research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of supra­molecular aggregate of 2,2,6,6-tetra­methyl­piperidin-1-ium bromide with 1,2,3,4-tetra­fluoro-5,6-di­iodo­benzene

crossmark logo

aExcellence Center, Baku State University, Z. Xalilov Str. 23, AZ 1148 Baku, Azerbaijan, bScientific Research Center, Baku Engineering University, Hasan Aliyev Str. 120, Baku, Absheron AZ0101, Azerbaijan, cCentro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal, dHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, eDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, Az 1148 Baku, Azerbaijan, fWestern Caspian University, Istiglaliyyat Str. 31, AZ 1001 Baku, Azerbaijan, gAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade Str. 14, AZ 1022 Baku, Azerbaijan, hDepartment of Chemistry and Chemical Engineering, Khazar University, Mahzati Str. 41, AZ 1096 Baku, Azerbaijan, and iDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia
*Correspondence e-mail: alebel.nibret@bdu.edu.et

Edited by C. Schulzke, Universität Greifswald, Germany (Received 29 October 2024; accepted 26 November 2024; online 1 January 2025)

The asymmetric unit of the title compound, C9H20N+·Br·C6F4I2, contains one 2,2,6,6 tetra­methyl­piperidine-1-ium cation, one 1,2,3,4-tetra­fluoro-5,6-di­iodo­benzene mol­ecule, and one uncoordinated bromide anion. In the crystal, the bromide anions link the 2,2,6,6-tetra­methyl­piperidine mol­ecules by inter­molecular C—H⋯Br and N—H⋯Br hydrogen bonds, leading to dimers, with the coplanar 1,2,3,4-tetra­fluoro-5,6-di­iodo­benzene mol­ecules filling the space between them. There is a ππ interaction between the almost parallel benzene rings [dihedral angle = 10.5 (2)°] with a centroid-to-centroid distance of 3.838 (3) Å and slippage of 1.468 Å. No C—H⋯π(ring) inter­actions are observed. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯F/F⋯H (23.8%), H⋯H (22.6%), H⋯Br/Br⋯H (17.3%) and H⋯I/I⋯H (13.8%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing.

1. Chemical context

The halogen bond (HaB) is defined as a non-covalent inter­action between the electron-density-deficient region (so-called σ or π hole) of a covalently bonded halogen atom and a nucleophilic (Nu) site in the same (intra­molecular) or another (inter­molecular) mol­ecular entity: RHa⋯Nu [Ha = F, Cl, Br or I; R = C, Pn (pnictogen), Ch (chalcogen), metal etc.; Nu = lone pair possessing Ha, Ch, Pn or metal atom, π-system, anion, radical, etc.; Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]]. Similarly to hydrogen and chalcogen bonds (Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833-14837.]; Mahmudov & Pombeiro, 2016[Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. A Eur. J. 22, 16356-16398.]), halogen bonds can also be classified into normal halogen bonds, positive charge-assisted halogen bonds, negative charge-assisted halogen bonds and charge-assisted halogen bonds (Peuronen et al., 2023[Peuronen, A., Taponen, A. I., Kalenius, E., Lehtonen, A. & Lahtinen, M. (2023). Angew. Chem. Int. Ed. 62, e202215689.]). Both the strength and directionality of charge-assisted halogen bonds are much larger than those of normal halogen bonds (Gomila & Frontera, 2020[Gomila, R. M. & Frontera, A. (2020). CrystEngComm, 22, 7162-7169.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]), which are traditionally regarded as favourable synthetic tools for building new supra­molecular systems (Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.]). In addition to their catalytic functions (Ma et al., 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]), N-oxide radicals can act as halogen-bond acceptors (Pang et al., 2013[Pang, X., Zhao, X. R., Wang, H., Sun, H. L. & Jin, W. J. (2013). Cryst. Growth Des. 13, 3739-3745.]). In the context of this work, we investigated a new negative charge-assisted halogen-bonded supra­molecular aggregate, which was obtained by the reaction of 2,2,6,6-tetra­methyl­piperidinyl-1-oxy (TEMPO) with 1,2,3,4-tetra­fluoro-5,6- di­iodo­benzene in the presence of CBr4 in a mixture of hexa­ne/CH2Cl2 at 343 K (see Fig. 1[link]). We provide herein a detailed description of the synthesis and an examination of the mol­ecular and crystal structures together with a Hirshfeld surface analysis of the title compound, (I)[link].

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of 2,2,6,6-tetra­methyl­piperidin-1-ium bromide from 1,2,3,4-tetra­fluoro-5,6-di­iodo­benzene.

2. Structural commentary

Two mol­ecules are present in the asymmetric unit of the title compound, 2,2,6,6-tetra­methyl piperidine-1-ium and 1,2,3,4-tetra­fluoro-5,6-di­iodo­benzene, in addition to one uncoordin­ated bromide ion (Fig. 2[link]). Atoms I1, I2, F1, F2, F3 and F4 are −0.0116 (3), −0.0287 (3), 0.005 (3), −0.022 (3), −0.003 (3) and 0.033 (3) Å, respectively, away from the best least-squares plane of the benzene ring (C1–C6). All atoms of the benzene derivative are essentially coplanar. The piperidine ring (N1/C7–C11), is in a chair conformation. There are no apparent unusual bond distances or inter­bond angles within the two mol­ecules.

[Figure 2]
Figure 2
The title compound with atom-numbering scheme and 50% probability ellipsoids.

3. Supra­molecular features

With regard to inter­molecular contacts, the uncoordinated bromide ions link the 2,2,6,6-tetra­methyl­piperidine mol­ecules through inter­molecular C—H⋯Br and N—H⋯Br hydrogen bonds (Table 1[link]) with a double or triple acceptor atom, resulting in dimers (Fig. 3[link]). In the crystal, the dimers are stacked along the b-axis direction, while the coplanar 1,2,3,4-tetra­fluoro-5,6-di­iodo­benzene mol­ecules protrude along the c-axis direction, filling the space between the dimers (Fig. 4[link]). There is a ππ interaction between the C1–C6 benzene rings with a centroid-to-centroid distance of 3.838 (3) Å, where the dihedral angle between the benzene rings is 10.5 (2)° with a slippage of 1.468 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1ii 0.86 (2) 2.55 (2) 3.407 (3) 179 (4)
N1—H1B⋯Br1iii 0.85 (2) 2.56 (2) 3.387 (3) 165 (5)
C13—H13C⋯Br1ii 0.98 2.91 3.767 (4) 147
Symmetry codes: (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
The H⋯Br contacts leading to dimerization. Inter­molecular C—H⋯Br and N—H⋯Br hydrogen bonds are shown as dashed lines. H atoms not involved in these inter­actions are omitted for clarity.
[Figure 4]
Figure 4
A partial packing diagram, viewed down the b-axis direction. Inter­molecular C—H⋯Br and N—H⋯Br hydrogen bonds are shown as dashed lines. H atoms not involved in these inter­actions are omitted for clarity.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound (I)[link], a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively, enable the analysis of the inter­molecular inter­actions through the mapping of dnorm. The combination of di and de in the form of two-dimensional fingerprint plots (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]) provides a summary of inter­molecular contacts in the crystal. In the HS plotted over dnorm (Fig. 5[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (no/weak contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots are indicative of their roles as the respective donors and/or acceptors. The shape-index would represent any C—H⋯π inter­action as red depressions located at the π-ring system and a blue region surrounding the respective C—H moiety, and hence Fig. 6[link] clearly suggests that there are no such C—H⋯π inter­actions present in (I)[link]. The shape-index of the HS can also indicate ππ stacking inter­actions by the presence of adjacent red and blue triangles. Fig. 6[link] suggests ππ inter­actions are present in (I)[link].

[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm.
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot is shown in Fig. 7[link]a and those delineated into H⋯F/F⋯H, H⋯H, H⋯Br/Br⋯H, H⋯I/I⋯H, F⋯I/I⋯F, C⋯I/I⋯C, C⋯C, F⋯F, H⋯C/C⋯H, I⋯I and F⋯Br/Br⋯F contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 7[link]bl, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action clearly is of the H⋯F/F⋯H type (Table 2[link]), contributing 23.8% to the overall crystal packing, which is reflected in Fig. 7[link]b as pair of spikes with tips at de + di = 2.52 Å. The H⋯H inter­actions (Fig. 7[link]c) contribute 22.6% to the HS and form a single maximum extension at de = di = 1.18 Å. The H⋯Br/Br⋯H (Fig. 7[link]d) and H⋯I/I⋯H (Fig. 7[link]e) contacts contribute 17.3% and 13.8%, respectively, to the HS, appearing as pairs of spikes with the tips at de + di = 2.36 Å and de + di = 3.04 Å, respectively. The F⋯I/I⋯F contacts (Fig. 7[link]f) make a 7.5% contribution to the HS and have the tips at de + di = 3.74 Å. The C⋯I/I⋯C contacts (Fig. 7[link]g) contribute 5.6%, the pair of spikes having tips at de + di = 3.70 Å. The C⋯C contacts (Fig. 7[link]h) contribute 4.1% to the HS and have a bullet-shaped distribution of points with the tip at de = di = 1.68 Å. Finally, the F⋯F (Fig. 7[link]i), H⋯C/C⋯H (Fig. 7[link]j), I⋯I (Fig. 7[link]k), F⋯Br/Br⋯F (Fig. 7[link]l) and F⋯C/C⋯F (not shown) contacts make 1.7%, 1.0%, 0.9%, 0.9% and 0.8% contributions, respectively, to the HS and have very low densities of points.

Table 2
Selected interatomic distances (Å)

I1⋯F4 3.138 (3) C11⋯H14B 2.83
I1⋯I2 3.7118 (4) C12⋯H11B 2.83
I2⋯F1 3.111 (3) C12⋯H14B 2.67
I1⋯H15Ci 3.16 C14⋯H12B 2.72
H1A⋯Br1ii 2.546 (19) C14⋯H11B 2.90
H13C⋯Br1ii 2.91 H1A⋯H13C 2.21
H1B⋯Br1iii 2.56 (2) H1A⋯H15C 2.30
F1⋯F2 2.670 (4) H1B⋯H12C 2.19
F2⋯F3 2.709 (4) H1B⋯H14A 2.34
F3⋯F4 2.654 (4) H7B⋯H15C 2.40
F2⋯H12A 2.65 H11B⋯H12B 2.19
H11A⋯F3iv 2.63 H11B⋯H14B 2.29
C12⋯C14 3.203 (6) H12B⋯H14B 1.97
C11⋯H12B 2.76    
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{3\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯F/F⋯H, (c) H⋯H, (d) H⋯Br/Br⋯H, (e) H⋯I/ ⋯H, (f) F⋯I/I⋯F, (g) C⋯I/I⋯C, (h) C⋯C, (i) F⋯F, (j) H⋯C/C⋯H, (k) I⋯I, and (l) F⋯Br/Br⋯F inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The nearest neighbour coordination environment of a mol­ecule can be determined from the colour patches on the HS based on how close to other mol­ecules they are. The Hirshfeld surface representations with the fragment patches plotted onto the surface are shown for the H⋯F/F⋯H, H⋯H, H·· Br/Br⋯H and H⋯I/I⋯H inter­actions in Fig. 8[link]ad, respectively.

[Figure 8]
Figure 8
Hirshfeld surface representations of contact patches plotted onto the surface for (a) H⋯F/F⋯H, (b) H⋯H, (c) H⋯Br/Br⋯H and (d) H⋯I/I⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the crystal packing. The large number of H⋯F/F⋯H, H⋯H, H⋯Br/Br⋯H and H⋯I/I⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.42, last updated February 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) considering both ring motifs indicates that only one mol­ecular structure is closely related to the title compound (I)[link], viz. 1-oxy-2,2,6,6-tetra­methyl­piperidin-4-yl radical benzoate bis­(1,2,3,4-tetra­fluoro-5, 6-di­iodo­benzene), C16H22NO3·2C6F4I2 (CSD refcode HISZEQ; Pang et al., 2013[Pang, X., Zhao, X. R., Wang, H., Sun, H. L. & Jin, W. J. (2013). Cryst. Growth Des. 13, 3739-3745.]). The C6F4I2 mol­ecules are essentially identical in their metrical parameters in both structures, while the aliphatic ring system in HISZEQ bears more substituents than in the title compound (I)[link] resulting in small deviations of the overall geometries of the two respective six-membered rings.

6. Synthesis and crystallization

TEMPO (10 mmol), 1,2,3,4-tetra­fluoro-5,6-di­iodo­benzene (10 mmol) and CBr4 (10 mmol) were dissolved in 30 ml of hexa­ne/CH2Cl2 (v/v, 1:1), refluxed for 2 h, and left for slow evaporation. Orange crystals of the product started to form after 2 d at room temperature; they were filtered off and dried in air. Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution. Yield 61% (based on TEMPO), orange powder soluble in methanol, ethanol and DMSO. Analysis calculated for C15H20BrF4I2N (Mr = 624.04): C, 28.87; H, 3.23; N, 2.24. Found: C, 28.82; H, 3.20; N, 2.20. 1H NMR (DMSO-d6), δ: 8.08 (2N–H), 1.73 (2CH2), 1.65 (CH2), 1.31 (4CH3). 13C NMR (DMSO-d6), 15.6 (CH2), 26.9 (4CH3), 34.4 (2CH2), 57.2 [2C(CH3)2], 90.5 (2C—I), 148.1 (4C—F).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N-bound hydrogen atoms were located in a difference-Fourier map, and refined by applying restraints (DFIX). The C-bound H-atom positions were calculated geometrically at distances of 0.99 Å (for CH2) and 0.98 Å (for CH3) and refined using a riding model with Uiso(H) = k × Ueq(C), where k = 1.2 for CH2 hydrogen atoms and k = 1.5 for CH3 hydrogen atoms. Two reflections were omitted as clear outliers.

Table 3
Experimental details

Crystal data
Chemical formula C9H20N+·Br·C6F4I2
Mr 624.03
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 29.0324 (8), 9.1477 (2), 15.0296 (4)
β (°) 108.533 (1)
V3) 3784.56 (17)
Z 8
Radiation type Mo Kα
μ (mm−1) 5.47
Crystal size (mm) 0.25 × 0.21 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.342, 0.423
No. of measured, independent and observed [I > 2σ(I)] reflections 14152, 3877, 3480
Rint 0.022
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.10
No. of reflections 3877
No. of parameters 220
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.50, −0.69
Computer programs: APEX4 and SAINT (Bruker, 2014[Bruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2019/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

(I) top
Crystal data top
C9H20N+·Br·C6F4I2F(000) = 2352
Mr = 624.03Dx = 2.190 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 29.0324 (8) ÅCell parameters from 8061 reflections
b = 9.1477 (2) Åθ = 2.4–26.4°
c = 15.0296 (4) ŵ = 5.47 mm1
β = 108.533 (1)°T = 150 K
V = 3784.56 (17) Å3Prism, orange
Z = 80.25 × 0.21 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
3480 reflections with I > 2σ(I)
φ and ω scansRint = 0.022
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.5°, θmin = 2.6°
Tmin = 0.342, Tmax = 0.423h = 3633
14152 measured reflectionsk = 1111
3877 independent reflectionsl = 1818
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0297P)2 + 23.4044P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.003
3877 reflectionsΔρmax = 1.50 e Å3
220 parametersΔρmin = 0.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.58724 (2)0.50666 (3)0.95416 (2)0.02186 (8)
I20.49598 (2)0.20828 (3)0.88878 (2)0.03147 (9)
Br10.70229 (2)0.44644 (4)1.06238 (3)0.02025 (10)
F10.39660 (9)0.3559 (3)0.7874 (2)0.0358 (6)
F20.36882 (9)0.6336 (3)0.7483 (2)0.0385 (7)
F30.43515 (10)0.8520 (3)0.7953 (2)0.0402 (7)
F40.52828 (10)0.7943 (3)0.8811 (2)0.0350 (6)
N10.20902 (12)0.4228 (4)0.5387 (2)0.0168 (7)
C10.41559 (15)0.6043 (5)0.7915 (3)0.0273 (10)
C20.43063 (15)0.4616 (5)0.8126 (3)0.0251 (9)
C30.47865 (15)0.4272 (5)0.8587 (3)0.0223 (8)
C40.51296 (14)0.5399 (5)0.8839 (3)0.0208 (8)
C50.49698 (15)0.6813 (5)0.8607 (3)0.0247 (9)
C60.44896 (16)0.7134 (5)0.8155 (3)0.0285 (10)
C70.12586 (15)0.4790 (5)0.5367 (3)0.0258 (9)
H7A0.0952350.5290160.5016170.031*
H7B0.1178660.3761290.5461600.031*
C80.16011 (14)0.4814 (4)0.4774 (3)0.0203 (8)
C90.23227 (14)0.4809 (4)0.6381 (3)0.0200 (8)
C100.19400 (15)0.4749 (5)0.6869 (3)0.0241 (9)
H10A0.2071150.5209520.7494880.029*
H10B0.1867940.3713830.6963390.029*
C110.14695 (15)0.5518 (5)0.6321 (3)0.0270 (9)
H11A0.1233730.5459060.6672020.032*
H11B0.1534810.6563020.6237060.032*
C120.25235 (15)0.6339 (5)0.6354 (3)0.0261 (9)
H12A0.2731880.6612390.6984100.039*
H12B0.2254010.7035020.6141530.039*
H12C0.2713800.6355540.5920270.039*
C130.27448 (14)0.3797 (5)0.6841 (3)0.0249 (9)
H13A0.2892340.4074210.7500870.037*
H13B0.2987700.3874300.6516130.037*
H13C0.2627260.2787110.6804840.037*
C140.16547 (16)0.6325 (5)0.4403 (3)0.0290 (10)
H14A0.1914040.6310760.4115180.043*
H14B0.1736430.7029130.4920890.043*
H14C0.1348330.6610960.3931770.043*
C150.14272 (15)0.3773 (5)0.3950 (3)0.0245 (9)
H15A0.1658170.3777650.3596010.037*
H15B0.1107100.4084590.3540830.037*
H15C0.1403980.2782960.4181900.037*
H1A0.2074 (14)0.330 (2)0.544 (3)0.010 (10)*
H1B0.2309 (15)0.451 (6)0.517 (4)0.040 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01724 (13)0.02663 (16)0.02143 (14)0.00053 (10)0.00575 (10)0.00051 (11)
I20.03171 (16)0.02433 (16)0.03802 (18)0.00134 (12)0.01060 (13)0.00187 (12)
Br10.01935 (19)0.0180 (2)0.0230 (2)0.00066 (15)0.00620 (16)0.00154 (16)
F10.0249 (13)0.0378 (16)0.0414 (16)0.0114 (12)0.0058 (12)0.0024 (13)
F20.0188 (12)0.0524 (18)0.0406 (16)0.0086 (12)0.0040 (11)0.0072 (14)
F30.0398 (15)0.0286 (15)0.0507 (18)0.0130 (12)0.0121 (14)0.0063 (14)
F40.0361 (14)0.0235 (14)0.0428 (16)0.0082 (11)0.0091 (12)0.0004 (12)
N10.0200 (17)0.0119 (17)0.0199 (17)0.0013 (13)0.0083 (14)0.0011 (13)
C10.020 (2)0.041 (3)0.022 (2)0.0036 (18)0.0077 (17)0.0035 (19)
C20.020 (2)0.035 (2)0.021 (2)0.0069 (18)0.0077 (17)0.0000 (18)
C30.025 (2)0.023 (2)0.019 (2)0.0004 (17)0.0087 (17)0.0012 (17)
C40.0174 (19)0.026 (2)0.020 (2)0.0006 (16)0.0067 (16)0.0018 (17)
C50.025 (2)0.029 (2)0.022 (2)0.0012 (18)0.0087 (17)0.0022 (18)
C60.029 (2)0.032 (3)0.026 (2)0.0066 (19)0.0115 (19)0.0037 (19)
C70.020 (2)0.026 (2)0.030 (2)0.0017 (17)0.0072 (18)0.0010 (19)
C80.0186 (19)0.017 (2)0.025 (2)0.0028 (15)0.0069 (16)0.0021 (17)
C90.0211 (19)0.020 (2)0.0185 (19)0.0034 (16)0.0057 (16)0.0031 (16)
C100.026 (2)0.026 (2)0.024 (2)0.0024 (17)0.0127 (18)0.0027 (18)
C110.025 (2)0.029 (2)0.030 (2)0.0013 (18)0.0128 (18)0.0042 (19)
C120.022 (2)0.024 (2)0.034 (2)0.0055 (17)0.0112 (18)0.0086 (19)
C130.021 (2)0.029 (2)0.023 (2)0.0007 (17)0.0048 (17)0.0022 (18)
C140.031 (2)0.020 (2)0.034 (2)0.0040 (18)0.0088 (19)0.0077 (19)
C150.024 (2)0.023 (2)0.023 (2)0.0002 (17)0.0030 (17)0.0022 (17)
Geometric parameters (Å, º) top
I1—C42.100 (4)C8—C141.517 (6)
I2—C32.080 (4)C9—C101.514 (5)
F1—C21.348 (5)C9—C131.516 (6)
F2—C11.333 (5)C9—C121.522 (6)
F3—C61.335 (5)C10—C111.525 (6)
F4—C51.346 (5)C10—H10A0.9900
N1—C81.523 (5)C10—H10B0.9900
N1—C91.526 (5)C11—H11A0.9900
N1—H1A0.860 (19)C11—H11B0.9900
N1—H1B0.846 (19)C12—H12A0.9800
C1—C61.357 (7)C12—H12B0.9800
C1—C21.381 (7)C12—H12C0.9800
C2—C31.382 (6)C13—H13A0.9800
C3—C41.399 (6)C13—H13B0.9800
C4—C51.381 (6)C13—H13C0.9800
C5—C61.375 (6)C14—H14A0.9800
C7—C111.522 (6)C14—H14B0.9800
C7—C81.531 (6)C14—H14C0.9800
C7—H7A0.9900C15—H15A0.9800
C7—H7B0.9900C15—H15B0.9800
C8—C151.516 (6)C15—H15C0.9800
I1···F43.138 (3)C11···H14B2.83
I1···I23.7118 (4)C12···H11B2.83
I2···F13.111 (3)C12···H14B2.67
H1A···Br1i2.56C14···H12B2.72
H13C···Br1i2.91C14···H11B2.90
H1B···Br1ii2.58 (5)H1A···H13C2.22
F1···F22.670 (4)H1A···H15C2.30
F2···F32.709 (4)H1B···H12C2.16
F3···F42.654 (4)H1B···H14A2.32
F2···H12A2.65H7B···H15C2.40
H11A···F3iii2.63H11B···H12B2.19
C12···C143.203 (6)H11B···H14B2.27
C11···H12B2.76H12B···H14B1.97
C8—N1—C9120.4 (3)C10—C9—N1107.3 (3)
C8—N1—H1A110 (3)C13—C9—N1106.0 (3)
C9—N1—H1A106 (3)C12—C9—N1110.4 (3)
C8—N1—H1B109 (4)C9—C10—C11113.0 (4)
C9—N1—H1B97 (4)C9—C10—H10A109.0
H1A—N1—H1B114 (5)C11—C10—H10A109.0
F2—C1—C6120.8 (4)C9—C10—H10B109.0
F2—C1—C2120.1 (4)C11—C10—H10B109.0
C6—C1—C2119.2 (4)H10A—C10—H10B107.8
F1—C2—C1117.6 (4)C7—C11—C10109.3 (3)
F1—C2—C3120.7 (4)C7—C11—H11A109.8
C1—C2—C3121.7 (4)C10—C11—H11A109.8
C2—C3—C4119.1 (4)C7—C11—H11B109.8
C2—C3—I2117.7 (3)C10—C11—H11B109.8
C4—C3—I2123.3 (3)H11A—C11—H11B108.3
C5—C4—C3117.9 (4)C9—C12—H12A109.5
C5—C4—I1118.1 (3)C9—C12—H12B109.5
C3—C4—I1124.0 (3)H12A—C12—H12B109.5
F4—C5—C6117.0 (4)C9—C12—H12C109.5
F4—C5—C4120.9 (4)H12A—C12—H12C109.5
C6—C5—C4122.1 (4)H12B—C12—H12C109.5
F3—C6—C1120.0 (4)C9—C13—H13A109.5
F3—C6—C5119.9 (4)C9—C13—H13B109.5
C1—C6—C5120.0 (4)H13A—C13—H13B109.5
C11—C7—C8113.6 (4)C9—C13—H13C109.5
C11—C7—H7A108.8H13A—C13—H13C109.5
C8—C7—H7A108.8H13B—C13—H13C109.5
C11—C7—H7B108.8C8—C14—H14A109.5
C8—C7—H7B108.8C8—C14—H14B109.5
H7A—C7—H7B107.7H14A—C14—H14B109.5
C15—C8—C14108.6 (4)C8—C14—H14C109.5
C15—C8—N1106.1 (3)H14A—C14—H14C109.5
C14—C8—N1111.0 (3)H14B—C14—H14C109.5
C15—C8—C7110.9 (3)C8—C15—H15A109.5
C14—C8—C7112.9 (3)C8—C15—H15B109.5
N1—C8—C7107.2 (3)H15A—C15—H15B109.5
C10—C9—C13111.6 (3)C8—C15—H15C109.5
C10—C9—C12113.1 (3)H15A—C15—H15C109.5
C13—C9—C12108.2 (3)H15B—C15—H15C109.5
F2—C1—C2—F10.4 (6)C2—C1—C6—C50.4 (6)
C6—C1—C2—F1179.7 (4)F4—C5—C6—F31.2 (6)
F2—C1—C2—C3178.9 (4)C4—C5—C6—F3179.3 (4)
C6—C1—C2—C31.0 (6)F4—C5—C6—C1179.0 (4)
F1—C2—C3—C4179.9 (4)C4—C5—C6—C10.6 (7)
C1—C2—C3—C40.6 (6)C9—N1—C8—C15166.9 (3)
F1—C2—C3—I20.7 (5)C9—N1—C8—C1475.4 (4)
C1—C2—C3—I2178.6 (3)C9—N1—C8—C748.4 (4)
C2—C3—C4—C50.4 (6)C11—C7—C8—C15166.3 (4)
I2—C3—C4—C5179.5 (3)C11—C7—C8—C1471.7 (5)
C2—C3—C4—I1180.0 (3)C11—C7—C8—N150.9 (5)
I2—C3—C4—I10.9 (5)C8—N1—C9—C1049.8 (4)
C3—C4—C5—F4178.6 (4)C8—N1—C9—C13169.1 (3)
I1—C4—C5—F41.1 (5)C8—N1—C9—C1273.8 (4)
C3—C4—C5—C61.0 (6)C13—C9—C10—C11169.0 (4)
I1—C4—C5—C6179.4 (3)C12—C9—C10—C1168.7 (5)
F2—C1—C6—F30.4 (6)N1—C9—C10—C1153.2 (4)
C2—C1—C6—F3179.7 (4)C8—C7—C11—C1058.9 (5)
F2—C1—C6—C5179.5 (4)C9—C10—C11—C760.2 (5)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z+3/2; (iii) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.86 (2)2.55 (2)3.409 (3)179 (4)
N1—H1B···Br1ii0.85 (2)2.58 (3)3.387 (3)161 (5)
C13—H13C···Br1i0.982.913.769 (4)146
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z+3/2.
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, AVG, TH and ANB; synthesis, AVG and GZM; X-ray analysis, AVG; writing (review and editing of the manuscript) AVG and TH; funding acquisition, AVG, GZM, KIH and TAJ; supervision, AVG, TH and ANB.

Funding information

This work was supported by the Fundaçao para a Ciencia e a Tecnologia (FCT, Portugal), projects UIDB/00100/2020 (https://doi.org/10.54499/UIDB/00100/2020) and UIDP/00100/2020 (https://doi.org/10.54499/UIDP/00100/2020) of the Centro de Quimica Estrutural and LA/P/0056/2020 (https://doi.org/10.54499/LA/P/0056/2020) of the Institute of Mol­ecular Sciences, as well as Baku State University, Baku Engineering University, Azerbaijan Medical University, Western Caspian University and Khazar University in Azerbaijan. TH is also grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationBruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGomila, R. M. & Frontera, A. (2020). CrystEngComm, 22, 7162–7169.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. A Eur. J. 22, 16356–16398.  CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPang, X., Zhao, X. R., Wang, H., Sun, H. L. & Jin, W. J. (2013). Cryst. Growth Des. 13, 3739–3745.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeuronen, A., Taponen, A. I., Kalenius, E., Lehtonen, A. & Lahtinen, M. (2023). Angew. Chem. Int. Ed. 62, e202215689.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds