

research communications

Synthesis and N-{4-[6-(1-hydroxyethyl)-1,2,4,5-tetrazin-3-yl]benzyl}carbamate
of 2,2,2-trichloroethylaBielefeld University, Department of Chemistry, Universitaetsstr. 25, Bielefeld, 33615, Germany
*Correspondence e-mail: norbert.sewald@uni-bielefeld.de
An orthogonally addressable 3,6-disubstituted 1,2,4,5-tetrazine, namely 2,2,2-trichloroethyl N-{4-[6-(1-hydroxyethyl)-1,2,4,5-tetrazin-3-yl]benzyl}carbamate (C14H14Cl3N5O3), was synthesized and characterized by single-crystal X-ray diffraction. The tetrazine comprises a free hydroxyl and a 2,2,2-trichloroethoxycarbonyl protected amino group, which gives rise to hydrogen-bonding interactions each making the tetrazine highly linked in the solid state. The carbamate moieties form intermolecular hydrogen bonds, stacking the tetrazine molecules above each other, while lateral hydrogen bonds are formed between a tetrazine N atom and a hydroxyl group, the latter interaction being a scarcely explored structural feature of 1,2,4,5-tetrazines.
Keywords: crystal structure; 1,2,4,5-tetrazine; carbamate.
CCDC reference: 2417815
1. Chemical context
The synthesis and structural elucidation of 1,2,4,5-tetrazines goes back to the early reports of Adolf Pinner (Pinner, 1893). Nowadays, over 130 years later, 1,2,4,5-tetrazines (herein further abbreviated as tetrazines) experience their renaissance and have emerged as versatile building blocks in organic and inorganic synthesis, not least because of their distinctive reactivity and bioorthogonal applicability (Zhao et al., 2022
). Current research with tetrazines focuses in particular on their extraordinarily fast (click) reaction with activated and by an inverse electron-demand Diels–Alder reaction (IEDDA; Mayer & Lang, 2017
), thereby spanning second order rate constants of up to 106 M−1 s−1 (Oliveira et al., 2017
). This unique and selective reactivity makes the tetrazine ligation applicable in vivo, as demonstrated by the early and seminal work of Bertozzi (Agarwal et al., 2015
), being encouragingly awarded with the Nobel Prize in Chemistry 2022 for her contributions to click chemistry and bioorthogonal chemistry. In addition to using tetrazines for ligation to biomolecules, they have also been studied in vivo as molecular turn-on probes that release drugs selectively into the cellular environment when IEDDA is triggered (van Onzen et al., 2020
; Davies et al., 2019
; Rossin et al., 2016
, 2018
). Moreover, tetrazines emerged as useful structural motifs embedded in fluorescent probes (Loredo et al., 2020
), metal–organic frameworks (Jiang et al., 2024
), metal ligands (Lemes et al., 2018
), redox mediators (Beagan et al., 2021
), and supramolecular structures (Guo et al., 2020
; Roberts et al., 2015
).
For many of these applications, tetrazines functionalized in the 3- and 6-position are needed, without compromising high click reaction rates. Herein we disclose the synthesis and characterization of a 3-aryl-6-alkyl-substituted tetrazine, 1, with free hydroxyl and 2,2,2-trichloroethoxycarbonyl (Troc) protected amino group.
2. Structural commentary
Tetrazine 1 was obtained starting from the corresponding N-tert-butyloxycarbonyl (Boc) and O-tetrahydropyranyl (THP) protected tetrazine (van Onzen et al., 2020) through, firstly, acidolysis of both Boc and THP protecting groups and, secondly, N-terminal introduction of the Troc group in 61% yield over two steps.
The title compound 1 crystallized as a pseudo-merohedral twin in the triclinic P with four units of 1 in the and the (ASU) consisting of a hydrogen-bonded dimer of 1 (Fig. 1
a). Hydroxyl groups (O3 and O6) were disordered in ratios of 84:16 and 78:22, respectively. The phenylene unit shows similar bond lengths for all C—C bonds [1.381 (7)–1.399 (8) Å], a trend that is also observed for all C—N and N—N bonds of the tetrazine unit [1.322 (7)–1.353 (8) Å], indicating the aromatic character of both. The observed bond angles are in line with values reported for structurally similar 3-aryl-6-alkyl-substituted tetrazines (Hu & Xu, 2008
; Xu & Hu, 2007a
,b
, 2006
). The two rings are nearly coplanar (Fig. 1
b), as indicated by twist angles between 6.34 (19) and 9.17 (19)° of the two molecules in the ASU, respectively. The carbamate moiety is s-trans configured (Fausto et al., 1989
).
![]() | Figure 1 (a) (ASU) of compound 1 with the atom labelling. Displacement ellipsoids are represented with 50% probability ellipsoids. Only the major occupied hydroxyl group (O3) is depicted. Only one molecule of 1 in the ASU is labelled, and its corresponding lengths and angles are discussed below as they match those described for the second molecule of 1 in the ASU within a 3σ margin of error. (b) Side view along the biaryl moiety of 1, where the normal vector of the plane spanned by the tetrazine core is aligned with the drawing plane. |
3. Supramolecular features
In the supramolecular assembly, molecules of 1 stack above each other, directed by the hydrogen-bonding interactions (Table 1) between carbamate protons and carbonyl O atoms of the two independent molecules of 1 in the ASU (Fig. 2
a). Donor–acceptor distances are between 2.844 (6) and 2.861 (6) Å, both with nearly linear arrangements of N, H and O [N—H⋯O = 163 (6)–175 (6)°]. The two aromatic rings are stacked above each other but slightly slipped, with calculated distances between the phenyl/phenyl ring centroids and tetrazine/tetrazine ring centroids of 4.781 (3) Å [slippage between 3.272 (8) and 3.577 (8) Å] and 5.018 (3) Å [slippage between 3.244 (10) and 3.536 (10) Å], respectively, making π–π interactions unlikely. However, the calculated distance between centroids of a tetrazine and a phenyl ring are between 3.677 (3) and 3.689 (3) Å [with a slippage between 1.408 (10) and 1.496 (10) Å], which could indicate weak π–π stacking, also being favored by an increased between the phenyl and tetrazine core (Huber et al., 2014
).
|
![]() | Figure 2 (a) Hydrogen-bonded molecules of 1 stacked above each other with calculated distances between phenyl and tetrazine ring centroids. (b) Lateral hydrogen bonds involving a tetrazine N atom. Displacement ellipsoid representation with 50% probability ellipsoids. |
Additional weak intermolecular hydrogen bonds occur between the hydroxyl proton and an N atom of the tetrazine ring (Fig. 2b). The involved atoms are aligned in a kinked geometry [O—H⋯N = 133–136°] with N⋯H distances between 2.64 and 2.74 Å, leading to a hydrogen-bonded network (Fig. 3
). Tetrazine N atoms involved in intermolecular hydrogen bonds have only been described for few and mostly symmetrical tetrazines such as 3,6-diaminotetrazine (N⋯H = 2.16–2.20 Å; Krieger et al., 1987
), 3,6-dihydrazinotetrazine (N⋯H = 2.12–2.45 Å; Klapötke et al., 2013
), tri(tetrazin-3-yl)amine (N⋯H = 2.51–2.73 Å; Liu et al., 2019
), 4,4′-(diazene-1,2-diyl)bis(N-(tetrazin-3-yl)-1,2,5-oxadiazol-3-amine (N⋯H = 2.24 Å; Liu et al., 2019
), and 3-amino-6-(3,5-diamino-1,2,4-triazol-1-yl)-tetrazine dihydrate (N⋯H = 2.13 Å; Klapötke et al., 2013
).
![]() | Figure 3 The three-dimensional molecular packing of compound 1 along the crystallographic a axis with highlighted unit cell. |
4. Database survey
Searching in the Cambridge Structural Database (CSD version 5.45, June 2024; Groom et al., 2016) using ConQuest (version 2024.1.0), the herein discussed tetrazine 1 was not found. A search using the molecular formula did not yield a result. In addition, at the time of submission, there were no related structures with a 1-hydroxyeth-1-yl substituent at the tetrazine ring and an aminomethyl substituent at the phenyl ring found. Seven reports for 3-aryl-6-alkyl-1,2,4,5-tetrazines were found, for example including CICPOU (Hu & Xu, 2008
), VIDMEB (Xu & Hu, 2007a
), REWDUT (Xu & Hu, 2007b
) and YESCEF (Xu & Hu, 2006
).
5. Synthesis and crystallization
5.1. Materials and methods
Solvents and starting materials were used without further purification, unless noted otherwise. The solvents used for extraction and tert-Butyl [4-(6-{1-[(tetrahydropyran-2-yl)oxy]ethyl}-1,2,4,5-tetrazin-3-yl)benzyl] carbamate was used as starting material and synthesized following the literature procedure (van Onzen et al., 2020), however, omitting the THP deprotection.
5.2. Analytical devices
Nuclear magnetic resonance (NMR) spectra were recorded on an Avance 500 spectrometer (Bruker) at 298 K using the residual protonated solvent signal [δ(1H of CHCl3) = 7.26 ppm, δ(13C of CDCl3) = 77.36 ppm] (Fulmer et al., 2010) as internal standard. High-resolution measurements (HR-MS) were performed on a quadrupole ion-mobility Synapt G2Si (Waters) in resolution mode, interfaced to a nano-electrospray ionization (ESI) source. Determination of exact masses were performed using centroided data.
5.3. Synthesis of compound 1
tert-Butyl [4-(6-{1-[(tetrahydropyran-2-yl)oxy]ethyl}-1,2,4,5-tetrazin-3-yl)benzyl] carbamate (357 mg, 859 µmol) was dissolved in a solution of HCl in 1,4-dioxane (4 M, 21.5 mL). After stirring at 273 K for an hour, analysis by TLC (pentane/Et2O, 3:2, v/v, Rf = 0.00) indicated complete cleavage of the Boc and THP protecting groups. The pink solution was evaporated under reduced pressure at 298 K. The residual pink solid was taken up in H2O (30 mL) and Et2O (30 mL), the layers were separated, and the aqueous layer was washed with Et2O (3 × 30 mL). The aqueous layer was freeze-dried to yield a voluminous pink solid, which was suspended in CHCl3 (30 mL) and the solution was cooled to 273 K. iPr2NEt (937 µL, 5.28 mmol) was added dropwise at 273 K, while the red suspension was becoming a solution. 2,2,2-Trichloroethyl chloroformate (148 µL, 1.08 mmol) was added and the red solution was stirred at 273 K for 85 minutes. H2O (50 mL) and CHCl3 (30 mL) were added and the layers were separated. The organic layer was washed with an aqueous solution of NaHCO3 (10 wt%, 50 mL), an aqueous solution of KHSO4 (5 wt%, 50 mL) and brine (50 mL), dried over Na2SO4, filtered, and evaporated to yield a dark-red oil. Purification by (diameter = 3.5 cm, length = 30 cm) using CH2Cl2/MeOH (95:5, v/v) to yield compound 1 (211 mg, 520 µmol, 61%) as a pink solid. Rf (CH2Cl2/MeOH, 95:5, v/v) = 0.38. 1H NMR (500 MHz, CDCl3, rotamers were observed in the molar ratio of 9:1) δ [ppm]: 8.59 (m, 2H, CarylH ortho to tetrazine), 7.54 (m, 2H, CarylH ortho to CH2), 5.55–5.44 (m, 1.9H, CHCH3 and NH, major rotamer), 5.32 (m, 0.1H, NH, minor rotamer), 4.79 (s, 2H, CH2CCl3), 4.56 (d, 3J = 6.2 Hz, 2H, CH2NH), 3.40 (d, 3J = 4.4 Hz, 1H, OH), 1.82 (d, 3J = 6.7 Hz, 3H, CH3). 13C{1H}NMR (125 MHz {500 MHz}, CDCl3) δ [ppm]: 170.4 (CarylCHCH3), 165.0 (Caryl=N—N=CarylCHCH3), 154.9 (C=O), 143.3 (CarylCH2), 131.0 (Caryl attached to tetrazine), 128.8 (Caryl ortho to tetrazine), 128.4 (Caryl ortho to CH2), 95.6 (CCl3), 74.9 (CH2CCl3), 68.7 (CHCH3), 45.1 (CarylCH2), 22.9 (CH3). HR-MS (ESI, negative): m/z calculated for [C14H14Cl3N5O3+Cl]−: 439.9856; found: 439.9852.
Compound 1 was crystallized by diffusion of n-pentane into a concentrated solution of 1 in dichloromethane at room temperature.
6. Refinement
The crystal studied was a pseudo-merohedral twin, component 2 rotated by 180.0° around [0.00 − 0.00 1.00] (reciprocal) or [−0.22 − 0.25 0.94] (direct), in a ratio 88:12. The two hydroxyl groups (O3 and O6) were disordered in ratios of 84:16 and 78:22, respectively; suitable restraints were applied. Hydrogen atoms were refined using a riding model except the fully occupied donor hydrogen atoms H5 and H10A, which were refined isotropically. Crystal data, data collection and structure details are summarized in Table 2.
|
Supporting information
CCDC reference: 2417815
https://doi.org/10.1107/S2056989025000441/dj2079sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025000441/dj2079Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025000441/dj2079Isup3.cml
C14H14Cl3N5O3 | Z = 4 |
Mr = 406.65 | F(000) = 832 |
Triclinic, P1 | Dx = 1.584 Mg m−3 |
a = 5.68120 (9) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 9.79735 (16) Å | Cell parameters from 17243 reflections |
c = 30.9679 (7) Å | θ = 4.3–76.3° |
α = 84.8340 (16)° | µ = 5.11 mm−1 |
β = 86.9814 (16)° | T = 100 K |
γ = 83.8568 (14)° | Plate, clear red |
V = 1705.22 (5) Å3 | 0.23 × 0.14 × 0.01 mm |
SuperNova, Dual, Cu at home/near, Atlas diffractometer | 7450 measured reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 7450 independent reflections |
Mirror monochromator | 7177 reflections with I > 2σ(I) |
Detector resolution: 5.3114 pixels mm-1 | θmax = 76.4°, θmin = 4.3° |
ω scans | h = −7→7 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | k = −12→12 |
Tmin = 0.465, Tmax = 1.000 | l = −38→38 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.069 | Hydrogen site location: mixed |
wR(F2) = 0.206 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1045P)2 + 9.5963P] where P = (Fo2 + 2Fc2)/3 |
7450 reflections | (Δ/σ)max < 0.001 |
486 parameters | Δρmax = 0.77 e Å−3 |
19 restraints | Δρmin = −0.90 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Crystal was a pseudo-merohedral twin, component 2 rotated by 180.0 deg. around [0.00 -0.00 1.00] (reciprocal) or [-0.22 -0.25 0.94] (direct, ratio 88:12. Disorder of two hydroxyl groups (O3 and O6), suitable restraints were applied. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 1.1322 (2) | 0.08824 (14) | 0.42925 (5) | 0.0329 (3) | |
Cl2 | 0.6950 (2) | 0.26123 (16) | 0.44550 (5) | 0.0321 (3) | |
Cl3 | 1.0931 (2) | 0.37599 (12) | 0.39919 (4) | 0.0234 (3) | |
O1 | 0.7048 (6) | 0.3022 (4) | 0.34668 (12) | 0.0211 (7) | |
O2 | 0.4640 (7) | 0.1570 (4) | 0.32311 (13) | 0.0251 (8) | |
O3 | −0.3128 (14) | 1.2598 (7) | 0.0771 (2) | 0.058 (2) | 0.837 (12) |
H3 | −0.457723 | 1.253027 | 0.074885 | 0.087* | 0.837 (12) |
O3B | 0.041 (5) | 1.181 (3) | 0.0326 (10) | 0.057 (2) | 0.163 (12) |
H3B | 0.062683 | 1.132429 | 0.011423 | 0.085* | 0.163 (12) |
N1 | −0.2060 (10) | 0.9150 (5) | 0.15838 (16) | 0.0342 (11) | |
N2 | −0.2588 (12) | 1.0152 (6) | 0.12785 (17) | 0.0410 (13) | |
N3 | 0.1015 (12) | 0.9577 (7) | 0.08992 (18) | 0.0465 (15) | |
N4 | 0.1566 (10) | 0.8561 (6) | 0.11993 (17) | 0.0386 (12) | |
N5 | 0.4121 (8) | 0.3882 (4) | 0.30433 (14) | 0.0200 (8) | |
H5 | 0.425 (11) | 0.471 (6) | 0.3121 (19) | 0.021 (15)* | |
C1 | 0.9349 (9) | 0.2284 (5) | 0.40819 (18) | 0.0222 (10) | |
C2 | 0.8490 (9) | 0.1865 (5) | 0.36602 (17) | 0.0210 (10) | |
H2A | 0.985741 | 0.160333 | 0.346223 | 0.025* | |
H2B | 0.755748 | 0.106562 | 0.371964 | 0.025* | |
C3 | 0.5192 (9) | 0.2743 (5) | 0.32447 (16) | 0.0191 (9) | |
C4 | 0.1921 (9) | 0.3815 (5) | 0.28271 (18) | 0.0228 (10) | |
H4A | 0.058991 | 0.380919 | 0.304661 | 0.027* | |
H4B | 0.202155 | 0.294306 | 0.268512 | 0.027* | |
C5 | 0.1427 (9) | 0.5008 (5) | 0.24926 (17) | 0.0204 (10) | |
C6 | −0.0741 (9) | 0.5793 (5) | 0.24949 (17) | 0.0220 (10) | |
H6 | −0.191793 | 0.558846 | 0.271351 | 0.026* | |
C7 | −0.1219 (10) | 0.6876 (5) | 0.21823 (17) | 0.0233 (10) | |
H7 | −0.271988 | 0.740636 | 0.218868 | 0.028* | |
C8 | 0.0472 (10) | 0.7192 (5) | 0.18602 (16) | 0.0224 (10) | |
C9 | 0.2680 (10) | 0.6410 (6) | 0.18550 (18) | 0.0265 (11) | |
H9 | 0.386199 | 0.662407 | 0.163834 | 0.032* | |
C10 | 0.3137 (9) | 0.5320 (6) | 0.21675 (18) | 0.0255 (11) | |
H10 | 0.462872 | 0.477978 | 0.216052 | 0.031* | |
C11 | −0.0040 (10) | 0.8342 (6) | 0.15300 (17) | 0.0252 (11) | |
C12 | −0.1062 (16) | 1.0318 (7) | 0.0945 (2) | 0.0441 (17) | |
C13 | −0.1735 (18) | 1.1430 (8) | 0.0587 (2) | 0.056 (2) | |
H13 | −0.026605 | 1.174380 | 0.043490 | 0.068* | 0.837 (12) |
H13A | −0.262563 | 1.225676 | 0.070826 | 0.068* | 0.163 (12) |
C14 | −0.315 (3) | 1.0854 (13) | 0.0276 (4) | 0.095 (4) | |
H14A | −0.466918 | 1.064440 | 0.041722 | 0.143* | |
H14B | −0.228721 | 1.000804 | 0.017905 | 0.143* | |
H14C | −0.343324 | 1.152675 | 0.002581 | 0.143* | |
Cl4 | 0.3166 (2) | −0.29716 (16) | 0.44065 (5) | 0.0315 (3) | |
Cl5 | 0.7664 (2) | −0.39206 (13) | 0.47735 (4) | 0.0249 (3) | |
Cl6 | 0.6449 (3) | −0.10273 (13) | 0.45496 (4) | 0.0301 (3) | |
O4 | 0.6305 (6) | −0.1854 (4) | 0.36372 (12) | 0.0223 (7) | |
O5 | 0.4424 (8) | −0.3461 (4) | 0.33389 (14) | 0.0329 (10) | |
O6 | −0.2967 (16) | 0.7521 (8) | 0.0779 (3) | 0.066 (3) | 0.781 (12) |
H6A | −0.441892 | 0.742144 | 0.078460 | 0.100* | 0.781 (12) |
O6B | 0.066 (4) | 0.669 (3) | 0.0397 (8) | 0.065 (3) | 0.219 (12) |
H6B | 0.073883 | 0.650586 | 0.013651 | 0.097* | 0.219 (12) |
N6 | −0.1979 (10) | 0.4068 (6) | 0.16096 (16) | 0.0353 (12) | |
N7 | −0.2464 (11) | 0.5074 (6) | 0.13041 (18) | 0.0408 (13) | |
N8 | 0.1101 (12) | 0.4390 (7) | 0.09173 (18) | 0.0471 (15) | |
N9 | 0.1614 (10) | 0.3370 (6) | 0.12202 (16) | 0.0379 (12) | |
N10 | 0.3659 (8) | −0.1176 (4) | 0.31429 (15) | 0.0230 (9) | |
H10A | 0.396 (12) | −0.039 (6) | 0.323 (2) | 0.024 (16)* | |
C15 | 0.6236 (8) | −0.2704 (5) | 0.43975 (16) | 0.0193 (9) | |
C16 | 0.7363 (10) | −0.2879 (6) | 0.39447 (16) | 0.0246 (11) | |
H16A | 0.908502 | −0.280039 | 0.394745 | 0.030* | |
H16B | 0.714738 | −0.380646 | 0.385943 | 0.030* | |
C17 | 0.4739 (10) | −0.2264 (5) | 0.33665 (16) | 0.0226 (10) | |
C18 | 0.1770 (10) | −0.1350 (6) | 0.28555 (18) | 0.0263 (11) | |
H18A | 0.028851 | −0.147025 | 0.303129 | 0.032* | |
H18B | 0.220077 | −0.219402 | 0.270328 | 0.032* | |
C19 | 0.1346 (10) | −0.0128 (5) | 0.25238 (16) | 0.0228 (10) | |
C20 | −0.0829 (9) | 0.0671 (5) | 0.25217 (16) | 0.0215 (10) | |
H20 | −0.203089 | 0.046435 | 0.273515 | 0.026* | |
C21 | −0.1259 (9) | 0.1770 (5) | 0.22099 (17) | 0.0230 (10) | |
H21 | −0.274288 | 0.231891 | 0.221342 | 0.028* | |
C22 | 0.0482 (10) | 0.2067 (5) | 0.18928 (16) | 0.0219 (10) | |
C23 | 0.2663 (11) | 0.1270 (6) | 0.18944 (18) | 0.0277 (11) | |
H23 | 0.386184 | 0.146932 | 0.167935 | 0.033* | |
C24 | 0.3089 (10) | 0.0183 (6) | 0.22100 (18) | 0.0266 (11) | |
H24 | 0.458556 | −0.035162 | 0.221115 | 0.032* | |
C25 | 0.0020 (10) | 0.3216 (6) | 0.15551 (17) | 0.0258 (11) | |
C26 | −0.0929 (15) | 0.5181 (8) | 0.0967 (2) | 0.0458 (17) | |
C27 | −0.1601 (19) | 0.6313 (9) | 0.0606 (3) | 0.064 (2) | |
H27 | −0.013816 | 0.659602 | 0.044318 | 0.077* | 0.781 (12) |
H27A | −0.246526 | 0.713110 | 0.073622 | 0.077* | 0.219 (12) |
C28 | −0.316 (3) | 0.5772 (14) | 0.0307 (4) | 0.111 (5) | |
H28A | −0.239850 | 0.489798 | 0.021050 | 0.167* | |
H28B | −0.342077 | 0.643866 | 0.005394 | 0.167* | |
H28C | −0.467882 | 0.562106 | 0.045729 | 0.167* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0285 (7) | 0.0247 (6) | 0.0446 (7) | −0.0008 (5) | −0.0148 (6) | 0.0072 (5) |
Cl2 | 0.0234 (6) | 0.0390 (8) | 0.0352 (7) | −0.0087 (5) | 0.0066 (5) | −0.0073 (6) |
Cl3 | 0.0175 (5) | 0.0184 (5) | 0.0351 (6) | −0.0027 (4) | −0.0045 (4) | −0.0048 (5) |
O1 | 0.0167 (16) | 0.0132 (16) | 0.0344 (19) | −0.0039 (13) | −0.0087 (14) | −0.0001 (14) |
O2 | 0.0271 (19) | 0.0122 (17) | 0.037 (2) | −0.0049 (14) | −0.0076 (15) | −0.0027 (15) |
O3 | 0.069 (5) | 0.034 (3) | 0.065 (4) | 0.007 (3) | −0.002 (4) | 0.012 (3) |
O3B | 0.092 (7) | 0.035 (4) | 0.040 (4) | 0.002 (4) | −0.001 (4) | 0.009 (4) |
N1 | 0.044 (3) | 0.025 (2) | 0.031 (2) | 0.004 (2) | −0.005 (2) | 0.003 (2) |
N2 | 0.061 (4) | 0.026 (3) | 0.033 (3) | 0.010 (2) | −0.008 (2) | 0.002 (2) |
N3 | 0.060 (4) | 0.044 (3) | 0.031 (3) | −0.004 (3) | 0.002 (3) | 0.011 (2) |
N4 | 0.040 (3) | 0.042 (3) | 0.031 (3) | −0.001 (2) | 0.001 (2) | 0.009 (2) |
N5 | 0.021 (2) | 0.0116 (19) | 0.029 (2) | −0.0071 (16) | −0.0087 (17) | −0.0012 (16) |
C1 | 0.012 (2) | 0.018 (2) | 0.037 (3) | −0.0006 (18) | −0.0072 (19) | 0.000 (2) |
C2 | 0.021 (2) | 0.014 (2) | 0.028 (2) | 0.0019 (18) | −0.0043 (19) | −0.0016 (18) |
C3 | 0.015 (2) | 0.016 (2) | 0.027 (2) | −0.0042 (18) | −0.0016 (18) | −0.0006 (18) |
C4 | 0.017 (2) | 0.017 (2) | 0.036 (3) | −0.0072 (19) | −0.011 (2) | 0.003 (2) |
C5 | 0.019 (2) | 0.016 (2) | 0.028 (2) | −0.0059 (18) | −0.0092 (19) | −0.0010 (19) |
C6 | 0.020 (2) | 0.016 (2) | 0.030 (3) | −0.0048 (19) | −0.0027 (19) | −0.002 (2) |
C7 | 0.024 (3) | 0.017 (2) | 0.029 (3) | −0.0024 (19) | −0.005 (2) | −0.001 (2) |
C8 | 0.026 (3) | 0.018 (2) | 0.024 (2) | −0.004 (2) | −0.0054 (19) | −0.0029 (19) |
C9 | 0.024 (3) | 0.027 (3) | 0.028 (3) | −0.003 (2) | 0.001 (2) | −0.001 (2) |
C10 | 0.020 (2) | 0.022 (3) | 0.033 (3) | 0.003 (2) | −0.001 (2) | −0.002 (2) |
C11 | 0.031 (3) | 0.022 (3) | 0.024 (2) | −0.005 (2) | −0.005 (2) | −0.003 (2) |
C12 | 0.076 (5) | 0.028 (3) | 0.027 (3) | 0.001 (3) | −0.010 (3) | 0.001 (2) |
C13 | 0.091 (6) | 0.035 (4) | 0.039 (4) | 0.002 (4) | −0.001 (4) | 0.009 (3) |
C14 | 0.147 (12) | 0.077 (7) | 0.061 (6) | 0.003 (8) | −0.048 (7) | 0.011 (5) |
Cl4 | 0.0147 (5) | 0.0430 (8) | 0.0375 (7) | −0.0108 (5) | −0.0052 (5) | 0.0047 (6) |
Cl5 | 0.0229 (6) | 0.0202 (6) | 0.0301 (6) | 0.0014 (4) | −0.0064 (5) | 0.0054 (5) |
Cl6 | 0.0412 (7) | 0.0149 (6) | 0.0354 (7) | −0.0034 (5) | −0.0113 (5) | −0.0032 (5) |
O4 | 0.0226 (18) | 0.0155 (17) | 0.0287 (18) | −0.0025 (14) | −0.0065 (14) | 0.0020 (14) |
O5 | 0.052 (3) | 0.0066 (16) | 0.042 (2) | −0.0013 (16) | −0.020 (2) | −0.0033 (15) |
O6 | 0.078 (6) | 0.042 (4) | 0.074 (5) | 0.006 (4) | −0.012 (5) | 0.014 (4) |
O6B | 0.092 (7) | 0.049 (5) | 0.048 (5) | −0.003 (5) | −0.003 (4) | 0.015 (4) |
N6 | 0.047 (3) | 0.029 (3) | 0.027 (2) | 0.005 (2) | −0.005 (2) | 0.002 (2) |
N7 | 0.055 (4) | 0.030 (3) | 0.034 (3) | 0.009 (2) | −0.009 (2) | 0.002 (2) |
N8 | 0.054 (4) | 0.053 (4) | 0.032 (3) | −0.007 (3) | −0.005 (2) | 0.014 (3) |
N9 | 0.043 (3) | 0.043 (3) | 0.026 (2) | −0.006 (2) | −0.002 (2) | 0.007 (2) |
N10 | 0.029 (2) | 0.011 (2) | 0.030 (2) | −0.0044 (17) | −0.0138 (18) | −0.0027 (17) |
C15 | 0.008 (2) | 0.022 (2) | 0.027 (2) | −0.0035 (17) | −0.0035 (17) | 0.0039 (19) |
C16 | 0.026 (3) | 0.025 (3) | 0.022 (2) | 0.003 (2) | −0.006 (2) | 0.001 (2) |
C17 | 0.028 (3) | 0.017 (2) | 0.023 (2) | 0.000 (2) | −0.007 (2) | −0.0026 (19) |
C18 | 0.029 (3) | 0.020 (3) | 0.032 (3) | −0.007 (2) | −0.013 (2) | 0.002 (2) |
C19 | 0.028 (3) | 0.017 (2) | 0.024 (2) | −0.002 (2) | −0.010 (2) | −0.0025 (19) |
C20 | 0.026 (3) | 0.017 (2) | 0.023 (2) | −0.009 (2) | −0.0032 (19) | −0.0024 (19) |
C21 | 0.023 (3) | 0.019 (2) | 0.027 (2) | 0.002 (2) | −0.006 (2) | −0.005 (2) |
C22 | 0.025 (3) | 0.021 (2) | 0.021 (2) | −0.005 (2) | −0.0045 (19) | −0.0031 (19) |
C23 | 0.032 (3) | 0.025 (3) | 0.026 (3) | −0.001 (2) | −0.002 (2) | −0.001 (2) |
C24 | 0.026 (3) | 0.020 (3) | 0.034 (3) | 0.002 (2) | −0.004 (2) | −0.002 (2) |
C25 | 0.033 (3) | 0.021 (3) | 0.024 (2) | −0.005 (2) | −0.006 (2) | −0.003 (2) |
C26 | 0.068 (5) | 0.038 (4) | 0.031 (3) | −0.004 (3) | −0.012 (3) | 0.007 (3) |
C27 | 0.091 (7) | 0.049 (5) | 0.047 (4) | −0.002 (4) | −0.004 (4) | 0.014 (4) |
C28 | 0.176 (15) | 0.079 (8) | 0.079 (8) | −0.001 (9) | −0.070 (9) | 0.015 (6) |
Cl1—C1 | 1.776 (5) | Cl4—C15 | 1.790 (5) |
Cl2—C1 | 1.762 (6) | Cl5—C15 | 1.754 (5) |
Cl3—C1 | 1.776 (5) | Cl6—C15 | 1.767 (5) |
O1—C2 | 1.431 (6) | O4—C16 | 1.427 (6) |
O1—C3 | 1.353 (6) | O4—C17 | 1.368 (6) |
O2—C3 | 1.228 (6) | O5—C17 | 1.216 (7) |
O3—H3 | 0.8400 | O6—H6A | 0.8400 |
O3—C13 | 1.462 (10) | O6—C27 | 1.471 (11) |
O3B—H3B | 0.8400 | O6B—H6B | 0.8400 |
O3B—C13 | 1.486 (18) | O6B—C27 | 1.477 (17) |
N1—N2 | 1.322 (7) | N6—N7 | 1.321 (7) |
N1—C11 | 1.334 (8) | N6—C25 | 1.348 (8) |
N2—C12 | 1.323 (10) | N7—C26 | 1.328 (10) |
N3—N4 | 1.323 (8) | N8—N9 | 1.327 (8) |
N3—C12 | 1.326 (10) | N8—C26 | 1.329 (11) |
N4—C11 | 1.353 (8) | N9—C25 | 1.350 (8) |
N5—H5 | 0.88 (5) | N10—H10A | 0.87 (5) |
N5—C3 | 1.332 (6) | N10—C17 | 1.329 (7) |
N5—C4 | 1.459 (6) | N10—C18 | 1.463 (6) |
C1—C2 | 1.523 (7) | C15—C16 | 1.527 (7) |
C2—H2A | 0.9900 | C16—H16A | 0.9900 |
C2—H2B | 0.9900 | C16—H16B | 0.9900 |
C4—H4A | 0.9900 | C18—H18A | 0.9900 |
C4—H4B | 0.9900 | C18—H18B | 0.9900 |
C4—C5 | 1.503 (7) | C18—C19 | 1.514 (7) |
C5—C6 | 1.381 (7) | C19—C20 | 1.390 (8) |
C5—C10 | 1.399 (8) | C19—C24 | 1.388 (8) |
C6—H6 | 0.9500 | C20—H20 | 0.9500 |
C6—C7 | 1.385 (7) | C20—C21 | 1.390 (7) |
C7—H7 | 0.9500 | C21—H21 | 0.9500 |
C7—C8 | 1.386 (8) | C21—C22 | 1.391 (8) |
C8—C9 | 1.398 (8) | C22—C23 | 1.392 (8) |
C8—C11 | 1.467 (7) | C22—C25 | 1.478 (7) |
C9—H9 | 0.9500 | C23—H23 | 0.9500 |
C9—C10 | 1.388 (8) | C23—C24 | 1.389 (8) |
C10—H10 | 0.9500 | C24—H24 | 0.9500 |
C12—C13 | 1.516 (9) | C26—C27 | 1.537 (10) |
C13—H13 | 1.0000 | C27—H27 | 1.0000 |
C13—H13A | 1.0000 | C27—H27A | 1.0000 |
C13—C14 | 1.472 (14) | C27—C28 | 1.482 (16) |
C14—H14A | 0.9800 | C28—H28A | 0.9800 |
C14—H14B | 0.9800 | C28—H28B | 0.9800 |
C14—H14C | 0.9800 | C28—H28C | 0.9800 |
C3—O1—C2 | 116.7 (4) | C17—O4—C16 | 117.1 (4) |
C13—O3—H3 | 109.5 | C27—O6—H6A | 109.5 |
C13—O3B—H3B | 109.5 | C27—O6B—H6B | 109.5 |
N2—N1—C11 | 117.7 (5) | N7—N6—C25 | 117.8 (5) |
N1—N2—C12 | 118.3 (6) | N6—N7—C26 | 117.5 (6) |
N4—N3—C12 | 117.8 (6) | N9—N8—C26 | 117.8 (6) |
N3—N4—C11 | 117.7 (6) | N8—N9—C25 | 117.1 (6) |
C3—N5—H5 | 123 (4) | C17—N10—H10A | 114 (4) |
C3—N5—C4 | 119.5 (4) | C17—N10—C18 | 120.1 (4) |
C4—N5—H5 | 112 (4) | C18—N10—H10A | 125 (4) |
Cl1—C1—Cl3 | 108.2 (3) | Cl5—C15—Cl4 | 108.7 (3) |
Cl2—C1—Cl1 | 110.2 (3) | Cl5—C15—Cl6 | 109.5 (3) |
Cl2—C1—Cl3 | 109.5 (3) | Cl6—C15—Cl4 | 108.2 (3) |
C2—C1—Cl1 | 106.5 (4) | C16—C15—Cl4 | 110.0 (4) |
C2—C1—Cl2 | 110.7 (3) | C16—C15—Cl5 | 109.5 (3) |
C2—C1—Cl3 | 111.7 (4) | C16—C15—Cl6 | 110.9 (4) |
O1—C2—C1 | 107.5 (4) | O4—C16—C15 | 110.4 (4) |
O1—C2—H2A | 110.2 | O4—C16—H16A | 109.6 |
O1—C2—H2B | 110.2 | O4—C16—H16B | 109.6 |
C1—C2—H2A | 110.2 | C15—C16—H16A | 109.6 |
C1—C2—H2B | 110.2 | C15—C16—H16B | 109.6 |
H2A—C2—H2B | 108.5 | H16A—C16—H16B | 108.1 |
O2—C3—O1 | 122.7 (5) | O5—C17—O4 | 123.8 (5) |
O2—C3—N5 | 125.8 (5) | O5—C17—N10 | 126.0 (5) |
N5—C3—O1 | 111.5 (4) | N10—C17—O4 | 110.2 (4) |
N5—C4—H4A | 109.2 | N10—C18—H18A | 109.2 |
N5—C4—H4B | 109.2 | N10—C18—H18B | 109.2 |
N5—C4—C5 | 112.1 (4) | N10—C18—C19 | 111.8 (4) |
H4A—C4—H4B | 107.9 | H18A—C18—H18B | 107.9 |
C5—C4—H4A | 109.2 | C19—C18—H18A | 109.2 |
C5—C4—H4B | 109.2 | C19—C18—H18B | 109.2 |
C6—C5—C4 | 120.6 (5) | C20—C19—C18 | 120.2 (5) |
C6—C5—C10 | 118.9 (5) | C24—C19—C18 | 120.6 (5) |
C10—C5—C4 | 120.5 (5) | C24—C19—C20 | 119.2 (5) |
C5—C6—H6 | 119.6 | C19—C20—H20 | 119.7 |
C5—C6—C7 | 120.8 (5) | C19—C20—C21 | 120.6 (5) |
C7—C6—H6 | 119.6 | C21—C20—H20 | 119.7 |
C6—C7—H7 | 119.7 | C20—C21—H21 | 120.0 |
C6—C7—C8 | 120.6 (5) | C20—C21—C22 | 120.0 (5) |
C8—C7—H7 | 119.7 | C22—C21—H21 | 120.0 |
C7—C8—C9 | 119.3 (5) | C21—C22—C23 | 119.6 (5) |
C7—C8—C11 | 120.4 (5) | C21—C22—C25 | 120.3 (5) |
C9—C8—C11 | 120.3 (5) | C23—C22—C25 | 120.1 (5) |
C8—C9—H9 | 120.1 | C22—C23—H23 | 120.0 |
C10—C9—C8 | 119.7 (5) | C24—C23—C22 | 120.1 (5) |
C10—C9—H9 | 120.1 | C24—C23—H23 | 120.0 |
C5—C10—H10 | 119.6 | C19—C24—C23 | 120.6 (5) |
C9—C10—C5 | 120.7 (5) | C19—C24—H24 | 119.7 |
C9—C10—H10 | 119.6 | C23—C24—H24 | 119.7 |
N1—C11—N4 | 123.5 (5) | N6—C25—N9 | 124.1 (5) |
N1—C11—C8 | 117.2 (5) | N6—C25—C22 | 116.9 (5) |
N4—C11—C8 | 119.3 (5) | N9—C25—C22 | 119.0 (5) |
N2—C12—N3 | 124.7 (6) | N7—C26—N8 | 125.6 (6) |
N2—C12—C13 | 117.9 (7) | N7—C26—C27 | 116.3 (7) |
N3—C12—C13 | 117.4 (7) | N8—C26—C27 | 118.1 (7) |
O3—C13—C12 | 109.9 (6) | O6—C27—C26 | 111.7 (7) |
O3—C13—H13 | 109.5 | O6—C27—H27 | 109.9 |
O3—C13—C14 | 109.6 (9) | O6—C27—C28 | 106.5 (10) |
O3B—C13—C12 | 110.5 (14) | O6B—C27—C26 | 105.9 (12) |
O3B—C13—H13A | 111.1 | O6B—C27—H27A | 109.5 |
C12—C13—H13 | 109.5 | O6B—C27—C28 | 113.6 (15) |
C12—C13—H13A | 111.1 | C26—C27—H27 | 109.9 |
C14—C13—O3B | 104.1 (16) | C26—C27—H27A | 109.5 |
C14—C13—C12 | 108.7 (7) | C28—C27—C26 | 108.8 (8) |
C14—C13—H13 | 109.5 | C28—C27—H27 | 109.9 |
C14—C13—H13A | 111.1 | C28—C27—H27A | 109.5 |
C13—C14—H14A | 109.5 | C27—C28—H28A | 109.5 |
C13—C14—H14B | 109.5 | C27—C28—H28B | 109.5 |
C13—C14—H14C | 109.5 | C27—C28—H28C | 109.5 |
H14A—C14—H14B | 109.5 | H28A—C28—H28B | 109.5 |
H14A—C14—H14C | 109.5 | H28A—C28—H28C | 109.5 |
H14B—C14—H14C | 109.5 | H28B—C28—H28C | 109.5 |
Cl1—C1—C2—O1 | −175.4 (3) | Cl4—C15—C16—O4 | 63.5 (5) |
Cl2—C1—C2—O1 | 64.8 (5) | Cl5—C15—C16—O4 | −177.1 (3) |
Cl3—C1—C2—O1 | −57.5 (5) | Cl6—C15—C16—O4 | −56.2 (5) |
N1—N2—C12—N3 | −2.3 (11) | N6—N7—C26—N8 | −2.5 (11) |
N1—N2—C12—C13 | 177.4 (6) | N6—N7—C26—C27 | 176.9 (7) |
N2—N1—C11—N4 | 5.3 (9) | N7—N6—C25—N9 | 3.6 (9) |
N2—N1—C11—C8 | −177.1 (5) | N7—N6—C25—C22 | −177.8 (5) |
N2—C12—C13—O3 | 34.0 (11) | N7—C26—C27—O6 | 32.5 (12) |
N2—C12—C13—O3B | 160.4 (16) | N7—C26—C27—O6B | 152.9 (14) |
N2—C12—C13—C14 | −86.0 (10) | N7—C26—C27—C28 | −84.7 (11) |
N3—N4—C11—N1 | −4.7 (9) | N8—N9—C25—N6 | −3.4 (9) |
N3—N4—C11—C8 | 177.7 (6) | N8—N9—C25—C22 | 178.1 (5) |
N3—C12—C13—O3 | −146.3 (8) | N8—C26—C27—O6 | −148.0 (8) |
N3—C12—C13—O3B | −19.9 (18) | N8—C26—C27—O6B | −27.7 (16) |
N3—C12—C13—C14 | 93.7 (11) | N8—C26—C27—C28 | 94.7 (12) |
N4—N3—C12—N2 | 2.9 (12) | N9—N8—C26—N7 | 2.7 (12) |
N4—N3—C12—C13 | −176.8 (7) | N9—N8—C26—C27 | −176.7 (7) |
N5—C4—C5—C6 | −128.5 (5) | N10—C18—C19—C20 | −117.2 (5) |
N5—C4—C5—C10 | 53.1 (7) | N10—C18—C19—C24 | 64.9 (7) |
C2—O1—C3—O2 | 5.0 (7) | C16—O4—C17—O5 | −9.1 (8) |
C2—O1—C3—N5 | −173.8 (4) | C16—O4—C17—N10 | 171.3 (4) |
C3—O1—C2—C1 | −146.0 (4) | C17—O4—C16—C15 | −104.4 (5) |
C3—N5—C4—C5 | −159.6 (5) | C17—N10—C18—C19 | −160.7 (5) |
C4—N5—C3—O1 | −173.1 (4) | C18—N10—C17—O4 | −175.4 (5) |
C4—N5—C3—O2 | 8.1 (8) | C18—N10—C17—O5 | 5.0 (9) |
C4—C5—C6—C7 | −178.7 (5) | C18—C19—C20—C21 | −178.0 (5) |
C4—C5—C10—C9 | 179.2 (5) | C18—C19—C24—C23 | 177.2 (5) |
C5—C6—C7—C8 | 0.0 (8) | C19—C20—C21—C22 | 0.9 (8) |
C6—C5—C10—C9 | 0.7 (8) | C20—C19—C24—C23 | −0.7 (8) |
C6—C7—C8—C9 | −0.4 (8) | C20—C21—C22—C23 | −1.0 (8) |
C6—C7—C8—C11 | −179.9 (5) | C20—C21—C22—C25 | 178.8 (5) |
C7—C8—C9—C10 | 0.9 (8) | C21—C22—C23—C24 | 0.2 (8) |
C7—C8—C11—N1 | 7.6 (8) | C21—C22—C25—N6 | 9.9 (8) |
C7—C8—C11—N4 | −174.7 (5) | C21—C22—C25—N9 | −171.5 (5) |
C8—C9—C10—C5 | −1.1 (8) | C22—C23—C24—C19 | 0.6 (9) |
C9—C8—C11—N1 | −172.0 (5) | C23—C22—C25—N6 | −170.4 (5) |
C9—C8—C11—N4 | 5.7 (8) | C23—C22—C25—N9 | 8.2 (8) |
C10—C5—C6—C7 | −0.2 (8) | C24—C19—C20—C21 | −0.1 (8) |
C11—N1—N2—C12 | −1.8 (9) | C25—N6—N7—C26 | −0.7 (9) |
C11—C8—C9—C10 | −179.6 (5) | C25—C22—C23—C24 | −179.5 (5) |
C12—N3—N4—C11 | 0.6 (10) | C26—N8—N9—C25 | 0.2 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···N9i | 0.84 | 2.64 | 3.271 (10) | 133 |
O3B—H3B···O6Bii | 0.84 | 2.46 | 2.63 (4) | 92 |
N5—H5···O5iii | 0.88 (5) | 1.98 (5) | 2.861 (6) | 175 (6) |
O6—H6A···N4iv | 0.84 | 2.74 | 3.394 (11) | 136 |
N10—H10A···O2 | 0.87 (5) | 2.00 (6) | 2.844 (6) | 163 (6) |
Symmetry codes: (i) x−1, y+1, z; (ii) −x, −y+2, −z; (iii) x, y+1, z; (iv) x−1, y, z. |
Acknowledgements
The authors thank Jan-Niklas Bollnow for fruitful discussions and proof-reading of the manuscript. We acknowledge support for the publication costs by the Open Access Publication Fund of Bielefeld University and the Deutsche Forschungsgemeinschaft (DFG).
References
Agarwal, P., Beahm, B. J., Shieh, P. & Bertozzi, C. R. (2015). Angew. Chem. Int. Ed. 54, 11504–11510. CrossRef CAS Google Scholar
Beagan, D. M., Maciulis, N. A., Pink, M., Carta, V., Huerfano, I. J., Chen, C.-H. & Caulton, K. G. (2021). Chem. Eur. J. 27, 11676–11681. CSD CrossRef CAS PubMed Google Scholar
Davies, S., Oliveira, B. L. & Bernardes, G. J. L. (2019). Org. Biomol. Chem. 17, 5725–5730. CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fausto, R., Batista de Carvalho, L. A. E., Teixeira-Dias, J. J. C. & Ramos, M. N. (1989). J. Chem. Soc. Faraday Trans. 2, 85, 1945–1962. Google Scholar
Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E. & Goldberg, K. I. (2010). Organometallics, 29, 2176–2179. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guo, Q.-H., Zhou, J., Mao, H., Qiu, Y., Nguyen, M. T., Feng, Y., Liang, J., Shen, D., Li, P., Liu, Z., Wasielewski, M. R. & Stoddart, J. F. (2020). J. Am. Chem. Soc. 142, 5419–5428. CSD CrossRef CAS PubMed Google Scholar
Hu, W.-X. & Xu, F. (2008). J. Heterocycl. Chem. 45, 1745–1750. CSD CrossRef CAS Google Scholar
Huber, R. G., Margreiter, M. A., Fuchs, J. E., von Grafenstein, S., Tautermann, C. S., Liedl, K. R. & Fox, T. (2014). J. Chem. Inf. Model. 54, 1371–1379. Web of Science CrossRef CAS PubMed Google Scholar
Jiang, H., Gong, Q., Zhang, R. & Yuan, H. (2024). Coord. Chem. Rev. 499, 215501. CrossRef Google Scholar
Klapötke, T. M., Preimesser, A. & Stierstorfer, J. (2013). Z. Naturforsch. B, 68, 1310–1320. Google Scholar
Krieger, C., Fischer, H. & Neugebauer, F. A. (1987). Acta Cryst. C43, 1320–1322. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Lemes, M. A., Stein, H. N., Gabidullin, B., Steinmann, S. N. & Murugesu, M. (2018). ACS Omega, 3, 10273–10277. CSD CrossRef CAS PubMed Google Scholar
Liu, Y., Zhao, G., Yu, Q., Tang, Y., Imler, G. H., Parrish, D. A. & Shreeve, J. M. (2019). J. Org. Chem. 84, 16019–16026. CrossRef CAS PubMed Google Scholar
Loredo, A., Tang, J., Wang, L., Wu, K.-L., Peng, Z. & Xiao, H. (2020). Chem. Sci. 11, 4410–4415. CrossRef CAS PubMed Google Scholar
Mayer, S. & Lang, K. (2017). Synthesis, 49, 830–848. CAS Google Scholar
Oliveira, B. L., Guo, Z. & Bernardes, G. J. L. (2017). Chem. Soc. Rev. 46, 4895–4950. CrossRef CAS PubMed Google Scholar
Onzen, A. H. A. M. van, Versteegen, R. M., Hoeben, F. J. M., Filot, I. A. W., Rossin, R., Zhu, T., Wu, J., Hudson, P. J., Janssen, H. M., ten Hoeve, W. & Robillard, M. S. (2020). J. Am. Chem. Soc. 142, 10955–10963. PubMed Google Scholar
Pinner, A. (1893). Ber. Dtsch. Chem. Ges. 26, 2126–2135. CrossRef Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Roberts, D. A., Pilgrim, B. S., Cooper, J. D., Ronson, T. K., Zarra, S. & Nitschke, J. R. (2015). J. Am. Chem. Soc. 137, 10068–10071. CSD CrossRef CAS PubMed Google Scholar
Rossin, R., van Duijnhoven, S. M. J., ten Hoeve, W., Janssen, H. M., Kleijn, L. H. J., Hoeben, F. J. M., Versteegen, R. M. & Robillard, M. S. (2016). Bioconjugate Chem. 27, 1697–1706. CrossRef CAS Google Scholar
Rossin, R., Versteegen, R. M., Wu, J., Khasanov, A., Wessels, H. J., Steenbergen, E. J., ten Hoeve, W., Janssen, H. M., van Onzen, A. H. A. M., Hudson, P. J. & Robillard, M. S. (2018). Nat. Commun. 9, 1484. CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Xu, F. & Hu, W.-X. (2006). Acta Cryst. E62, o4636–o4637. CSD CrossRef IUCr Journals Google Scholar
Xu, F. & Hu, W.-X. (2007a). Acta Cryst. E63, o2397. CSD CrossRef IUCr Journals Google Scholar
Xu, F. & Hu, W.-X. (2007b). Acta Cryst. E63, o914–o915. CSD CrossRef IUCr Journals Google Scholar
Zhao, G., Li, Z., Zhang, R., Zhou, L., Zhao, H. & Jiang, H. (2022). Front. Mol. Biosci. 9, 1055823. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
