research communications
and Hirshfeld surface analysis of supramolecular aggregate of 2,2,6,6-tetramethylpiperidin-1-ium bromide with 1,2,3,4-tetrafluoro-5,6-diiodobenzene
aExcellence Center, Baku State University, Z. Xalilov Str. 23, AZ 1148 Baku, Azerbaijan, bScientific Research Center, Baku Engineering University, Hasan Aliyev Str. 120, Baku, Absheron AZ0101, Azerbaijan, cCentro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal, dHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, eDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, Az 1148 Baku, Azerbaijan, fWestern Caspian University, Istiglaliyyat Str. 31, AZ 1001 Baku, Azerbaijan, gAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade Str. 14, AZ 1022 Baku, Azerbaijan, hDepartment of Chemistry and Chemical Engineering, Khazar University, Mahzati Str. 41, AZ 1096 Baku, Azerbaijan, and iDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia
*Correspondence e-mail: alebel.nibret@bdu.edu.et
The 9H20N+·Br−·C6F4I2, contains one 2,2,6,6 tetramethylpiperidine-1-ium cation, one 1,2,3,4-tetrafluoro-5,6-diiodobenzene molecule, and one uncoordinated bromide anion. In the crystal, the bromide anions link the 2,2,6,6-tetramethylpiperidine molecules by intermolecular C—H⋯Br and N—H⋯Br hydrogen bonds, leading to dimers, with the coplanar 1,2,3,4-tetrafluoro-5,6-diiodobenzene molecules filling the space between them. There is a π–π interaction between the almost parallel benzene rings [dihedral angle = 10.5 (2)°] with a centroid-to-centroid distance of 3.838 (3) Å and slippage of 1.468 Å. No C—H⋯π(ring) interactions are observed. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯F/F⋯H (23.8%), H⋯H (22.6%), H⋯Br/Br⋯H (17.3%) and H⋯I/I⋯H (13.8%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing.
of the title compound, CKeywords: crystal structure; non-covalent interactions; halogen bond.
CCDC reference: 2405482
1. Chemical context
The halogen bond (HaB) is defined as a non-covalent interaction between the electron-density-deficient region (so-called σ or π hole) of a covalently bonded halogen atom and a nucleophilic (Nu) site in the same (intramolecular) or another (intermolecular) molecular entity: R—Ha⋯Nu [Ha = F, Cl, Br or I; R = C, Pn (pnictogen), Ch (chalcogen), metal etc.; Nu = lone pair possessing Ha, Ch, Pn or metal atom, π-system, etc.; Cavallo et al., 2016]. Similarly to hydrogen and chalcogen bonds (Gurbanov et al., 2020; Mahmudov & Pombeiro, 2016), halogen bonds can also be classified into normal halogen bonds, positive charge-assisted halogen bonds, negative charge-assisted halogen bonds and charge-assisted halogen bonds (Peuronen et al., 2023). Both the strength and directionality of charge-assisted halogen bonds are much larger than those of normal halogen bonds (Gomila & Frontera, 2020; Shixaliyev et al., 2014), which are traditionally regarded as favourable synthetic tools for building new supramolecular systems (Mahmoudi et al., 2017a,b). In addition to their catalytic functions (Ma et al., 2021), N-oxide radicals can act as halogen-bond acceptors (Pang et al., 2013). In the context of this work, we investigated a new negative charge-assisted halogen-bonded supramolecular aggregate, which was obtained by the reaction of 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) with 1,2,3,4-tetrafluoro-5,6- diiodobenzene in the presence of CBr4 in a mixture of hexane/CH2Cl2 at 343 K (see Fig. 1). We provide herein a detailed description of the synthesis and an examination of the molecular and crystal structures together with a Hirshfeld surface analysis of the title compound, (I).
2. Structural commentary
Two molecules are present in the ). Atoms I1, I2, F1, F2, F3 and F4 are −0.0116 (3), −0.0287 (3), 0.005 (3), −0.022 (3), −0.003 (3) and 0.033 (3) Å, respectively, away from the best least-squares plane of the benzene ring (C1–C6). All atoms of the benzene derivative are essentially coplanar. The piperidine ring (N1/C7–C11), is in a chair conformation. There are no apparent unusual bond distances or interbond angles within the two molecules.
of the title compound, 2,2,6,6-tetramethyl piperidine-1-ium and 1,2,3,4-tetrafluoro-5,6-diiodobenzene, in addition to one uncoordinated bromide ion (Fig. 23. Supramolecular features
With regard to intermolecular contacts, the uncoordinated bromide ions link the 2,2,6,6-tetramethylpiperidine molecules through intermolecular C—H⋯Br and N—H⋯Br hydrogen bonds (Table 1) with a double or triple acceptor atom, resulting in dimers (Fig. 3). In the crystal, the dimers are stacked along the b-axis direction, while the coplanar 1,2,3,4-tetrafluoro-5,6-diiodobenzene molecules protrude along the c-axis direction, filling the space between the dimers (Fig. 4). There is a π–π interaction between the C1–C6 benzene rings with a centroid-to-centroid distance of 3.838 (3) Å, where the dihedral angle between the benzene rings is 10.5 (2)° with a slippage of 1.468 Å.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound (I), a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 (Spackman et al., 2021). The contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively, enable the analysis of the intermolecular interactions through the mapping of dnorm. The combination of di and de in the form of two-dimensional fingerprint plots (McKinnon et al., 2004) provides a summary of intermolecular contacts in the crystal. In the HS plotted over dnorm (Fig. 5), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (no/weak contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots are indicative of their roles as the respective donors and/or acceptors. The shape-index would represent any C—H⋯π interaction as red depressions located at the π-ring system and a blue region surrounding the respective C—H moiety, and hence Fig. 6 clearly suggests that there are no such C—H⋯π interactions present in (I). The shape-index of the HS can also indicate π–π stacking interactions by the presence of adjacent red and blue triangles. Fig. 6 suggests π–π interactions are present in (I).
The overall two-dimensional fingerprint plot is shown in Fig. 7a and those delineated into H⋯F/F⋯H, H⋯H, H⋯Br/Br⋯H, H⋯I/I⋯H, F⋯I/I⋯F, C⋯I/I⋯C, C⋯C, F⋯F, H⋯C/C⋯H, I⋯I and F⋯Br/Br⋯F contacts (McKinnon et al., 2007) are illustrated in Fig. 7b–l, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction clearly is of the H⋯F/F⋯H type (Table 2), contributing 23.8% to the overall crystal packing, which is reflected in Fig. 7b as pair of spikes with tips at de + di = 2.52 Å. The H⋯H interactions (Fig. 7c) contribute 22.6% to the HS and form a single maximum extension at de = di = 1.18 Å. The H⋯Br/Br⋯H (Fig. 7d) and H⋯I/I⋯H (Fig. 7e) contacts contribute 17.3% and 13.8%, respectively, to the HS, appearing as pairs of spikes with the tips at de + di = 2.36 Å and de + di = 3.04 Å, respectively. The F⋯I/I⋯F contacts (Fig. 7f) make a 7.5% contribution to the HS and have the tips at de + di = 3.74 Å. The C⋯I/I⋯C contacts (Fig. 7g) contribute 5.6%, the pair of spikes having tips at de + di = 3.70 Å. The C⋯C contacts (Fig. 7h) contribute 4.1% to the HS and have a bullet-shaped distribution of points with the tip at de = di = 1.68 Å. Finally, the F⋯F (Fig. 7i), H⋯C/C⋯H (Fig. 7j), I⋯I (Fig. 7k), F⋯Br/Br⋯F (Fig. 7l) and F⋯C/C⋯F (not shown) contacts make 1.7%, 1.0%, 0.9%, 0.9% and 0.8% contributions, respectively, to the HS and have very low densities of points.
The nearest neighbour coordination environment of a molecule can be determined from the colour patches on the HS based on how close to other molecules they are. The Hirshfeld surface representations with the fragment patches plotted onto the surface are shown for the H⋯F/F⋯H, H⋯H, H·· Br/Br⋯H and H⋯I/I⋯H interactions in Fig. 8a–d, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the crystal packing. The large number of H⋯F/F⋯H, H⋯H, H⋯Br/Br⋯H and H⋯I/I⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the packing (Hathwar et al., 2015).
5. Database survey
A survey of the Cambridge Structural Database (CSD, Version 5.42, last updated February 2023; Groom et al., 2016) considering both ring motifs indicates that only one molecular structure is closely related to the title compound (I), viz. 1-oxy-2,2,6,6-tetramethylpiperidin-4-yl radical benzoate bis(1,2,3,4-tetrafluoro-5, 6-diiodobenzene), C16H22NO3·2C6F4I2 (CSD refcode HISZEQ; Pang et al., 2013). The C6F4I2 molecules are essentially identical in their metrical parameters in both structures, while the aliphatic ring system in HISZEQ bears more substituents than in the title compound (I) resulting in small deviations of the overall geometries of the two respective six-membered rings.
6. Synthesis and crystallization
TEMPO (10 mmol), 1,2,3,4-tetrafluoro-5,6-diiodobenzene (10 mmol) and CBr4 (10 mmol) were dissolved in 30 ml of hexane/CH2Cl2 (v/v, 1:1), refluxed for 2 h, and left for slow evaporation. Orange crystals of the product started to form after 2 d at room temperature; they were filtered off and dried in air. Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution. Yield 61% (based on TEMPO), orange powder soluble in methanol, ethanol and DMSO. Analysis calculated for C15H20BrF4I2N (Mr = 624.04): C, 28.87; H, 3.23; N, 2.24. Found: C, 28.82; H, 3.20; N, 2.20. 1H NMR (DMSO-d6), δ: 8.08 (2N–H), 1.73 (2CH2), 1.65 (CH2), 1.31 (4CH3). 13C NMR (DMSO-d6), 15.6 (CH2), 26.9 (4CH3), 34.4 (2CH2), 57.2 [2C(CH3)2], 90.5 (2C—I), 148.1 (4C—F).
7. Refinement
Crystal data, data collection and structure . The N-bound hydrogen atoms were located in a difference-Fourier map, and refined by applying restraints (DFIX). The C-bound H-atom positions were calculated geometrically at distances of 0.99 Å (for CH2) and 0.98 Å (for CH3) and refined using a riding model with Uiso(H) = k × Ueq(C), where k = 1.2 for CH2 hydrogen atoms and k = 1.5 for CH3 hydrogen atoms. Two reflections were omitted as clear outliers.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2405482
https://doi.org/10.1107/S2056989024011502/yz2062sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024011502/yz2062Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024011502/yz2062Isup3.cml
C9H20N+·Br−·C6F4I2 | F(000) = 2352 |
Mr = 624.03 | Dx = 2.190 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 29.0324 (8) Å | Cell parameters from 8061 reflections |
b = 9.1477 (2) Å | θ = 2.4–26.4° |
c = 15.0296 (4) Å | µ = 5.47 mm−1 |
β = 108.533 (1)° | T = 150 K |
V = 3784.56 (17) Å3 | Prism, orange |
Z = 8 | 0.25 × 0.21 × 0.19 mm |
Bruker APEXII CCD diffractometer | 3480 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.022 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.5°, θmin = 2.6° |
Tmin = 0.342, Tmax = 0.423 | h = −36→33 |
14152 measured reflections | k = −11→11 |
3877 independent reflections | l = −18→18 |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.069 | w = 1/[σ2(Fo2) + (0.0297P)2 + 23.4044P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.003 |
3877 reflections | Δρmax = 1.50 e Å−3 |
220 parameters | Δρmin = −0.69 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.58724 (2) | 0.50666 (3) | 0.95416 (2) | 0.02186 (8) | |
I2 | 0.49598 (2) | 0.20828 (3) | 0.88878 (2) | 0.03147 (9) | |
Br1 | 0.70229 (2) | 0.44644 (4) | 1.06238 (3) | 0.02025 (10) | |
F1 | 0.39660 (9) | 0.3559 (3) | 0.7874 (2) | 0.0358 (6) | |
F2 | 0.36882 (9) | 0.6336 (3) | 0.7483 (2) | 0.0385 (7) | |
F3 | 0.43515 (10) | 0.8520 (3) | 0.7953 (2) | 0.0402 (7) | |
F4 | 0.52828 (10) | 0.7943 (3) | 0.8811 (2) | 0.0350 (6) | |
N1 | 0.20902 (12) | 0.4228 (4) | 0.5387 (2) | 0.0168 (7) | |
C1 | 0.41559 (15) | 0.6043 (5) | 0.7915 (3) | 0.0273 (10) | |
C2 | 0.43063 (15) | 0.4616 (5) | 0.8126 (3) | 0.0251 (9) | |
C3 | 0.47865 (15) | 0.4272 (5) | 0.8587 (3) | 0.0223 (8) | |
C4 | 0.51296 (14) | 0.5399 (5) | 0.8839 (3) | 0.0208 (8) | |
C5 | 0.49698 (15) | 0.6813 (5) | 0.8607 (3) | 0.0247 (9) | |
C6 | 0.44896 (16) | 0.7134 (5) | 0.8155 (3) | 0.0285 (10) | |
C7 | 0.12586 (15) | 0.4790 (5) | 0.5367 (3) | 0.0258 (9) | |
H7A | 0.095235 | 0.529016 | 0.501617 | 0.031* | |
H7B | 0.117866 | 0.376129 | 0.546160 | 0.031* | |
C8 | 0.16011 (14) | 0.4814 (4) | 0.4774 (3) | 0.0203 (8) | |
C9 | 0.23227 (14) | 0.4809 (4) | 0.6381 (3) | 0.0200 (8) | |
C10 | 0.19400 (15) | 0.4749 (5) | 0.6869 (3) | 0.0241 (9) | |
H10A | 0.207115 | 0.520952 | 0.749488 | 0.029* | |
H10B | 0.186794 | 0.371383 | 0.696339 | 0.029* | |
C11 | 0.14695 (15) | 0.5518 (5) | 0.6321 (3) | 0.0270 (9) | |
H11A | 0.123373 | 0.545906 | 0.667202 | 0.032* | |
H11B | 0.153481 | 0.656302 | 0.623706 | 0.032* | |
C12 | 0.25235 (15) | 0.6339 (5) | 0.6354 (3) | 0.0261 (9) | |
H12A | 0.273188 | 0.661239 | 0.698410 | 0.039* | |
H12B | 0.225401 | 0.703502 | 0.614153 | 0.039* | |
H12C | 0.271380 | 0.635554 | 0.592027 | 0.039* | |
C13 | 0.27448 (14) | 0.3797 (5) | 0.6841 (3) | 0.0249 (9) | |
H13A | 0.289234 | 0.407421 | 0.750087 | 0.037* | |
H13B | 0.298770 | 0.387430 | 0.651613 | 0.037* | |
H13C | 0.262726 | 0.278711 | 0.680484 | 0.037* | |
C14 | 0.16547 (16) | 0.6325 (5) | 0.4403 (3) | 0.0290 (10) | |
H14A | 0.191404 | 0.631076 | 0.411518 | 0.043* | |
H14B | 0.173643 | 0.702913 | 0.492089 | 0.043* | |
H14C | 0.134833 | 0.661096 | 0.393177 | 0.043* | |
C15 | 0.14272 (15) | 0.3773 (5) | 0.3950 (3) | 0.0245 (9) | |
H15A | 0.165817 | 0.377765 | 0.359601 | 0.037* | |
H15B | 0.110710 | 0.408459 | 0.354083 | 0.037* | |
H15C | 0.140398 | 0.278296 | 0.418190 | 0.037* | |
H1A | 0.2074 (14) | 0.330 (2) | 0.544 (3) | 0.010 (10)* | |
H1B | 0.2309 (15) | 0.451 (6) | 0.517 (4) | 0.040 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01724 (13) | 0.02663 (16) | 0.02143 (14) | −0.00053 (10) | 0.00575 (10) | −0.00051 (11) |
I2 | 0.03171 (16) | 0.02433 (16) | 0.03802 (18) | −0.00134 (12) | 0.01060 (13) | 0.00187 (12) |
Br1 | 0.01935 (19) | 0.0180 (2) | 0.0230 (2) | 0.00066 (15) | 0.00620 (16) | −0.00154 (16) |
F1 | 0.0249 (13) | 0.0378 (16) | 0.0414 (16) | −0.0114 (12) | 0.0058 (12) | 0.0024 (13) |
F2 | 0.0188 (12) | 0.0524 (18) | 0.0406 (16) | 0.0086 (12) | 0.0040 (11) | 0.0072 (14) |
F3 | 0.0398 (15) | 0.0286 (15) | 0.0507 (18) | 0.0130 (12) | 0.0121 (14) | 0.0063 (14) |
F4 | 0.0361 (14) | 0.0235 (14) | 0.0428 (16) | −0.0082 (11) | 0.0091 (12) | −0.0004 (12) |
N1 | 0.0200 (17) | 0.0119 (17) | 0.0199 (17) | −0.0013 (13) | 0.0083 (14) | 0.0011 (13) |
C1 | 0.020 (2) | 0.041 (3) | 0.022 (2) | 0.0036 (18) | 0.0077 (17) | 0.0035 (19) |
C2 | 0.020 (2) | 0.035 (2) | 0.021 (2) | −0.0069 (18) | 0.0077 (17) | 0.0000 (18) |
C3 | 0.025 (2) | 0.023 (2) | 0.019 (2) | 0.0004 (17) | 0.0087 (17) | 0.0012 (17) |
C4 | 0.0174 (19) | 0.026 (2) | 0.020 (2) | −0.0006 (16) | 0.0067 (16) | −0.0018 (17) |
C5 | 0.025 (2) | 0.029 (2) | 0.022 (2) | −0.0012 (18) | 0.0087 (17) | −0.0022 (18) |
C6 | 0.029 (2) | 0.032 (3) | 0.026 (2) | 0.0066 (19) | 0.0115 (19) | 0.0037 (19) |
C7 | 0.020 (2) | 0.026 (2) | 0.030 (2) | 0.0017 (17) | 0.0072 (18) | 0.0010 (19) |
C8 | 0.0186 (19) | 0.017 (2) | 0.025 (2) | 0.0028 (15) | 0.0069 (16) | 0.0021 (17) |
C9 | 0.0211 (19) | 0.020 (2) | 0.0185 (19) | −0.0034 (16) | 0.0057 (16) | −0.0031 (16) |
C10 | 0.026 (2) | 0.026 (2) | 0.024 (2) | −0.0024 (17) | 0.0127 (18) | −0.0027 (18) |
C11 | 0.025 (2) | 0.029 (2) | 0.030 (2) | 0.0013 (18) | 0.0128 (18) | −0.0042 (19) |
C12 | 0.022 (2) | 0.024 (2) | 0.034 (2) | −0.0055 (17) | 0.0112 (18) | −0.0086 (19) |
C13 | 0.021 (2) | 0.029 (2) | 0.023 (2) | 0.0007 (17) | 0.0048 (17) | −0.0022 (18) |
C14 | 0.031 (2) | 0.020 (2) | 0.034 (2) | 0.0040 (18) | 0.0088 (19) | 0.0077 (19) |
C15 | 0.024 (2) | 0.023 (2) | 0.023 (2) | −0.0002 (17) | 0.0030 (17) | 0.0022 (17) |
I1—C4 | 2.100 (4) | C8—C14 | 1.517 (6) |
I2—C3 | 2.080 (4) | C9—C10 | 1.514 (5) |
F1—C2 | 1.348 (5) | C9—C13 | 1.516 (6) |
F2—C1 | 1.333 (5) | C9—C12 | 1.522 (6) |
F3—C6 | 1.335 (5) | C10—C11 | 1.525 (6) |
F4—C5 | 1.346 (5) | C10—H10A | 0.9900 |
N1—C8 | 1.523 (5) | C10—H10B | 0.9900 |
N1—C9 | 1.526 (5) | C11—H11A | 0.9900 |
N1—H1A | 0.860 (19) | C11—H11B | 0.9900 |
N1—H1B | 0.846 (19) | C12—H12A | 0.9800 |
C1—C6 | 1.357 (7) | C12—H12B | 0.9800 |
C1—C2 | 1.381 (7) | C12—H12C | 0.9800 |
C2—C3 | 1.382 (6) | C13—H13A | 0.9800 |
C3—C4 | 1.399 (6) | C13—H13B | 0.9800 |
C4—C5 | 1.381 (6) | C13—H13C | 0.9800 |
C5—C6 | 1.375 (6) | C14—H14A | 0.9800 |
C7—C11 | 1.522 (6) | C14—H14B | 0.9800 |
C7—C8 | 1.531 (6) | C14—H14C | 0.9800 |
C7—H7A | 0.9900 | C15—H15A | 0.9800 |
C7—H7B | 0.9900 | C15—H15B | 0.9800 |
C8—C15 | 1.516 (6) | C15—H15C | 0.9800 |
I1···F4 | 3.138 (3) | C11···H14B | 2.83 |
I1···I2 | 3.7118 (4) | C12···H11B | 2.83 |
I2···F1 | 3.111 (3) | C12···H14B | 2.67 |
H1A···Br1i | 2.56 | C14···H12B | 2.72 |
H13C···Br1i | 2.91 | C14···H11B | 2.90 |
H1B···Br1ii | 2.58 (5) | H1A···H13C | 2.22 |
F1···F2 | 2.670 (4) | H1A···H15C | 2.30 |
F2···F3 | 2.709 (4) | H1B···H12C | 2.16 |
F3···F4 | 2.654 (4) | H1B···H14A | 2.32 |
F2···H12A | 2.65 | H7B···H15C | 2.40 |
H11A···F3iii | 2.63 | H11B···H12B | 2.19 |
C12···C14 | 3.203 (6) | H11B···H14B | 2.27 |
C11···H12B | 2.76 | H12B···H14B | 1.97 |
C8—N1—C9 | 120.4 (3) | C10—C9—N1 | 107.3 (3) |
C8—N1—H1A | 110 (3) | C13—C9—N1 | 106.0 (3) |
C9—N1—H1A | 106 (3) | C12—C9—N1 | 110.4 (3) |
C8—N1—H1B | 109 (4) | C9—C10—C11 | 113.0 (4) |
C9—N1—H1B | 97 (4) | C9—C10—H10A | 109.0 |
H1A—N1—H1B | 114 (5) | C11—C10—H10A | 109.0 |
F2—C1—C6 | 120.8 (4) | C9—C10—H10B | 109.0 |
F2—C1—C2 | 120.1 (4) | C11—C10—H10B | 109.0 |
C6—C1—C2 | 119.2 (4) | H10A—C10—H10B | 107.8 |
F1—C2—C1 | 117.6 (4) | C7—C11—C10 | 109.3 (3) |
F1—C2—C3 | 120.7 (4) | C7—C11—H11A | 109.8 |
C1—C2—C3 | 121.7 (4) | C10—C11—H11A | 109.8 |
C2—C3—C4 | 119.1 (4) | C7—C11—H11B | 109.8 |
C2—C3—I2 | 117.7 (3) | C10—C11—H11B | 109.8 |
C4—C3—I2 | 123.3 (3) | H11A—C11—H11B | 108.3 |
C5—C4—C3 | 117.9 (4) | C9—C12—H12A | 109.5 |
C5—C4—I1 | 118.1 (3) | C9—C12—H12B | 109.5 |
C3—C4—I1 | 124.0 (3) | H12A—C12—H12B | 109.5 |
F4—C5—C6 | 117.0 (4) | C9—C12—H12C | 109.5 |
F4—C5—C4 | 120.9 (4) | H12A—C12—H12C | 109.5 |
C6—C5—C4 | 122.1 (4) | H12B—C12—H12C | 109.5 |
F3—C6—C1 | 120.0 (4) | C9—C13—H13A | 109.5 |
F3—C6—C5 | 119.9 (4) | C9—C13—H13B | 109.5 |
C1—C6—C5 | 120.0 (4) | H13A—C13—H13B | 109.5 |
C11—C7—C8 | 113.6 (4) | C9—C13—H13C | 109.5 |
C11—C7—H7A | 108.8 | H13A—C13—H13C | 109.5 |
C8—C7—H7A | 108.8 | H13B—C13—H13C | 109.5 |
C11—C7—H7B | 108.8 | C8—C14—H14A | 109.5 |
C8—C7—H7B | 108.8 | C8—C14—H14B | 109.5 |
H7A—C7—H7B | 107.7 | H14A—C14—H14B | 109.5 |
C15—C8—C14 | 108.6 (4) | C8—C14—H14C | 109.5 |
C15—C8—N1 | 106.1 (3) | H14A—C14—H14C | 109.5 |
C14—C8—N1 | 111.0 (3) | H14B—C14—H14C | 109.5 |
C15—C8—C7 | 110.9 (3) | C8—C15—H15A | 109.5 |
C14—C8—C7 | 112.9 (3) | C8—C15—H15B | 109.5 |
N1—C8—C7 | 107.2 (3) | H15A—C15—H15B | 109.5 |
C10—C9—C13 | 111.6 (3) | C8—C15—H15C | 109.5 |
C10—C9—C12 | 113.1 (3) | H15A—C15—H15C | 109.5 |
C13—C9—C12 | 108.2 (3) | H15B—C15—H15C | 109.5 |
F2—C1—C2—F1 | 0.4 (6) | C2—C1—C6—C5 | −0.4 (6) |
C6—C1—C2—F1 | −179.7 (4) | F4—C5—C6—F3 | −1.2 (6) |
F2—C1—C2—C3 | −178.9 (4) | C4—C5—C6—F3 | 179.3 (4) |
C6—C1—C2—C3 | 1.0 (6) | F4—C5—C6—C1 | 179.0 (4) |
F1—C2—C3—C4 | −179.9 (4) | C4—C5—C6—C1 | −0.6 (7) |
C1—C2—C3—C4 | −0.6 (6) | C9—N1—C8—C15 | −166.9 (3) |
F1—C2—C3—I2 | −0.7 (5) | C9—N1—C8—C14 | 75.4 (4) |
C1—C2—C3—I2 | 178.6 (3) | C9—N1—C8—C7 | −48.4 (4) |
C2—C3—C4—C5 | −0.4 (6) | C11—C7—C8—C15 | 166.3 (4) |
I2—C3—C4—C5 | −179.5 (3) | C11—C7—C8—C14 | −71.7 (5) |
C2—C3—C4—I1 | 180.0 (3) | C11—C7—C8—N1 | 50.9 (5) |
I2—C3—C4—I1 | 0.9 (5) | C8—N1—C9—C10 | 49.8 (4) |
C3—C4—C5—F4 | −178.6 (4) | C8—N1—C9—C13 | 169.1 (3) |
I1—C4—C5—F4 | 1.1 (5) | C8—N1—C9—C12 | −73.8 (4) |
C3—C4—C5—C6 | 1.0 (6) | C13—C9—C10—C11 | −169.0 (4) |
I1—C4—C5—C6 | −179.4 (3) | C12—C9—C10—C11 | 68.7 (5) |
F2—C1—C6—F3 | −0.4 (6) | N1—C9—C10—C11 | −53.2 (4) |
C2—C1—C6—F3 | 179.7 (4) | C8—C7—C11—C10 | −58.9 (5) |
F2—C1—C6—C5 | 179.5 (4) | C9—C10—C11—C7 | 60.2 (5) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, y, −z+3/2; (iii) −x+1/2, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Br1i | 0.86 (2) | 2.55 (2) | 3.409 (3) | 179 (4) |
N1—H1B···Br1ii | 0.85 (2) | 2.58 (3) | 3.387 (3) | 161 (5) |
C13—H13C···Br1i | 0.98 | 2.91 | 3.769 (4) | 146 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, y, −z+3/2. |
Acknowledgements
The authors' contributions are as follows. Conceptualization, AVG, TH and ANB; synthesis, AVG and GZM; X-ray analysis, AVG; writing (review and editing of the manuscript) AVG and TH; funding acquisition, AVG, GZM, KIH and TAJ; supervision, AVG, TH and ANB.
Funding information
This work was supported by the Fundaçao para a Ciencia e a Tecnologia (FCT, Portugal), projects UIDB/00100/2020 (https://doi.org/10.54499/UIDB/00100/2020) and UIDP/00100/2020 (https://doi.org/10.54499/UIDP/00100/2020) of the Centro de Quimica Estrutural and LA/P/0056/2020 (https://doi.org/10.54499/LA/P/0056/2020) of the Institute of Molecular Sciences, as well as Baku State University, Baku Engineering University, Azerbaijan Medical University, Western Caspian University and Khazar University in Azerbaijan. TH is also grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Bruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601. Web of Science CrossRef CAS PubMed Google Scholar
Gomila, R. M. & Frontera, A. (2020). CrystEngComm, 22, 7162–7169. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. A Eur. J. 22, 16356–16398. CrossRef Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pang, X., Zhao, X. R., Wang, H., Sun, H. L. & Jin, W. J. (2013). Cryst. Growth Des. 13, 3739–3745. Web of Science CSD CrossRef CAS Google Scholar
Peuronen, A., Taponen, A. I., Kalenius, E., Lehtonen, A. & Lahtinen, M. (2023). Angew. Chem. Int. Ed. 62, e202215689. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.