research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three salts of the tri­phenylsulfonium ion

crossmark logo

aDepartment of Biochemistry, Chemistry and Physics, Georgia Southern University, 11935 Abercorn Street Savannah GA 31419, USA
*Correspondence e-mail: wlynch@georgiasouthern.edu

Edited by G. Ferrence, Illinois State University, USA (Received 16 December 2024; accepted 6 January 2025; online 10 January 2025)

The reactions of tri­phenyl­sulfonium chloride ([TPS][Cl]) with various acids in methanol yield the corresponding salts tri­phenyl­sulfonium triiodide, C18H15S+·I3 or [TPS][I3] (I), tri­phenyl­sulfonium perchlorate, C18H15S+·ClO4 or [TPS][ClO4] (II), and tri­phenyl­sulfonium hexa­fluoro­phosphate, C18H15S+·PF6 or [TPS][PF6] (III), as crystalline products. These crystals were structurally characterized by single-crystal X-ray diffraction. In all three compounds, the sulfur atom in the tri­phenyl­sulfonium cation adopts a distorted trigonal–pyramidal geometry. [TPS][I3] (I) and [TPS][PF6] (III) both crystallize in the space group P21/n, while [TPS][ClO4] (II) crystallizes in P21. The S—C bond lengths are comparable across the three salts, and the S—C—S bond angles are consistently between 102 and 106°. Hirshfeld surface analyses reveal that each structure is dominated by hydrogen-based inter­molecular contacts, supplemented by anion-specific inter­actions such as I⋯H in (I), O⋯H in (II), and F⋯H in (III). These contacts organize the ions into mono-periodic ribbon- or chain-like arrangements. No significant ππ stacking is observed.

1. Chemical context

Tri­phenyl­sulfonium (TPS) salts are widely used in electronic technologies, such as photoinitiators of cationic polymerizations. The basis of their activity is their direct or sensitized photolysis, which results in the release of a reactive proton and the cleavage of the C–S bond in the tri­phenyl­sulfonium cation. The process then causes solubility-changing reactions like cationic polymerization or acid-catalyzed cleavage. TPS's ability to produce photoacids has been used to encourage desired changes in the material's characteristics (Petsalakis et al., 2014[Petsalakis, I. D., Theodorakopoulos, G., Lathiotakis, N. N., Georgiadou, D. G., Vasilopoulou, M. & Argitis, P. (2014). Chem. Phys. Lett. 601, 63-68.]).

Tri­phenyl­sulfonium compounds are a subject of inter­est in photochemistry. More specifically, tri­phenyl­sulfonium acts as a photoacid generator meaning that it reacts and forms an acid in the presence of certain wavelengths of light (Ohmori et al., 1998[Ohmori, N., Nakazono, Y., Hata, M., Hoshino, T. & Tsuda, M. (1998). J. Phys. Chem. B, 102, 927-930.]). This makes it useful in photolithography, ultimately also making it a subject of inter­est in the development and production of semiconductor devices or computer chips (see, for example, Kwon et al., 2014[Kwon, O., Sagar, A. D., Kang, H. N., Kim, H. M., Kim, K. B. & Lee, H. (2014). J. Nanosci. Nanotechnol. 14, 6270-6273.] and Wang et al., 2023[Wang, X., Tao, P., Wang, Q., Zhao, R., Liu, T., Hu, Y., Hu, Z., Wang, Y., Wang, J., Tang, Y., Xu, H. & He, X. (2023). Mater. Today, 67, 299-319.]). Additionally, tri­phenyl­sulfonium ions play a role in inhibiting mitochondrial oxidative phospho­rylation and adenosine triphosphate activity (Barrett & Selwyn, 1976[Barrett, R. H. & Selwyn, M. J. (1976). Biochem. J. 156, 315-322.]), as well as in exciton emission applications in anti-counterfeiting (Luo et al., 2022[Luo, Z., Liu, Y., Liu, Y., Li, C., Li, Y., Li, Q., Wei, Y., Zhang, L., Xu, B., Chang, X. & Quan, Z. (2022). Adv. Mater. 34, 2200607.]).

Due to a lack of readily available crystal structures of various anions complexed with tri­phenyl­sulfonium, X-ray diffraction and IR spectroscopy were used to explore the structure of multiple tri­phenyl­sulfonium cations with different anions after substitution of the chloride using the corresponding acids in excess. Herein, we report the synthesis of three complexes of the tri­phenyl­sulfonium cation (TPS+) with triiodide, perchlorate, and hexa­fluoro­phosphate. The complexes are formulated as [TPS][I3] [C18H15SI3, Compound (I)], [TPS][ClO4] [C18H15SClO4, Compound (II)], and [TPS][PF6] [C18H15SPF6, Compound (III)]. All three compounds were prepared by reacting tri­phenyl­sulfonium chloride ([TPS][Cl]) with an excess of the corresponding acid in methanol and the resulting complexes were found to have the sulfur in a trigonal–pyramidal environment.

[Scheme 1]

2. Structural commentary

Tri­phenyl­sulfonium triiodide (I) crystallizes in the primitive centrosymmetric space group P21/n. The asymmetric unit consists of one unit of the salt, [TPS][I3] (Fig. 1[link]). The sulfur atom is observed to be in a distorted trigonal–pyramidal geometry with C1—S1—C7, C1—S1—C13, and C7—S1—C13 bond angles of 106.3 (2), 101.9 (2), and 106.2 (2)°, respectively. The sulfur atom is 3.8037 (11) Å from I2, the central iodine atom and 4.1127 (11) Å from I1, showing a close off-center contact with the triiodide anion. The sulfur–carbon bond distances are all similar, with an average of 1.787 ± 0.010 Å.

[Figure 1]
Figure 1
The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Tri­phenyl­sulfonium perchlorate (II) crystallizes in the space group P21 with the asymmetric unit containing two units of the salt, [TPS][ClO4] (Fig. 2[link]). Both sulfur atoms are distorted trigonal pyramidal and similar in structure to the triiodide. The C—S—C bond angles are found in the range 104.5 (3) to 106.1 (3)° and bond distances of 1.775 (6) to 1.785 (6) Å. The closest contact between the sulfur atoms and the perchlorate oxygen atoms is 3.211 (5) Å for S1⋯O6 and 3.330 (6) Å for S2⋯O4.

[Figure 2]
Figure 2
The mol­ecular structure of (II) with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Tri­phenyl­sulfonium hexa­fluoro­phosphate (III), as seen in (I), crystallizes in the primitive centrosymmetric space group P21/n. The asymmetric unit consists of one unit of the salt, [TPS][PF6] (Fig. 3[link]). The sulfur atom is observed to be in a distorted trigonal–pyramidal geometry with C1—S1—C7, C1—S1—C13, and C7—S1—C13 bond angles of 105.20 (13), 104.70 (13), and 102.96 (14)°, respectively. The sulfur atom S1 is 3.287 (3) Å from the nearest fluorine atom, F2. The sulfur–carbon bond distances are all similar in the range from 1.787 (3) to 1.790 (3) Å.

[Figure 3]
Figure 3
The mol­ecular structure of (III) with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

In comparing the structural details of the tri­phenyl­sulfonium cation with its heavier chalcogen analogs (seleno­nium and tellurenium), the sulfonium derivative exhibits shorter bond lengths and wider C—Ch—C bond angles (Ch = Se, Te). In tri­phenyl­seleno­nium chloride hydrate (Mitcham et al., 1979[Mitcham, R. V., Lee, B., Mertes, K. B. & Ziolo, R. F. (1979). Inorg. Chem. 18, 3498-3502.]), the Se—C bond lengths [1.924 (4)–1.941 (4) Å] are approximately 0.15 Å longer than in the corresponding sulfonium derivative, while the C—Se—C angles [100.3 (1)–101.1 (1)°] are slightly smaller. Notable van der Waals contacts are observed for Se—Cl [3.530 (2) Å] and Se—O [3.147 (4) Å]. A similar pattern is evident in the tri­phenyl­seleno­nium chloride dihydrate dimer (Lee & Titus, 1976[Lee, J. S. & Titus, D. D. (1976). J. Cryst. Mol. Struct. 6, 279-289.]), with slightly longer Se—C bond distances [1.911 (10)–1.936 (12) Å] and marginally constrained C—Se—C angles [99.5 (5)–101.7 (4)°].

A more pronounced effect is observed in the tri­phenyl­tellurenium derivative, μ-(acetic acid)-di-μ-chlorido-bis­[tri­phenyl­tellurium(IV)] monohydrate (Hu et al., 2013[Hu, F., Xu, C., Shi, H.-T., Chen, Q. & Zhang, Q.-F. (2013). Acta Cryst. E69, o1171.]). The Te—C distances [2.116 (3)–2.129 (4) Å] are further elongated, while the C—Te—C angles [93.47 (13)–97.65 (13)°] are significantly compressed. Te—Cl close contacts [3.2007 (11) and 3.4407 (11) Å] and Te—O inter­actions [3.067 (3) and 3.113 (3) Å] are also observed. These trends reflect the larger atomic radius of the heavier chalcogens and the resulting decrease in steric hindrance. Notably, while seleno­nium and telluronium cations exhibit secondary chalcogen-bond inter­actions with Lewis-base donors, the tri­phenyl­sulfonium cation presents only van der Waals contacts, with no significant secondary S⋯X inter­actions evident.

3. Supra­molecular features

Figs. 4[link], 5[link] and 6[link] show the packing of compounds (I), (II), and (III), respectively. In all three compounds, the packing is consolidated by van der Waals and electrostatic inter­actions, and no ππ stacking inter­actions are observed. Hirshfeld surfaces of the cations and anions were generated using Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), and the corresponding two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were analyzed to qu­antify the relative contributions of the various inter­molecular contacts (Table 1[link]).

Table 1
Contributions of selected inter­molecular contacts (%)

Contact (I) (cation) (I) (anion) (II) (cation) (II) (anion) (III) (cation) III (anion)
H⋯H 46.7 39.4 38.9
H⋯C 25.1 5.2 30.5 1.7 22.1 6.1
H⋯I 20.5 84.1
C⋯C 3.9 1.9 3.7
H⋯O 25.7 94.5
I⋯I 7.1
I⋯S 3.6
F⋯H 29.4 92.4
F⋯C 6.1
F⋯S 1.2
O⋯S 3.7
[Figure 4]
Figure 4
A view along the b-axis direction of the crystal packing of (I) with close contacts shown as red dashed lines.
[Figure 5]
Figure 5
A view along the [101] direction of the crystal packing of (II) with close contacts shown as red dashed lines.
[Figure 6]
Figure 6
A view along the c-axis direction of the crystal packing of (III) with close contacts shown as red dashed lines.

In the crystal structure of compound (I), the Hirshfeld surface of the tri­phenyl­sulfonium cation is dominated by H⋯H inter­actions, which account for 46.7% of the total contacts. Significant contributions arise from H⋯C (25.1%) and H⋯I (20.5%), while C⋯C contacts are minor (3.9%). The Hirshfeld surface of the triiodide anion is strongly influenced by I⋯H contacts (84.1%), with additional contributions from I⋯I (7.1%), I⋯C (5.2%), and I⋯S (3.6%). These inter­actions result in ribbons composed of triiodide anions and tri­phenyl­sulfonium cations that extend along the [101] direction. The ribbons are concatenated by I⋯H contacts between I1 and H12 (3.134 Å) and between I2 and H8 (3.170 Å), (Fig. 4[link]).

In the crystal structure of compound (II), the Hirshfeld surface of the tri­phenyl­sulfonium cation is dominated by H⋯H contacts (39.4%). Other notable inter­actions include H⋯C (30.5%) and H⋯O (25.7%), while C⋯C contacts contribute only 1.9%. For the perchlorate ion, O⋯H contacts are most significant (94.5%), with minor contributions from O⋯S (3.7%) and O⋯C (1.7%). In compound (II), ribbons composed of tri­phenyl­sulfonium cations and perchlorate anions zigzag along the [101] direction. These ribbons are held together by short O⋯H contacts involving phenyl hydrogen atoms of the cation and oxygen atoms of the anion. Specifically, O4⋯H36 (2.453 Å), O2⋯H11 (2.523 Å), and O3⋯H18 (2.527 Å) are shorter than the sum of the van der Waals radii for O and H (approximately 2.72 Å) (Fig. 5[link]). A second perchlorate anion is attached to the ribbon via O8⋯H6 (2.548 Å), but does not directly participate in the formation of the ribbons.

In the crystal structure of compound (III), the Hirshfeld surface of the tri­phenyl­sulfonium cation is dominated by H⋯H contacts (38.9%). Other notable inter­actions include H⋯C (22.1%) and F⋯H (29.4%), while C⋯C contacts contribute only 3.7%. For the hexa­fluoro­phosphate anion, F⋯H contacts are most significant (92.4%), with smaller contributions from F⋯C (6.1%) and F⋯S (1.2%). In compound (III), chains of tri­phenyl­sulfonium cations and hexa­fluoro­phosphate anions zigzag along the b-axis direction. These chains are held together by H⋯F contacts between phenyl-ring hydrogens and anion fluorines. Specifically, F3⋯H5 (2.520 Å) and F4⋯H17 (2.510 Å) are shorter than the sum of the van der Waals radii (2.67 Å), (Fig. 6[link]). Adjacent chains are further connected by similar H⋯F contacts, including F4⋯H3 (2.422 Å) and F1⋯H6 (2.448 Å).

4. Database survey

A search of the web-based Cambridge Structural Database (CSD, website, accessed on November 27, 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the tri­phenyl­sulfonium ion resulted in 18 unique entries with the majority (13) being TPS+ complexes. Three of the entries are nitrile or thia­zine derivatives while two are imine derivatives. The bis­[(tri­fluoro­meth­yl)sulfon­yl]aza­dine salt (BANYOH; Siu et al., 2017[Siu, B., Cassity, C. G., Benchea, A., Hamby, T., Hendrich, J., Strickland, K. J., Wierzbicki, A., Sykora, R. E., Salter, E. A., O'Brien, R. A., West, K. N. & Davis, J. H. (2017). RSC Adv. 7, 7623-7630.]), azide (FOYKEK; Klapötke & Krumm, 2009[Klapötke, T. M. & Krumm, B. (2009). Z. Naturforsch. B, 64, 467-469.]), tri­fluoro­methansulfonate (LECWOI; Zhang et al., 2017[Zhang, L., Li, X., Sun, Y., Zhao, W., Luo, F., Huang, X., Lin, L., Yang, Y. & Peng, B. (2017). Org. Biomol. Chem. 15, 7181-7189.]), chloride monohydrate (NIMMIJ; Luo et al., 2022[Luo, Z., Liu, Y., Liu, Y., Li, C., Li, Y., Li, Q., Wei, Y., Zhang, L., Xu, B., Chang, X. & Quan, Z. (2022). Adv. Mater. 34, 2200607.]), bromide hydrate (ROKYAS; Klapötke & Krumm, 2009[Klapötke, T. M. & Krumm, B. (2009). Z. Naturforsch. B, 64, 467-469.]), tetra­fluoro­borate (TUBXET; Ovchinnikov et al., 1996[Ovchinnikov, Y. E., Struchkov, T. T., Nedel'kin, V. I., Kuznetsov, S. N. & Izmailov, B. A. (1996). Russ. Chem. Bull. 45, 1400-1403.]) are aligned with this report. Transition-metal anionic salts are also reported with hexa­chloro­tin(V) (NIMMAB; Luo et al., 2022[Luo, Z., Liu, Y., Liu, Y., Li, C., Li, Y., Li, Q., Wei, Y., Zhang, L., Xu, B., Chang, X. & Quan, Z. (2022). Adv. Mater. 34, 2200607.]), hexa­chloro­tellurium(V) (NIMMEF; Luo et al., 2022[Luo, Z., Liu, Y., Liu, Y., Li, C., Li, Y., Li, Q., Wei, Y., Zhang, L., Xu, B., Chang, X. & Quan, Z. (2022). Adv. Mater. 34, 2200607.]), bis (μ2-1,3-azido)­silver(I) (QOSQEV; Klapötke et al., 2009[Klapötke, T. M., Krumm, B. & Scherr, M. (2009). J. Am. Chem. Soc. 131, 72-74.]) and tris­(μ2-dicyanamido)­manganese(II) (SABFUX; Schlueter et al., 2004[Schlueter, J. A., Manson, J. L., Hyzer, K. A. & Geiser, U. (2004). Inorg. Chem. 43, 4100-4102.]).

5. Synthesis and crystallization

Compound (I) ([TPS][I3]) was synthesized by dissolving 0.100 g of [TPS][Cl] (0.335 mmol, purchased from TCI America) in 5 mL of methanol to which 0.500 mL of HI (57% in water, Sigma Millipore) were added. The solution was covered with parafilm then allowed to sit; X-ray quality crystals were grown by slow evaporation at room temperature. Yield, 0.0319 g (14.8%). Selected IR bands (ATR-IR, cm−1) : 3056 (w), 3021 (w), 1471 (s), 1443 (s), 1212 (s), 1143 (s), 1020 (s), 971 (s), 741 (s), 679 (s), 611 (s), 490 (s).

Compound (II) ([TPS][ClO4]) tri­phenyl­sulfonium perchlorate was synthesized by adding 0.500 mL of HClO4 (70% in water, purchased from Sigma Millipore) to 3.00 mL of 0.110 M [TPS][Cl] (0.330 mmol, tri­phenyl­sulfonium chloride, purchased from TCI America) methanol solution. The resulting solution was covered with a watch glass, and allowed to sit and the solvent evaporate. X-ray quality crystals were grown by slow evaporation at room temperature. Yield of [TPS][ClO4] 0.0842 g (70.3%). IR bands (ATR-IR, cm−1) : 3098 (w), 3027 (w), 1475 (w), 1445 (w), 1293 (w), 1076 (s), 996 (w), 745 (m), 680 (m), 622 (s), 504 (m).

Compound (III) ([TPS][PF6]) was synthesized by the addition of 0.106 g of [TPS][Cl] (0.355 mmol, purchased from TCI America) with 0.500 mL of HPF6 (5.65 mmol, 55% in water, purchased from Sigma Aldrich) in minimal methanol. The solution was covered with parafilm and allowed to evaporate for one week at room temperature. After vacuum filtration, the sample had a mass of 0.0677 g (46.7%). Selected IR bands from this solution (ATR-IR, cm−1) : 3086 (w), 3034 (w), 1475 (s), 1448 (s), 1369 (s), 1218 (s), 1055 (s), 993 (s), 858 (s), 850 (s), 827 (s), 745 (s), 680 (s), 555 (s), 496 (s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All carbon-bound H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C18H15S+·I3 C18H15S+·ClO4 C18H15S+·PF6
Mr 644.06 362.81 408.33
Crystal system, space group Monoclinic, P21/n Monoclinic, P21 Monoclinic, P21/n
Temperature (K) 299 100 100
a, b, c (Å) 12.8971 (1), 11.9414 (1), 13.0718 (1) 9.1289 (2), 19.1565 (4), 9.3314 (2) 8.4524 (2), 18.1483 (5), 11.4344 (3)
β (°) 92.374 (1) 90.611 (2) 98.251 (2)
V3) 2011.45 (3) 1631.76 (6) 1735.84 (8)
Z 4 4 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 37.53 3.45 3.10
Crystal size (mm) 0.14 × 0.10 × 0.10 0.18 × 0.17 × 0.13 0.27 × 0.18 × 0.09
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000 XtaLAB Synergy, Single source at home/near, HyPix3000 XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.526, 1.000 0.687, 1.000 0.225, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20556, 3681, 3113 14869, 5850, 5589 8136, 3235, 2782
Rint 0.046 0.035 0.038
(sin θ/λ)max−1) 0.603 0.608 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.06 0.049, 0.138, 1.07 0.057, 0.158, 1.11
No. of reflections 3681 5850 3235
No. of parameters 215 463 250
No. of restraints 0 1 0
H-atom treatment Only H-atom displacement parameters refined Only H-atom displacement parameters refined Only H-atom displacement parameters refined
Δρmax, Δρmin (e Å−3) 0.87, −0.90 0.59, −0.29 1.03, −0.76
Absolute structure Flack x determined using 2436 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.005 (16)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Triphenylsulfonium triiodide (I) top
Crystal data top
C18H15S+·I3F(000) = 1192
Mr = 644.06Dx = 2.127 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 12.8971 (1) ÅCell parameters from 11125 reflections
b = 11.9414 (1) Åθ = 3.4–67.9°
c = 13.0718 (1) ŵ = 37.53 mm1
β = 92.374 (1)°T = 299 K
V = 2011.45 (3) Å3Irregular, clear dark red
Z = 40.14 × 0.10 × 0.10 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
3113 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.046
ω scansθmax = 68.4°, θmin = 4.7°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
h = 1215
Tmin = 0.526, Tmax = 1.000k = 1414
20556 measured reflectionsl = 1515
3681 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullOnly H-atom displacement parameters refined
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0394P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.87 e Å3
3681 reflectionsΔρmin = 0.90 e Å3
215 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00048 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.09982 (3)0.36091 (3)0.51008 (3)0.05011 (13)
I20.20170 (2)0.52246 (3)0.37435 (2)0.03829 (11)
I30.30159 (3)0.68180 (3)0.24418 (3)0.05604 (13)
C10.1721 (3)0.8058 (4)0.5915 (3)0.0330 (10)
S10.18974 (8)0.66386 (9)0.63434 (8)0.0331 (3)
C20.2181 (4)0.8315 (4)0.5016 (4)0.0536 (14)
H20.2565560.7781430.4679190.051 (15)*
C30.2061 (5)0.9377 (5)0.4624 (4)0.0636 (16)
H30.2369320.9567650.4016840.11 (2)*
C40.1490 (4)1.0153 (5)0.5125 (4)0.0596 (15)
H40.1426101.0875240.4863130.08 (2)*
C50.1013 (5)0.9884 (5)0.6001 (4)0.0625 (16)
H50.0623791.0418620.6331380.10 (2)*
C60.1108 (4)0.8803 (4)0.6404 (4)0.0507 (13)
H60.0765560.8598100.6987630.067 (18)*
C70.1347 (3)0.6560 (4)0.7566 (3)0.0339 (10)
C80.0491 (4)0.5874 (4)0.7611 (4)0.0460 (12)
H80.0250850.5476180.7036650.053 (15)*
C90.0000 (4)0.5789 (6)0.8517 (4)0.0659 (17)
H90.0582300.5334260.8557030.09 (2)*
C100.0359 (4)0.6372 (5)0.9367 (4)0.0612 (16)
H100.0015640.6317180.9976750.060 (16)*
C110.1219 (5)0.7029 (5)0.9316 (4)0.0631 (16)
H110.1466710.7408580.9897040.08 (2)*
C120.1727 (4)0.7138 (5)0.8415 (4)0.0544 (14)
H120.2311950.7589640.8379480.062 (17)*
C130.3272 (3)0.6571 (4)0.6570 (3)0.0354 (10)
C140.3736 (4)0.5581 (4)0.6286 (3)0.0449 (12)
H140.3343630.4994310.6006190.038 (13)*
C150.4801 (4)0.5488 (5)0.6430 (4)0.0601 (15)
H150.5131740.4831090.6244000.064 (17)*
C160.5375 (4)0.6359 (5)0.6848 (4)0.0588 (15)
H160.6090320.6284560.6943080.055 (15)*
C170.4908 (4)0.7326 (5)0.7122 (4)0.0579 (15)
H170.5304040.7906890.7406560.11 (3)*
C180.3845 (4)0.7453 (5)0.6979 (4)0.0454 (12)
H180.3523110.8119070.7154670.068 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0606 (2)0.0358 (2)0.0538 (2)0.00876 (15)0.00196 (16)0.01070 (15)
I20.03714 (18)0.0402 (2)0.03720 (17)0.00547 (13)0.00240 (13)0.00876 (13)
I30.0636 (2)0.0514 (2)0.0543 (2)0.00218 (17)0.01768 (17)0.00135 (16)
C10.036 (2)0.032 (2)0.031 (2)0.001 (2)0.0007 (19)0.0008 (19)
S10.0375 (6)0.0304 (6)0.0314 (5)0.0027 (5)0.0016 (5)0.0037 (4)
C20.071 (4)0.042 (3)0.050 (3)0.009 (3)0.025 (3)0.003 (3)
C30.091 (4)0.050 (4)0.051 (3)0.006 (3)0.022 (3)0.010 (3)
C40.080 (4)0.038 (3)0.061 (3)0.005 (3)0.001 (3)0.009 (3)
C50.090 (4)0.047 (3)0.051 (3)0.031 (3)0.010 (3)0.001 (3)
C60.061 (3)0.053 (3)0.039 (3)0.007 (3)0.011 (3)0.003 (2)
C70.031 (2)0.037 (3)0.033 (2)0.001 (2)0.0011 (18)0.003 (2)
C80.043 (3)0.052 (3)0.043 (3)0.014 (3)0.004 (2)0.005 (2)
C90.052 (3)0.092 (5)0.054 (3)0.022 (3)0.010 (3)0.020 (3)
C100.062 (4)0.085 (5)0.038 (3)0.001 (3)0.016 (3)0.015 (3)
C110.075 (4)0.079 (4)0.037 (3)0.009 (4)0.008 (3)0.008 (3)
C120.057 (3)0.069 (4)0.037 (3)0.022 (3)0.006 (2)0.006 (3)
C130.039 (3)0.037 (3)0.030 (2)0.002 (2)0.0037 (19)0.001 (2)
C140.054 (3)0.041 (3)0.040 (3)0.006 (3)0.000 (2)0.000 (2)
C150.062 (4)0.062 (4)0.057 (3)0.025 (3)0.011 (3)0.002 (3)
C160.037 (3)0.082 (5)0.059 (3)0.005 (3)0.009 (3)0.012 (3)
C170.037 (3)0.065 (4)0.072 (4)0.004 (3)0.009 (3)0.000 (3)
C180.044 (3)0.046 (3)0.047 (3)0.002 (3)0.006 (2)0.008 (2)
Geometric parameters (Å, º) top
I1—I22.9646 (4)C8—C91.370 (7)
I2—I32.8909 (4)C9—H90.9300
C1—S11.797 (4)C9—C101.376 (7)
C1—C21.373 (6)C10—H100.9300
C1—C61.366 (6)C10—C111.362 (8)
S1—C71.777 (5)C11—H110.9300
S1—C131.787 (5)C11—C121.378 (7)
C2—H20.9300C12—H120.9300
C2—C31.373 (7)C13—C141.383 (6)
C3—H30.9300C13—C181.382 (6)
C3—C41.369 (7)C14—H140.9300
C4—H40.9300C14—C151.383 (7)
C4—C51.361 (7)C15—H150.9300
C5—H50.9300C15—C161.377 (8)
C5—C61.397 (7)C16—H160.9300
C6—H60.9300C16—C171.358 (8)
C7—C81.378 (6)C17—H170.9300
C7—C121.380 (6)C17—C181.384 (7)
C8—H80.9300C18—H180.9300
I3—I2—I1179.284 (14)C8—C9—C10120.6 (5)
C2—C1—S1115.1 (4)C10—C9—H9119.7
C6—C1—S1122.5 (4)C9—C10—H10120.0
C6—C1—C2122.2 (5)C11—C10—C9119.9 (5)
C7—S1—C1106.3 (2)C11—C10—H10120.0
C7—S1—C13106.2 (2)C10—C11—H11119.5
C13—S1—C1101.9 (2)C10—C11—C12120.9 (5)
C1—C2—H2120.6C12—C11—H11119.5
C1—C2—C3118.7 (5)C7—C12—H12120.8
C3—C2—H2120.6C11—C12—C7118.3 (5)
C2—C3—H3120.0C11—C12—H12120.8
C4—C3—C2120.0 (5)C14—C13—S1115.6 (4)
C4—C3—H3120.0C18—C13—S1122.7 (4)
C3—C4—H4119.5C18—C13—C14121.7 (5)
C5—C4—C3120.9 (5)C13—C14—H14121.0
C5—C4—H4119.5C15—C14—C13118.1 (5)
C4—C5—H5120.0C15—C14—H14121.0
C4—C5—C6120.0 (5)C14—C15—H15119.7
C6—C5—H5120.0C16—C15—C14120.5 (5)
C1—C6—C5117.9 (5)C16—C15—H15119.7
C1—C6—H6121.0C15—C16—H16119.7
C5—C6—H6121.0C17—C16—C15120.7 (5)
C8—C7—S1114.9 (3)C17—C16—H16119.7
C8—C7—C12121.4 (4)C16—C17—H17119.8
C12—C7—S1123.7 (4)C16—C17—C18120.4 (6)
C7—C8—H8120.6C18—C17—H17119.8
C9—C8—C7118.7 (5)C13—C18—C17118.6 (5)
C9—C8—H8120.6C13—C18—H18120.7
C8—C9—H9119.7C17—C18—H18120.7
C1—S1—C7—C8114.8 (4)C6—C1—S1—C13121.4 (4)
C1—S1—C7—C1264.8 (5)C6—C1—C2—C33.3 (8)
C1—S1—C13—C14140.9 (3)C7—S1—C13—C14108.1 (4)
C1—S1—C13—C1837.6 (4)C7—S1—C13—C1873.4 (4)
C1—C2—C3—C40.3 (9)C7—C8—C9—C100.5 (9)
S1—C1—C2—C3178.5 (5)C8—C7—C12—C111.0 (8)
S1—C1—C6—C5179.2 (4)C8—C9—C10—C110.8 (10)
S1—C7—C8—C9178.1 (4)C9—C10—C11—C121.3 (10)
S1—C7—C12—C11178.5 (4)C10—C11—C12—C70.4 (9)
S1—C13—C14—C15179.1 (4)C12—C7—C8—C91.4 (8)
S1—C13—C18—C17179.6 (4)C13—S1—C7—C8137.3 (4)
C2—C1—S1—C7174.4 (4)C13—S1—C7—C1243.2 (5)
C2—C1—S1—C1363.4 (4)C13—C14—C15—C160.2 (8)
C2—C1—C6—C54.4 (8)C14—C13—C18—C171.2 (7)
C2—C3—C4—C51.5 (9)C14—C15—C16—C170.2 (9)
C3—C4—C5—C60.4 (9)C15—C16—C17—C180.4 (9)
C4—C5—C6—C12.5 (9)C16—C17—C18—C131.1 (8)
C6—C1—S1—C710.4 (4)C18—C13—C14—C150.6 (7)
Triphenylsulfonium perchlorate (II) top
Crystal data top
C18H15S+·ClO4F(000) = 752
Mr = 362.81Dx = 1.477 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 9.1289 (2) ÅCell parameters from 10937 reflections
b = 19.1565 (4) Åθ = 4.6–69.5°
c = 9.3314 (2) ŵ = 3.45 mm1
β = 90.611 (2)°T = 100 K
V = 1631.76 (6) Å3Block, clear colourless
Z = 40.18 × 0.17 × 0.13 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
5589 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.035
ω scansθmax = 69.6°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
h = 118
Tmin = 0.687, Tmax = 1.000k = 2323
14869 measured reflectionsl = 1111
5850 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullOnly H-atom displacement parameters refined
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0965P)2 + 0.5199P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.138(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.59 e Å3
5850 reflectionsΔρmin = 0.29 e Å3
463 parametersAbsolute structure: Flack x determined using 2436 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.005 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2044 (6)0.7027 (3)0.1890 (6)0.0318 (11)
S10.35386 (13)0.64327 (7)0.17331 (14)0.0303 (3)
C20.0596 (6)0.6800 (3)0.1973 (6)0.0358 (12)
H20.0375330.6317710.2060320.034 (17)*
C30.0510 (7)0.7290 (4)0.1926 (7)0.0432 (15)
H30.1503200.7145860.1977670.05 (2)*
C40.0169 (7)0.8001 (4)0.1802 (7)0.0441 (15)
H40.0934350.8336230.1748110.024 (14)*
C50.1280 (7)0.8218 (3)0.1757 (7)0.0426 (14)
H50.1501900.8701780.1714400.11 (4)*
C60.2404 (6)0.7732 (3)0.1775 (6)0.0350 (12)
H60.3397410.7876350.1710930.028 (15)*
C70.4387 (5)0.6418 (3)0.3457 (6)0.0316 (11)
C80.3620 (6)0.6493 (3)0.4708 (6)0.0341 (11)
H80.2589560.6563180.4690240.036 (17)*
C90.4391 (7)0.6463 (3)0.5996 (7)0.0367 (12)
H90.3890080.6513350.6877370.031 (16)*
C100.5901 (7)0.6359 (3)0.5995 (7)0.0408 (14)
H100.6428900.6345640.6877980.046 (19)*
C110.6642 (6)0.6274 (3)0.4714 (7)0.0404 (14)
H110.7670260.6197180.4725290.08 (3)*
C120.5897 (6)0.6299 (3)0.3438 (7)0.0355 (12)
H120.6394150.6237700.2557450.017 (13)*
C130.2743 (6)0.5587 (3)0.1525 (6)0.0332 (11)
C140.2696 (6)0.5106 (3)0.2626 (6)0.0335 (12)
H140.3016930.5226520.3566030.021 (13)*
C150.2162 (6)0.4436 (3)0.2323 (7)0.0379 (12)
H150.2134880.4095800.3061960.045 (19)*
C160.1676 (6)0.4266 (3)0.0963 (7)0.0402 (13)
H160.1310020.3810740.0767370.041 (19)*
C170.1724 (7)0.4766 (3)0.0126 (7)0.0413 (13)
H170.1371370.4651640.1058690.06 (2)*
C180.2278 (6)0.5424 (3)0.0141 (6)0.0367 (12)
H180.2340540.5758590.0606090.05 (2)*
S20.78712 (14)0.41815 (7)0.37637 (15)0.0317 (3)
C190.6226 (6)0.3956 (3)0.4650 (6)0.0327 (11)
C200.5543 (7)0.3316 (3)0.4456 (8)0.0437 (14)
H200.5954420.2971140.3849860.040 (18)*
C210.4251 (8)0.3194 (4)0.5164 (9)0.0513 (17)
H210.3767420.2757970.5048340.044 (19)*
C220.3651 (7)0.3696 (4)0.6037 (7)0.0454 (15)
H220.2768680.3602530.6531830.045 (19)*
C230.4334 (7)0.4338 (3)0.6195 (7)0.0422 (14)
H230.3900920.4689960.6768360.029 (15)*
C240.5640 (7)0.4464 (3)0.5521 (7)0.0396 (13)
H240.6132220.4896750.5653770.06 (2)*
C250.7284 (6)0.4499 (3)0.2065 (6)0.0318 (11)
C260.6048 (6)0.4252 (3)0.1354 (7)0.0375 (12)
H260.5438280.3912640.1791110.032 (16)*
C270.5714 (7)0.4504 (3)0.0004 (7)0.0414 (13)
H270.4885930.4332050.0510680.05 (2)*
C280.6610 (7)0.5016 (3)0.0595 (7)0.0419 (14)
H280.6365770.5200180.1511550.045 (19)*
C290.7842 (6)0.5260 (3)0.0117 (7)0.0403 (13)
H290.8451960.5597020.0325900.07 (3)*
C300.8191 (6)0.5013 (3)0.1479 (6)0.0353 (12)
H300.9017060.5186030.1994830.017 (13)*
C310.8756 (6)0.3373 (3)0.3387 (6)0.0323 (11)
C320.8534 (7)0.3007 (3)0.2141 (7)0.0415 (13)
H320.7864570.3173960.1433270.10 (4)*
C330.9296 (7)0.2393 (4)0.1928 (7)0.0436 (14)
H330.9152230.2137840.1065400.07 (3)*
C341.0262 (6)0.2148 (3)0.2953 (7)0.0386 (13)
H341.0789940.1727670.2800700.014 (12)*
C351.0453 (8)0.2522 (4)0.4203 (8)0.0494 (16)
H351.1107880.2350420.4918910.13 (5)*
C360.9717 (7)0.3136 (3)0.4436 (7)0.0439 (14)
H360.9863550.3392860.5297370.08 (3)*
Cl20.40399 (14)0.24527 (7)0.05278 (15)0.0356 (3)
O50.3284 (5)0.2851 (3)0.1575 (6)0.0570 (13)
O60.5553 (5)0.2378 (3)0.0957 (5)0.0460 (10)
O70.3381 (6)0.1780 (3)0.0402 (6)0.0522 (12)
O80.3976 (5)0.2790 (3)0.0831 (6)0.0555 (13)
Cl10.02629 (13)0.52914 (6)0.60686 (14)0.0322 (3)
O10.1090 (5)0.5360 (3)0.6796 (5)0.0478 (11)
O20.0126 (5)0.5594 (3)0.4671 (5)0.0440 (10)
O30.1399 (5)0.5650 (2)0.6847 (5)0.0460 (11)
O40.0659 (6)0.4575 (3)0.5948 (7)0.0602 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (3)0.032 (3)0.036 (3)0.004 (2)0.002 (2)0.001 (2)
S10.0237 (5)0.0300 (6)0.0372 (6)0.0014 (5)0.0000 (5)0.0019 (5)
C20.032 (3)0.035 (3)0.041 (3)0.005 (2)0.000 (2)0.007 (2)
C30.027 (3)0.054 (4)0.048 (3)0.001 (3)0.001 (2)0.007 (3)
C40.035 (3)0.049 (4)0.048 (3)0.014 (3)0.009 (3)0.010 (3)
C50.050 (4)0.031 (3)0.047 (3)0.008 (3)0.006 (3)0.002 (2)
C60.029 (3)0.032 (3)0.044 (3)0.000 (2)0.004 (2)0.000 (2)
C70.024 (2)0.024 (2)0.047 (3)0.000 (2)0.009 (2)0.000 (2)
C80.028 (3)0.031 (3)0.044 (3)0.001 (2)0.004 (2)0.001 (2)
C90.041 (3)0.027 (3)0.043 (3)0.001 (2)0.005 (2)0.005 (2)
C100.041 (3)0.029 (3)0.052 (4)0.005 (2)0.020 (3)0.002 (2)
C110.029 (3)0.027 (3)0.065 (4)0.002 (2)0.013 (3)0.001 (3)
C120.028 (3)0.022 (3)0.056 (3)0.002 (2)0.001 (2)0.001 (2)
C130.024 (2)0.033 (3)0.043 (3)0.005 (2)0.002 (2)0.001 (2)
C140.030 (3)0.032 (3)0.038 (3)0.005 (2)0.005 (2)0.002 (2)
C150.036 (3)0.037 (3)0.041 (3)0.004 (2)0.004 (2)0.003 (2)
C160.033 (3)0.037 (3)0.051 (4)0.003 (2)0.004 (2)0.008 (3)
C170.036 (3)0.044 (3)0.044 (3)0.002 (3)0.007 (2)0.008 (3)
C180.032 (3)0.041 (3)0.038 (3)0.005 (2)0.001 (2)0.002 (2)
S20.0284 (6)0.0271 (6)0.0396 (7)0.0009 (5)0.0013 (5)0.0000 (5)
C190.029 (3)0.032 (3)0.037 (3)0.002 (2)0.001 (2)0.002 (2)
C200.044 (3)0.027 (3)0.061 (4)0.002 (2)0.011 (3)0.000 (3)
C210.048 (4)0.034 (3)0.072 (5)0.006 (3)0.015 (3)0.001 (3)
C220.038 (3)0.050 (4)0.048 (4)0.001 (3)0.012 (3)0.014 (3)
C230.041 (3)0.042 (3)0.044 (3)0.008 (3)0.000 (3)0.004 (3)
C240.042 (3)0.029 (3)0.048 (3)0.002 (2)0.004 (3)0.006 (2)
C250.030 (3)0.026 (3)0.040 (3)0.004 (2)0.001 (2)0.006 (2)
C260.032 (3)0.034 (3)0.047 (3)0.002 (2)0.003 (2)0.006 (2)
C270.032 (3)0.045 (3)0.047 (3)0.006 (2)0.006 (2)0.001 (3)
C280.042 (3)0.042 (3)0.042 (3)0.011 (3)0.002 (2)0.010 (3)
C290.038 (3)0.031 (3)0.052 (3)0.002 (2)0.009 (3)0.008 (3)
C300.030 (3)0.030 (3)0.045 (3)0.003 (2)0.003 (2)0.002 (2)
C310.023 (2)0.033 (3)0.041 (3)0.002 (2)0.001 (2)0.001 (2)
C320.036 (3)0.040 (3)0.048 (3)0.007 (2)0.011 (3)0.002 (3)
C330.049 (3)0.039 (3)0.043 (3)0.004 (3)0.005 (3)0.006 (3)
C340.029 (3)0.031 (3)0.055 (4)0.004 (2)0.000 (2)0.004 (3)
C350.050 (4)0.042 (4)0.056 (4)0.014 (3)0.017 (3)0.002 (3)
C360.052 (4)0.037 (3)0.042 (3)0.007 (3)0.011 (3)0.006 (3)
Cl20.0308 (6)0.0316 (6)0.0443 (7)0.0009 (5)0.0010 (5)0.0001 (5)
O50.049 (3)0.048 (3)0.074 (4)0.004 (2)0.015 (2)0.011 (2)
O60.033 (2)0.055 (3)0.050 (3)0.0039 (19)0.0076 (18)0.002 (2)
O70.053 (3)0.035 (2)0.069 (3)0.010 (2)0.003 (2)0.000 (2)
O80.035 (2)0.071 (3)0.060 (3)0.008 (2)0.008 (2)0.023 (3)
Cl10.0268 (6)0.0307 (6)0.0390 (6)0.0024 (5)0.0048 (5)0.0006 (5)
O10.036 (2)0.057 (3)0.050 (2)0.001 (2)0.0046 (18)0.006 (2)
O20.037 (2)0.055 (3)0.040 (2)0.0002 (19)0.0010 (17)0.0004 (19)
O30.041 (2)0.040 (2)0.057 (3)0.0052 (18)0.013 (2)0.002 (2)
O40.058 (3)0.033 (2)0.090 (4)0.012 (2)0.022 (3)0.011 (2)
Geometric parameters (Å, º) top
C1—S11.784 (6)C19—C241.380 (8)
C1—C21.394 (8)C20—H200.9500
C1—C61.396 (8)C20—C211.378 (9)
S1—C71.778 (6)C21—H210.9500
S1—C131.785 (6)C21—C221.378 (10)
C2—H20.9500C22—H220.9500
C2—C31.378 (9)C22—C231.385 (10)
C3—H30.9500C23—H230.9500
C3—C41.402 (10)C23—C241.375 (9)
C4—H40.9500C24—H240.9500
C4—C51.387 (9)C25—C261.386 (8)
C5—H50.9500C25—C301.401 (8)
C5—C61.385 (8)C26—H260.9500
C6—H60.9500C26—C271.381 (9)
C7—C81.375 (8)C27—H270.9500
C7—C121.397 (8)C27—C281.397 (10)
C8—H80.9500C28—H280.9500
C8—C91.388 (8)C28—C291.382 (9)
C9—H90.9500C29—H290.9500
C9—C101.393 (9)C29—C301.390 (9)
C10—H100.9500C30—H300.9500
C10—C111.390 (10)C31—C321.370 (9)
C11—H110.9500C31—C361.383 (9)
C11—C121.366 (9)C32—H320.9500
C12—H120.9500C32—C331.382 (9)
C13—C141.382 (8)C33—H330.9500
C13—C181.390 (8)C33—C341.377 (9)
C14—H140.9500C34—H340.9500
C14—C151.400 (9)C34—C351.378 (10)
C15—H150.9500C35—H350.9500
C15—C161.380 (9)C35—C361.375 (9)
C16—H160.9500C36—H360.9500
C16—C171.397 (10)Cl2—O51.424 (5)
C17—H170.9500Cl2—O61.441 (4)
C17—C181.380 (9)Cl2—O71.427 (5)
C18—H180.9500Cl2—O81.424 (5)
S2—C191.776 (6)Cl1—O11.422 (5)
S2—C251.776 (6)Cl1—O21.432 (5)
S2—C311.784 (6)Cl1—O31.434 (4)
C19—C201.387 (8)Cl1—O41.424 (5)
C2—C1—S1122.2 (4)C19—C20—H20120.9
C2—C1—C6122.0 (5)C21—C20—C19118.3 (6)
C6—C1—S1115.5 (4)C21—C20—H20120.9
C1—S1—C13106.1 (3)C20—C21—H21119.6
C7—S1—C1105.2 (3)C20—C21—C22120.8 (6)
C7—S1—C13104.9 (3)C22—C21—H21119.6
C1—C2—H2120.6C21—C22—H22120.0
C3—C2—C1118.8 (6)C21—C22—C23120.1 (6)
C3—C2—H2120.6C23—C22—H22120.0
C2—C3—H3120.0C22—C23—H23120.0
C2—C3—C4120.1 (6)C24—C23—C22120.0 (6)
C4—C3—H3120.0C24—C23—H23120.0
C3—C4—H4119.8C19—C24—H24120.4
C5—C4—C3120.4 (6)C23—C24—C19119.2 (6)
C5—C4—H4119.8C23—C24—H24120.4
C4—C5—H5119.8C26—C25—S2123.1 (4)
C6—C5—C4120.4 (6)C26—C25—C30122.4 (5)
C6—C5—H5119.8C30—C25—S2114.5 (4)
C1—C6—H6120.8C25—C26—H26120.4
C5—C6—C1118.4 (5)C27—C26—C25119.2 (5)
C5—C6—H6120.8C27—C26—H26120.4
C8—C7—S1123.0 (4)C26—C27—H27120.5
C8—C7—C12122.6 (5)C26—C27—C28119.1 (6)
C12—C7—S1114.3 (5)C28—C27—H27120.5
C7—C8—H8120.9C27—C28—H28119.2
C7—C8—C9118.2 (5)C29—C28—C27121.5 (6)
C9—C8—H8120.9C29—C28—H28119.2
C8—C9—H9120.1C28—C29—H29120.0
C8—C9—C10119.9 (6)C28—C29—C30120.1 (5)
C10—C9—H9120.1C30—C29—H29120.0
C9—C10—H10119.7C25—C30—H30121.1
C11—C10—C9120.5 (5)C29—C30—C25117.7 (5)
C11—C10—H10119.7C29—C30—H30121.1
C10—C11—H11119.9C32—C31—S2123.2 (5)
C12—C11—C10120.2 (5)C32—C31—C36121.4 (6)
C12—C11—H11119.9C36—C31—S2115.4 (5)
C7—C12—H12120.8C31—C32—H32120.5
C11—C12—C7118.5 (6)C31—C32—C33119.1 (6)
C11—C12—H12120.8C33—C32—H32120.5
C14—C13—S1122.7 (4)C32—C33—H33119.7
C14—C13—C18121.9 (6)C34—C33—C32120.7 (6)
C18—C13—S1115.2 (5)C34—C33—H33119.7
C13—C14—H14120.8C33—C34—H34120.5
C13—C14—C15118.3 (5)C33—C34—C35119.0 (6)
C15—C14—H14120.8C35—C34—H34120.5
C14—C15—H15119.6C34—C35—H35119.3
C16—C15—C14120.8 (6)C36—C35—C34121.4 (6)
C16—C15—H15119.6C36—C35—H35119.3
C15—C16—H16120.2C31—C36—H36120.8
C15—C16—C17119.6 (6)C35—C36—C31118.4 (6)
C17—C16—H16120.2C35—C36—H36120.8
C16—C17—H17119.7O5—Cl2—O6109.4 (3)
C18—C17—C16120.6 (6)O5—Cl2—O7109.5 (3)
C18—C17—H17119.7O5—Cl2—O8110.7 (4)
C13—C18—H18120.6O7—Cl2—O6109.6 (3)
C17—C18—C13118.8 (6)O8—Cl2—O6108.8 (3)
C17—C18—H18120.6O8—Cl2—O7108.8 (3)
C19—S2—C31105.5 (3)O1—Cl1—O2109.2 (3)
C25—S2—C19104.5 (3)O1—Cl1—O3109.9 (3)
C25—S2—C31104.8 (3)O1—Cl1—O4110.5 (3)
C20—C19—S2122.4 (5)O2—Cl1—O3108.8 (3)
C24—C19—S2116.0 (5)O4—Cl1—O2109.8 (3)
C24—C19—C20121.6 (6)O4—Cl1—O3108.5 (3)
C1—S1—C7—C833.3 (5)S2—C19—C20—C21178.5 (6)
C1—S1—C7—C12148.8 (4)S2—C19—C24—C23177.3 (5)
C1—S1—C13—C14103.2 (5)S2—C25—C26—C27176.8 (5)
C1—S1—C13—C1881.8 (5)S2—C25—C30—C29176.7 (4)
C1—C2—C3—C40.2 (10)S2—C31—C32—C33178.4 (5)
S1—C1—C2—C3172.6 (5)S2—C31—C36—C35179.0 (5)
S1—C1—C6—C5174.3 (5)C19—S2—C25—C2632.3 (5)
S1—C7—C8—C9179.1 (4)C19—S2—C25—C30149.0 (4)
S1—C7—C12—C11179.5 (4)C19—S2—C31—C3290.4 (6)
S1—C13—C14—C15174.6 (4)C19—S2—C31—C3690.6 (5)
S1—C13—C18—C17176.5 (4)C19—C20—C21—C220.3 (12)
C2—C1—S1—C7104.9 (5)C20—C19—C24—C231.1 (10)
C2—C1—S1—C136.0 (6)C20—C21—C22—C231.0 (12)
C2—C1—C6—C50.6 (9)C21—C22—C23—C242.4 (11)
C2—C3—C4—C51.4 (10)C22—C23—C24—C192.4 (10)
C3—C4—C5—C62.7 (10)C24—C19—C20—C210.3 (10)
C4—C5—C6—C12.2 (10)C25—S2—C19—C2084.4 (6)
C6—C1—S1—C781.5 (5)C25—S2—C19—C2493.9 (5)
C6—C1—S1—C13167.7 (5)C25—S2—C31—C3219.6 (6)
C6—C1—C2—C30.6 (9)C25—S2—C31—C36159.5 (5)
C7—S1—C13—C147.8 (5)C25—C26—C27—C281.7 (9)
C7—S1—C13—C18167.2 (4)C26—C25—C30—C292.0 (8)
C7—C8—C9—C100.1 (8)C26—C27—C28—C291.8 (10)
C8—C7—C12—C111.6 (8)C27—C28—C29—C302.1 (10)
C8—C9—C10—C111.0 (9)C28—C29—C30—C252.0 (8)
C9—C10—C11—C120.7 (9)C30—C25—C26—C271.8 (9)
C10—C11—C12—C70.5 (9)C31—S2—C19—C2025.7 (6)
C12—C7—C8—C91.4 (8)C31—S2—C19—C24155.9 (5)
C13—S1—C7—C878.3 (5)C31—S2—C25—C2678.4 (5)
C13—S1—C7—C1299.5 (4)C31—S2—C25—C30100.2 (4)
C13—C14—C15—C161.0 (8)C31—C32—C33—C340.3 (10)
C14—C13—C18—C171.5 (8)C32—C31—C36—C350.1 (10)
C14—C15—C16—C170.4 (9)C32—C33—C34—C350.4 (10)
C15—C16—C17—C181.2 (9)C33—C34—C35—C360.9 (11)
C16—C17—C18—C132.1 (8)C34—C35—C36—C310.7 (11)
C18—C13—C14—C150.1 (8)C36—C31—C32—C330.5 (10)
Triphenylsulfonium hexafluorophosphate (III) top
Crystal data top
C18H15S+·PF6F(000) = 832
Mr = 408.33Dx = 1.562 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 8.4524 (2) ÅCell parameters from 4889 reflections
b = 18.1483 (5) Åθ = 4.6–69.4°
c = 11.4344 (3) ŵ = 3.10 mm1
β = 98.251 (2)°T = 100 K
V = 1735.84 (8) Å3Irregular, clear colourless
Z = 40.27 × 0.18 × 0.09 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
2782 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.038
ω scansθmax = 69.9°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
h = 108
Tmin = 0.225, Tmax = 1.000k = 2122
8136 measured reflectionsl = 1213
3235 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057Only H-atom displacement parameters refined
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0797P)2 + 2.0739P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
3235 reflectionsΔρmax = 1.03 e Å3
250 parametersΔρmin = 0.76 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47256 (8)0.22774 (4)0.32198 (6)0.0242 (2)
P10.32535 (9)0.08138 (4)0.75173 (7)0.0276 (2)
F60.4296 (3)0.15360 (12)0.7797 (2)0.0555 (7)
F30.2176 (3)0.00957 (13)0.7247 (2)0.0521 (6)
F50.4752 (3)0.04073 (15)0.7153 (3)0.0659 (8)
F10.2725 (3)0.10587 (17)0.6204 (2)0.0770 (10)
F40.3778 (3)0.05372 (19)0.8831 (2)0.0740 (9)
F20.1740 (3)0.11993 (18)0.7935 (3)0.0848 (11)
C50.1043 (4)0.08294 (17)0.2990 (3)0.0286 (7)
H50.0282700.0655290.3461230.032 (9)*
C70.6285 (3)0.17795 (16)0.4110 (3)0.0237 (6)
C40.1048 (4)0.05475 (17)0.1864 (3)0.0285 (6)
H40.0299070.0177820.1571690.034 (9)*
C10.3235 (3)0.16042 (16)0.2728 (3)0.0234 (6)
C120.7692 (3)0.21722 (17)0.4441 (3)0.0278 (7)
H120.7806910.2662540.4174750.034 (10)*
C140.4035 (4)0.26121 (16)0.5460 (3)0.0271 (6)
H140.4619170.2183570.5735050.037 (10)*
C20.3247 (4)0.13351 (17)0.1587 (3)0.0283 (6)
H20.3997300.1513320.1110990.026 (8)*
C60.2139 (3)0.13641 (17)0.3432 (3)0.0262 (6)
H60.2137920.1560950.4201530.037 (10)*
C130.3877 (3)0.28156 (16)0.4282 (3)0.0260 (6)
C110.8916 (4)0.18278 (18)0.5168 (3)0.0308 (7)
H110.9885540.2085550.5412170.043 (11)*
C30.2137 (4)0.08007 (17)0.1165 (3)0.0298 (7)
H30.2125550.0607970.0391410.035 (9)*
C150.3320 (4)0.30500 (18)0.6228 (3)0.0322 (7)
H150.3404870.2920180.7039040.031 (9)*
C100.8746 (4)0.11082 (18)0.5548 (3)0.0325 (7)
H100.9592950.0878190.6054370.038 (10)*
C180.3044 (4)0.34418 (18)0.3850 (3)0.0330 (7)
H180.2963780.3572820.3038820.066 (14)*
C80.6083 (4)0.10622 (17)0.4460 (3)0.0316 (7)
H80.5114360.0804940.4210770.048 (11)*
C170.2333 (4)0.38705 (17)0.4633 (3)0.0359 (8)
H170.1742880.4297460.4357890.044 (11)*
C90.7337 (4)0.07260 (19)0.5188 (3)0.0363 (8)
H90.7228880.0232020.5439150.054 (12)*
C160.2482 (4)0.36763 (18)0.5817 (3)0.0365 (8)
H160.2004110.3975740.6351550.037 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0253 (4)0.0234 (4)0.0240 (4)0.0026 (3)0.0040 (3)0.0032 (3)
P10.0275 (4)0.0288 (4)0.0262 (4)0.0007 (3)0.0033 (3)0.0007 (3)
F60.0520 (13)0.0311 (11)0.0732 (16)0.0071 (9)0.0258 (11)0.0013 (10)
F30.0421 (11)0.0504 (13)0.0629 (15)0.0198 (10)0.0049 (10)0.0100 (11)
F50.0385 (12)0.0649 (16)0.098 (2)0.0059 (11)0.0243 (13)0.0380 (15)
F10.0793 (18)0.098 (2)0.0434 (14)0.0533 (16)0.0255 (13)0.0351 (14)
F40.0425 (13)0.138 (3)0.0390 (13)0.0271 (15)0.0031 (10)0.0302 (15)
F20.0351 (12)0.101 (2)0.113 (2)0.0200 (13)0.0067 (13)0.0619 (19)
C50.0249 (14)0.0285 (15)0.0328 (17)0.0018 (12)0.0058 (12)0.0014 (12)
C70.0235 (13)0.0265 (15)0.0218 (14)0.0011 (11)0.0054 (11)0.0012 (11)
C40.0272 (14)0.0235 (14)0.0334 (17)0.0002 (12)0.0006 (12)0.0031 (12)
C10.0232 (13)0.0238 (14)0.0222 (14)0.0001 (11)0.0003 (11)0.0022 (11)
C120.0285 (15)0.0262 (15)0.0296 (16)0.0036 (12)0.0074 (13)0.0051 (12)
C140.0303 (15)0.0189 (14)0.0327 (17)0.0024 (11)0.0067 (13)0.0012 (12)
C20.0299 (15)0.0290 (15)0.0265 (15)0.0037 (12)0.0062 (12)0.0035 (12)
C60.0271 (14)0.0296 (15)0.0215 (14)0.0005 (12)0.0017 (11)0.0013 (12)
C130.0241 (14)0.0217 (14)0.0321 (17)0.0036 (11)0.0038 (12)0.0010 (12)
C110.0253 (14)0.0358 (17)0.0311 (17)0.0015 (13)0.0038 (12)0.0090 (13)
C30.0348 (16)0.0290 (16)0.0255 (16)0.0030 (13)0.0037 (13)0.0044 (12)
C150.0320 (16)0.0307 (16)0.0353 (18)0.0070 (13)0.0095 (13)0.0046 (13)
C100.0297 (15)0.0364 (18)0.0301 (17)0.0074 (13)0.0002 (13)0.0030 (13)
C180.0273 (15)0.0270 (16)0.0428 (19)0.0017 (12)0.0017 (13)0.0040 (13)
C80.0264 (15)0.0277 (16)0.0400 (18)0.0018 (12)0.0028 (13)0.0033 (13)
C170.0241 (15)0.0224 (15)0.059 (2)0.0014 (12)0.0017 (14)0.0027 (14)
C90.0330 (16)0.0304 (17)0.044 (2)0.0030 (13)0.0004 (14)0.0060 (14)
C160.0251 (15)0.0286 (16)0.057 (2)0.0053 (12)0.0102 (15)0.0151 (15)
Geometric parameters (Å, º) top
S1—C71.790 (3)C14—C131.385 (4)
S1—C11.787 (3)C14—C151.385 (4)
S1—C131.787 (3)C2—H20.9500
P1—F61.586 (2)C2—C31.387 (4)
P1—F31.594 (2)C6—H60.9500
P1—F51.572 (2)C13—C181.390 (4)
P1—F11.569 (2)C11—H110.9500
P1—F41.585 (2)C11—C101.390 (5)
P1—F21.590 (2)C3—H30.9500
C5—H50.9500C15—H150.9500
C5—C41.385 (4)C15—C161.385 (5)
C5—C61.386 (4)C10—H100.9500
C7—C121.392 (4)C10—C91.389 (5)
C7—C81.380 (4)C18—H180.9500
C4—H40.9500C18—C171.387 (5)
C4—C31.382 (4)C8—H80.9500
C1—C21.394 (4)C8—C91.391 (5)
C1—C61.382 (4)C17—H170.9500
C12—H120.9500C17—C161.388 (5)
C12—C111.380 (4)C9—H90.9500
C14—H140.9500C16—H160.9500
C1—S1—C7105.20 (13)C1—C2—H2120.8
C1—S1—C13104.70 (13)C3—C2—C1118.4 (3)
C13—S1—C7102.96 (14)C3—C2—H2120.8
F6—P1—F3178.82 (14)C5—C6—H6120.7
F6—P1—F291.35 (15)C1—C6—C5118.5 (3)
F5—P1—F689.77 (13)C1—C6—H6120.7
F5—P1—F391.40 (13)C14—C13—S1121.5 (2)
F5—P1—F488.63 (16)C14—C13—C18122.5 (3)
F5—P1—F2177.39 (19)C18—C13—S1116.0 (3)
F1—P1—F691.86 (13)C12—C11—H11119.6
F1—P1—F388.28 (13)C12—C11—C10120.8 (3)
F1—P1—F590.49 (18)C10—C11—H11119.6
F1—P1—F4178.00 (18)C4—C3—C2120.3 (3)
F1—P1—F291.84 (19)C4—C3—H3119.8
F4—P1—F689.93 (14)C2—C3—H3119.9
F4—P1—F389.95 (14)C14—C15—H15119.8
F4—P1—F289.01 (17)C16—C15—C14120.3 (3)
F2—P1—F387.48 (14)C16—C15—H15119.8
C4—C5—H5119.8C11—C10—H10120.0
C4—C5—C6120.4 (3)C9—C10—C11119.9 (3)
C6—C5—H5119.8C9—C10—H10120.0
C12—C7—S1115.3 (2)C13—C18—H18120.9
C8—C7—S1122.0 (2)C17—C18—C13118.3 (3)
C8—C7—C12122.7 (3)C17—C18—H18120.9
C5—C4—H4119.8C7—C8—H8120.9
C3—C4—C5120.4 (3)C7—C8—C9118.2 (3)
C3—C4—H4119.8C9—C8—H8120.9
C2—C1—S1115.7 (2)C18—C17—H17120.0
C6—C1—S1122.2 (2)C18—C17—C16120.0 (3)
C6—C1—C2122.0 (3)C16—C17—H17120.0
C7—C12—H12121.0C10—C9—C8120.4 (3)
C11—C12—C7118.0 (3)C10—C9—H9119.8
C11—C12—H12121.0C8—C9—H9119.8
C13—C14—H14120.9C15—C16—C17120.6 (3)
C13—C14—C15118.2 (3)C15—C16—H16119.7
C15—C14—H14120.9C17—C16—H16119.7
S1—C7—C12—C11177.4 (2)C12—C7—C8—C90.9 (5)
S1—C7—C8—C9177.6 (3)C12—C11—C10—C90.5 (5)
S1—C1—C2—C3178.8 (2)C14—C13—C18—C170.8 (4)
S1—C1—C6—C5178.7 (2)C14—C15—C16—C170.6 (5)
S1—C13—C18—C17178.7 (2)C2—C1—C6—C51.2 (4)
C5—C4—C3—C20.6 (5)C6—C5—C4—C30.6 (5)
C7—S1—C1—C299.1 (2)C6—C1—C2—C31.1 (4)
C7—S1—C1—C680.8 (3)C13—S1—C7—C1280.2 (2)
C7—S1—C13—C1422.8 (3)C13—S1—C7—C898.4 (3)
C7—S1—C13—C18157.7 (2)C13—S1—C1—C2152.7 (2)
C7—C12—C11—C100.5 (4)C13—S1—C1—C627.3 (3)
C7—C8—C9—C100.2 (5)C13—C14—C15—C160.5 (4)
C4—C5—C6—C10.3 (4)C13—C18—C17—C160.9 (4)
C1—S1—C7—C12170.4 (2)C11—C10—C9—C80.9 (5)
C1—S1—C7—C811.0 (3)C15—C14—C13—S1178.9 (2)
C1—S1—C13—C1487.0 (3)C15—C14—C13—C180.6 (4)
C1—S1—C13—C1892.5 (2)C18—C17—C16—C150.9 (5)
C1—C2—C3—C40.2 (4)C8—C7—C12—C111.3 (4)
Contributions of selected intermolecular contacts (%) top
Contact(I) (cation)(I) (anion)(II) (cation)(II) (anion)(III) (cation)III (anion)
H···H46.739.438.9
H···C25.15.230.51.722.16.1
H···I20.584.1
C···C3.91.93.7
H···O25.794.5
I···I7.1
I···S3.6
F···H29.492.4
F···C6.1
F···S1.2
O···S3.7
 

Acknowledgements

The authors would like to thank the Department of Biochemistry, Chemistry, and Physics at Georgia Southern University for the financial support of this work and the National Science Foundation Major Research Instrumentation fund for the purchase of the X-ray diffractometer.

Funding information

Funding for this research was provided by: National Science Foundation Major Research Instrumentation fund (grant No. 2215812).

References

First citationBarrett, R. H. & Selwyn, M. J. (1976). Biochem. J. 156, 315–322.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHu, F., Xu, C., Shi, H.-T., Chen, Q. & Zhang, Q.-F. (2013). Acta Cryst. E69, o1171.  CSD CrossRef IUCr Journals Google Scholar
First citationKlapötke, T. M. & Krumm, B. (2009). Z. Naturforsch. B, 64, 467–469.  Google Scholar
First citationKlapötke, T. M., Krumm, B. & Scherr, M. (2009). J. Am. Chem. Soc. 131, 72–74.  Web of Science PubMed Google Scholar
First citationKwon, O., Sagar, A. D., Kang, H. N., Kim, H. M., Kim, K. B. & Lee, H. (2014). J. Nanosci. Nanotechnol. 14, 6270–6273.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLee, J. S. & Titus, D. D. (1976). J. Cryst. Mol. Struct. 6, 279–289.  CSD CrossRef CAS Web of Science Google Scholar
First citationLuo, Z., Liu, Y., Liu, Y., Li, C., Li, Y., Li, Q., Wei, Y., Zhang, L., Xu, B., Chang, X. & Quan, Z. (2022). Adv. Mater. 34, 2200607.  Web of Science CSD CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMitcham, R. V., Lee, B., Mertes, K. B. & Ziolo, R. F. (1979). Inorg. Chem. 18, 3498–3502.  CSD CrossRef CAS Web of Science Google Scholar
First citationOhmori, N., Nakazono, Y., Hata, M., Hoshino, T. & Tsuda, M. (1998). J. Phys. Chem. B, 102, 927–930.  Web of Science CrossRef CAS Google Scholar
First citationOvchinnikov, Y. E., Struchkov, T. T., Nedel'kin, V. I., Kuznetsov, S. N. & Izmailov, B. A. (1996). Russ. Chem. Bull. 45, 1400–1403.  CrossRef Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPetsalakis, I. D., Theodorakopoulos, G., Lathiotakis, N. N., Georgiadou, D. G., Vasilopoulou, M. & Argitis, P. (2014). Chem. Phys. Lett. 601, 63–68.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchlueter, J. A., Manson, J. L., Hyzer, K. A. & Geiser, U. (2004). Inorg. Chem. 43, 4100–4102.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiu, B., Cassity, C. G., Benchea, A., Hamby, T., Hendrich, J., Strickland, K. J., Wierzbicki, A., Sykora, R. E., Salter, E. A., O'Brien, R. A., West, K. N. & Davis, J. H. (2017). RSC Adv. 7, 7623–7630.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X., Tao, P., Wang, Q., Zhao, R., Liu, T., Hu, Y., Hu, Z., Wang, Y., Wang, J., Tang, Y., Xu, H. & He, X. (2023). Mater. Today, 67, 299–319.  Web of Science CrossRef CAS Google Scholar
First citationZhang, L., Li, X., Sun, Y., Zhao, W., Luo, F., Huang, X., Lin, L., Yang, Y. & Peng, B. (2017). Org. Biomol. Chem. 15, 7181–7189.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds