N4 and phenyl ring C28–C33, which is 85.22 (12)°, thus preventing the inter­nal mirror plane through atoms Cu1, Cl1, Cl2, C8 and C22–C27. The plane of phenyl ring C22–C27 makes an angle of 86.09 (11)° with the best least-squares plane through the central Cu-containing six-membered ring, allowing a short intra­molecular C23—H23⋯Cl2 contact (Table 1[link]), as discussed above.

3. Supra­molecular features

The crystal packing of CuT4 is built up by C—H⋯F, C—H⋯π and C—F⋯π inter­actions (Table 1[link]). One of the pyridine H atoms (H12) forms a C—H⋯F hydrogen bond with atom F3 of an adjacent complex resulting in chain formation parallel to the b-axis direction (Fig. 3[link]). A second chain parallel to the a-axis direction is created by a C—F⋯π inter­action between F2 and one of the pyridine rings (shown in yellow in Fig. 4[link]). Furthermore, two types of inversion dimers are formed. The first one is the result of a C—H⋯π inter­action between H20 and one of the pyridine rings (N3/C2–C6, shown in blue in Fig. 4[link]), and the second is a C—F⋯π inter­action between F1 and one of the imidazole rings (shown in brown in Fig. 4[link]).

[Figure 3]
Figure 3
Partial crystal packing of CuT4 viewed along the a axis showing the C—H⋯F inter­actions as orange lines. Further details are given in Table 1[link].
[Figure 4]
Figure 4
Partial crystal packing of CuT4 viewed along the c axis showing C—H⋯π and C—F⋯π inter­actions as orange lines. Further details are given in Table 1[link].

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.45, updated September 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded 946 structures in which a Cu atom is coordinated by two N atoms forming part of a ring and two Cl ligands. We note that the CSD contains 72 entries containing the fragment bis­(imidazol-1-yl)methane, with 29 structures having a Cu atom bonded to both imidazole rings. In only eight of these hits does the Cu atom show a coordination number of four, but in none is the coordination sphere N2Cl2. The structure most related to CuT4 is chlorido­{1,1′-[(pyridin-2-yl)methyl­ene]bis­[3-(pyridin-2-yl)imidazo[1,5-a]pyridine}­copper ethanol solvate (CSD refcode: ZEHHOL; Chen et al., 2012[Chen, Y., Li, L., Chen, Z., Liu, Y., Hu, H., Chen, W., Liu, W., Li, Y., Lei, T., Cao, Y., Kang, Z., Lin, M. & Li, W. (2012). Inorg. Chem. 51, 9705-9713.]), in which each 3-fluoro­phenyl group of CuT4 is replaced by pyridine. In ZEHHOL, two N atoms of the two imidazo[1,5-a]pyridine units also coordinate to CuII, but one of the two chloride ions is replaced by the N atom of the central pyridine ring with Cu. In CuT4, the central 3-fluoro­phenyl participates in a C—H⋯Cl inter­action. The bis­(imidazo[1,5-a]pyridin-1-yl)methane moiety is less planar in ZEHHOL [dihedral angle between the imidazo[1,5-a]pyridine rings = 119.58 (7)°] than in CuT4. The mol­ecular symmetry of ZEHHOL can be described by point group Cs, with the central pyridine, Cu and Cl atoms lying in the mirror plane. Although this mol­ecular symmetry is also possible for CuT4, it is not observed here, which is probably related to the inter­molecular inter­actions described above.

5. Cytotoxic activity

The cytotoxicity activities of the ligand T4 and its CuII and ZnII complexes were evaluated against four human cancer cell lines, including KB (nasopharyngeal carcinoma), Hep-G2 (liver carcinoma), A549 (lung carcinoma), and MCF7 (breast adenocarcinoma). The colorimetric MTT assay was employed to assess cell viability following treatment with the compounds (Mosmann, 1983[Mosmann, T. (1983). J. Immunol. Methods, 65, 55-63.]; Scudiero et al., 1988[Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D. & Boyd, M. R. (1988). Cancer Res. 48, 4827-4833.]; Malacrida et al., 2019[Malacrida, A., Cavalloro, V., Martino, E., Cassetti, A., Nicolini, G., Rigolio, R., Cavaletti, G., Mannucci, B., Vasile, F., Giacomo, M. D., Collina, S. & Miloso, M. (2019). Molecules, 24, 2500.]). The data presented in Fig. 5[link] and Table 2[link] indicate that both metal complexes exhibit better anti­cancer activity compared to the free ligand, with IC50 values ranging from approximately 18.93 to 67.06 µM. Notably, the CuII complex CuT4 demonstrates enhanced inhibitory activity against the MCF7 cell line, yielding an IC50 value of 27.99 µM, approximately twice as effective as cisplatin, a widely used chemotherapeutic agent. Conversely, the ZnT4 complex exhibits greater efficacy than CuT4 in inhibiting cell growth in Hep-G2 and A549 cell lines, with IC50 values between 18.93 and 24.83 µM.

Table 2
In vitro cytotoxicity of CuT4, ZnT4 and reference compounds against four human cancer cell lines, IC50 in μM

Compound KB Hep-G2 A549 MCF7
CuT4 34.18 ± 1.12 27.80 ± 1.14 31.63 ± 1.66 27.99 ± 1.11
ZnT4 - 18.93 ± 1.41 24.83 ± 1.30 67.06 ± 1.81
T4 > 100 > 100 > 100 > 100
Cisplatina 15.3 13.3 - 45.7
Ellipticine 1.75 ± 0.08 1.71 ± 0.08 1.75 ± 0.08 1.71 ± 0.12
Note: (a) Chi et al. (2020[Chi, N. T. T., Pham, V. T. & Huynh, H. V. (2020). Organometallics, 39, 3505-3513.]).
[Figure 5]
Figure 5
Cytotoxic activities for Hep-G2, A549 and MCF7 of CuT4 and ZnT4.

6. Synthesis and crystallization

The reaction sequence for T4, CuT4 and ZnT4 is shown in Fig. 6[link].

[Figure 6]
Figure 6
Synthesis scheme of T4 and CuT4, ZnT4 complexes.

Synthesis of 1,1′-[(3-fluoro­phen­yl)methyl­ene]bis­[3-(3-fluoro­phen­yl)imidazo[1,5-a]pyridine] (T4)

The ligand T4 was synthesized following the procedure reported by Phuc et al. (2023[Phuc, B. V., Nguyen, N. T., Van, N. T. H., Nguyen, T. L., Nguyen, V. H., Tran, C. M., Nguyen, H., Nguyen, M. T., Hung, T. Q. & Dang, T. T. (2023). Chem. Commun. 59, 1947-1950.]). 1H NMR (600 MHz, DMSO-d6, ppm): 6.37 (1H, s, CH), 6.55 (2H, m, Ar-H), 6.66 (2H, m, Ar-H), 6.94 (1H, m, Ar-H), 7.11–7.23 (3H, m, Ar-H), 7.29 (2H, m, Ar-H), 7.46–7.55 (4H, m, Ar-H), 7.60 (4H, m, Ar-H), 8.22 (2H, 3J = 7.2 Hz, 4J = 1.2 Hz, dd, Ar-H). IR (KBr, cm−1): 3071 (νC—H ar­yl), 1613, 1585, 1516 (νC=C ar­yl), 1470, 1444, 1407 (νC=N ar­yl).

FT-IR and 1H NMR spectra of T4 are given in the electronic supplementary information (ESI), Figs. S1 and S2, respectively.

Synthesis of di­chlorido­{1,1′-[(3-fluoro­phen­yl)methyl­ene]bis­[3-(3-fluoro­phen­yl)imidazo[1,5-a]pyridine]-κ2N,N′}copper(II) (CuT4)

To a solution of 1,1′-[(3-fluoro­phen­yl)methyl­ene]bis­[3-(3-fluoro­phen­yl)imidazo[1,5-a]pyridine] (53.26 mg, 0.10 mmol) completely dissolved in 3 ml of ethanol, a solution containing copper(II) chloride dihydrate (20.52 mg, 0.12 mmol) in 2 ml of ethanol was slowly added, resulting in the rapid formation of a green precipitate. After 12 h of continuous stirring at room temperature, the product CuT4 was filtered and washed with cold ethanol (yield 89%). The CuT4 complex exhibited poor solubility in ethanol but good solubility in DCM and DMSO. Recrystallization was performed at room temperature using vapor diffusion of n-hexane into a saturated solution of CuT4 in a DCM–ethanol mixture (v/v = 1:1) yielding green single crystals after 24 h. IR (KBr, cm−1): 2964, 2886 (νC—H ar­yl), 1560, 1523 (νC=C ar­yl), 1433, 1405 (νC=N ar­yl). MS (ESI+): 681.0 (100%), [Cu(T4)Cl2 + H2O + H]+, 744.9 (60%), [Cu(T4)Cl2 + DMSO + H]+, MS (ESI-): 631.5 (100%), [Cu(T4)Cl2 – Cl – 2H].

ESI-MS and FT-IR spectra of CuT4 are given in the ESI, Figs. S3, S4 and S5, respectively. Fig. S6 shows a picture of the CuT4 crystals.

Synthesis of di­chlorido­{1,1′-[(3-fluoro­phen­yl)methyl­ene]bis­[3-(3-fluoro­phen­yl)imidazo[1,5-a]pyridine]-κ2N,N′}zinc(II) (ZnT4)

To a solution of 1,1′-[(3-fluoro­phen­yl)methyl­ene]bis­[3-(3-fluoro­phen­yl)imidazo[1,5-a]pyridine] (53.26 mg, 0.10 mmol) completely dissolved in 3 ml of ethanol, a solution containing zinc(II) chloride (16.32 mg, 0.12 mmol) in 2 ml ethanol was slowly added, resulting in the rapid formation of a colorless precipitate. After 12 h of continuous stirring at room temperature, the product ZnT4 was filtered and washed with cold ethanol (yield 85%). Recrystallization of ZnT4 was performed as described for CuT4. 1H NMR (600 MHz, DMSO-d6, ppm): 6.374 (1H, s, CH), 6.713 (2H, 3J = 7.2 Hz, 4J = 1.2 Hz, td, Ar-H), 6.805 (2H, 3J = 7.2 Hz, t, Ar-H), 7.032 (1H, m, Ar-H), 7.259 7.350 (5H, m, Ar-H), 7.557 7.616 (4H, m, Ar-H), 7.660 7.677 (4H, m, Ar-H), 8.459 (2H, 3J = 7.2 Hz, d, Ar-H). IR (KBr, cm−1): 1618, 1608, 1585 (νC=C ar­yl), 1525, 1471 (νC=N ar­yl). MS (ESI+): 629.0 (60%), [Zn(T4)Cl2 – Cl]+.

ESI-MS, FT-IR and 1H NMR spectra of ZnT4 are given in the ESI, Figs. S7, S8 and S9, respectively.

In the positive-mode electrospray ionization mass spectrometry (ESI-MS) spectrum of the ZnT4 complex, a peak cluster corresponding to the [Zn(T4)Cl]+ cation fragment was observed with a relative abundance of 60%, indicating that this fragment resulted from the release of one chlorido ligand from ZnT4. Furthermore, there was consistency between the experimental and calculated spectrum in the number and ratio of peaks in the [Zn(T4)Cl2 – Cl]+ ion peak cluster (Fig. 7[link]). The IR spectrum of ZnT4 further confirmed an increase in frequency of valence vibrations of aromatic C=N and C=C bonds. In addition, the 1H NMR spectrum of ZnT4 revealed that all proton signals corresponding to the T4 ligand were present, and that signals from all protons located near the coordination center are shifted compared to the free ligand. These spectroscopic data support the proposed mol­ecular formula for the ZnT4 complex as [Zn(T4)Cl2], where the central ZnII ion is coordinated by two nitro­gen atoms of the imidazole rings of the T4 ligand while also binding to two chlorido ligands.

[Figure 7]
Figure 7
(a) Experimental isotope peaks and (b) theoretical isotope peaks of the fragment [Zn(T4)Cl2 – Cl]+ in the ESI+ spectrum of ZnT4.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in idealized positions and refined in riding mode with C—H distances of 0.93 (aromatic) and 0.98 Å (CH). Non-hydrogen atoms were refined anisotropically (rigid bond constraints for C24 and F2) and hydrogen atoms with isotropic temperature factors fixed at 1.2 times Ueq of the parent atoms.

Table 3
Experimental details

Crystal data
Chemical formula [CuCl2(C33H21F3N4)]
Mr 664.98
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 294
a, b, c (Å) 9.3994 (2), 10.8016 (3), 15.2355 (4)
α, β, γ (°) 104.272 (2), 99.186 (2), 101.529 (2)
V3) 1432.87 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.3 × 0.3 × 0.1
 
Data collection
Diffractometer SuperNova, Single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.742, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29600, 5864, 4963
Rint 0.033
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.07
No. of reflections 5864
No. of parameters 388
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.73, −0.42
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Dichlorido{1,1'-[(3-fluorophenyl)methylene]bis[3-(3-fluorophenyl)imidazo[1,5-a]pyridine]-κ2N,N'}copper(II) top
Crystal data top
[CuCl2(C33H21F3N4)]Z = 2
Mr = 664.98F(000) = 674
Triclinic, P1Dx = 1.541 Mg m3
a = 9.3994 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8016 (3) ÅCell parameters from 12271 reflections
c = 15.2355 (4) Åθ = 2.6–26.4°
α = 104.272 (2)°µ = 1.00 mm1
β = 99.186 (2)°T = 294 K
γ = 101.529 (2)°Plate, green
V = 1432.87 (7) Å30.3 × 0.3 × 0.1 mm
Data collection top
SuperNova, Single source at offset/far, Eos
diffractometer
5864 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source4963 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1313
Tmin = 0.742, Tmax = 1.000l = 1919
29600 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.9126P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5864 reflectionsΔρmax = 0.73 e Å3
388 parametersΔρmin = 0.42 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.35886 (3)0.61095 (3)0.72622 (2)0.03217 (9)
Cl10.47558 (8)0.45051 (7)0.70330 (6)0.05887 (19)
F10.2895 (2)0.16205 (17)0.34675 (15)0.0867 (6)
N10.3092 (2)0.67074 (18)0.60887 (12)0.0326 (4)
C10.2618 (2)0.5909 (2)0.52193 (15)0.0321 (5)
Cl20.15785 (7)0.57489 (7)0.78641 (5)0.05071 (17)
F20.0417 (2)0.9011 (2)0.82735 (14)0.0835 (6)
N20.26041 (19)0.66471 (17)0.46111 (12)0.0309 (4)
C20.2068 (3)0.6273 (2)0.36579 (15)0.0363 (5)
H20.1705310.5386090.3327650.044*
F30.9069 (3)0.5333 (2)0.9251 (2)0.1161 (9)
N30.4955 (2)0.79439 (18)0.79499 (13)0.0349 (4)
C30.2079 (3)0.7207 (2)0.32181 (16)0.0406 (5)
H30.1708170.6962060.2579970.049*
N40.6629 (2)0.95568 (19)0.90043 (13)0.0369 (4)
C40.2652 (3)0.8570 (2)0.37145 (16)0.0400 (5)
H40.2687680.9202110.3394330.048*
C50.3143 (2)0.8951 (2)0.46476 (16)0.0351 (5)
H50.3501750.9841300.4970130.042*
C60.3107 (2)0.7979 (2)0.51320 (15)0.0304 (5)
C70.3401 (2)0.7989 (2)0.60494 (15)0.0310 (5)
C80.3920 (2)0.9203 (2)0.68733 (15)0.0331 (5)
H80.4512100.9878820.6659550.040*
C90.4942 (2)0.9085 (2)0.77024 (15)0.0321 (5)
C100.5982 (2)1.0114 (2)0.83562 (15)0.0345 (5)
C110.6495 (3)1.1494 (2)0.85004 (17)0.0422 (6)
H110.6084841.1899580.8085830.051*
C120.7586 (3)1.2208 (3)0.92489 (19)0.0545 (7)
H120.7935611.3109410.9342850.065*
C130.8212 (3)1.1605 (3)0.9897 (2)0.0597 (8)
H130.8952681.2120131.0412110.072*
C140.7747 (3)1.0308 (3)0.97746 (18)0.0511 (7)
H140.8163060.9915231.0195970.061*
C150.5985 (2)0.8244 (2)0.87332 (16)0.0366 (5)
C160.2168 (2)0.4460 (2)0.49540 (15)0.0337 (5)
C170.2754 (3)0.3710 (2)0.42919 (17)0.0433 (6)
H170.3420330.4107410.3992140.052*
C180.2314 (3)0.2358 (3)0.40951 (19)0.0506 (7)
C190.1331 (3)0.1725 (3)0.4508 (2)0.0499 (6)
H190.1049230.0808230.4347270.060*
C200.0768 (3)0.2477 (2)0.51667 (18)0.0455 (6)
H200.0107760.2067160.5464130.055*
C210.1176 (3)0.3841 (2)0.53914 (16)0.0384 (5)
H210.0784560.4343470.5835400.046*
C220.2634 (3)0.9763 (2)0.71679 (15)0.0353 (5)
C230.1630 (3)0.9087 (3)0.75644 (17)0.0440 (6)
H230.1679920.8258240.7622080.053*
C240.0557 (3)0.9667 (3)0.78711 (19)0.0535 (7)
C250.0420 (3)1.0879 (3)0.7803 (2)0.0594 (8)
H250.0318771.1242010.8021040.071*
C260.1412 (4)1.1541 (3)0.7400 (2)0.0599 (8)
H260.1344161.2366110.7343090.072*
C270.2515 (3)1.0991 (2)0.70780 (18)0.0470 (6)
H270.3174341.1445100.6801990.056*
C280.6448 (3)0.7346 (2)0.92467 (16)0.0390 (5)
C290.7529 (3)0.6719 (3)0.8994 (2)0.0534 (7)
H290.7915380.6811330.8481710.064*
C300.8018 (3)0.5958 (3)0.9516 (2)0.0614 (8)
C310.7501 (4)0.5788 (3)1.0267 (2)0.0659 (9)
H310.7865500.5267651.0606480.079*
C320.6423 (5)0.6407 (4)1.0515 (2)0.0765 (10)
H320.6043020.6302021.1027050.092*
C330.5898 (4)0.7190 (3)1.0003 (2)0.0651 (8)
H330.5169620.7608911.0175910.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03619 (16)0.02714 (15)0.03347 (15)0.00529 (11)0.00489 (11)0.01311 (11)
Cl10.0579 (4)0.0430 (4)0.0797 (5)0.0217 (3)0.0113 (4)0.0201 (3)
F10.1089 (16)0.0487 (10)0.1097 (16)0.0250 (10)0.0649 (13)0.0058 (10)
N10.0380 (10)0.0286 (9)0.0321 (10)0.0075 (8)0.0080 (8)0.0108 (8)
C10.0347 (11)0.0311 (11)0.0318 (11)0.0080 (9)0.0090 (9)0.0102 (9)
Cl20.0516 (4)0.0562 (4)0.0474 (4)0.0068 (3)0.0177 (3)0.0216 (3)
F20.0684 (12)0.1194 (17)0.0961 (14)0.0426 (11)0.0481 (10)0.0569 (13)
N20.0336 (9)0.0290 (9)0.0311 (9)0.0078 (8)0.0079 (7)0.0101 (8)
C20.0413 (13)0.0366 (12)0.0297 (11)0.0097 (10)0.0074 (9)0.0077 (9)
F30.0980 (17)0.1124 (19)0.198 (3)0.0665 (15)0.0602 (17)0.1031 (19)
N30.0350 (10)0.0329 (10)0.0357 (10)0.0077 (8)0.0038 (8)0.0113 (8)
C30.0468 (14)0.0467 (14)0.0309 (12)0.0141 (11)0.0078 (10)0.0140 (10)
N40.0372 (10)0.0361 (11)0.0332 (10)0.0065 (8)0.0038 (8)0.0069 (8)
C40.0444 (13)0.0413 (13)0.0410 (13)0.0117 (11)0.0112 (10)0.0219 (11)
C50.0336 (12)0.0310 (12)0.0411 (13)0.0056 (9)0.0072 (10)0.0137 (10)
C60.0295 (11)0.0268 (11)0.0345 (11)0.0061 (8)0.0069 (9)0.0085 (9)
C70.0313 (11)0.0282 (11)0.0338 (11)0.0067 (9)0.0064 (9)0.0107 (9)
C80.0365 (12)0.0285 (11)0.0332 (11)0.0052 (9)0.0051 (9)0.0105 (9)
C90.0327 (11)0.0300 (11)0.0337 (11)0.0081 (9)0.0081 (9)0.0086 (9)
C100.0362 (12)0.0332 (12)0.0339 (12)0.0093 (9)0.0105 (9)0.0070 (9)
C110.0507 (14)0.0333 (13)0.0413 (13)0.0093 (11)0.0142 (11)0.0070 (10)
C120.0626 (18)0.0336 (14)0.0540 (17)0.0005 (12)0.0105 (13)0.0003 (12)
C130.0593 (18)0.0528 (18)0.0449 (16)0.0036 (14)0.0041 (13)0.0017 (13)
C140.0505 (15)0.0503 (16)0.0390 (14)0.0042 (12)0.0045 (11)0.0045 (12)
C150.0343 (12)0.0378 (13)0.0350 (12)0.0063 (10)0.0026 (9)0.0107 (10)
C160.0387 (12)0.0275 (11)0.0342 (12)0.0077 (9)0.0058 (9)0.0093 (9)
C170.0498 (14)0.0358 (13)0.0478 (14)0.0108 (11)0.0187 (12)0.0134 (11)
C180.0603 (17)0.0336 (13)0.0574 (16)0.0180 (12)0.0185 (13)0.0039 (12)
C190.0530 (16)0.0298 (13)0.0652 (18)0.0076 (11)0.0089 (13)0.0153 (12)
C200.0421 (14)0.0389 (14)0.0551 (16)0.0030 (11)0.0088 (12)0.0198 (12)
C210.0405 (13)0.0351 (12)0.0387 (13)0.0078 (10)0.0098 (10)0.0096 (10)
C220.0410 (12)0.0333 (12)0.0290 (11)0.0112 (10)0.0007 (9)0.0073 (9)
C230.0458 (14)0.0457 (15)0.0463 (14)0.0184 (12)0.0116 (11)0.0174 (12)
C240.0493 (15)0.073 (2)0.0460 (15)0.0243 (13)0.0129 (11)0.0218 (13)
C250.0601 (18)0.076 (2)0.0488 (16)0.0425 (16)0.0098 (14)0.0115 (15)
C260.073 (2)0.0493 (16)0.0602 (18)0.0351 (15)0.0036 (15)0.0121 (14)
C270.0573 (16)0.0369 (13)0.0498 (15)0.0180 (12)0.0090 (12)0.0145 (11)
C280.0391 (13)0.0387 (13)0.0344 (12)0.0050 (10)0.0012 (10)0.0115 (10)
C290.0510 (16)0.0518 (16)0.0690 (19)0.0140 (13)0.0183 (14)0.0339 (14)
C300.0516 (17)0.0530 (17)0.089 (2)0.0164 (14)0.0101 (16)0.0390 (17)
C310.081 (2)0.0512 (18)0.0596 (19)0.0098 (16)0.0113 (16)0.0280 (15)
C320.119 (3)0.072 (2)0.0448 (17)0.017 (2)0.0236 (18)0.0300 (16)
C330.087 (2)0.071 (2)0.0524 (17)0.0322 (18)0.0300 (16)0.0253 (16)
Geometric parameters (Å, º) top
Cu1—Cl12.2164 (7)C12—C131.425 (4)
Cu1—N12.0626 (18)C13—H130.9300
Cu1—Cl22.2356 (7)C13—C141.338 (4)
Cu1—N32.0503 (19)C14—H140.9300
F1—C181.346 (3)C15—C281.476 (3)
N1—C11.338 (3)C16—C171.389 (3)
N1—C71.375 (3)C16—C211.389 (3)
C1—N21.363 (3)C17—H170.9300
C1—C161.470 (3)C17—C181.378 (3)
F2—C241.360 (3)C18—C191.365 (4)
N2—C21.386 (3)C19—H190.9300
N2—C61.403 (3)C19—C201.374 (4)
C2—H20.9300C20—H200.9300
C2—C31.341 (3)C20—C211.386 (3)
F3—C301.362 (4)C21—H210.9300
N3—C91.376 (3)C22—C231.383 (3)
N3—C151.334 (3)C22—C271.391 (3)
C3—H30.9300C23—H230.9300
C3—C41.426 (3)C23—C241.374 (4)
N4—C101.398 (3)C24—C251.368 (4)
N4—C141.391 (3)C25—H250.9300
N4—C151.355 (3)C25—C261.374 (4)
C4—H40.9300C26—H260.9300
C4—C51.353 (3)C26—C271.391 (4)
C5—H50.9300C27—H270.9300
C5—C61.422 (3)C28—C291.382 (4)
C6—C71.378 (3)C28—C331.370 (4)
C7—C81.507 (3)C29—H290.9300
C8—H80.9800C29—C301.370 (4)
C8—C91.508 (3)C30—C311.350 (5)
C8—C221.536 (3)C31—H310.9300
C9—C101.376 (3)C31—C321.372 (5)
C10—C111.421 (3)C32—H320.9300
C11—H110.9300C32—C331.392 (4)
C11—C121.351 (4)C33—H330.9300
C12—H120.9300
Cl1—Cu1—Cl2116.29 (3)N4—C14—H14120.7
N1—Cu1—Cl1112.26 (6)C13—C14—N4118.7 (3)
N1—Cu1—Cl2110.16 (6)C13—C14—H14120.7
N3—Cu1—Cl1114.35 (6)N3—C15—N4109.3 (2)
N3—Cu1—N190.32 (7)N3—C15—C28128.2 (2)
N3—Cu1—Cl2110.56 (6)N4—C15—C28122.5 (2)
C1—N1—Cu1125.46 (15)C17—C16—C1120.7 (2)
C1—N1—C7108.16 (18)C21—C16—C1119.2 (2)
C7—N1—Cu1125.71 (14)C21—C16—C17120.0 (2)
N1—C1—N2109.51 (19)C16—C17—H17121.2
N1—C1—C16125.6 (2)C18—C17—C16117.6 (2)
N2—C1—C16124.88 (19)C18—C17—H17121.2
C1—N2—C2130.42 (19)F1—C18—C17118.3 (2)
C1—N2—C6107.59 (17)F1—C18—C19118.2 (2)
C2—N2—C6121.66 (19)C19—C18—C17123.6 (2)
N2—C2—H2120.4C18—C19—H19120.9
C3—C2—N2119.2 (2)C18—C19—C20118.2 (2)
C3—C2—H2120.4C20—C19—H19120.9
C9—N3—Cu1126.13 (15)C19—C20—H20119.7
C15—N3—Cu1125.70 (16)C19—C20—C21120.5 (2)
C15—N3—C9108.14 (19)C21—C20—H20119.7
C2—C3—H3119.5C16—C21—H21120.0
C2—C3—C4121.0 (2)C20—C21—C16120.0 (2)
C4—C3—H3119.5C20—C21—H21120.0
C14—N4—C10122.1 (2)C23—C22—C8120.7 (2)
C15—N4—C10108.36 (18)C23—C22—C27119.4 (2)
C15—N4—C14129.5 (2)C27—C22—C8119.9 (2)
C3—C4—H4119.8C22—C23—H23120.8
C5—C4—C3120.5 (2)C24—C23—C22118.5 (2)
C5—C4—H4119.8C24—C23—H23120.8
C4—C5—H5120.2F2—C24—C23118.5 (3)
C4—C5—C6119.5 (2)F2—C24—C25117.9 (3)
C6—C5—H5120.2C25—C24—C23123.6 (3)
N2—C6—C5118.08 (19)C24—C25—H25121.1
C7—C6—N2106.10 (18)C24—C25—C26117.7 (3)
C7—C6—C5135.8 (2)C26—C25—H25121.1
N1—C7—C6108.62 (18)C25—C26—H26119.6
N1—C7—C8125.69 (19)C25—C26—C27120.7 (3)
C6—C7—C8125.6 (2)C27—C26—H26119.6
C7—C8—H8105.6C22—C27—H27119.9
C7—C8—C9115.73 (18)C26—C27—C22120.1 (3)
C7—C8—C22112.84 (18)C26—C27—H27119.9
C9—C8—H8105.6C29—C28—C15119.1 (2)
C9—C8—C22110.64 (18)C33—C28—C15121.2 (2)
C22—C8—H8105.6C33—C28—C29119.5 (3)
N3—C9—C8125.95 (19)C28—C29—H29120.8
C10—C9—N3108.66 (19)C30—C29—C28118.4 (3)
C10—C9—C8125.3 (2)C30—C29—H29120.8
N4—C10—C11118.2 (2)F3—C30—C29117.6 (3)
C9—C10—N4105.58 (19)C31—C30—F3118.8 (3)
C9—C10—C11136.2 (2)C31—C30—C29123.5 (3)
C10—C11—H11120.5C30—C31—H31120.9
C12—C11—C10119.0 (3)C30—C31—C32118.1 (3)
C12—C11—H11120.5C32—C31—H31120.9
C11—C12—H12119.4C31—C32—H32119.9
C11—C12—C13121.2 (3)C31—C32—C33120.2 (3)
C13—C12—H12119.4C33—C32—H32119.9
C12—C13—H13119.6C28—C33—C32120.3 (3)
C14—C13—C12120.8 (3)C28—C33—H33119.9
C14—C13—H13119.6C32—C33—H33119.9
Cu1—N1—C1—N2171.40 (14)C7—C8—C22—C27113.8 (2)
Cu1—N1—C1—C169.1 (3)C8—C9—C10—N4178.2 (2)
Cu1—N1—C7—C6171.14 (14)C8—C9—C10—C111.9 (4)
Cu1—N1—C7—C810.9 (3)C8—C22—C23—C24175.8 (2)
Cu1—N3—C9—C80.3 (3)C8—C22—C27—C26175.7 (2)
Cu1—N3—C9—C10177.62 (15)C9—N3—C15—N40.6 (3)
Cu1—N3—C15—N4177.56 (14)C9—N3—C15—C28177.5 (2)
Cu1—N3—C15—C284.4 (4)C9—C8—C22—C2362.1 (3)
F1—C18—C19—C20178.3 (3)C9—C8—C22—C27114.8 (2)
N1—C1—N2—C2172.9 (2)C9—C10—C11—C12179.4 (3)
N1—C1—N2—C60.4 (2)C10—N4—C14—C130.2 (4)
N1—C1—C16—C17129.4 (3)C10—N4—C15—N30.4 (3)
N1—C1—C16—C2148.9 (3)C10—N4—C15—C28177.7 (2)
N1—C7—C8—C935.2 (3)C10—C11—C12—C130.8 (4)
N1—C7—C8—C2293.7 (3)C11—C12—C13—C140.9 (5)
C1—N1—C7—C60.1 (2)C12—C13—C14—N40.5 (4)
C1—N1—C7—C8178.1 (2)C14—N4—C10—C9179.8 (2)
C1—N2—C2—C3174.9 (2)C14—N4—C10—C110.1 (3)
C1—N2—C6—C5177.90 (19)C14—N4—C15—N3179.9 (2)
C1—N2—C6—C70.4 (2)C14—N4—C15—C281.9 (4)
C1—C16—C17—C18178.3 (2)C15—N3—C9—C8178.4 (2)
C1—C16—C21—C20178.4 (2)C15—N3—C9—C100.5 (3)
F2—C24—C25—C26179.6 (3)C15—N4—C10—C90.1 (2)
N2—C1—C16—C1751.1 (3)C15—N4—C10—C11179.8 (2)
N2—C1—C16—C21130.6 (2)C15—N4—C14—C13179.8 (3)
N2—C2—C3—C40.9 (4)C15—C28—C29—C30175.7 (2)
N2—C6—C7—N10.1 (2)C15—C28—C33—C32175.7 (3)
N2—C6—C7—C8177.80 (19)C16—C1—N2—C26.7 (4)
C2—N2—C6—C53.9 (3)C16—C1—N2—C6180.0 (2)
C2—N2—C6—C7173.66 (19)C16—C17—C18—F1178.8 (2)
C2—C3—C4—C52.6 (4)C16—C17—C18—C190.6 (4)
F3—C30—C31—C32178.9 (3)C17—C16—C21—C200.1 (4)
N3—C9—C10—N40.3 (2)C17—C18—C19—C201.1 (4)
N3—C9—C10—C11179.9 (3)C18—C19—C20—C211.0 (4)
N3—C15—C28—C2985.9 (3)C19—C20—C21—C160.4 (4)
N3—C15—C28—C3398.4 (3)C21—C16—C17—C180.0 (4)
C3—C4—C5—C61.0 (3)C22—C8—C9—N3100.8 (2)
N4—C10—C11—C120.4 (3)C22—C8—C9—C1076.8 (3)
N4—C15—C28—C2991.9 (3)C22—C23—C24—F2179.0 (2)
N4—C15—C28—C3383.8 (3)C22—C23—C24—C250.3 (4)
C4—C5—C6—N22.1 (3)C23—C22—C27—C261.2 (4)
C4—C5—C6—C7174.5 (2)C23—C24—C25—C260.3 (4)
C5—C6—C7—N1177.0 (2)C24—C25—C26—C270.2 (4)
C5—C6—C7—C80.9 (4)C25—C26—C27—C220.6 (4)
C6—N2—C2—C32.4 (3)C27—C22—C23—C241.0 (4)
C6—C7—C8—C9147.2 (2)C28—C29—C30—F3179.2 (3)
C6—C7—C8—C2283.9 (3)C28—C29—C30—C310.1 (5)
C7—N1—C1—N20.3 (2)C29—C28—C33—C320.1 (5)
C7—N1—C1—C16179.9 (2)C29—C30—C31—C320.4 (5)
C7—C8—C9—N329.1 (3)C30—C31—C32—C330.4 (5)
C7—C8—C9—C10153.3 (2)C31—C32—C33—C280.2 (5)
C7—C8—C22—C2369.4 (3)C33—C28—C29—C300.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of rings N2/C2–C6, N3/N4/C9–C10/C15 and N4/C10–C14, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···F3i0.932.473.384 (4)166
C23—H23···Cl20.932.813.736 (3)174
C20—H20···Cg1ii0.932.773.477 (3)133
C18—F1···Cg2iii1.35 (1)3.23 (1)4.484 (3)154 (1)
C24—F2···Cg3iv1.36 (1)3.57 (1)4.284 (3)113 (1)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z.
In vitro cytotoxicity of CuT4, ZnT4 and reference compounds against four human cancer cell lines, IC50 in µM top
CompoundKBHep-G2A549MCF7
CuT434.18 ± 1.1227.80 ± 1.1431.63 ± 1.6627.99 ± 1.11
ZnT4-18.93 ± 1.4124.83 ± 1.3067.06 ± 1.81
T4> 100> 100> 100> 100
Cisplatina15.313.3-45.7
Ellipticine1.75 ± 0.081.71 ± 0.081.75 ± 0.081.71 ± 0.12
Note: (a) Chi et al. (2020).
 

Acknowledgements

The authors would like to thank the Hanoi National University of Education for providing a fruitful working environment. LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationAgarwal, P., Asija, S., Deswal, Y. & Kumar, N. (2022). J. Indian Chem. Soc. 99, 100556.  CrossRef Google Scholar
First citationChen, Y., Li, L., Chen, Z., Liu, Y., Hu, H., Chen, W., Liu, W., Li, Y., Lei, T., Cao, Y., Kang, Z., Lin, M. & Li, W. (2012). Inorg. Chem. 51, 9705–9713.  CSD CrossRef CAS PubMed Google Scholar
First citationChi, N. T. T., Pham, V. T. & Huynh, H. V. (2020). Organometallics, 39, 3505–3513.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDavey, D., Erhardt, P. W., Lumma, W. C., Wiggins, J., Sullivan, M., Pang, D. & Cantor, E. (1987). J. Med. Chem. 30, 1337–1342.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFauber, B. P., Gobbi, A., Robarge, K., Zhou, A., Barnard, A., Cao, J., Deng, Y., Eidenschenk, C., Everett, C., Ganguli, A., Hawkins, J., Johnson, A. R., La, H., Norman, M., Salmon, G., Summerhill, S., Ouyang, W., Tang, W. & Wong, H. (2015). Bioorg. Med. Chem. Lett. 25, 2907–2912.  CrossRef CAS PubMed Google Scholar
First citationGlobocan Vietnam (2022). https://gco.iarc.who.int/media/globocan/factsheets/populations/704-viet-nam-fact-sheet. pdf  Google Scholar
First citationGou, Y., Jia, X., Hou, L. X., Deng, J. G., Huang, G. J., Jiang, H. W. & Yang, F. (2022). J. Med. Chem. 65, 6677–6689.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHong, H. L. T., Huu, T. N., Anh, T. D., Nhat, K. N., Pham Quoc, L., Thanh Dang, T., Nguyen, H. & Van Meervelt, L. (2022). J. Coord. Chem. 75, 335–346.  CSD CrossRef CAS Google Scholar
First citationJohnstone, T. C., Suntharalingam, K. & Lippard, S. J. (2016). Chem. Rev. 116, 3436–3486.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKim, D., Wang, L. P., Hale, J. J., Lynch, C. L., Budhu, R. J., MacCoss, M., Mills, S. G., Malkowitz, L., Gould, S. L., DeMartino, J. A., Springer, M. S., Hazuda, D., Miller, M., Kessler, J., Hrin, R. C., Carver, G., Carella, A., Henry, K., Lineberger, J., Schleif, W. A. & Emini, E. A. (2005). Bioorg. Med. Chem. Lett. 15, 2129–2134.  CrossRef PubMed CAS Google Scholar
First citationLinh, N. T. B., Ninh, N. H., Thong, P. V. T., Dung, T. N., Duong, N. M., Duyen, L. T., Trang, N. T. Q., Hai, L. T. H. & Chi, N. T. T. (2024). Polyhedron, 261, 117117.  CrossRef Google Scholar
First citationMalacrida, A., Cavalloro, V., Martino, E., Cassetti, A., Nicolini, G., Rigolio, R., Cavaletti, G., Mannucci, B., Vasile, F., Giacomo, M. D., Collina, S. & Miloso, M. (2019). Molecules, 24, 2500.  CrossRef PubMed Google Scholar
First citationMosmann, T. (1983). J. Immunol. Methods, 65, 55–63.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNguyen, H., Dang, T. T., Mai, C. P., Do, T. T., Tran, H. V., Van Meervelt, L. & Le, H. T. H. (2024). Polyhedron, 252, 116885.  CSD CrossRef Google Scholar
First citationNirogi, R., Mohammed, A. R., Shinde, A. K., Bogaraju, N., Gagginapalli, S. R., Ravella, S. R., Kota, L., Bhyrapuneni, G., Muddana, N. R., Benade, V., Palacharla, R. C., Jayarajan, P., Subramanian, R. & Goyal, V. K. (2015). Eur. J. Med. Chem. 103, 289–301.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPhuc, B. V., Nguyen, N. T., Van, N. T. H., Nguyen, T. L., Nguyen, V. H., Tran, C. M., Nguyen, H., Nguyen, M. T., Hung, T. Q. & Dang, T. T. (2023). Chem. Commun. 59, 1947–1950.  CrossRef CAS Google Scholar
First citationPriyanga, S., Khamrang, T., Velusamy, M., Karthi, S., Ashokkumar, B. & Mayilmurugan, R. (2019). Dalton Trans. 48, 1489–1503.  CSD CrossRef CAS PubMed Google Scholar
First citationRani J, J. & Roy, S. (2023). ChemMedChem 18, e202200652.  CrossRef PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRoy, M., Chakravarthi, B. V. S. K., Jayabaskaran, C., Karande, A. A. & Chakravarty, A. R. (2011). Dalton Trans. 40, 4855–4864.  CrossRef CAS PubMed Google Scholar
First citationScudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D. & Boyd, M. R. (1988). Cancer Res. 48, 4827–4833.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThi Hong Hai, L., Thi Ngoc Vinh, N., Thi Tuyen, L., Van Meervelt, L. & Thi Da, T. (2019). J. Coord. Chem. 72, 1637–1651.  Web of Science CSD CrossRef Google Scholar
First citationThong, P. V., Chi, N. T. T., Azam, M., Hanh, C. H., Hai, L. T. H., Duyen, L. T., Alam, M., Al-Resayes, S. I. & Hai, N. V. (2022). Polyhedron, 212, 115612.  CSD CrossRef Google Scholar
First citationVolpi, G. (2022). Asia. J. Org. Chem. 11, e202200171.  CrossRef Google Scholar
First citationVolpi, G., Garino, C., Priola, E., Diana, E., Gobetto, R., Buscaino, R., Viscardi, G. & Barolo, C. (2017). Dyes Pigments, 143, 284–290.  CSD CrossRef CAS Google Scholar
First citationYagishita, F., Nagamori, T., Shimokawa, S., Hoshi, K., Yoshida, Y., Imada, Y. & Kawamura, Y. (2020). Tetrahedron Lett. 61, 151782.  CrossRef Google Scholar
First citationYagishita, F., Nii, C., Tezuka, Y., Tabata, A., Nagamune, H., Uemura, N., Yoshida, Y., Mino, T., Sakamoto, M. & Kawamura, Y. (2018). Asia. J. Org. Chem. 7, 1614–1619.  Web of Science CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds