research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[μ3-acetato-di­aqua-μ3-sulfato-cerium(III)]: serendipitous synthesis of a layered coordination polymer exhibiting inter­layer O—H⋯O hydrogen bonding

crossmark logo

aInstitute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: stock@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 17 December 2024; accepted 20 December 2024; online 10 January 2025)

Single crystals of the title compound, [Ce(CH3COO)(SO4)(H2O)2]n, were obtained serendipitously by the reaction of Ce(NO3)3·6H2O with 2,5-thio­phenedi­carb­oxy­lic acid (H2TDC) and acetic acid in a mixture of ethanol and water, where it is assumed that the sulfate ions leached from the Teflon reactor, which was treated with per­oxy­monosulfuric acid prior to its use. Its asymmetric unit consists of one CeIII cation, one sulfate dianion, one acetate anion and two crystallographically independent water mol­ecules, all of them located in general positions. The cerium cations are coordinated by three acetate anions (one O,O-chelating) and three sulfate dianions that are related by symmetry as well as two independent water mol­ecules within an irregular CeO9 coordination geometry. The CeIII cations are linked by the acetate ions into [010] chains, which are further connected into (001) layers by the sulfate dianions. Intra­layer and inter­layer O—H⋯O hydrogen bonds are observed. Powder X-ray diffraction shows that only traces of the title compound have formed together with a large amount of an unknown crystalline phase. Attempts to prepare the title compound in larger amounts and as a pure phase were unsuccessful.

1. Chemical context

In the search for new coordination polymers (CPs) (Batten et al., 2009[Batten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application, pp. 6-10. Cambridge: RSC.]) or metal–organic frameworks (MOFs) (Rowsell & Yaghi, 2004[Rowsell, J. L. C. & Yaghi, O. M. (2004). Microporous Mesoporous Mater. 73, 3-14.]; Long & Yaghi, 2009[Long, J. R. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213-1214.]), many inorganic and organic building blocks have been used to construct such materials. Consisting of repeating units of metal atoms or ions bridged by coordinating ligands, the resulting frameworks of CPs extend in up to three dimensions. MOFs, on the other hand, are a subclass of CPs and contain only organic ligands, called linkers, and extend in two or three dimensions. Another requirement is the presence of potential pores (Batten et al., 2013[Batten, S. R., Champness, N. R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Paik Suh, M. & Reedijk, J. (2013). Pure Appl. Chem. 85, 1715-1724.]), which generate large specific surface areas that can be used for applications such as catalysis (Hu et al., 2018[Hu, M.-L., Safarifard, V., Doustkhah, E., Rostamnia, S., Morsali, A., Nouruzi, N., Beheshti, S. & Akhbari, K. (2018). Microporous Mesoporous Mater. 256, 111-127.]; Li, 2018[Li, B. (2018). Inorg. Chem. Commun. 88, 56-59.]; Lammert et al., 2015[Lammert, M., Wharmby, M. T., Smolders, S., Bueken, B., Lieb, A., Lomachenko, K. A., De Vos, D. & Stock, N. (2015). Chem. Commun. 51, 12578-12581.]), gas storage (Li et al., 2019[Li, H., Li, L., Lin, R.-B., Zhou, W., Zhang, Z., Xiang, S. & Chen, B. (2019). EnergyChem, 1, 100006.]; Sahayaraj et al., 2023[Sahayaraj, A. F., Prabu, H. J., Maniraj, J., Kannan, M., Bharathi, M., Diwahar, P. & Salamon, J. (2023). J. Inorg. Organomet. Polym. 33, 1757-1781.]) and sensing (Shekhah et al., 2011[Shekhah, O., Liu, J., Fischer, R. A. & Wöll, Ch. (2011). Chem. Soc. Rev. 40, 1081-1106.]; Wang et al., 2018[Wang, M., Guo, L. & Cao, D. (2018). Sens. Actuators B Chem. 256, 839-845.]). Depending on the metal ions and organic linkers used, the properties of MOFs can often be tailored (Sahayaraj et al., 2023[Sahayaraj, A. F., Prabu, H. J., Maniraj, J., Kannan, M., Bharathi, M., Diwahar, P. & Salamon, J. (2023). J. Inorg. Organomet. Polym. 33, 1757-1781.]). For example, by using a metal such as cerium, its ability to change its oxidation state between +III and +IV can be exploited in catalysis (Lammert et al., 2015[Lammert, M., Wharmby, M. T., Smolders, S., Bueken, B., Lieb, A., Lomachenko, K. A., De Vos, D. & Stock, N. (2015). Chem. Commun. 51, 12578-12581.]; Smolders et al., 2018[Smolders, S., Lomachenko, K. A., Bueken, B., Struyf, A., Bugaev, A. L., Atzori, C., Stock, N., Lamberti, C., Roeffaers, M. B. J. & De Vos, D. E. (2018). ChemPhysChem, 19, 373-378.], 2020[Smolders, S., Jacobsen, J., Stock, N. & De Vos, D. (2020). Catal. Sci. Technol. 10, 337-341.]).

There are as many different building blocks as there are reaction conditions to synthesize such materials. This leads to multidimensional parameter spaces that can be explored with many potential compounds to be discovered. The so-called high-throughput method is very useful when it comes to screening parameter spaces (Stock, 2010[Stock, N. (2010). Microporous Mesoporous Mater. 129, 287-295.]). With this method, many different syntheses can be carried out simultaneously while varying the reaction conditions. Some areas of a parameter space lead exclusively to one compound, i.e. phase pure compounds, while in other cases phase mixtures are observed. This work reports the synthesis and structure of the title CeIII -CP discovered in a screening experiment by reacting equimolar amounts of a cerium nitrate and 2,5-thio­phenedi­carb­oxy­lic acid (H2TDC) and varying the ratio of acetic acid and ethanol/water mixture. Surprisingly, single crystals of a product were obtained that did not contain TDC2– dianions, but rather sulfate dianions.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, [Ce(CH3COO)(SO4)(H2O)2]n, consists of a crystallographically independent CeIII cation, one acetate anion, one sulfate dianion and two crystallographically independent water mol­ecules, all in general positions (Fig. 1[link]). Each CeIII cation is ninefold coordinated by four O atoms of three symmetry-equivalent acetate anions, three O atoms of three symmetry-equivalent sulfate dianions and two crystallographically independent water mol­ecules. The Ce—O bond lengths range from 2.4385 (10) to 2.6518 (10) Å (Table 1[link]) and the O—Ce—O angles reveal that the coordination geometry around the CeIII ion is distorted. Two of the three acetate anions are coordinated with only one carboxyl O atom to the metal centres, whereas the third anion is coordinated with both O atoms to the CeIII cations. Chains are formed by the acetate anions coordinated by three symmetry-equivalent CeIII cations via the μ3-(O,O′,O,O′) bridging mode, which extend in the crystallographic b-axis direction (Fig. 2[link]). The acetate C—O bond distances are almost the same (Table 1[link]), indicating complete delocalization of the negative charge. The chains of cerium cations and acetate anions are linked by sulfate dianions to form layers lying parallel to the ab plane (Fig. 3[link]). These layers are stacked along the crystallographic c-axis (Figs. 4[link] and 5[link]).

Table 1
Selected bond lengths (Å)

Ce1—O1 2.4608 (10) Ce1—O5iv 2.4836 (10)
Ce1—O1i 2.6518 (10) Ce1—O7 2.5678 (11)
Ce1—O2ii 2.5996 (10) Ce1—O8 2.5127 (11)
Ce1—O2i 2.5992 (10) C1—O1 1.2706 (16)
Ce1—O3 2.4385 (10) C1—O2 1.2783 (17)
Ce1—O4iii 2.5119 (10)    
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [x, y-1, z]; (iii) [-x+1, -y+1, -z+1]; (iv) [x-1, y, z].
[Figure 1]
Figure 1
Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) x, y − 1, z; (iii) −x + 1, −y + 1, −z + 1; (iv) x  − 1, y, z.
[Figure 2]
Figure 2
Crystal structure of the title compound showing a section of a cerium–acetate chain.
[Figure 3]
Figure 3
Connection of the cerium–acetate chains by sulfate dianions into layers. The methyl groups of the acetate anions and the water mol­ecules were omitted for clarity.
[Figure 4]
Figure 4
Crystal structure of the title compound viewed along the crystallographic a axis. The CeO9 units are displayed as polyhedra.
[Figure 5]
Figure 5
Crystal structure of the title compound viewed along the crystallographic b axis. The CeO9 units are displayed as polyhedra.

3. Supra­molecular features

Within the cerium–sulfate–acetate layers, intra­layer O—H⋯O hydrogen bonds (O7—H7A⋯O4, O8—H8B⋯O6) are observed between water H atoms (O7, O8) and sulfate O atoms (O4, O6) that are not involved in metal coordination (Fig. 6[link] left and Table 2[link]). The same types of hydrogen bonds are also observed in the inter­connection of the layers by inter­layer O—H⋯O hydrogen bonds (O7—H7B⋯O6, O8—H8A⋯O5) between the H atoms of the water mol­ecules (O7, O8) and the O atoms (O6, O5) of the sulfate dianion. Also, inter­layer hydrogen bonding (O8—H8A⋯O7) between the two water mol­ecules is observed (Fig. 6[link] right). Most of the H⋯O distances are relatively short and the O—H⋯O angles are close to linear (Table 2[link]), indicating that these are strong inter­actions (1.5–2.2 Å, 130–180°; Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. p. 13. New York: Oxford University Press.]). According to Table 2[link], the inter­layer hydrogen bonds O8—H8A⋯O5 and O8—H8A⋯O7 are rather weak. Two weak C—H⋯O inter­actions also occur. As a result of the inter­layer hydrogen bonding, a three-dimensional supra­molecular network is formed.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4v 0.78 (3) 2.08 (3) 2.8400 (15) 165 (3)
O7—H7B⋯O6vi 0.79 (3) 1.95 (3) 2.7412 (15) 175 (3)
O8—H8A⋯O5vi 0.78 (3) 2.59 (3) 3.1389 (15) 129 (2)
O8—H8A⋯O7vii 0.78 (3) 2.30 (3) 3.0386 (16) 158 (2)
O8—H8B⋯O6 0.87 (2) 1.99 (2) 2.7976 (15) 154 (2)
C2—H2A⋯O4 0.98 2.43 3.3245 (18) 152
C2—H2C⋯O3viii 0.98 2.40 3.2909 (18) 151
Symmetry codes: (v) [x-1, y-1, z]; (vi) [-x+1, -y+1, -z+2]; (vii) [-x, -y+1, -z+2]; (viii) [x, y+1, z].
[Figure 6]
Figure 6
View along the layers with the intra­layer (left) and inter­layer (right) hydrogen bonds shown as dashed lines. The acetate anions were omitted for clarity.

4. Database survey

A search for crystal structures containing any lanthanide, sulfate and acetate ions in the Cambridge Structural Database (CSD version 5.45, last update September 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using CONQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) revealed six compounds with the composition [Ln(CH3COO)(SO4)(H2O)2]n [Ln = La, Pr, Nd, Sm, Eu, CSD refcodes: EXURAR, EXURIZ, EXUREV, EXUROF, EXUQUK (Chen et al., 2011[Chen, H.-M., Hu, R.-X. & Zhang, M.-B. (2011). J. Chem. Crystallogr. 41, 1547-1551.]) and Ln = Gd (FUSSIW; Liu et al., 2009[Liu, H.-C., Chen, I.-H., Huang, A., Huang, S.-C. & Hsu, K.-F. (2009). Dalton Trans. pp. 3447-3456.])], which are isostructural to the title compound. A search for cerium, sulfate and formate ions yielded two hits for a compound with the composition [Ce(HCOO)(SO4)(H2O)]n (VESBOM, VESBOM01; Ju et al., 2012[Ju, W., Zhang, D., Zhu, D. & Xu, Y. (2012). Inorg. Chem. 51, 13373-13379.]), which is not isostructural to the title compound. This compound exhibits a chiral three-dimensional framework.

Searching for cerium(III) acetates (allowing the elements Ce, C, H, O), two compounds with three reported structures are encountered: [Ce(CH3COO)3(H2O)]n (CEACET, CEACET01; Sadikov et al., 1967[Sadikov, G. G., Kukina, G. A. & Porai-Koshits, M. A. (1967). Zh. Strukt. Khim. 8, 551.]; Junk et al., 1999[Junk, P. C., Kepert, C. J., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 601-615.]) and [Ce2(CH3COO)6(H2O)2]n·H2O (XECKEV; Junk et al., 1999[Junk, P. C., Kepert, C. J., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 601-615.]). In [Ce(CH3COO)3(H2O)]n, mono-periodic cerium acetate chains are present, which are inter­connected by hydrogen bonding between coordinating water mol­ecules and the acetate anions. [Ce2(CH3COO)6(H2O)2]n·H2O is build up by cerium acetate layers, which are bridged into a three-dimensional framework by hydrogen bonding between the water solvate mol­ecules and the acetate anions.

In the Inorganic Crystal Structure Database (ICSD release 2024.1; Zagorac et al., 2019[Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.]) twelve structures have been deposited for cerium(III) sulfates (composition: CeIII, S, O, H; number of elements: 4), namely Ce2(SO4)3(H2O)9 (ICSD-24184; Dereigne & Pannetier, 1968[Dereigne, A. & Pannetier, G. (1968). Bull. Soc. Chim. Fr. 1968, 174-180.]), Ce2(SO4)3(H2O)8 (ICSD-87633; Kepert et al., 1999[Junk, P. C., Kepert, C. J., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 601-615.]; ICSD-417418; Casari & Langer, 2007[Casari, B. M. & Langer, V. (2007). Z. Anorg. Allg. Chem. 633, 1074-1081.]), Ce2(SO4)3(H2O)5 (ICSD-87635; Kepert et al., 1999[Junk, P. C., Kepert, C. J., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 601-615.]), Ce2(SO4)3(H2O)4 (ICSD-240937; Xu, 2008[Xu, X. (2008). Acta Cryst. E64, i1.]; ICSD-417417; Casari & Langer, 2007[Casari, B. M. & Langer, V. (2007). Z. Anorg. Allg. Chem. 633, 1074-1081.], ICSD-21073; Dereigne et al., 1972[Dereigne, A., Manoli, J. M., Pannetier, G. & Herpin, P. (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269-280.]), Ce(OH)(SO4) (ICSD-59922; Yang et al., 2005[Yang, Y., Zhu, L.-H., Zeng, M.-H. & Feng, X.-L. (2005). Acta Cryst. E61, i41-i43.]), Ce(H3O)0.5(SO4)1.5(HSO4)0.5 (ICSD-414161; Yu et al., 2004[Yu, R., Wang, D., Chen, Y., Xing, X., Ishiwata, S., Saito, T. & Takano, M. (2004). Chem. Lett. 33, 1186-1187.]), Ce(HSO4)3 (ICSD-408961; Wickleder, 1998[Wickleder, M. S. (1998). Z. Anorg. Allg. Chem. 624, 1583-1587.]), (H3O)0.444Ce0.888(Ce0.08 (H3O)0.14)(SO4)2(H2O)4.34 (ICSD-92999; Filipenko et al., 2001[Filipenko, O. S., Shilov, G. V., Leonova, L. S., Ponomarev, V. I. & Atovmyan, L. O. (2001). Dokl. Akad. Nauk, 380, 208-212.]), (H3O)(Ce(SO4)2)(H2O) (ICSD-26559; Gatehouse & Pring, 1981[Gatehouse, B. M. & Pring, A. J. (1981). J. Solid State Chem. 38, 116-120.]). No crystal structure of anhydrous cerium(III) sulfate has been reported. Therefore, to the best of our knowledge, [Ce(CH3COO)(SO4)(H2O)2]n is the first reported cerium acetate sulfate.

5. Synthesis and crystallization

The synthesis was conducted applying the high-throughput method as described in the literature with our custom-made high-throughput setup (Radke et al. (2023[Radke, M., Suren, R. & Stock, N. (2023). JoVE, 200, e65441.]). Single crystals of the title compound were serendipitously obtained by the reaction of 9.2 mg (0.053 mmol) of H2TDC, 400 µl (0.053 mmol) of a Ce(NO3)3·6H2O solution (c = 0.133 mol l−1) in H2O/EtOH (68:32), 365 µl of H2O/EtOH (68:32) and 235 µl of acetic acid in a 2 ml Teflon vial. The reactor was sealed and placed in a Memmert UFP400 oven heating the reaction mixture to 423 K over 24 h, holding that temperature for 192 h and afterwards slowly cooling down to room temperature over 48 h. The reaction mixture was filtered off and washed with H2O/EtOH (68:32) and dried under air. The product was obtained as a minor phase as indicated by powder X-ray diffraction (Fig. 7[link]) but in the form of single crystals, which were suitable for single-crystal X-ray diffraction.

[Figure 7]
Figure 7
Experimental X-ray powder diffraction pattern of the batch from which the crystals were selected (red) and the calculated X-ray powder diffraction pattern of the title compound (black). The experimental pattern is very noisy because the yield was very low.

No sulfate-containing compounds were used consciously. Attempts to locate the source of the sulfate anions by testing the reactants and solvents for sulfate anions with aqueous BaCl2 for observing the formation of insoluble BaSO4 were unsuccessful. In an energy dispersive X-ray spectroscopy measurement of the used Ce(NO3)3·6H2O, no sulfur was found. Since the qu­antity of sulfate anions involved in the formation of the title compound seems to be untraceable, we find it most likely that the sulfate anions originate from leaching from the Teflon reactors, which were treated with per­oxy­monosulfuric acid prior to its use.

Attempts to prepare the title compound phase pure were unsuccessful. Conducting the described synthesis in a 7 ml pyrex tube for 6 h in absence of H2TDC, only an X-ray amorphous product was obtained. In addition, using equimolar amounts of Na2SO4 and Ce(NO3)3 only lead to the formation of an unknown crystalline compound. It should be noted that in the syntheses of [Ln(CH3COO)(SO4)(H2O)2]n (Ln = La, Pr, Nd, Sm, Eu; Chen et al., 2011[Chen, H.-M., Hu, R.-X. & Zhang, M.-B. (2011). J. Chem. Crystallogr. 41, 1547-1551.]), no sulfate source was used and the authors concluded that the sulfate dianions probably originate from the metal salts employed in the syntheses.

The powder X-ray diffraction pattern was collected on a Stoe Stadi P with a MYTHEN2 1K detector and Cu Kα1 radiation.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were positioned with idealized geometry allowed to rotate but not to tip and were refined isotropically with Uiso(H) = 1.5Ueq(C) using a riding model. The O-bound H atoms were located in difference maps and were refined isotropically with varying coordinates.

Table 3
Experimental details

Crystal data
Chemical formula [Ce(C2H3O2)(SO4)(H2O)2]
Mr 331.26
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 6.8424 (1), 6.9984 (1), 8.7888 (2)
α, β, γ (°) 110.448 (2), 90.099 (2), 107.307 (2)
V3) 373.85 (1)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.38
Crystal size (mm) 0.08 × 0.08 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlisPr; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England.])
Tmin, Tmax 0.243, 0.264
No. of measured, independent and observed [I > 2σ(I)] reflections 8752, 2085, 2066
Rint 0.014
(sin θ/λ)max−1) 0.708
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.010, 0.025, 1.08
No. of reflections 2085
No. of parameters 126
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.75, −0.40
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), XP in SHELXTL-PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Poly[µ3-acetato-diaqua-µ3-sulfato-cerium(III)] top
Crystal data top
[Ce(C2H3O2)(SO4)(H2O)2]Z = 2
Mr = 331.26F(000) = 314
Triclinic, P1Dx = 2.943 Mg m3
a = 6.8424 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.9984 (1) ÅCell parameters from 7869 reflections
c = 8.7888 (2) Åθ = 2.5–30.2°
α = 110.448 (2)°µ = 6.38 mm1
β = 90.099 (2)°T = 100 K
γ = 107.307 (2)°Plate, colorless
V = 373.85 (1) Å30.08 × 0.08 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2085 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source2066 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.014
Detector resolution: 10.0000 pixels mm-1θmax = 30.2°, θmin = 2.5°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlisPr; Rigaku OD, 2023)
k = 99
Tmin = 0.243, Tmax = 0.264l = 1212
8752 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.010H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.025 w = 1/[σ2(Fo2) + (0.0141P)2 + 0.1685P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2085 reflectionsΔρmax = 0.75 e Å3
126 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.12292 (2)0.35141 (2)0.63283 (2)0.00574 (3)
O10.17608 (15)0.68328 (15)0.57726 (12)0.00892 (18)
O20.18457 (16)0.98045 (16)0.54087 (12)0.00910 (18)
C10.2619 (2)0.8836 (2)0.61166 (17)0.0078 (2)
C20.4512 (2)1.0007 (2)0.73196 (19)0.0123 (3)
H2A0.5659350.9524560.6853570.015*
H2B0.4263610.9708950.8324510.015*
H2C0.4855701.1555970.7570980.015*
S10.70445 (5)0.60045 (5)0.75494 (4)0.00687 (6)
O30.49759 (15)0.45194 (16)0.67514 (13)0.00991 (19)
O40.79111 (16)0.73412 (16)0.65621 (12)0.00951 (19)
O50.84036 (15)0.47553 (16)0.76662 (12)0.00945 (18)
O60.68899 (16)0.74388 (17)0.92067 (12)0.01042 (19)
O70.00409 (18)0.17358 (18)0.84206 (14)0.0114 (2)
H7A0.055 (4)0.050 (4)0.807 (3)0.034 (7)*
H7B0.088 (5)0.193 (5)0.913 (4)0.044 (8)*
O80.26010 (17)0.62451 (18)0.91554 (13)0.0125 (2)
H8A0.203 (4)0.659 (4)0.992 (3)0.028 (6)*
H8B0.391 (4)0.673 (4)0.950 (3)0.023 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.00598 (4)0.00511 (4)0.00627 (4)0.00165 (3)0.00012 (3)0.00234 (3)
O10.0103 (5)0.0069 (4)0.0098 (5)0.0026 (4)0.0007 (4)0.0036 (4)
O20.0097 (4)0.0078 (4)0.0107 (5)0.0032 (4)0.0004 (4)0.0041 (4)
C10.0073 (6)0.0083 (6)0.0078 (6)0.0031 (5)0.0025 (5)0.0026 (5)
C20.0118 (6)0.0102 (6)0.0137 (7)0.0021 (5)0.0033 (5)0.0043 (5)
S10.00646 (14)0.00716 (14)0.00742 (14)0.00237 (11)0.00052 (11)0.00302 (11)
O30.0067 (4)0.0099 (4)0.0115 (5)0.0014 (4)0.0003 (4)0.0030 (4)
O40.0114 (5)0.0088 (4)0.0098 (5)0.0032 (4)0.0025 (4)0.0050 (4)
O50.0088 (4)0.0111 (5)0.0113 (5)0.0055 (4)0.0012 (4)0.0054 (4)
O60.0107 (5)0.0121 (5)0.0078 (5)0.0044 (4)0.0012 (4)0.0024 (4)
O70.0135 (5)0.0087 (5)0.0111 (5)0.0014 (4)0.0022 (4)0.0044 (4)
O80.0094 (5)0.0153 (5)0.0085 (5)0.0018 (4)0.0009 (4)0.0012 (4)
Geometric parameters (Å, º) top
Ce1—O12.4608 (10)C1—C21.4916 (19)
Ce1—O1i2.6518 (10)C2—H2A0.9800
Ce1—O2ii2.5996 (10)C2—H2B0.9800
Ce1—O2i2.5992 (10)C2—H2C0.9800
Ce1—O32.4385 (10)S1—O31.4790 (10)
Ce1—O4iii2.5119 (10)S1—O41.4895 (10)
Ce1—O5iv2.4836 (10)S1—O51.4784 (10)
Ce1—O72.5678 (11)S1—O61.4773 (11)
Ce1—O82.5127 (11)O7—H7A0.78 (3)
Ce1—C1i3.0316 (14)O7—H7B0.79 (3)
C1—O11.2706 (16)O8—H8A0.78 (3)
C1—O21.2783 (17)O8—H8B0.87 (2)
O1—Ce1—O1i67.57 (4)O7—Ce1—C1i97.45 (4)
O1—Ce1—O2ii145.60 (3)O8—Ce1—O1i130.03 (3)
O1—Ce1—O2i116.63 (3)O8—Ce1—O2ii120.31 (3)
O1i—Ce1—C1i24.69 (3)O8—Ce1—O2i144.47 (3)
O1—Ce1—C1i92.06 (3)O8—Ce1—C1i143.46 (4)
O1—Ce1—O4iii74.19 (3)O8—Ce1—O771.10 (4)
O1—Ce1—O5iv78.93 (3)Ce1—O1—Ce1i112.43 (4)
O1—Ce1—O7143.73 (3)C1—O1—Ce1151.89 (9)
O1—Ce1—O880.50 (3)C1—O1—Ce1i94.63 (8)
O2ii—Ce1—O1i107.17 (3)Ce1i—O2—Ce1v116.36 (4)
O2i—Ce1—O1i49.44 (3)C1—O2—Ce1v134.95 (9)
O2i—Ce1—O2ii63.64 (4)C1—O2—Ce1i96.92 (8)
O2i—Ce1—C1i24.75 (3)O1—C1—Ce1i60.68 (7)
O2ii—Ce1—C1i85.25 (3)O1—C1—O2119.01 (12)
O3—Ce1—O186.58 (3)O1—C1—C2119.73 (12)
O3—Ce1—O1i140.56 (3)O2—C1—Ce1i58.33 (7)
O3—Ce1—O2ii77.38 (3)O2—C1—C2121.26 (12)
O3—Ce1—O2i137.85 (3)C2—C1—Ce1i179.59 (10)
O3—Ce1—C1i146.27 (3)C1—C2—H2A109.5
O3—Ce1—O4iii78.81 (3)C1—C2—H2B109.5
O3—Ce1—O5iv139.02 (3)C1—C2—H2C109.5
O3—Ce1—O7103.44 (4)H2A—C2—H2B109.5
O3—Ce1—O869.46 (4)H2A—C2—H2C109.5
O4iii—Ce1—O1i66.07 (3)H2B—C2—H2C109.5
O4iii—Ce1—O2i75.14 (3)O3—S1—O4108.88 (6)
O4iii—Ce1—O2ii72.95 (3)O5—S1—O3109.66 (6)
O4iii—Ce1—C1i68.47 (3)O5—S1—O4110.12 (6)
O4iii—Ce1—O7141.63 (3)O6—S1—O3109.99 (6)
O4iii—Ce1—O8140.26 (4)O6—S1—O4108.79 (6)
O5iv—Ce1—O1i66.55 (3)O6—S1—O5109.39 (6)
O5iv—Ce1—O2ii131.94 (3)S1—O3—Ce1153.24 (6)
O5iv—Ce1—O2i82.17 (3)S1—O4—Ce1iii133.75 (6)
O5iv—Ce1—C1i73.04 (3)S1—O5—Ce1vi140.99 (6)
O5iv—Ce1—O4iii131.50 (3)Ce1—O7—H7A116.9 (19)
O5iv—Ce1—O770.70 (3)Ce1—O7—H7B118 (2)
O5iv—Ce1—O870.42 (4)H7A—O7—H7B106 (3)
O7—Ce1—O1i115.10 (3)Ce1—O8—H8A129.9 (18)
O7—Ce1—O2ii70.36 (3)Ce1—O8—H8B121.1 (15)
O7—Ce1—O2i78.89 (3)H8A—O8—H8B107 (2)
Ce1—O1—C1—Ce1i164.6 (2)O3—S1—O4—Ce1iii60.31 (9)
Ce1—O1—C1—O2165.26 (13)O3—S1—O5—Ce1vi102.11 (10)
Ce1i—O1—C1—O20.66 (13)O4—S1—O3—Ce192.36 (15)
Ce1i—O1—C1—C2179.93 (11)O4—S1—O5—Ce1vi17.68 (11)
Ce1—O1—C1—C215.3 (3)O5—S1—O3—Ce1147.09 (13)
Ce1v—O2—C1—Ce1i138.87 (12)O5—S1—O4—Ce1iii59.96 (9)
Ce1i—O2—C1—O10.68 (13)O6—S1—O3—Ce126.76 (16)
Ce1v—O2—C1—O1139.54 (11)O6—S1—O4—Ce1iii179.83 (7)
Ce1i—O2—C1—C2179.92 (11)O6—S1—O5—Ce1vi137.19 (9)
Ce1v—O2—C1—C241.1 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x, y+1, z; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4vii0.78 (3)2.08 (3)2.8400 (15)165 (3)
O7—H7B···O6viii0.79 (3)1.95 (3)2.7412 (15)175 (3)
O8—H8A···O5viii0.78 (3)2.59 (3)3.1389 (15)129 (2)
O8—H8A···O7ix0.78 (3)2.30 (3)3.0386 (16)158 (2)
O8—H8B···O60.87 (2)1.99 (2)2.7976 (15)154 (2)
C2—H2A···O40.982.433.3245 (18)152
C2—H2C···O3v0.982.403.2909 (18)151
Symmetry codes: (v) x, y+1, z; (vii) x1, y1, z; (viii) x+1, y+1, z+2; (ix) x, y+1, z+2.
 

Funding information

The authors thank the state of Schleswig-Holstein for financial support. NR and NS acknowledge the support by the Deutsche Forschungsgemeinschaft (STO-643/15–1).

References

First citationBatten, S. R., Champness, N. R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Paik Suh, M. & Reedijk, J. (2013). Pure Appl. Chem. 85, 1715–1724.  Web of Science CrossRef CAS Google Scholar
First citationBatten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application, pp. 6–10. Cambridge: RSC.  Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCasari, B. M. & Langer, V. (2007). Z. Anorg. Allg. Chem. 633, 1074–1081.  Web of Science CrossRef ICSD CAS Google Scholar
First citationChen, H.-M., Hu, R.-X. & Zhang, M.-B. (2011). J. Chem. Crystallogr. 41, 1547–1551.  Web of Science CSD CrossRef CAS Google Scholar
First citationDereigne, A., Manoli, J. M., Pannetier, G. & Herpin, P. (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269–280.  CAS Google Scholar
First citationDereigne, A. & Pannetier, G. (1968). Bull. Soc. Chim. Fr. 1968, 174–180.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. p. 13. New York: Oxford University Press.  Google Scholar
First citationFilipenko, O. S., Shilov, G. V., Leonova, L. S., Ponomarev, V. I. & Atovmyan, L. O. (2001). Dokl. Akad. Nauk, 380, 208–212.  CAS Google Scholar
First citationGatehouse, B. M. & Pring, A. J. (1981). J. Solid State Chem. 38, 116–120.  CrossRef ICSD CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHu, M.-L., Safarifard, V., Doustkhah, E., Rostamnia, S., Morsali, A., Nouruzi, N., Beheshti, S. & Akhbari, K. (2018). Microporous Mesoporous Mater. 256, 111–127.  Web of Science CrossRef CAS Google Scholar
First citationJu, W., Zhang, D., Zhu, D. & Xu, Y. (2012). Inorg. Chem. 51, 13373–13379.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJunk, P. C., Kepert, C. J., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 601–615.  CAS Google Scholar
First citationLammert, M., Wharmby, M. T., Smolders, S., Bueken, B., Lieb, A., Lomachenko, K. A., De Vos, D. & Stock, N. (2015). Chem. Commun. 51, 12578–12581.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, B. (2018). Inorg. Chem. Commun. 88, 56–59.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H., Li, L., Lin, R.-B., Zhou, W., Zhang, Z., Xiang, S. & Chen, B. (2019). EnergyChem, 1, 100006.  CrossRef Google Scholar
First citationLiu, H.-C., Chen, I.-H., Huang, A., Huang, S.-C. & Hsu, K.-F. (2009). Dalton Trans. pp. 3447–3456.  Web of Science CSD CrossRef Google Scholar
First citationLong, J. R. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213–1214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRadke, M., Suren, R. & Stock, N. (2023). JoVE, 200, e65441.  Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England.  Google Scholar
First citationRowsell, J. L. C. & Yaghi, O. M. (2004). Microporous Mesoporous Mater. 73, 3–14.  Web of Science CrossRef CAS Google Scholar
First citationSadikov, G. G., Kukina, G. A. & Porai-Koshits, M. A. (1967). Zh. Strukt. Khim. 8, 551.  Google Scholar
First citationSahayaraj, A. F., Prabu, H. J., Maniraj, J., Kannan, M., Bharathi, M., Diwahar, P. & Salamon, J. (2023). J. Inorg. Organomet. Polym. 33, 1757–1781.  Google Scholar
First citationShekhah, O., Liu, J., Fischer, R. A. & Wöll, Ch. (2011). Chem. Soc. Rev. 40, 1081–1106.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmolders, S., Jacobsen, J., Stock, N. & De Vos, D. (2020). Catal. Sci. Technol. 10, 337–341.  Web of Science CrossRef CAS Google Scholar
First citationSmolders, S., Lomachenko, K. A., Bueken, B., Struyf, A., Bugaev, A. L., Atzori, C., Stock, N., Lamberti, C., Roeffaers, M. B. J. & De Vos, D. E. (2018). ChemPhysChem, 19, 373–378.  Web of Science CrossRef CAS PubMed Google Scholar
First citationStock, N. (2010). Microporous Mesoporous Mater. 129, 287–295.  Web of Science CrossRef CAS Google Scholar
First citationWang, M., Guo, L. & Cao, D. (2018). Sens. Actuators B Chem. 256, 839–845.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWickleder, M. S. (1998). Z. Anorg. Allg. Chem. 624, 1583–1587.  CrossRef CAS Google Scholar
First citationXu, X. (2008). Acta Cryst. E64, i1.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationYang, Y., Zhu, L.-H., Zeng, M.-H. & Feng, X.-L. (2005). Acta Cryst. E61, i41–i43.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationYu, R., Wang, D., Chen, Y., Xing, X., Ishiwata, S., Saito, T. & Takano, M. (2004). Chem. Lett. 33, 1186–1187.  Web of Science CrossRef ICSD CAS Google Scholar
First citationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds