research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 2,2,2-tri­chloro­ethyl N-{4-[6-(1-hy­dr­oxy­eth­yl)-1,2,4,5-tetra­zin-3-yl]benz­yl}carbamate

crossmark logo

aBielefeld University, Department of Chemistry, Universitaetsstr. 25, Bielefeld, 33615, Germany
*Correspondence e-mail: norbert.sewald@uni-bielefeld.de

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 25 June 2024; accepted 17 January 2025; online 24 January 2025)

An orthogonally addressable 3,6-disubstituted 1,2,4,5-tetra­zine, namely 2,2,2-tri­chloro­ethyl N-{4-[6-(1-hy­droxy­eth­yl)-1,2,4,5-tetra­zin-3-yl]benz­yl}carbamate (C14H14Cl3N5O3), was synthesized and characterized by single-crystal X-ray diffraction. The tetra­zine comprises a free hydroxyl and a 2,2,2-tri­chloro­eth­oxy­carbonyl protected amino group, which gives rise to hydrogen-bonding inter­actions each making the tetra­zine highly linked in the solid state. The carbamate moieties form inter­molecular hydrogen bonds, stacking the tetra­zine mol­ecules above each other, while lateral hydrogen bonds are formed between a tetra­zine N atom and a hydroxyl group, the latter inter­action being a scarcely explored structural feature of 1,2,4,5-tetra­zines.

1. Chemical context

The synthesis and structural elucidation of 1,2,4,5-tetra­zines goes back to the early reports of Adolf Pinner (Pinner, 1893[Pinner, A. (1893). Ber. Dtsch. Chem. Ges. 26, 2126-2135.]). Nowadays, over 130 years later, 1,2,4,5-tetra­zines (herein further abbreviated as tetra­zines) experience their renaissance and have emerged as versatile building blocks in organic and inorganic synthesis, not least because of their distinctive reactivity and bioorthogonal applicability (Zhao et al., 2022[Zhao, G., Li, Z., Zhang, R., Zhou, L., Zhao, H. & Jiang, H. (2022). Front. Mol. Biosci. 9, 1055823.]). Current research with tetra­zines focuses in particular on their extraordinarily fast (click) reaction with activated alkenes and alkynes by an inverse electron-demand Diels–Alder reaction (IEDDA; Mayer & Lang, 2017[Mayer, S. & Lang, K. (2017). Synthesis, 49, 830-848.]), thereby spanning second order rate constants of up to 106 M−1 s−1 (Oliveira et al., 2017[Oliveira, B. L., Guo, Z. & Bernardes, G. J. L. (2017). Chem. Soc. Rev. 46, 4895-4950.]). This unique and selective reactivity makes the tetra­zine ligation applicable in vivo, as demonstrated by the early and seminal work of Bertozzi (Agarwal et al., 2015[Agarwal, P., Beahm, B. J., Shieh, P. & Bertozzi, C. R. (2015). Angew. Chem. Int. Ed. 54, 11504-11510.]), being encouragingly awarded with the Nobel Prize in Chemistry 2022 for her contributions to click chemistry and bioorthogonal chemistry. In addition to using tetra­zines for ligation to biomolecules, they have also been studied in vivo as mol­ecular turn-on probes that release drugs selectively into the cellular environment when IEDDA is triggered (van Onzen et al., 2020[Onzen, A. H. A. M. van, Versteegen, R. M., Hoeben, F. J. M., Filot, I. A. W., Rossin, R., Zhu, T., Wu, J., Hudson, P. J., Janssen, H. M., ten Hoeve, W. & Robillard, M. S. (2020). J. Am. Chem. Soc. 142, 10955-10963.]; Davies et al., 2019[Davies, S., Oliveira, B. L. & Bernardes, G. J. L. (2019). Org. Biomol. Chem. 17, 5725-5730.]; Rossin et al., 2016[Rossin, R., van Duijnhoven, S. M. J., ten Hoeve, W., Janssen, H. M., Kleijn, L. H. J., Hoeben, F. J. M., Versteegen, R. M. & Robillard, M. S. (2016). Bioconjugate Chem. 27, 1697-1706.], 2018[Rossin, R., Versteegen, R. M., Wu, J., Khasanov, A., Wessels, H. J., Steenbergen, E. J., ten Hoeve, W., Janssen, H. M., van Onzen, A. H. A. M., Hudson, P. J. & Robillard, M. S. (2018). Nat. Commun. 9, 1484.]). Moreover, tetra­zines emerged as useful structural motifs embedded in fluorescent probes (Loredo et al., 2020[Loredo, A., Tang, J., Wang, L., Wu, K.-L., Peng, Z. & Xiao, H. (2020). Chem. Sci. 11, 4410-4415.]), metal–organic frameworks (Jiang et al., 2024[Jiang, H., Gong, Q., Zhang, R. & Yuan, H. (2024). Coord. Chem. Rev. 499, 215501.]), metal ligands (Lemes et al., 2018[Lemes, M. A., Stein, H. N., Gabidullin, B., Steinmann, S. N. & Murugesu, M. (2018). ACS Omega, 3, 10273-10277.]), redox mediators (Beagan et al., 2021[Beagan, D. M., Maciulis, N. A., Pink, M., Carta, V., Huerfano, I. J., Chen, C.-H. & Caulton, K. G. (2021). Chem. Eur. J. 27, 11676-11681.]), and supra­molecular structures (Guo et al., 2020[Guo, Q.-H., Zhou, J., Mao, H., Qiu, Y., Nguyen, M. T., Feng, Y., Liang, J., Shen, D., Li, P., Liu, Z., Wasielewski, M. R. & Stoddart, J. F. (2020). J. Am. Chem. Soc. 142, 5419-5428.]; Roberts et al., 2015[Roberts, D. A., Pilgrim, B. S., Cooper, J. D., Ronson, T. K., Zarra, S. & Nitschke, J. R. (2015). J. Am. Chem. Soc. 137, 10068-10071.]).

For many of these applications, tetra­zines functionalized in the 3- and 6-position are needed, without compromising high click reaction rates. Herein we disclose the synthesis and characterization of a 3-aryl-6-alkyl-substituted tetra­zine, 1, with free hydroxyl and 2,2,2-tri­chloro­eth­oxy­carbonyl (Troc) protected amino group.

[Scheme 1]

2. Structural commentary

Tetra­zine 1 was obtained starting from the corresponding N-tert-butyl­oxycarbonyl (Boc) and O-tetra­hydro­pyranyl (THP) protected tetra­zine (van Onzen et al., 2020[Onzen, A. H. A. M. van, Versteegen, R. M., Hoeben, F. J. M., Filot, I. A. W., Rossin, R., Zhu, T., Wu, J., Hudson, P. J., Janssen, H. M., ten Hoeve, W. & Robillard, M. S. (2020). J. Am. Chem. Soc. 142, 10955-10963.]) through, firstly, acidolysis of both Boc and THP protecting groups and, secondly, N-terminal introduction of the Troc group in 61% yield over two steps.

The title compound 1 crystallized as a pseudo-merohedral twin in the triclinic space group P[\overline{1}] with four units of 1 in the unit cell and the asymmetric unit (ASU) consisting of a hydrogen-bonded dimer of 1 (Fig. 1[link]a). Hydroxyl groups (O3 and O6) were disordered in ratios of 84:16 and 78:22, respectively. The phenyl­ene unit shows similar bond lengths for all C—C bonds [1.381 (7)–1.399 (8) Å], a trend that is also observed for all C—N and N—N bonds of the tetra­zine unit [1.322 (7)–1.353 (8) Å], indicating the aromatic character of both. The observed bond angles are in line with values reported for structurally similar 3-aryl-6-alkyl-substituted tetra­zines (Hu & Xu, 2008[Hu, W.-X. & Xu, F. (2008). J. Heterocycl. Chem. 45, 1745-1750.]; Xu & Hu, 2007a[Xu, F. & Hu, W.-X. (2007a). Acta Cryst. E63, o2397.],b[Xu, F. & Hu, W.-X. (2007b). Acta Cryst. E63, o914-o915.], 2006[Xu, F. & Hu, W.-X. (2006). Acta Cryst. E62, o4636-o4637.]). The two rings are nearly coplanar (Fig. 1[link]b), as indicated by twist angles between 6.34 (19) and 9.17 (19)° of the two mol­ecules in the ASU, respectively. The carbamate moiety is s-trans configured (Fausto et al., 1989[Fausto, R., Batista de Carvalho, L. A. E., Teixeira-Dias, J. J. C. & Ramos, M. N. (1989). J. Chem. Soc. Faraday Trans. 2, 85, 1945-1962.]).

[Figure 1]
Figure 1
(a) Asymmetric unit (ASU) of compound 1 with the atom labelling. Displacement ellipsoids are represented with 50% probability ellipsoids. Only the major occupied hydroxyl group (O3) is depicted. Only one mol­ecule of 1 in the ASU is labelled, and its corresponding lengths and angles are discussed below as they match those described for the second mol­ecule of 1 in the ASU within a 3σ margin of error. (b) Side view along the biaryl moiety of 1, where the normal vector of the plane spanned by the tetra­zine core is aligned with the drawing plane.

3. Supra­molecular features

In the supra­molecular assembly, mol­ecules of 1 stack above each other, directed by the hydrogen-bonding inter­actions (Table 1[link]) between carbamate protons and carbonyl O atoms of the two independent mol­ecules of 1 in the ASU (Fig. 2[link]a). Donor–acceptor distances are between 2.844 (6) and 2.861 (6) Å, both with nearly linear arrangements of N, H and O [N—HO = 163 (6)–175 (6)°]. The two aromatic rings are stacked above each other but slightly slipped, with calculated distances between the phen­yl/phenyl ring centroids and tetra­zine/tetra­zine ring centroids of 4.781 (3) Å [slippage between 3.272 (8) and 3.577 (8) Å] and 5.018 (3) Å [slippage between 3.244 (10) and 3.536 (10) Å], respectively, making ππ inter­actions unlikely. However, the calculated distance between centroids of a tetra­zine and a phenyl ring are between 3.677 (3) and 3.689 (3) Å [with a slippage between 1.408 (10) and 1.496 (10) Å], which could indicate weak ππ stacking, also being favored by an increased dipole moment between the phenyl and tetra­zine core (Huber et al., 2014[Huber, R. G., Margreiter, M. A., Fuchs, J. E., von Grafenstein, S., Tautermann, C. S., Liedl, K. R. & Fox, T. (2014). J. Chem. Inf. Model. 54, 1371-1379.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N9i 0.84 2.64 3.271 (10) 133
O3B—H3B⋯O6Bii 0.84 2.46 2.63 (4) 92
N5—H5⋯O5iii 0.88 (5) 1.98 (5) 2.861 (6) 175 (6)
O6—H6A⋯N4iv 0.84 2.74 3.394 (11) 136
N10—H10A⋯O2 0.87 (5) 2.00 (6) 2.844 (6) 163 (6)
Symmetry codes: (i) [x-1, y+1, z]; (ii) [-x, -y+2, -z]; (iii) [x, y+1, z]; (iv) [x-1, y, z].
[Figure 2]
Figure 2
(a) Hydrogen-bonded mol­ecules of 1 stacked above each other with calculated distances between phenyl and tetra­zine ring centroids. (b) Lateral hydrogen bonds involving a tetra­zine N atom. Displacement ellipsoid representation with 50% probability ellipsoids.

Additional weak inter­molecular hydrogen bonds occur between the hydroxyl proton and an N atom of the tetra­zine ring (Fig. 2[link]b). The involved atoms are aligned in a kinked geometry [O—HN = 133–136°] with NH distances between 2.64 and 2.74 Å, leading to a hydrogen-bonded network (Fig. 3[link]). Tetra­zine N atoms involved in inter­molecular hydrogen bonds have only been described for few and mostly symmetrical tetra­zines such as 3,6-di­amino­tetra­zine (NH = 2.16–2.20 Å; Krieger et al., 1987[Krieger, C., Fischer, H. & Neugebauer, F. A. (1987). Acta Cryst. C43, 1320-1322.]), 3,6-dihydrazino­tetra­zine (NH = 2.12–2.45 Å; Klapötke et al., 2013[Klapötke, T. M., Preimesser, A. & Stierstorfer, J. (2013). Z. Naturforsch. B, 68, 1310-1320.]), tri(tetra­zin-3-yl)amine (NH = 2.51–2.73 Å; Liu et al., 2019[Liu, Y., Zhao, G., Yu, Q., Tang, Y., Imler, G. H., Parrish, D. A. & Shreeve, J. M. (2019). J. Org. Chem. 84, 16019-16026.]), 4,4′-(diazene-1,2-di­yl)bis­(N-(tetra­zin-3-yl)-1,2,5-oxa­diazol-3-amine (NH = 2.24 Å; Liu et al., 2019[Liu, Y., Zhao, G., Yu, Q., Tang, Y., Imler, G. H., Parrish, D. A. & Shreeve, J. M. (2019). J. Org. Chem. 84, 16019-16026.]), and 3-amino-6-(3,5-di­amino-1,2,4-triazol-1-yl)-tetra­zine dihydrate (NH = 2.13 Å; Klapötke et al., 2013[Klapötke, T. M., Preimesser, A. & Stierstorfer, J. (2013). Z. Naturforsch. B, 68, 1310-1320.]).

[Figure 3]
Figure 3
The three-dimensional mol­ecular packing of compound 1 along the crystallographic a axis with highlighted unit cell.

4. Database survey

Searching in the Cambridge Structural Database (CSD version 5.45, June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (version 2024.1.0), the herein discussed tetra­zine 1 was not found. A search using the mol­ecular formula did not yield a result. In addition, at the time of submission, there were no related structures with a 1-hy­droxy­eth-1-yl substituent at the tetra­zine ring and an amino­methyl substituent at the phenyl ring found. Seven reports for 3-aryl-6-alkyl-1,2,4,5-tetra­zines were found, for example including CICPOU (Hu & Xu, 2008[Hu, W.-X. & Xu, F. (2008). J. Heterocycl. Chem. 45, 1745-1750.]), VIDMEB (Xu & Hu, 2007a[Xu, F. & Hu, W.-X. (2007a). Acta Cryst. E63, o2397.]), REWDUT (Xu & Hu, 2007b[Xu, F. & Hu, W.-X. (2007b). Acta Cryst. E63, o914-o915.]) and YESCEF (Xu & Hu, 2006[Xu, F. & Hu, W.-X. (2006). Acta Cryst. E62, o4636-o4637.]).

5. Synthesis and crystallization

5.1. Materials and methods

Solvents and starting materials were used without further purification, unless noted otherwise. The solvents used for extraction and chromatography were of technical grade and were distilled prior to use. Reactions were monitored by thin-layer chromatography (TLC) carried out on silica gel plates (Merck, F254) using UV light (254 nm) for visualization. tert-Butyl [4-(6-{1-[(tetra­hydro­pyran-2-yl)­oxy]eth­yl}-1,2,4,5-tetra­zin-3-yl)benz­yl] carbamate was used as starting material and synthesized following the literature procedure (van Onzen et al., 2020[Onzen, A. H. A. M. van, Versteegen, R. M., Hoeben, F. J. M., Filot, I. A. W., Rossin, R., Zhu, T., Wu, J., Hudson, P. J., Janssen, H. M., ten Hoeve, W. & Robillard, M. S. (2020). J. Am. Chem. Soc. 142, 10955-10963.]), however, omitting the THP deprotection.

5.2. Analytical devices

Nuclear magnetic resonance (NMR) spectra were recorded on an Avance 500 spectrometer (Bruker) at 298 K using the residual protonated solvent signal [δ(1H of CHCl3) = 7.26 ppm, δ(13C of CDCl3) = 77.36 ppm] (Fulmer et al., 2010[Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E. & Goldberg, K. I. (2010). Organometallics, 29, 2176-2179.]) as inter­nal standard. High-resolution mass spectrometry measurements (HR-MS) were performed on a quadrupole ion-mobility time-of-flight mass spectrometer Synapt G2Si (Waters) in resolution mode, inter­faced to a nano-electrospray ionization (ESI) source. Determination of exact masses were performed using centroided data.

5.3. Synthesis of compound 1

tert-Butyl [4-(6-{1-[(tetra­hydro­pyran-2-yl)­oxy]eth­yl}-1,2,4,5-tetra­zin-3-yl)benz­yl] carbamate (357 mg, 859 µmol) was dissolved in a solution of HCl in 1,4-dioxane (4 M, 21.5 mL). After stirring at 273 K for an hour, analysis by TLC (penta­ne/Et2O, 3:2, v/v, Rf = 0.00) indicated complete cleavage of the Boc and THP protecting groups. The pink solution was evaporated under reduced pressure at 298 K. The residual pink solid was taken up in H2O (30 mL) and Et2O (30 mL), the layers were separated, and the aqueous layer was washed with Et2O (3 × 30 mL). The aqueous layer was freeze-dried to yield a voluminous pink solid, which was suspended in CHCl3 (30 mL) and the solution was cooled to 273 K. iPr2NEt (937 µL, 5.28 mmol) was added dropwise at 273 K, while the red suspension was becoming a solution. 2,2,2-Tri­chloro­ethyl chloro­formate (148 µL, 1.08 mmol) was added and the red solution was stirred at 273 K for 85 minutes. H2O (50 mL) and CHCl3 (30 mL) were added and the layers were separated. The organic layer was washed with an aqueous solution of NaHCO3 (10 wt%, 50 mL), an aqueous solution of KHSO4 (5 wt%, 50 mL) and brine (50 mL), dried over Na2SO4, filtered, and evaporated to yield a dark-red oil. Purification by column chromatography (diameter = 3.5 cm, length = 30 cm) using CH2Cl2/MeOH (95:5, v/v) to yield compound 1 (211 mg, 520 µmol, 61%) as a pink solid. Rf (CH2Cl2/MeOH, 95:5, v/v) = 0.38. 1H NMR (500 MHz, CDCl3, rotamers were observed in the molar ratio of 9:1) δ [ppm]: 8.59 (m, 2H, Car­ylH ortho to tetra­zine), 7.54 (m, 2H, Car­ylH ortho to CH2), 5.55–5.44 (m, 1.9H, CHCH3 and NH, major rotamer), 5.32 (m, 0.1H, NH, minor rotamer), 4.79 (s, 2H, CH2CCl3), 4.56 (d, 3J = 6.2 Hz, 2H, CH2NH), 3.40 (d, 3J = 4.4 Hz, 1H, OH), 1.82 (d, 3J = 6.7 Hz, 3H, CH3). 13C{1H}NMR (125 MHz {500 MHz}, CDCl3) δ [ppm]: 170.4 (Car­ylCHCH3), 165.0 (Car­yl=N—N=Car­ylCHCH3), 154.9 (C=O), 143.3 (Car­ylCH2), 131.0 (Car­yl attached to tetra­zine), 128.8 (Car­yl ortho to tetra­zine), 128.4 (Car­yl ortho to CH2), 95.6 (CCl3), 74.9 (CH2CCl3), 68.7 (CHCH3), 45.1 (Car­ylCH2), 22.9 (CH3). HR-MS (ESI, negative): m/z calculated for [C14H14Cl3N5O3+Cl]: 439.9856; found: 439.9852.

Compound 1 was crystallized by diffusion of n-pentane into a concentrated solution of 1 in di­chloro­methane at room temperature.

6. Refinement

The crystal studied was a pseudo-merohedral twin, component 2 rotated by 180.0° around [0.00 − 0.00 1.00] (reciprocal) or [−0.22 − 0.25 0.94] (direct), in a ratio 88:12. The two hydroxyl groups (O3 and O6) were disordered in ratios of 84:16 and 78:22, respectively; suitable restraints were applied. Hydrogen atoms were refined using a riding model except the fully occupied donor hydrogen atoms H5 and H10A, which were refined isotropically. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H14Cl3N5O3
Mr 406.65
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 5.68120 (9), 9.79735 (16), 30.9679 (7)
α, β, γ (°) 84.8340 (16), 86.9814 (16), 83.8568 (14)
V3) 1705.22 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.11
Crystal size (mm) 0.23 × 0.14 × 0.01
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.465, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7450, 7450, 7177
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.206, 1.05
No. of reflections 7450
No. of parameters 486
No. of restraints 19
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.77, −0.91
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

2,2,2-Trichloroethyl N-{4-[6-(1-hydroxyethyl)-1,2,4,5-tetrazin-3-yl]benzyl}carbamate top
Crystal data top
C14H14Cl3N5O3Z = 4
Mr = 406.65F(000) = 832
Triclinic, P1Dx = 1.584 Mg m3
a = 5.68120 (9) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.79735 (16) ÅCell parameters from 17243 reflections
c = 30.9679 (7) Åθ = 4.3–76.3°
α = 84.8340 (16)°µ = 5.11 mm1
β = 86.9814 (16)°T = 100 K
γ = 83.8568 (14)°Plate, clear red
V = 1705.22 (5) Å30.23 × 0.14 × 0.01 mm
Data collection top
SuperNova, Dual, Cu at home/near, Atlas
diffractometer
7450 measured reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source7450 independent reflections
Mirror monochromator7177 reflections with I > 2σ(I)
Detector resolution: 5.3114 pixels mm-1θmax = 76.4°, θmin = 4.3°
ω scansh = 77
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
k = 1212
Tmin = 0.465, Tmax = 1.000l = 3838
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: mixed
wR(F2) = 0.206H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1045P)2 + 9.5963P]
where P = (Fo2 + 2Fc2)/3
7450 reflections(Δ/σ)max < 0.001
486 parametersΔρmax = 0.77 e Å3
19 restraintsΔρmin = 0.90 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Crystal was a pseudo-merohedral twin, component 2 rotated by 180.0 deg. around [0.00 -0.00 1.00] (reciprocal) or [-0.22 -0.25 0.94] (direct, ratio 88:12. Disorder of two hydroxyl groups (O3 and O6), suitable restraints were applied.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.1322 (2)0.08824 (14)0.42925 (5)0.0329 (3)
Cl20.6950 (2)0.26123 (16)0.44550 (5)0.0321 (3)
Cl31.0931 (2)0.37599 (12)0.39919 (4)0.0234 (3)
O10.7048 (6)0.3022 (4)0.34668 (12)0.0211 (7)
O20.4640 (7)0.1570 (4)0.32311 (13)0.0251 (8)
O30.3128 (14)1.2598 (7)0.0771 (2)0.058 (2)0.837 (12)
H30.4577231.2530270.0748850.087*0.837 (12)
O3B0.041 (5)1.181 (3)0.0326 (10)0.057 (2)0.163 (12)
H3B0.0626831.1324290.0114230.085*0.163 (12)
N10.2060 (10)0.9150 (5)0.15838 (16)0.0342 (11)
N20.2588 (12)1.0152 (6)0.12785 (17)0.0410 (13)
N30.1015 (12)0.9577 (7)0.08992 (18)0.0465 (15)
N40.1566 (10)0.8561 (6)0.11993 (17)0.0386 (12)
N50.4121 (8)0.3882 (4)0.30433 (14)0.0200 (8)
H50.425 (11)0.471 (6)0.3121 (19)0.021 (15)*
C10.9349 (9)0.2284 (5)0.40819 (18)0.0222 (10)
C20.8490 (9)0.1865 (5)0.36602 (17)0.0210 (10)
H2A0.9857410.1603330.3462230.025*
H2B0.7557480.1065620.3719640.025*
C30.5192 (9)0.2743 (5)0.32447 (16)0.0191 (9)
C40.1921 (9)0.3815 (5)0.28271 (18)0.0228 (10)
H4A0.0589910.3809190.3046610.027*
H4B0.2021550.2943060.2685120.027*
C50.1427 (9)0.5008 (5)0.24926 (17)0.0204 (10)
C60.0741 (9)0.5793 (5)0.24949 (17)0.0220 (10)
H60.1917930.5588460.2713510.026*
C70.1219 (10)0.6876 (5)0.21823 (17)0.0233 (10)
H70.2719880.7406360.2188680.028*
C80.0472 (10)0.7192 (5)0.18602 (16)0.0224 (10)
C90.2680 (10)0.6410 (6)0.18550 (18)0.0265 (11)
H90.3861990.6624070.1638340.032*
C100.3137 (9)0.5320 (6)0.21675 (18)0.0255 (11)
H100.4628720.4779780.2160520.031*
C110.0040 (10)0.8342 (6)0.15300 (17)0.0252 (11)
C120.1062 (16)1.0318 (7)0.0945 (2)0.0441 (17)
C130.1735 (18)1.1430 (8)0.0587 (2)0.056 (2)
H130.0266051.1743800.0434900.068*0.837 (12)
H13A0.2625631.2256760.0708260.068*0.163 (12)
C140.315 (3)1.0854 (13)0.0276 (4)0.095 (4)
H14A0.4669181.0644400.0417220.143*
H14B0.2287211.0008040.0179050.143*
H14C0.3433241.1526750.0025810.143*
Cl40.3166 (2)0.29716 (16)0.44065 (5)0.0315 (3)
Cl50.7664 (2)0.39206 (13)0.47735 (4)0.0249 (3)
Cl60.6449 (3)0.10273 (13)0.45496 (4)0.0301 (3)
O40.6305 (6)0.1854 (4)0.36372 (12)0.0223 (7)
O50.4424 (8)0.3461 (4)0.33389 (14)0.0329 (10)
O60.2967 (16)0.7521 (8)0.0779 (3)0.066 (3)0.781 (12)
H6A0.4418920.7421440.0784600.100*0.781 (12)
O6B0.066 (4)0.669 (3)0.0397 (8)0.065 (3)0.219 (12)
H6B0.0738830.6505860.0136510.097*0.219 (12)
N60.1979 (10)0.4068 (6)0.16096 (16)0.0353 (12)
N70.2464 (11)0.5074 (6)0.13041 (18)0.0408 (13)
N80.1101 (12)0.4390 (7)0.09173 (18)0.0471 (15)
N90.1614 (10)0.3370 (6)0.12202 (16)0.0379 (12)
N100.3659 (8)0.1176 (4)0.31429 (15)0.0230 (9)
H10A0.396 (12)0.039 (6)0.323 (2)0.024 (16)*
C150.6236 (8)0.2704 (5)0.43975 (16)0.0193 (9)
C160.7363 (10)0.2879 (6)0.39447 (16)0.0246 (11)
H16A0.9085020.2800390.3947450.030*
H16B0.7147380.3806460.3859430.030*
C170.4739 (10)0.2264 (5)0.33665 (16)0.0226 (10)
C180.1770 (10)0.1350 (6)0.28555 (18)0.0263 (11)
H18A0.0288510.1470250.3031290.032*
H18B0.2200770.2194020.2703280.032*
C190.1346 (10)0.0128 (5)0.25238 (16)0.0228 (10)
C200.0829 (9)0.0671 (5)0.25217 (16)0.0215 (10)
H200.2030890.0464350.2735150.026*
C210.1259 (9)0.1770 (5)0.22099 (17)0.0230 (10)
H210.2742880.2318910.2213420.028*
C220.0482 (10)0.2067 (5)0.18928 (16)0.0219 (10)
C230.2663 (11)0.1270 (6)0.18944 (18)0.0277 (11)
H230.3861840.1469320.1679350.033*
C240.3089 (10)0.0183 (6)0.22100 (18)0.0266 (11)
H240.4585560.0351620.2211150.032*
C250.0020 (10)0.3216 (6)0.15551 (17)0.0258 (11)
C260.0929 (15)0.5181 (8)0.0967 (2)0.0458 (17)
C270.1601 (19)0.6313 (9)0.0606 (3)0.064 (2)
H270.0138160.6596020.0443180.077*0.781 (12)
H27A0.2465260.7131100.0736220.077*0.219 (12)
C280.316 (3)0.5772 (14)0.0307 (4)0.111 (5)
H28A0.2398500.4897980.0210500.167*
H28B0.3420770.6438660.0053940.167*
H28C0.4678820.5621060.0457290.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0285 (7)0.0247 (6)0.0446 (7)0.0008 (5)0.0148 (6)0.0072 (5)
Cl20.0234 (6)0.0390 (8)0.0352 (7)0.0087 (5)0.0066 (5)0.0073 (6)
Cl30.0175 (5)0.0184 (5)0.0351 (6)0.0027 (4)0.0045 (4)0.0048 (5)
O10.0167 (16)0.0132 (16)0.0344 (19)0.0039 (13)0.0087 (14)0.0001 (14)
O20.0271 (19)0.0122 (17)0.037 (2)0.0049 (14)0.0076 (15)0.0027 (15)
O30.069 (5)0.034 (3)0.065 (4)0.007 (3)0.002 (4)0.012 (3)
O3B0.092 (7)0.035 (4)0.040 (4)0.002 (4)0.001 (4)0.009 (4)
N10.044 (3)0.025 (2)0.031 (2)0.004 (2)0.005 (2)0.003 (2)
N20.061 (4)0.026 (3)0.033 (3)0.010 (2)0.008 (2)0.002 (2)
N30.060 (4)0.044 (3)0.031 (3)0.004 (3)0.002 (3)0.011 (2)
N40.040 (3)0.042 (3)0.031 (3)0.001 (2)0.001 (2)0.009 (2)
N50.021 (2)0.0116 (19)0.029 (2)0.0071 (16)0.0087 (17)0.0012 (16)
C10.012 (2)0.018 (2)0.037 (3)0.0006 (18)0.0072 (19)0.000 (2)
C20.021 (2)0.014 (2)0.028 (2)0.0019 (18)0.0043 (19)0.0016 (18)
C30.015 (2)0.016 (2)0.027 (2)0.0042 (18)0.0016 (18)0.0006 (18)
C40.017 (2)0.017 (2)0.036 (3)0.0072 (19)0.011 (2)0.003 (2)
C50.019 (2)0.016 (2)0.028 (2)0.0059 (18)0.0092 (19)0.0010 (19)
C60.020 (2)0.016 (2)0.030 (3)0.0048 (19)0.0027 (19)0.002 (2)
C70.024 (3)0.017 (2)0.029 (3)0.0024 (19)0.005 (2)0.001 (2)
C80.026 (3)0.018 (2)0.024 (2)0.004 (2)0.0054 (19)0.0029 (19)
C90.024 (3)0.027 (3)0.028 (3)0.003 (2)0.001 (2)0.001 (2)
C100.020 (2)0.022 (3)0.033 (3)0.003 (2)0.001 (2)0.002 (2)
C110.031 (3)0.022 (3)0.024 (2)0.005 (2)0.005 (2)0.003 (2)
C120.076 (5)0.028 (3)0.027 (3)0.001 (3)0.010 (3)0.001 (2)
C130.091 (6)0.035 (4)0.039 (4)0.002 (4)0.001 (4)0.009 (3)
C140.147 (12)0.077 (7)0.061 (6)0.003 (8)0.048 (7)0.011 (5)
Cl40.0147 (5)0.0430 (8)0.0375 (7)0.0108 (5)0.0052 (5)0.0047 (6)
Cl50.0229 (6)0.0202 (6)0.0301 (6)0.0014 (4)0.0064 (5)0.0054 (5)
Cl60.0412 (7)0.0149 (6)0.0354 (7)0.0034 (5)0.0113 (5)0.0032 (5)
O40.0226 (18)0.0155 (17)0.0287 (18)0.0025 (14)0.0065 (14)0.0020 (14)
O50.052 (3)0.0066 (16)0.042 (2)0.0013 (16)0.020 (2)0.0033 (15)
O60.078 (6)0.042 (4)0.074 (5)0.006 (4)0.012 (5)0.014 (4)
O6B0.092 (7)0.049 (5)0.048 (5)0.003 (5)0.003 (4)0.015 (4)
N60.047 (3)0.029 (3)0.027 (2)0.005 (2)0.005 (2)0.002 (2)
N70.055 (4)0.030 (3)0.034 (3)0.009 (2)0.009 (2)0.002 (2)
N80.054 (4)0.053 (4)0.032 (3)0.007 (3)0.005 (2)0.014 (3)
N90.043 (3)0.043 (3)0.026 (2)0.006 (2)0.002 (2)0.007 (2)
N100.029 (2)0.011 (2)0.030 (2)0.0044 (17)0.0138 (18)0.0027 (17)
C150.008 (2)0.022 (2)0.027 (2)0.0035 (17)0.0035 (17)0.0039 (19)
C160.026 (3)0.025 (3)0.022 (2)0.003 (2)0.006 (2)0.001 (2)
C170.028 (3)0.017 (2)0.023 (2)0.000 (2)0.007 (2)0.0026 (19)
C180.029 (3)0.020 (3)0.032 (3)0.007 (2)0.013 (2)0.002 (2)
C190.028 (3)0.017 (2)0.024 (2)0.002 (2)0.010 (2)0.0025 (19)
C200.026 (3)0.017 (2)0.023 (2)0.009 (2)0.0032 (19)0.0024 (19)
C210.023 (3)0.019 (2)0.027 (2)0.002 (2)0.006 (2)0.005 (2)
C220.025 (3)0.021 (2)0.021 (2)0.005 (2)0.0045 (19)0.0031 (19)
C230.032 (3)0.025 (3)0.026 (3)0.001 (2)0.002 (2)0.001 (2)
C240.026 (3)0.020 (3)0.034 (3)0.002 (2)0.004 (2)0.002 (2)
C250.033 (3)0.021 (3)0.024 (2)0.005 (2)0.006 (2)0.003 (2)
C260.068 (5)0.038 (4)0.031 (3)0.004 (3)0.012 (3)0.007 (3)
C270.091 (7)0.049 (5)0.047 (4)0.002 (4)0.004 (4)0.014 (4)
C280.176 (15)0.079 (8)0.079 (8)0.001 (9)0.070 (9)0.015 (6)
Geometric parameters (Å, º) top
Cl1—C11.776 (5)Cl4—C151.790 (5)
Cl2—C11.762 (6)Cl5—C151.754 (5)
Cl3—C11.776 (5)Cl6—C151.767 (5)
O1—C21.431 (6)O4—C161.427 (6)
O1—C31.353 (6)O4—C171.368 (6)
O2—C31.228 (6)O5—C171.216 (7)
O3—H30.8400O6—H6A0.8400
O3—C131.462 (10)O6—C271.471 (11)
O3B—H3B0.8400O6B—H6B0.8400
O3B—C131.486 (18)O6B—C271.477 (17)
N1—N21.322 (7)N6—N71.321 (7)
N1—C111.334 (8)N6—C251.348 (8)
N2—C121.323 (10)N7—C261.328 (10)
N3—N41.323 (8)N8—N91.327 (8)
N3—C121.326 (10)N8—C261.329 (11)
N4—C111.353 (8)N9—C251.350 (8)
N5—H50.88 (5)N10—H10A0.87 (5)
N5—C31.332 (6)N10—C171.329 (7)
N5—C41.459 (6)N10—C181.463 (6)
C1—C21.523 (7)C15—C161.527 (7)
C2—H2A0.9900C16—H16A0.9900
C2—H2B0.9900C16—H16B0.9900
C4—H4A0.9900C18—H18A0.9900
C4—H4B0.9900C18—H18B0.9900
C4—C51.503 (7)C18—C191.514 (7)
C5—C61.381 (7)C19—C201.390 (8)
C5—C101.399 (8)C19—C241.388 (8)
C6—H60.9500C20—H200.9500
C6—C71.385 (7)C20—C211.390 (7)
C7—H70.9500C21—H210.9500
C7—C81.386 (8)C21—C221.391 (8)
C8—C91.398 (8)C22—C231.392 (8)
C8—C111.467 (7)C22—C251.478 (7)
C9—H90.9500C23—H230.9500
C9—C101.388 (8)C23—C241.389 (8)
C10—H100.9500C24—H240.9500
C12—C131.516 (9)C26—C271.537 (10)
C13—H131.0000C27—H271.0000
C13—H13A1.0000C27—H27A1.0000
C13—C141.472 (14)C27—C281.482 (16)
C14—H14A0.9800C28—H28A0.9800
C14—H14B0.9800C28—H28B0.9800
C14—H14C0.9800C28—H28C0.9800
C3—O1—C2116.7 (4)C17—O4—C16117.1 (4)
C13—O3—H3109.5C27—O6—H6A109.5
C13—O3B—H3B109.5C27—O6B—H6B109.5
N2—N1—C11117.7 (5)N7—N6—C25117.8 (5)
N1—N2—C12118.3 (6)N6—N7—C26117.5 (6)
N4—N3—C12117.8 (6)N9—N8—C26117.8 (6)
N3—N4—C11117.7 (6)N8—N9—C25117.1 (6)
C3—N5—H5123 (4)C17—N10—H10A114 (4)
C3—N5—C4119.5 (4)C17—N10—C18120.1 (4)
C4—N5—H5112 (4)C18—N10—H10A125 (4)
Cl1—C1—Cl3108.2 (3)Cl5—C15—Cl4108.7 (3)
Cl2—C1—Cl1110.2 (3)Cl5—C15—Cl6109.5 (3)
Cl2—C1—Cl3109.5 (3)Cl6—C15—Cl4108.2 (3)
C2—C1—Cl1106.5 (4)C16—C15—Cl4110.0 (4)
C2—C1—Cl2110.7 (3)C16—C15—Cl5109.5 (3)
C2—C1—Cl3111.7 (4)C16—C15—Cl6110.9 (4)
O1—C2—C1107.5 (4)O4—C16—C15110.4 (4)
O1—C2—H2A110.2O4—C16—H16A109.6
O1—C2—H2B110.2O4—C16—H16B109.6
C1—C2—H2A110.2C15—C16—H16A109.6
C1—C2—H2B110.2C15—C16—H16B109.6
H2A—C2—H2B108.5H16A—C16—H16B108.1
O2—C3—O1122.7 (5)O5—C17—O4123.8 (5)
O2—C3—N5125.8 (5)O5—C17—N10126.0 (5)
N5—C3—O1111.5 (4)N10—C17—O4110.2 (4)
N5—C4—H4A109.2N10—C18—H18A109.2
N5—C4—H4B109.2N10—C18—H18B109.2
N5—C4—C5112.1 (4)N10—C18—C19111.8 (4)
H4A—C4—H4B107.9H18A—C18—H18B107.9
C5—C4—H4A109.2C19—C18—H18A109.2
C5—C4—H4B109.2C19—C18—H18B109.2
C6—C5—C4120.6 (5)C20—C19—C18120.2 (5)
C6—C5—C10118.9 (5)C24—C19—C18120.6 (5)
C10—C5—C4120.5 (5)C24—C19—C20119.2 (5)
C5—C6—H6119.6C19—C20—H20119.7
C5—C6—C7120.8 (5)C19—C20—C21120.6 (5)
C7—C6—H6119.6C21—C20—H20119.7
C6—C7—H7119.7C20—C21—H21120.0
C6—C7—C8120.6 (5)C20—C21—C22120.0 (5)
C8—C7—H7119.7C22—C21—H21120.0
C7—C8—C9119.3 (5)C21—C22—C23119.6 (5)
C7—C8—C11120.4 (5)C21—C22—C25120.3 (5)
C9—C8—C11120.3 (5)C23—C22—C25120.1 (5)
C8—C9—H9120.1C22—C23—H23120.0
C10—C9—C8119.7 (5)C24—C23—C22120.1 (5)
C10—C9—H9120.1C24—C23—H23120.0
C5—C10—H10119.6C19—C24—C23120.6 (5)
C9—C10—C5120.7 (5)C19—C24—H24119.7
C9—C10—H10119.6C23—C24—H24119.7
N1—C11—N4123.5 (5)N6—C25—N9124.1 (5)
N1—C11—C8117.2 (5)N6—C25—C22116.9 (5)
N4—C11—C8119.3 (5)N9—C25—C22119.0 (5)
N2—C12—N3124.7 (6)N7—C26—N8125.6 (6)
N2—C12—C13117.9 (7)N7—C26—C27116.3 (7)
N3—C12—C13117.4 (7)N8—C26—C27118.1 (7)
O3—C13—C12109.9 (6)O6—C27—C26111.7 (7)
O3—C13—H13109.5O6—C27—H27109.9
O3—C13—C14109.6 (9)O6—C27—C28106.5 (10)
O3B—C13—C12110.5 (14)O6B—C27—C26105.9 (12)
O3B—C13—H13A111.1O6B—C27—H27A109.5
C12—C13—H13109.5O6B—C27—C28113.6 (15)
C12—C13—H13A111.1C26—C27—H27109.9
C14—C13—O3B104.1 (16)C26—C27—H27A109.5
C14—C13—C12108.7 (7)C28—C27—C26108.8 (8)
C14—C13—H13109.5C28—C27—H27109.9
C14—C13—H13A111.1C28—C27—H27A109.5
C13—C14—H14A109.5C27—C28—H28A109.5
C13—C14—H14B109.5C27—C28—H28B109.5
C13—C14—H14C109.5C27—C28—H28C109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
Cl1—C1—C2—O1175.4 (3)Cl4—C15—C16—O463.5 (5)
Cl2—C1—C2—O164.8 (5)Cl5—C15—C16—O4177.1 (3)
Cl3—C1—C2—O157.5 (5)Cl6—C15—C16—O456.2 (5)
N1—N2—C12—N32.3 (11)N6—N7—C26—N82.5 (11)
N1—N2—C12—C13177.4 (6)N6—N7—C26—C27176.9 (7)
N2—N1—C11—N45.3 (9)N7—N6—C25—N93.6 (9)
N2—N1—C11—C8177.1 (5)N7—N6—C25—C22177.8 (5)
N2—C12—C13—O334.0 (11)N7—C26—C27—O632.5 (12)
N2—C12—C13—O3B160.4 (16)N7—C26—C27—O6B152.9 (14)
N2—C12—C13—C1486.0 (10)N7—C26—C27—C2884.7 (11)
N3—N4—C11—N14.7 (9)N8—N9—C25—N63.4 (9)
N3—N4—C11—C8177.7 (6)N8—N9—C25—C22178.1 (5)
N3—C12—C13—O3146.3 (8)N8—C26—C27—O6148.0 (8)
N3—C12—C13—O3B19.9 (18)N8—C26—C27—O6B27.7 (16)
N3—C12—C13—C1493.7 (11)N8—C26—C27—C2894.7 (12)
N4—N3—C12—N22.9 (12)N9—N8—C26—N72.7 (12)
N4—N3—C12—C13176.8 (7)N9—N8—C26—C27176.7 (7)
N5—C4—C5—C6128.5 (5)N10—C18—C19—C20117.2 (5)
N5—C4—C5—C1053.1 (7)N10—C18—C19—C2464.9 (7)
C2—O1—C3—O25.0 (7)C16—O4—C17—O59.1 (8)
C2—O1—C3—N5173.8 (4)C16—O4—C17—N10171.3 (4)
C3—O1—C2—C1146.0 (4)C17—O4—C16—C15104.4 (5)
C3—N5—C4—C5159.6 (5)C17—N10—C18—C19160.7 (5)
C4—N5—C3—O1173.1 (4)C18—N10—C17—O4175.4 (5)
C4—N5—C3—O28.1 (8)C18—N10—C17—O55.0 (9)
C4—C5—C6—C7178.7 (5)C18—C19—C20—C21178.0 (5)
C4—C5—C10—C9179.2 (5)C18—C19—C24—C23177.2 (5)
C5—C6—C7—C80.0 (8)C19—C20—C21—C220.9 (8)
C6—C5—C10—C90.7 (8)C20—C19—C24—C230.7 (8)
C6—C7—C8—C90.4 (8)C20—C21—C22—C231.0 (8)
C6—C7—C8—C11179.9 (5)C20—C21—C22—C25178.8 (5)
C7—C8—C9—C100.9 (8)C21—C22—C23—C240.2 (8)
C7—C8—C11—N17.6 (8)C21—C22—C25—N69.9 (8)
C7—C8—C11—N4174.7 (5)C21—C22—C25—N9171.5 (5)
C8—C9—C10—C51.1 (8)C22—C23—C24—C190.6 (9)
C9—C8—C11—N1172.0 (5)C23—C22—C25—N6170.4 (5)
C9—C8—C11—N45.7 (8)C23—C22—C25—N98.2 (8)
C10—C5—C6—C70.2 (8)C24—C19—C20—C210.1 (8)
C11—N1—N2—C121.8 (9)C25—N6—N7—C260.7 (9)
C11—C8—C9—C10179.6 (5)C25—C22—C23—C24179.5 (5)
C12—N3—N4—C110.6 (10)C26—N8—N9—C250.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N9i0.842.643.271 (10)133
O3B—H3B···O6Bii0.842.462.63 (4)92
N5—H5···O5iii0.88 (5)1.98 (5)2.861 (6)175 (6)
O6—H6A···N4iv0.842.743.394 (11)136
N10—H10A···O20.87 (5)2.00 (6)2.844 (6)163 (6)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+2, z; (iii) x, y+1, z; (iv) x1, y, z.
 

Acknowledgements

The authors thank Jan-Niklas Bollnow for fruitful discussions and proof-reading of the manuscript. We acknowledge support for the publication costs by the Open Access Publication Fund of Bielefeld University and the Deutsche Forschungsgemeinschaft (DFG).

References

First citationAgarwal, P., Beahm, B. J., Shieh, P. & Bertozzi, C. R. (2015). Angew. Chem. Int. Ed. 54, 11504–11510.  CrossRef CAS Google Scholar
First citationBeagan, D. M., Maciulis, N. A., Pink, M., Carta, V., Huerfano, I. J., Chen, C.-H. & Caulton, K. G. (2021). Chem. Eur. J. 27, 11676–11681.  CSD CrossRef CAS PubMed Google Scholar
First citationDavies, S., Oliveira, B. L. & Bernardes, G. J. L. (2019). Org. Biomol. Chem. 17, 5725–5730.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFausto, R., Batista de Carvalho, L. A. E., Teixeira-Dias, J. J. C. & Ramos, M. N. (1989). J. Chem. Soc. Faraday Trans. 2, 85, 1945–1962.  Google Scholar
First citationFulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E. & Goldberg, K. I. (2010). Organometallics, 29, 2176–2179.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, Q.-H., Zhou, J., Mao, H., Qiu, Y., Nguyen, M. T., Feng, Y., Liang, J., Shen, D., Li, P., Liu, Z., Wasielewski, M. R. & Stoddart, J. F. (2020). J. Am. Chem. Soc. 142, 5419–5428.  CSD CrossRef CAS PubMed Google Scholar
First citationHu, W.-X. & Xu, F. (2008). J. Heterocycl. Chem. 45, 1745–1750.  CSD CrossRef CAS Google Scholar
First citationHuber, R. G., Margreiter, M. A., Fuchs, J. E., von Grafenstein, S., Tautermann, C. S., Liedl, K. R. & Fox, T. (2014). J. Chem. Inf. Model. 54, 1371–1379.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJiang, H., Gong, Q., Zhang, R. & Yuan, H. (2024). Coord. Chem. Rev. 499, 215501.  CrossRef Google Scholar
First citationKlapötke, T. M., Preimesser, A. & Stierstorfer, J. (2013). Z. Naturforsch. B, 68, 1310–1320.  Google Scholar
First citationKrieger, C., Fischer, H. & Neugebauer, F. A. (1987). Acta Cryst. C43, 1320–1322.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLemes, M. A., Stein, H. N., Gabidullin, B., Steinmann, S. N. & Murugesu, M. (2018). ACS Omega, 3, 10273–10277.  CSD CrossRef CAS PubMed Google Scholar
First citationLiu, Y., Zhao, G., Yu, Q., Tang, Y., Imler, G. H., Parrish, D. A. & Shreeve, J. M. (2019). J. Org. Chem. 84, 16019–16026.  CrossRef CAS PubMed Google Scholar
First citationLoredo, A., Tang, J., Wang, L., Wu, K.-L., Peng, Z. & Xiao, H. (2020). Chem. Sci. 11, 4410–4415.  CrossRef CAS PubMed Google Scholar
First citationMayer, S. & Lang, K. (2017). Synthesis, 49, 830–848.  CAS Google Scholar
First citationOliveira, B. L., Guo, Z. & Bernardes, G. J. L. (2017). Chem. Soc. Rev. 46, 4895–4950.  CrossRef CAS PubMed Google Scholar
First citationOnzen, A. H. A. M. van, Versteegen, R. M., Hoeben, F. J. M., Filot, I. A. W., Rossin, R., Zhu, T., Wu, J., Hudson, P. J., Janssen, H. M., ten Hoeve, W. & Robillard, M. S. (2020). J. Am. Chem. Soc. 142, 10955–10963.  PubMed Google Scholar
First citationPinner, A. (1893). Ber. Dtsch. Chem. Ges. 26, 2126–2135.  CrossRef Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRoberts, D. A., Pilgrim, B. S., Cooper, J. D., Ronson, T. K., Zarra, S. & Nitschke, J. R. (2015). J. Am. Chem. Soc. 137, 10068–10071.  CSD CrossRef CAS PubMed Google Scholar
First citationRossin, R., van Duijnhoven, S. M. J., ten Hoeve, W., Janssen, H. M., Kleijn, L. H. J., Hoeben, F. J. M., Versteegen, R. M. & Robillard, M. S. (2016). Bioconjugate Chem. 27, 1697–1706.  CrossRef CAS Google Scholar
First citationRossin, R., Versteegen, R. M., Wu, J., Khasanov, A., Wessels, H. J., Steenbergen, E. J., ten Hoeve, W., Janssen, H. M., van Onzen, A. H. A. M., Hudson, P. J. & Robillard, M. S. (2018). Nat. Commun. 9, 1484.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, F. & Hu, W.-X. (2006). Acta Cryst. E62, o4636–o4637.  CSD CrossRef IUCr Journals Google Scholar
First citationXu, F. & Hu, W.-X. (2007a). Acta Cryst. E63, o2397.  CSD CrossRef IUCr Journals Google Scholar
First citationXu, F. & Hu, W.-X. (2007b). Acta Cryst. E63, o914–o915.  CSD CrossRef IUCr Journals Google Scholar
First citationZhao, G., Li, Z., Zhang, R., Zhou, L., Zhao, H. & Jiang, H. (2022). Front. Mol. Biosci. 9, 1055823.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds